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Abstract Euclidean geometry and Newtonian time with floating point numbers are
common computational models of the physical world. However, to achieve the kind
of cyber-physical collaboration that arises in the IoT, such a literal representation of
space and time may not be the best choice. In this chapter we survey location models
from robotics, the internet, cyber-physical systems, and philosophy. The diversity in
these models is justified by differing application demands and conceptualizations of
space (spatial ontologies). To facilitate interoperability of spatial knowledge across
representations,we propose a logical frameworkwherein a spatial ontology is defined
as a model-theoretic structure. The logic language induced from a collection of such
structures may be used to formally describe location in the IoT via semantic local-
ization. Space-aware IoT services gain advantages for privacy and interoperability
when they are designed for the most abstract spatial-ontologies as possible.We finish
the chapter with definitions for open ontologies and logical inference.

1 Location as IoT Context

Today, we have mature theories of computation, developed over the last 80 years
or so, and mature theories of physical structure and dynamics, developed over the
last 300 years or so. But we have only the barest beginnings of theories that conjoin
the two. One of the key points of friction is that the notion of location in space and
time are central to a physical reality, but absent in a cyber reality. When the focus is
mutual imitation, as in simulation, it is natural to construct cyber representations of
space and time by approximating positions in a Euclidean geometry and Newtonian
time with floating point numbers. But when the goal is the kind of cyber-physical
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collaboration that arises in the Internet of Things (IoT), such a literal representation
of space and time may not be the best choice.

When considering mobile devices and the IoT, applications often care more about
logical spatial and temporal relationships than quantitative ones. To preserve security
and privacy, for example, one device may be granted access to data held by another
device only when the two devices are in the same room at the same time. The notion
of “same room at the same time” is an example of what we call semantic localization.
It is not so much about geometric location, but rather asserts a “semantic” spatial
relationship.

In this chapter we survey IoT-relevant location models from robotics, the internet,
cyber-physical systems (CPS)s, and philosophy. The diversity in these models is
justified bydiffering application demands and conceptualizations of space (i.e. spatial
ontologies). To facilitate interoperability of spatial knowledge across representations,
we propose a logical framework wherein a spatial ontology is defined as a model
theoretic structure. The logic language induced from a collection of such structures
may be used to formally describe location in the IoT via semantic localization. Space
aware IoT services gain advantages for privacy and interoperability when they are
designed for the most abstract spatial-ontologies as possible. We finish the chapter
with definitions for open ontologies and logical inference.

For all its importance to understanding IoT systems, localization, the challenge of
determining the location of physical objects, remains an open problem. GPS, which
has been a resounding success for outdoor localization, relies on direct line-of-sight
signals from satellites, and is consequently ineffective for indoor environments or
outdoor environments where obstructions, such as buildings, interfere with measure-
ments. Researchers have been trying to address the indoor localization problem since
the early 1990s with systems like Active Badges [1] and Cricket [2], and yet even
to this day, a general purpose, accurate, cost effective, deployable system with the
potential to reach the ubiquity of outdoor GPS remains elusive. A big part of what
makes the problem difficult is the potential for interference in indoor environments
where walls, furniture, and people, obstruct and reflect signals. Even something as
simple as turning on a microwave oven causes interference to RF signals and might
disrupt signal strength measurements for an indoor localization system operating
in the 802.11 bands. Nevertheless, we are optimistic that in the near future, IoT
applications will routinely have available a variety of types of location information
with a range of quality. This chapter addresses how to organize and use that location
information.

The most commonly articulated purpose for indoor positioning is indoor naviga-
tion. There is no doubt a market for apps that can help you find your way in whatever
building you happen to be inside, but in our view this is probably a small market that
dramatically understates the potential of contextual awareness in the IoT. The future
of indoor and outdoor space-aware IoT systems involves scenarios where position in
space is less important than spatial interrelationships. Consider a fleet of self-driving
cars, where proximity in driving time, energy, and ride sharing opportunities aremore
useful criteria for control than geo-coordinates. Indoors, having awareness of which
devices are in the same roommay bemore useful thanmeasurements of their position
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in two or three-dimensional space. For such applications, different representations
of space than a coordinate-system based physical map become appealing.

Relational ontologies of space aren’t wildly foreign concepts; they can be found
in some of today’s apps. Take data from FourSquare, the app that lets users “check
into” locations, as an example of a non-geometric representation of space. A user
checked into a restaurant on FourSquare is known to be inside the establishment, but
it would be a mistake to guess exact geocoordinates for him/her and plot them inside
the restaurant’s perimeter because they might be sitting at a table or standing by the
door, and precise geocoordinates would suggest a false confidence as to the nature
of unknown information. Unplotability doesn’t make the FourSquare data somehow
less accurate or reliable than a physical coordinate map, it just makes it different.
We call this kind of geometrically fuzzy yet logically precise spatial information
semantic localization.

1.1 Designing a Robo-Cafe

In collaboration with researchers at U Penn, Michigan, UW, CMU, and Berkeley,
in 2015 we demonstrated a robotic delivery system at the DARPA “Wait, What?”
conference where users could place an order on a smart phone localized by the
ALPS Ultrasound Localization System [3] and have a desired snack delivered to
their location by a roaming Scarab Robot [4]. The demo was designed to showcase
integration and composability of IoT systems via accessors [5], but most relevant to
this chapter is the spatial interaction needed between the Scarab and ALPS.

The Scarab comes equipped with a laser rangefinder which it uses with standard
ROS packages to perform Simultaneous Localization and Mapping (SLAM) and to
build an occupancy-grid map of its environment (see Fig. 1). An occupancy grid is a
fairly simple data structure commonly used in robotics to represent an environment
(modeled as a grid over 2D or 3D Euclidean space) that is essentially a big array with
values from 0 to 100. A value of 0 indicates the robot is almost certain the cell does
not contain an obstacle, and a value of 100 that the cell is almost certainly impassable.
The robot also maintains an estimate of its pose (position and orientation) at the cell
where it is currently located.

The second localization system, ALPS, uses ultrasonic beacons, and is also
deployed in the DOP Center (Fig. 1). The system is deployed by placing beacons at
known locations in a building and finding the correspondence between the beacons
and coordinates on the building’s floor plan. The beacons send time synchronized
chirps of ultrasound in the 20–22 kHz bands that are beyond the range of human
hearing but receivable at the standard sampling rate of a cell phone microphone. A
smartphone with an ALPS app can locate itself on the floor plan’s coordinate system.

When the robot is localized on its occupancy grid and the phone is localized on
the floor plan, the Scarab uses ROS navigation packages to deliver a snack. However,
there is a rather subtle challenge in the last step: the phone has known coordinates on
the floor plan and the robot is at a known cell of the occupancy grid, but the two are, as



368 M. Weber and E. A. Lee

Fig. 1 Occupancy grid formed by a Scarab robot roving the DOP Center at Berkeley. This image
shows use of a relatively poor distance sensor on the roving robot, measuring for example received
signal strength from another object, and then applying a particle filtering algorithm constrained by
the occupancy grid map to estimate the position of the other object. The red dots are the particles,
the green square is the target, the blue square is the Scarab robot, and the black areas are occupied
grid points as detected by the lidar rangefinder on the Scarab. The grey areas indicate where the
occupancy grid has no information. Image courtesy of Ilge Akkaya

given, totally unrelated! Deployment of the Robo-cafe requires a coordinate system
alignment phase in which ALPS’s model of space is brought into concordance with
the Scarab’s model.

The coordinate system alignment problem in Robo-Cafe is in fact an instance of
a general problem that must be addressed whenever two IoT systems seek to work
across contextual ontologies. Usually when IoT systems are designed by different
engineers working with different conceptualizations of space, spatial information
cannot be shared between systems without additional translation. A central motiva-
tion for themodeling framework presented in this chapter is to formalize the structure
of spatial ontologies for the development of mappings and relationships that enable
heterogeneous mixtures of ontologies in IoT applications. We discuss a formalism
for such cross-ontology reasoning in Sect. 2.1.

1.2 Spatial Ontologies

Location is one of the most important and challenging aspects of physical context.
Location matters for the IoT in ways it does not for the Internet. There’s a world



Semantic Localization for IoT 369

of difference between illuminating a smart light bulb located in your home or one a
thousand miles away. But while the physical location of a web server might affect
the latency of communication or quality of service, it won’t fundamentally change
the content of the hosted page. For an IoT device, its physical relationship with the
world has everything to do with what it can and cannot accomplish.

Any IoT system that seeks to interact with the physical world assumes a model
of space, either explicitly or implicitly. Such a model is a spatial ontology. Broadly,
the subject of ontology from philosophy is a study of the nature of existence, what it
means for something to be and to be something. In computer science, ontology
is usually about association of entities in a model with structured taxonomies,
addressing questions like “is this object an instance or example of that class of
objects?” (taxonomy) or “is this object a part of an instance or example of that class
of objects?” (meronymy) relationships. In prior work, it has been shown that useful
ontologies can be constrained to have a mathematical lattice structure, and that they
thereby acquire enormous algorithmic and formal benefits that can be leveraged to
compose ontologies, perform inference, and check correctness [6–8]. Such ontolo-
gies form a subset of commonly used ontology frameworks such as Web Ontology
Language (OWL). Their mathematical structure resembles that of Hindley-Milner
type systems, from which they inherit practical algorithms that scale to very large
numbers of elements. For example, type inference maps into the problem of finding
a fixed point of a monotonic function over a lattice.

Spatial ontologies have more diversity than just choice of coordinate system. A
common dichotomy in ontologies is the distinction between “objects” and “fields”
[9–11]. An “object” is an entity that is distinct, with a clear boundary, and in the
language of [9] is “individual and fully deniable.” Examples of objects include: an
apple, a table, or a flashlight. A “field” describes phenomena without clearly defined
boundaries that are “smooth, continuous and spatially varying” [9]. The magnetic
field emanating from a hand-held barmagnet is a good example of this concept. From
a certain pedantic perspective, the field is present everywhere in the universe, only
its strength is almost everywhere so weak as to be negligible. Some geographical
features like lakes have elements of both objects and fields because it can be hard to
identify where they end.

Spatial ontologies can also vary with respect to their interpretation of entities
with respect to time. SNAP and SPAN are two cooperative ontologies proposed by
Grenon and Smith [10] to capture the distinction between “continuants,” objects
with an identity that persists across time, and “occurants,” processes defined in part
by their beginning and ending. Examples of continuants include the planet earth
or a pair of shoes because it makes sense to consider their spatial properties at
a particular snapshot of time. The same is not true for occurants like a volcanic
eruption or the takeoff of a helicopter. Such occurants unquestionably have a spatial
existence but their reality is best comprehended in four full dimensions; a sequence
of 3D observations misses something essential about the nature of the process. There
is clearly a strong interrelation between SNAP and SPAN ontologies. This point
is not missed by Grenon and Smith, who devote a latter section of their paper to
trans-ontology interrelations between SNAP and SPAN.
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1.3 Semantic Technologies

The term “semantic technology” describes a collection of popular standards and
technologies for representing and working with ontologies, be they spatial or
otherwise.

The Semantic Web was proposed by Tim Berners-Lee in 2001 as an extension of
the World Wide Web that would allow ordinary HTML web pages to be enhanced
with special markup to label their semantic content. The hope is that when markup
is combined with a collection of ontologies for web content and real-world objects,
algorithms will be able to apply ontological reasoning to web elements and data. For
example, an image of a bridge embedded in a web site could be labeled as such and
found through a general search for “landmarks” by using the ontological information
that a bridge is a landmark.According to thewikipedia article on the semanticweb, by
2013 some 4million web pages had been augmented with semantic web information.
But this is done primarily through human intervention, which could account for the
relatively modest penetration compared to the total number of web pages.

Semantic Web ontologies are expressed in Resource Description Framework
(RDF), an abstract model for semantic data as sentence-like statements about the
world in triples of subject, predicate, object. For example: the sentence “A cow”
(subject) “isa” (predicate) “farm animal” (object), or “Themall parking lot” (subject)
“has the number of free spaces” (predicate) “45” (object). As hinted at by these
examples, triples can express both abstract information about classes (cows and
farm animals) as well as facts about specific instances (the mall parking lot) and raw
data values (45). A database designed and optimized for RDF data is known as a
semantic repository or alternatively a triple store. The W3C SPARQL Protocol and
RDF Query Language (SPARQL) recommendation [12] defines both a protocol and
a query language for performing SQL-like operations on a semantic repository such
as queries, inserts, updates, and deletes.

RDF is a natural way to express relational ontologies, as discussed in Sect. 2.3,
for semantic localization. Additionally, some semantic repositories, like GraphDB,
support geospatial plugins for efficient queries over geocoordinates (i.e. latitude and
longitude pairs). If compatible with the GeoSPARQL standard [13], the semantic
repository may also be able to automatically derive RCC (Region Connection
Calculus) relationships, such as containment of one geospatial object within another,
directly from the definitions of the objects themselves.

1.4 Standards for Spatial Representation

Many standards for spatial representation have been proposed in different domains,
a sample of which is presented here.

According to Lieberman et al., as of 2007 the semantic web maintained at least
seven varieties of spatial ontologies [14]. These include Geospatial Features, Feature
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Types, Toponyms/Placenames, (Geo) Spatial Relationships, Coordinate Reference
Systems, Geospatial Metadata, and (Geo) Web Services. The relationships between
these, however, are highly unstructured and lacking in formal properties that can
exploited algorithmically.More recently, geospatial ontologies likeGeoDataOnt [15]
have been developed to provide a unified ontology for this domain.

A popular (non-RDF) spatial ontology today is codified in a JSON schema called
GeoJSON [16]. This is used by many location based services. In contrast to the
semantic web, GeoJSON is good at representing geometries, but not higher level
ontological concepts and relationships. It supports points, lines, polygons, and collec-
tions of polygons in 2D or 3D. Given the extensive support for GeoJSON in existing
apps and software, it is a useful standard to leverage for geometric concepts. But
restricting spatial ontologies to exclusively geometric concepts is a mistake. Spatial
relationships are more complex.

On the opposite endof the complexity spectrum, theOpenGISGeographyMarkup
Language (GML) Encoding Standard [17] is a 437 page specification document
describing an XML schema for spatio-temporal ontologies. It follows the ISO 19101
definition of a feature as an “abstraction for realworld phenomena” and represents the
world as a collection of features defined as name, type, value triples. The increased
complexity allows for the description of more sophisticated data such as spatial
geometries, spatial topologies, time, coverages, and observations. The format can be
extended to application schema such as IndoorGML [18] which is targeted for indoor
navigation. IndoorGML focuses on layered graph representations of relationships
such as adjacency and paths between semantic objects in indoor space. It models the
world as a collection of cells representing geometry and topology via the Poincaré
duality to achieve a “Multi-Layered Representation” of a given space in different
contexts.

A variety of geometric data structures and algorithms are employed in the field
of computational geometry when high performance is desired for computationally
difficult spatial analysis [19]. For example, a doubly-connected edge list is used for
the thematic map overlay problem, in which the overlay of spatial subdivisions is
computed.1 A trapezoidal map is another geometric data structure employed to solve
point location queries: given the coordinates of a point and a map subdividing the
plane into regions, determine which region contains the point.

Point clouds are another computationally useful format for spatial information
in the domain of computer vision. Visually oriented sensors such as stereo cameras
or time of flight cameras (e.g. Light Detection and Ranging, LiDAR) measure the
location of individual 3-dimensional points in the world. These points represent
sampled measurements of real-world objects. Once collected, software such as the
open source point cloud library [20] can use a point cloud data set to reconstruct a
sampled surface or perform segmentation to semantically identify objects.

The diversity of these standards for spatial representation is daunting. Yet it is easy
to see how applications in the IoT with different purposes for spatial information and
different sensors for collecting that data benefit from different data representations.

1Imagine overlaying two circles to form a venn-diagram, but with polygons instead of circles.
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Engineers of spatial IoT systems are tasked with finding the best location model for
their application. But IoT systems designed for interaction with other data sources
must additionally be created with an understanding of how a selected location model
is related to the location models of other sensors and IoT systems in the environment.

2 Location Modeling

The purpose of location modeling in this work is to support a logic for reasoning
about spatial ontologies across independently designed IoT systems. By moving
beyond just geometric position, this logic offers the possibility for a much richer set
of applications than just navigation, including for example security (e.g. restricting
access to some service to only devices in the same room); asset tracking (e.g. where
is the remote control for this device, or the device for this remote); spatial search
(e.g. find a temperature sensor in the same room as a mobile device); commissioning
(e.g. deploying sensors and actuators without manually specifying their location);
and context-aware services (e.g. lighting systems that automatically adjust to usage
patterns of a room). We believe semantic repositories are a good start for this, but
there is room for a larger suite of software components and services for creative
application designers to use when reasoning about location information.

Such services could handlemobility (e.g. notificationwhen a device is no longer in
the same room) and superposition of disjoint maps constructed at different semantic
and geometric layers (e.g., relating geometric information to “in the same room”
semantic information).

2.1 Model Theory

Model theory is a domain of mathematical logic originally developed to analyze
logical formulas regardingmathematical structures such as groups, graphs, andfields.
The key observation behind model theory is that logical formulas can be written
to express properties in a manner independent of the mathematical structures with
respect to which they are evaluated. For example the formula ∃n 0< n< 1 is true with
respect to R or Q, but not with respect to Z or N. A model (or structure) specifies
a domain, such as R, and gives interpretations to the symbols 0, 1, and < so that
their particular relationship may be determined. We summarize the fundamentals of
model theory relevant to CPS location modeling below. The main reference for the
following definitions is [21], which may be referred to for a more comprehensive
introduction to model theory.2

A formula is a logical statement constructed in the usual way from:

2A friendlier introduction can be found at https://plato.stanford.edu/entries/modeltheory-fo/

https://plato.stanford.edu/entries/modeltheory-fo/
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• logical symbols: (→ , ↔, ¬, ∧, ∨, ∀, ∃,), and
• variables (a countably infinite collection)
• function symbols (e.g. + for a group operation)
• relation symbols (e.g. ≤ for the ordering relation on R)
• the relation symbol = , as the usual “equal sign”
• constant symbols which represent a particular element from the domain (e.g. 0 or

π ).

The arity of function and relation symbols is ≥ 1.
A signature is a particular set of function, relation, and constant symbols. The

language of a signature is the set ofwell-formed formula expressible using functions,
relations and constants from the signature. A variable v0 is bound iff it appears in a
subformula (i.e. a syntactically correct part of a formula) following (∀v0) or (∃v0).
Otherwise the variable is free, and may be assigned a value separately. For example:
formula φ with free variables v0, v1, …, vk may be written as φ(a0, a1, …, ak) to
express the assignment of a0 to v0, a1 to v1, and so on.

The sentences of a language are formulas of the language with no unbound
variables. A structure (ormodel) is a tupleA =〈A, I〉whereA is a domain, i.e. a non-
empty set, and I is an interpretation function. I maps function, relation, and constant
symbols to functions defined over A, relations defined over A, and elements of A
respectively. A structureAmodels a sentence S of a languagewhen the interpretation
of the sentence within the structure evaluates to true. This relationship is denoted by
A �S and its converse by A � S.

A language with a finite signature may be concisely written for example as, L =
{< , 0, 1}. Similarly, a model’s domain and interpretation for that finite signature
may be informally written as an analogous tuple, e.g. A = 〈 R, < , 0, 1〉. Here, A is
the structure with domain R which interprets L with the strict ordering relation < ,
and constants 0 and 1.

Putting it all together, we may now formalize the motivating observation from the
beginning of this section that the same formula may be true or false with respect to
different domains. Regarding the example formula ∃n 0 < n < 1 we have A � ∃n 0
< n < 1, but for B = 〈 N, < , 0, 1〉, B � ∃n 0 < n < 1.

2.2 Semantic Localization

We propose using the concepts of model theory to formally describe location in IoT
systems. A spatial ontology can be represented as a structure A = 〈A, I〉. For A to be
useful as amodel of the space,most likely the elements of A should be places or things
located at places. Similarly, I should provide spatially meaningful interpretations of
relations, functions, and constants. The language for such a structure will then consist
of semantic localization statements.

Defining semantic localization as a model-theoretic language has the advantage
of separating the specification of spatial reasoning from its implementation within a
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particular spatial ontology. Just as the formula ∃n 0 < n < 1 may be evaluated within
different structures, so too might a semantic localization formula be evaluated within
heterogeneous spatial ontologies. For example, let contains (a, b) be a binary relation
which is true when room a contains person b, let user1 and user2 be constants for
people, and let the variable room range over a set of rooms. The formula ∃ room
contains(room, user1)∧ contains(room, user2) expresses the spatial arrangement in
which user1 and user2 are both within the same room, independently of a particular
spatial ontology. We propose using semantic localization as a conceptual interface
between location programming and location models in the IoT.

A semantic localization formula can be interpreted in one of two ways: either
as an event condition or as a query into some spatial database. In the first case, the
sentence acts as a predicate that triggers an event when it evaluates to true. In the
second case, the formula can be evaluated against database entries to signify that the
entries to return are those that cause the formula to evaluate to true when plugged
into unbound variables. However, in either case a statement can only be evaluated in
an ontology with a compatible signature.

Figure 2 represents a central idea governing location modeling, relating mathe-
matical structures to the spatial connectives (relations) of physical objects in a CPS
which they are capable of evaluating. Applying the concepts from model theory to
CPS location modeling has the added advantage of enabling mathematical analysis
to bring the theorems of model theory to bear on the relationships spatial ontologies
have to one another.

As suggested in Fig. 2, spatial ontologies may be used to reason about spatial
connectives, or spatial connectives may be discovered by sensors and used to
construct mathematical structures. Relations represent the structural aspects of the

Fig. 2 A comparison between mathematical structures and corresponding evaluable spatial
relationships as described in our previous work [32]
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space (e.g. containment, path, proximity, angle, etc.), and functions define other
structural aspects of the space (such as distance for a metric space) as appropriate.
The values of constants, relations and functions are potentially time varying as the
structure evolves. For instance, a topological ontology of an indoor space with doors
opening and closing has a dynamic “path” relation. The quality and nature of the
sensor data may constrain the level at which these ontologies may be constructed.
For example, orientation information may simply not be available.

2.3 Physical and Relational Ontologies

In the previous section, a spatial ontology is a mathematical structure which can be
used to evaluate a logical sentence that makes reference to spatial relationships. This
notion of a spatial ontology is considerably more general than the usual notion of a
printed papermapwith a 2D representation of the road network of a city, for example.
Wewill use the term “relational ontology”whenwewant to emphasize the abstracted
nature of the spatial relationships that themap represents, but in this research, a spatial
ontology is a mathematical object at any of these levels of abstraction, as long as it
encodes some form of spatial relationships. For example, Fig. 3 shows a relational
ontology that is a partial order induced by the containment relation between sets; the
relational ontology does not say anything at all about geometric properties such as
distance or orientation.

We have arrived at an important principle: Space-aware services should be
constructed for the signatures of the most abstract spatial ontologies as possible.
This will enable them to operate in more sensor-poor environments, to benefit from
a greater variety of sources of spatial information, and to better preserve privacy by

Fig. 3 Concrete examples of Euclidean-space ontologies vs. an abstracted relational ontology that
represents only containment relations



376 M. Weber and E. A. Lee

not handling information that is not needed. For example, the set containment rela-
tion is all the map information necessary for the FourSquare localization example
in the introduction, since the only information to be gained from checking in is
containment.

Consider the advantages of applying this maximum abstraction principle to the
spatial ontologies depicted inFig. 3.All three ontologies, the occupancygrid, thefloor
plan, and the abstract graph, represent information about the same region of space.
An IoT application could theoretically use any one of the ontologies to determine, for
example, that room 545Q is inside the DOP Center. However, it takes a certain level
of geometric understanding to extract that information from the less abstract physical
ontologies. To use the occupancy grid, our IoT application must be equipped with
an algorithm for parsing occupancy grids and determining when a collection of cells
in a grid is contained by another collection of cells. In other words, effective use of
the occupancy grid is restricted to IoT applications that are prepared in advance to
interact with robotic maps. Similar limitations hold for IoT systems using the floor
plan, or any other spatial ontology requiring geometric analysis.

But if the IoT system were designed to interact with map providers through an
abstract notion of containment, the systemwouldn’t have to bother understanding the
nuances of geometry in every spatial ontology it might come across. It may instead
operate in terms of semantic localization. Perhaps the relational ontologywas created
by inspecting an occupancy grid, or maybe it was a floor plan. Either way the IoT
application doesn’t have to bother knowing the specifics. As long as it can pose the
query regarding the DOP Center, room 545Q, and containment, the IoT application
can treat the source of an abstracted spatial representation as a black box.

As they get more abstract, of course, relational ontologies lose the ability to
evaluate some kinds of spatial relationships. This idea parallels the usual hierarchy
of mathematical spaces. A Euclidean space has quite a lot of mathematical structure
that may not match well with the information available sensors are able to deliver. A
Euclidean-space ontology supports reasoning about angles and orientation, concepts
that are not defined in the more abstract mathematical structures shown in Fig. 2.

The hierarchy of these mathematical spaces offers a starting point for reasoning
about combinations of maps. For example, given a Euclidean-space map of an office
space and a Set (containment) map of objects in the space, objects can be placed
approximately, with known error bounds, onto the Euclidean-space map. But much
more complicatedmapping combinationswill be required, since even twoEuclidean-
spacemapsmaynot use the samecoordinate system.The concept of a spatial ontology
becomes an essential feature of location modeling.

Topological spaces can be used to construct maps that represent paths through
indoor settings. Navigation with graphs is a common concept in robotics [22], where
nodes represent waypoints in a space and edges represent paths between waypoints.
Such data structures are routinely used to construct sequences of actions to move a
robot between nodes. Additionally, Ghrist et al. [23] show that algebraic topology
can be used directly to relate the convex hull of a landmark set in a Euclidean space
to a simplex of a simplicial complex. This provides a natural abstraction mechanism
for topological maps.
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Non-Euclidean metric maps are useful when the standard Euclidean metric does
not really capture the interesting properties of a space. Consider a point x on the third
floor of a building and the point y directly below it on the second floor. Points x and
y are very close to each other in Euclidean space, but for the purposes of navigation,
this misrepresents reality. We can instead define a metric space with metricD, where

D(x, y) =
{
minimum length of a continuous path from x to y, if there is such a path
∞, otherwise

This is easily shown to be a metric (or even an ultrametric, for some graph-
structured metric spaces). If stairways and elevators are not navigable open space for
a particular robot, then this metric will yield D(x, y) = ∞, considerably more than
the Euclidean distance.

An inner product space (of which a Euclidean space is a common variety) intro-
duces the notion of angles. Angles can facilitate special kinds of analysis like trilat-
eration, and the use of trigonometric angle measurements to localize objects in
coordinate space.

As these examples illustrate, there are practical reasons to construct non-Euclidean
ontologies. However each of these mathematical ontologies has the property that any
map entity placed at a particular coordinate takes on all spatial relationships to other
map coordinates implied by the structure of the space. This is undesirable when only
a portion of those relations are positively known to be true and the rest are unknown.
A key advantage of relational ontologies is the expression of open ontologies, where
the absence of a relation does not imply its converse. This is analogous to ancient
maps that provided useful navigation information despite significant distortions in
the geometry and large gaps labeled “terra incognita”. Open ontologies translate
naturally into action plans that can deal with incomplete information.

This increased flexibility comes at the cost of a slightly more verbose vocabulary
for relations. Consider the containment map on the right hand side of Fig. 3. Because
this ontology is open, knowing that one place is not contained by another isn’t enough
to know they have no space in common. Another relation, “disjoint,” is necessary to
express that positive fact explicitly. We hope the reader can see a connection here
to intuitionisitic logic, in that for open ontologies it is not enough to know a spatial
relation is not not true to infer that it is true. Instead, relations must be constructively
built up from known facts.

2.4 Formalizing Open Ontologies

AnopenontologyA is awayof expressing partial knowledge about a spatial structure.
If we take the philosophical position that the unexpressed information in an open
ontology is fundamentally unknowabable, there is nothing to be done to increase
the amount of information represented in A. However, if we assume the missing
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information is knowable and could be expressed in an idealized (but hypothetical3)
ontology A

∗, we may consider logical inference as a means to obtain information
available in A

∗ but not A.
We formalize this notion below, but first some definitions. Let ⊥ be the symbol

for “unknown”.4

Definition 1 (Partial Order on Functions)
We define a (pointwise) partial order on n-valued function f: An→ (A ∪ ⊥)
with f ≤ f ′ iff for x ∈ A, f (a1, a2, … an) = x → f ′(a1, a2, … an) = x.

Observe this definition allows f (a1, a2, … an) = ⊥ with f ′(a1, a2, … an) = x. In
other words, f agrees with f ′ everywhere where f is not unknown, but may disagree
where f is unknown.

Let open ontologyA and its idealizedA
∗ both be structureswith the same signature

and the same domain. A may be missing some information available in A
∗.

Definition 2 (Partial Order on Open Ontologies)
We define a pointwise partial order on open ontologies A and A

∗ with the same
signature and domain (A) by ordering relation � . The � relation indicates A

∗ has
more information than A when:

• A’s functions may have unknown value (⊥) over some elements of the domain
where A

∗’s functions are known. With f A as the interpretation of function symbol
f in A and fA∗ as the interpretation of f in A

∗, f A ≤ fA∗ .
• A’s relations may be missing tuples which are available in the analogous relations

of A
∗. For example, with rA and rA∗ as interpretations of relation symbol r in

models A and A
∗ respectively, rA ⊆ rA∗ .

• A’s interpretation of constant symbolsmaybe less complete than the interpretation
of A

∗. With k as the set of constant symbols in A’s signature and c: k → (A ∪
{⊥}), as the function mapping constant symbols to domain elements, cA ≤ cA∗ .

Not only does the ordering relation defined by� relateA toA
∗, it also relatesA to

a chain of non-idealized open ontologies A � A
′ � A

′′ �…� A
∗ with progressively

more information than A. Applying a logical inference procedure to A, and filling in
an unknown function, relation, or constant with a concrete value can be interpreted
as finding an A

′ with A � A
′.

It may not be possible to definitively determine whether or not an open ontology
models a formula which depends on unknown functions, relations, and constants.
If the true/false value of a formula depends on evaluating a function where it is
unknown, an unknown constant, or the negation of a relation which is not explicitly
given in the model, the formula may not be evaluated with respect to the open model.

3Of course we don’t actually know the contents of A∗ because it contains the information we
currently don’t know in A. But it is nevertheless useful to define A∗ as a model so we may make
explicit our assumptions about the missing information.
4We do not always explicitly augment the domain of an open ontology to include ⊥, but this may
be assumed.
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The advantage of an open ontology is the ability to evaluate formula regarding known
information without being forced to make questionable assumptions on the unknown
parts of the model.

The next section provides some examples of valid logical inference procedures
for open relational ontologies.

3 Logical Inference on Ontologies

Consider the relational ontology on the left hand side of Fig. 4. Nodes in the map
represent objects or places in the world, and dark edges signify a known upper
bound on the distance between them in some metric given by the weight of the
edge. Since this is an open map, the absence of a black edge does not signify the
converse of proximity (which we might call “anti-proximity”); if we want to express
anti-proximity in this graph we must explicitly designate it with a dashed line edge.

This being a metric space, we can apply the triangle inequality to the graph and
note that if A and B are within 30 meters and if B and C are within 30 meters, then
A and C must be within 60 meters. Before we add this edge to the graph as shown
in the right hand side of Fig. 4, we may note that the triangle inequality applied to
the edge from A to D and from D to C gives a tighter bound and express that A and
C must in fact be within 40 meters of each other.

Next consider the example in Fig. 5 with an anti-proximity edge drawn from A
to C. This indicates that A and C are known to be at least 10 m apart, whereas the
proximity edge indicates that they are atmost 40mapart. Applying the contrapositive
of the triangle inequality gives a relational ontology in which at least one of A or C
must be more than 5 meters away from another node E. This matches the intuitive
notion that for two objects known to be far away from each other; at least one of
them must be somewhat distant from any third object. Note that this data structure
is more than a simple graph now, since there is appended a disjunction between the
two edges to E.

Fig. 4 An example of logical inference for a relational proximity map
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Fig. 5 Another example of logical inference for anti-proximity

A relational ontology of distance for a Euclidean space permitsmore sophisticated
inference methods. A considerable amount of research has been undertaken in the
sensor network community to find a Euclidean space embedding for a weighted
undirected graph such that the Euclidean distances between nodes in the embedding
match the edge weights in the graph. If such an embedding is successfully found, it
is possible to infer internode distances not explicitly specified. One such algorithm
[24] uses a process of iterative trilateration with robust quadrilaterals where three
nodes with known Euclidean position (say A, B, and C) are used to establish the
position of a connected node (D). Once the position of D is established, it can be
used in the next iteration of the algorithm as a reference point to give the position of
some other node E.

In addition to determining unknown inter-node distances, the properties of a
Euclidean space also facilitate detection of inconsistent edges signifying outlier
measurements. In prior work, [25] we expanded upon an algorithm given in [26]
which uses graph rigidity theory to identify components of a graph that admit only a
specific embedding. If a questionable edge is wildly inaccurate, it can be identified
by considering other rigid subgraphs that are consistent with Euclidean geometry.

These sorts of Qualitative Spatial Reasoning (QSR) received significant research
attention in the 1990s. The main focus of this work was the construction of formal
algebras for inference on qualitative spatial relationships. For example, Frank’s
calculus for cardinal directions and informal distances such as “near” and “far” can
infer such relationships for unknown cities given knowledge on how they are related
to a known city network [27]. Arguably, the most notable outcome of QSR today is
the Region Connection Calculus (RCC) for 2-dimensional mereology (the part whole
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relationship) and topology [28]. RCC laid the foundation for the GeoSPARQL stan-
dard [13],which is todaywidely (but incompletely) implementedbymodern semantic
repositories5 to leverage RCC relationships for queries on geospatial data sets.

4 Related Formal Structures from AI and Robotics

Pereira’s BigActor model [29] gives a formalism for mapping with many similarities
to our approach. Specifically he defines twokinds of spatial structures: a logical-space
model with a rough correspondence to what we would call a relational ontology, and
a physical-space model corresponding to a coordinate-based physical map. Pereira
requires the same relations hold true between the same objects in physical and logical
space. The model-theoretic proposal for semantic localization in this chapter can be
seen as a generalization of Pereira’s approach to includemore diverse kinds of spatial
structures.

Similar ideas to relational ontologies have been around in the world of AI and
robotics research for some time [22, 30, 31]. However, where semantic localization
is designed to integrate modeling and programming for heterogenous IoT systems,
the focus of research in this domain is commonly inference and autonomous decision
making. As an additional point of contrast, spatial modeling in robotics is usually
from the perspective of a robot as it moves from place to place, but spatial modeling
for localization systems is usually from the perspective of a place as people (or
robots) move within.6

The distinction between absolute and relative space is raised by Vieu [31]. The
elements of a spatial ontology are Basic Entities (is the space composed of points
or basic regions?), Primitive Notions (topology: relating to contact and part-whole
relationships; orientation: absolute, intrinsic, and contextual; distance: metric func-
tions and discrete distance notions), and bounded/unboundedness. Vieu goes on
to overview actual approaches researchers have used to represent space. Vieu also
examines the difference between 3D space composed with time and 4D views.

Kuipers [22], in a classic robotics paper, introduces an ontology for spatial infor-
mation flow from sensor values to, ultimately, 2-D geometry. His ontology allows
information to be incomplete at different levels. For example the graph-topological
connections between different maps may be known even if each of the maps hasn’t
been entirely fleshed out.

An example of the advantages of combining physical maps with relational infor-
mation for robotic localizationwas demonstrated byAtanasov et al. [30]. The authors
use set-based identification of semantically interesting indoor objects such as chairs

5Essentially a semantic repository is a database for relational data.
6We refer to models of things moving through space as “Lagrangian Models” and models of space
with things moving within as “Eulerian Models”. The terminology comes from the analysis of fluid
flows.
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and doorways to localize their robot, instead of the more commonly used tech-
niques that use edges and corners in the field of view without consideration for their
semantics.

5 Conclusion

In this chapterwe observe that spatialmodels used in IoT applications frequently have
good reason to be domain specific. We propose semantic localization as a unifying
interface between spatial modeling and spatial programming. This abstract approach
is motivated by the need to reconcile diverse spatial representations for cross-domain
interaction. By treating spatial models asmathematical structures frommodel theory,
the language of mathematical logic becomes an effective tool for describing the
qualitative spatial relationships important for developing contextually aware IoT
services. When space aware services are designed for abstract spatial ontologies,
they gain advantages in privacy and interoperability.

Semantic localization focuses our discussion of physical and relational ontologies
in which information may be expressed through mathematical coordinates, spatial
relationships, and non-Euclidianmaps of an environment.We formalize the notion of
an open ontology with partially unknown information, and give examples of logical
inference on open ontologies. Open relational ontologies are promising for devel-
oping contextually aware IoT services, and have a conceptual match with semantic
web technologies such as RDF, SPARQL, and semantic repositories. Semantic local-
ization gives a principled foundation for locationmodeling and the design of spatially
aware IoT systems.
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