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Since its global emergence in 2020, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has caused multiple epidemics in the United States. Because medical treatments for the
virus are still emerging and a vaccine is not yet available, state and local governments have
sought to limit its spread by enacting various social distancing interventions such as school
closures and lockdown, but the effectiveness of these interventions is unknown. We applied an
established, semi-mechanistic Bayesian hierarchical model of these interventions on SARS-
CoV-2 spread in Europe to the United States, using case fatalities from February 29, 2020 up to
April 25, 2020, when some states began reversing their interventions. We estimated the effect
of interventions across all states, contrasted the estimated reproduction number, R;, for each
state before and after lockdown, and contrasted predicted future fatalities with actual fatalities
as a check on the model’s validity. Overall, school closures and lockdown are the only
interventions modeled that have a reliable impact on R;, and lockdown appears to have played a
key role in reducing R; below 1.0. We conclude that reversal of lockdown, without
implementation of additional, equally effective interventions, will enable continued, sustained

transmission of SARS-CoV-2 in the United States.

Bayesian hierarchical model; intervention effect size; severe acute respiratory syndrome

coronavirus 2; social isolation; reproduction number

Abbreviations: IFR, infection fatality ratio; SARS-CoV-2, severe acute respiratory syndrome

coronavirus 2; Rt, time-varying reproduction number; COVID-19, coronavirus disease 2019.



Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus
disease 2019 (COVID-19). Discovered in Wuhan, China in December 2019, SARS-CoV-2
rapidly spread to the rest of the world, initially through travelers from Wuhan, but later through
community transmission in Asia, Europe, Australia, and North America, until it was declared a
pandemic by the World Health Organization on March 11, 2020. The rapid spread of SARS-
CoV-2 is attributable to its transmissibility by aerosol and fomites?, by
presymptomatic/asymptomatic carriers®#, and by the relatively mild clinical characteristics of
symptomatic carriers, which often include fever, cough, and fatigue®. However, approximately
20% of confirmed cases develop severe or critical forms of COVID-19, including complications
of respiratory failure, myocardial dysfunction, and acute kidney injury, with approximately 50%
mortality for critically-ill patients®.

As of July 2020, outbreaks or epidemics of SARS-CoV-2 have emerged in all 50 states,
with over 2.5 million confirmed cases reported. Because medical treatments and vaccines are
still emerging, state and local governments have sought to limit the virus’s spread by enacting
various social distancing interventions. Social distancing interventions have varied widely within
states and across states. Within states, interventions typically begin with public health directives
like washing hands and staying home if sick, followed by restrictions on or closures of places
housing vulnerable populations like nursing homes or schools, followed by successive,
increasingly restrictive bans on gathering in groups, culminating in stay-at-home orders or so-
called lockdown. Across states, interventions have been adopted with different speeds, such
that some states moved rapidly to lockdown and others never entered lockdown at all. Likewise,
states are currently lifting lockdown and reversing social distancing interventions at different
rates.

To explore the association between social distancing interventions and fatalities, we
applied an established, semi-mechanistic Bayesian hierarchical model of these interventions on
SARS-CoV-2 spread in Europe’?® to the United States. We estimated the effect of interventions
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and the time-varying reproduction number (R:) for each state using state-level daily case fatality
counts.

METHODS

Data

We used data from three different sources: state-level intervention data, infection fatality
rate data, and confirmed case fatality data.

State-level intervention data. We created a dataset® of state-level intervention dates by
inspecting the executive orders, public health directives, and official communications (e.g.,
press releases) from state governments. For each intervention date, we used the effective date,
unless the timing of the intervention was so close to midnight as to only practically take place
the next day. Interventions were only counted if they targeted the general population. The
interventions themselves closely parallel those in the European model we used, but with slightly

different operationalizations which we describe in turn. Self-isolating if ill is a recommendation to

stay home if sick. Social distancing encouraged is a recommendation to avoid nonessential

travel and/or contact; the mere words “social distancing” were not counted unless elaborated

with examples of what social distancing entails. Schools or universities closing is the date at

which schools partly or completely close; the earlier of schools or universities closing was used.
Sport is the banning of sporting events or public gatherings of more than 1000 persons. Public
events is the banning of public gatherings of more than 100 participants. Finally, lockdown
includes banning of non-essential gatherings or business operations, which is sometimes
formalized as a stay-at-home or safer-at-home order. Notably some more restrictive
interventions imply others, e.g., lockdown implies all other interventions, and public events
implies sport.

Infection fatality rate data. The infection fatality rate (IFR), or ratio of fatalities to true
infections, was derived via the methods outlined in Flaxman et al. Briefly, IFR estimates from
Verity'® et al were adjusted using an age-specific UK contact matrix to account for non-uniform
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attack rates across age groups (see Ferguson et al.'" for details and previous US application).
The resulting IFRs were weighted by state-level age demographics and averaged to produce
estimates adjusted for both age and location. Demographic data were obtained from the 2018
ACS survey 5-year estimates'?.

Confirmed case fatality data. SARS-CoV-2 fatality data was obtained from the New York
Times public data repository'®, which describes the data collection process along with subtle
issues in counting cases, e.g. cruise ship passengers. In general, the dataset counts confirmed
cases according to where they were treated and on the days they were reported up to midnight
Eastern Time. Because this dataset provides cumulative counts, we transformed these into daily
counts by taking the difference between successive daily cumulative counts (setting this
difference to zero in the rare instances where cumulative counts decreased due to reporting
corrections).
Model

We applied an established, semi-mechanistic Bayesian hierarchical model of
interventions on SARS-CoV-2 spread in Europe to the United States, and the design and details
of this model are presented elsewhere”® (see the Web Appendix for a brief overview). Notably,
a recent variant of this model has been applied to the United States at the state level, but this
variant uses mobility data rather than interventions as the basis of predictions'. Briefly stated,
daily death counts in the model follow a negative binomial distribution such that their
expectation is a function of infections on previous days. The model is semi-mechanistic in the
sense that it incorporates classical Susceptible-Infected-Removed concepts'® in a Bayesian
framework. The number of infected is modeled using a discrete renewal process, and death
counts are similarly linked to the number of infected based on the state country IFR and the
distribution of times from infection to death. Importantly, the model assumes the effect of
intervention is that same regardless of location and that the implementation of an intervention
instantaneously reduces R:. Making these assumptions allows pooling of data from states for
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estimating intervention effects. The model was specified using Stan'®, and model inference was
performed using adaptive Hamiltonian Monte Carlo. We fit our model with a time series for each
state 30 days before the state has experienced seven deaths, from February 29, 2020 up to
April 25, 2020, when some states began reversing their interventions. Seven deaths is a
somewhat arbitrary threshold for excluding imported cases, and other work has used five'* or
ten® deaths for this threshold. We chose seven because it is the highest number we can use
and still obtain valid data for states like Alaska, which had a relatively low case count during this
period.
RESULTS

States implemented the six interventions at different rates. The mean period between
the first and last intervention of a state was 18.64 days (SD=6.51, range: 4-31). The mean
number of directives (e.g., executive orders) implementing interventions in a state was 4.32
(SD=0.94, range: 2-6), and the mean number of interventions per order was 1.40 (SD=0.35,
range 1-3). Some interventions were more likely to co-occur in a single directive than others,
with sport (M=1.08, SD=0.83) and public events (M=1.04, SD=0.81) occurring the most

frequently with other interventions and schools or universities closing (M=0.40, SD=0.81) and

lockdown (M=0.14, SD=0.50) occurring the least frequently with other interventions. Despite
these differences, 96.33% of the interventions were implemented across states, with lockdown
being the least implemented (n=43). The decision to implement lockdown was not clearly data-
driven across states: on the date of the last intervention, there was no significant difference
between states that implemented lockdown and those that did not in the cumulative case rate
(P=0.052) or the cumulative death rate (P=0.059) using 2-sided rank-sum tests.

The mean IFR across states was 1.11% (SD=0.12%, range: 0.76-1.35%). Because
confirmed case fatality data across states increased dramatically over the time period

examined, similar statistics are not reported for these data.
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Estimated national intervention effects on R; are shown in Table 1. It is evident that only

schools or universities closing and lockdown have a nontrivial impact on R;, with mean relative

reductions of 23.7% and 54.4% respectively. Moreover, schools or universities closing and

lockdown are the only interventions whose 95% credible interval is not close to zero.

<Table 1 about here>

State-level measures and estimates of the model are shown in Table 2 (see also Web
Figure 1). Of primary interest are R; estimates before and after lockdown and corresponding
forecasted death counts 2 weeks into the future. Across states, the mean R; before lockdown
was 1.86 (SD=0.56, range: 1.00-3.37) and the mean R; after lockdown was 0.88 (SD=0.25,
range: 0.50-1.41). Notably, no state had a mean Ribelow 1.0 pre-lockdown, but 29 states had a
Rt below 1.0 after lockdown. While lockdown was associated with reduced R in all states that
underwent lockdown (a 54.4% reduction, see Table 1), in these 29 states, lockdown appears to
have been the single critical intervention allowing containment of the disease. In the remaining
states, pre-lockdown R; was too high (i.e., greater than 2.2) for lockdown to bring Ribelow 1.0.

Predicted deaths vs. actual deaths two weeks into the future in each state serve as a
validity check on the model’s estimates of intervention effects (see also Web Figure 2). Forty-
five states (90%) had actual deaths that were within the 95% CI of predicted deaths. Notably,
the mean predicted deaths were well above actual (>100 deaths) for Connecticut, New Jersey,
Massachusetts, and New York. The mean absolute error of mean predicted deaths was 50.80,
and without these four states the mean absolute error was 10.08. As expected, the model fit to
actual deaths was even closer on the observed data, with mean absolute error at 5.90

(N=2951).

<Table 2 about here>



DISCUSSION

Social distancing interventions are important for limiting the spread of SARS-CoV-2,
because medical treatments for COVID-19 are still emerging and a vaccine is not available. To
our knowledge, we are the first to apply an established, semi-mechanistic Bayesian hierarchical
model of these interventions on SARS-CoV-2 spread in Europe to the United States. We
estimated the effect of interventions across all states, contrasted the estimated R; for each state
before and after lockdown, and contrasted predicted fatalities with actual fatalities as a check on

the model’s validity. Overall, school closures and lockdown are the only interventions modeled

that have an estimated effect where the 95% credible interval is not close to zero, i.e. no effect.
No state had an estimated Ri;below 1.0 before lockdown, but 29 states reached an R; below 1.0
after lockdown. The model’s ability to successfully predict deaths supports the validity of
estimated intervention effects. These results suggest that reversal of lockdown, without
implementation of additional, equally effective interventions, will enable continued, sustained
transmission of SARS-CoV-2 in the United States.

Our study has several limitations. First, the assumption that all interventions have the
same implementation and effect in all states is a strong assumption. For example, the public
events intervention banning gatherings of 100 persons or more could be met by a ban on 10
persons or more or 50 persons or more; it is unlikely that such bans are truly equivalent.

Schools or universities closing treats primary, secondary, and higher education the same,

though emerging evidence suggests that younger children may be less effective at spreading
the virus than adults'. This limitation has since been partially addressed in the European model
by allowing random effects for lockdown only. Second, the assumption that interventions are
binary, instantaneous, and non-harmful are strong assumptions and oversimplifications that do
not account for time-varying compliance with intervention or unintended consequences. Using
mobility data as a measure of population mixing'#'8® partially addresses this. Third, the
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parameters of the model are estimated using reasonable, but still uncertain, assumptions about
prior distributions. We have used the same assumptions as in the European model, but these
assumptions may be contradicted by future empirical work.

Modeling of SARS-CoV-2 is emerging and rapidly diversifying, including classical SEIR
models and derivatives?, deep learning?', and piecewise models for sub-exponential growth??.
State and local governments are likewise rapidly adjusting policy decisions regarding
interventions based on case data and economic concerns. As the United States adopts an
increasingly fragmented response to SARS-CoV-2, modeling approaches like ours that focus on
shared interventions may not be tenable. While our results give valuable insights into which
interventions did and which did not change the transmission rate substantially, we recommend
that future studies measure the change in behaviors resulting from interventions and then
strengthen the predictive relationships between these behaviors and disease transmission.
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Table 1. Intervention Effects on the Time-Varying Reproduction Number, United States,

February 29 to April 25, 2020

Intervention Mean relative 95% CI?
% reduction

Self-isolating if ill 1.2 0.0, 5.7
Sport 21 0.0,9.7
Social distancing encouraged 3.2 0.0, 15.0
Public events 9.8 0.0, 31.5
Schools or universities closing 23.7 0.7,40.4
Lockdown 54.4 447, 62.7

Abbreviations: Cl, credible interval

2The model assumes reductions in R; are non-negative. See Web Appendix for details.

11


https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE
https://www.zotero.org/google-docs/?G3OBQE

Table 2. State-level Measures and Estimates of Infection, Fatality, and Lockdown Intervention,

United States, February 29 to April 25, 2020

Pre-Lockdown Lockdown?

State IFR Ry 95% CI Ry 95% ClI Predicted 95% CI° Actual

(%) Deaths® Deaths®
Alabama 1.076 1.334 1.083, 1.619 0.610 0.476, 0.767 5.618 0,15 7
Alaska 0.813 1.224 0.176, 2.466 0.558  0.081,1.110 0.067 0,1 0
Arizona 1.147 1.667 1.373,1.998 0.762  0.603, 0.942 8.993 1,23 15
Arkansas 1.125 1.005 0.715,1.336 2.081 0,8 0
California 0.986 2.290 1.869, 2.786 1.042 0.913,1.178 84.400 23, 201 82
Colorado 0.955 1.887 1.536, 2.294 0.859  0.723, 1.011 24.600 6, 60 7
Connecticut 1.190 3.100 2.575,3.722 1.411 1.227,1.617 287.897 76, 707 58
Delaware 1.221 2542 1.902, 3.311 1.157  0.891, 1.457 9.387 1,28 8
Florida 1.353 1.726 1.465, 1.988 0.789  0.650, 0.942 40.651 10, 97 46
Georgia 0.938 1.345 1.154,1.548 0.614  0.511,0.732 19.987 4,48 2
Hawaii 1.260 1.524 0.547, 2.608 0.695 0.247,1.172 0.331 0,2 0
Idaho 1.035 1.684 1.066, 2.509 0.674  0.450, 0.944 1.069 0,5 0
lllinois 1.070 2.781 2.272, 3.409 1.265 1.102, 1.438 192.095 51, 461 100
Indiana 1.062 2.210 1.811, 2.676 1.007  0.845, 1.183 42.399 10, 104 43
lowa 1.160 1.409 1.110,1.744 17.357 2,51 9
Kansas 1.087 1.750 1.281, 2.348 0.704  0.521,0.919 2.850 0,9 5
Kentucky 1.090 1.799 1.406, 2.255 0.820 0.645, 1.015 6.422 0,18 8
Louisiana 1.036 1.968 1.657,2.329 0.897 0.772,1.034 55.047 14,133 40
Maine 1.353 1.729 1.180, 2.390 0.790 0.528, 1.090 1.899 0,7 1
Maryland 1.057 2.451 2.029, 2.928 1.119  0.913, 1.345 74.977 18, 191 54
Massachusetts 1.127 3.366 2.694,4.238 1.379 1.183, 1.580 402.458 108, 942 138
Michigan 1.149 2.338 1.960, 2.777 1.065 0.923, 1.223 204.275 55, 481 133
Minnesota 1.081 2491 1.977, 3.091 1.136  0.906, 1.390 21.938 4,58 24
Mississippi 1.063 1.449 1.175,1.762 0.662 0.523,0.828 6.381 1,17 12
Missouri 1138 1.436 1.183,1.720 0.656  0.523, 0.809 9.949 1, 26 11
Montana 1.215 1.533 0.525, 2.658 0.698  0.237, 1.201 0.424 0,3 0
Nebraska 1.071 1.384 0.967, 1.885 8.851 0, 30 3
Nevada 1.026 1420 1.131,1.739 0.648 0.505, 0.814 4.370 0,12 5
New Hampshire 1.215 1.871 1.293, 2.572 0.854  0.586, 1.167 2.519 0,9 10
New Jersey 1.117 2.949 2437, 3.556 1.342 1.184,1.512 746.096 207, 1782 164
New Mexico 1.145 2578 1.887,3.412 1.174  0.876, 1.505 8.435 1, 26 10
New York 1.126 2.487 2.082,2.942 1132  0.995,1.277 1225.995 345, 2892 226
North Carolina 1.087 2183 1.754,2.684 0.996 0.787, 1.227 20.463 4,53 17
North Dakota 1.072 1.310 0.617,2.139 2.445 0,12 2
Ohio 1.149 2.333 1.912,2.828 1.063  0.899, 1.243 44.063 11, 110 25
Oklahoma 1.057 1.950 1.468, 2.578 0.783  0.608, 0.982 4.921 0, 14 4
Oregon 1.141 1.534 1.147,1.995 0.700  0.527,0.903 1.342 0,5 3
Pennsylvania 1.235 2332 1.997, 2.693 1.065 0.883, 1.271 165.470 44, 408 69
Rhode Island 1.188 2.155 1.631,2.758 0.982  0.756, 1.236 13.197 2, 36 19
South Carolina 1.150 1.303 1.082, 1.544 0.596  0.464, 0.744 4.460 0,13 10
South Dakota 1120 1.264 0.337,2.316 1.5625 0,9 3
Tennessee 1.088 1.149 0.900, 1.437 0.525  0.403, 0.666 2.642 0,8 1
Texas 0.862 1.632 1.393, 1.894 0.746  0.616, 0.893 23.321 5, 56 27
Utah 0.755 1.416 1.037, 1.860 6.216 0, 22 5
Vermont 1.268 1.095 0.751, 1.525 0.500 0.340, 0.696 0.342 0,2 0
Virginia 1.054 2173 1.822,2.569 0.993 0.810, 1.200 27.818 6, 69 15
Washington 1.032 1.191 1.012,1.392 0.543 0.467, 0.626 5.496 0, 14 10
West Virginia 1.290 2.045 1.184,3.057 0.931 0.546, 1.361 2.020 0,8 1
Wisconsin 1.144 1.600 1.258, 2.001 0.729  0.581, 0.899 5.382 0,15 14
Wyoming 1.093 1.365 0.267, 2.531 1.690 0, 11 0

Abbreviations: Cl, credible interval; IFR, infection fatality ratio; R;, time-varying reproductive number
2Lockdown effects presented for states that implemented lockdown, otherwise blank
® Forecasted daily deaths on May 9th, 2020

¢ Actual daily deaths on May 9th, 2020
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