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Abstract

In this paper, we study the following Minimum Cost Multi-
Covering (MCMC) problem: Given a set of n client points
C and a set of m server points S in a fixed dimensional
R? space, determine a set of disks centered at these server
points so that each client point ¢ is covered by at least k(c)
disks and the total cost of these disks is minimized, where
k(-) is a function that maps every client point to some non-
negative integer no more than m and the cost of each disk is
measured by the a-th power of its radius for some constant
a > 0.
with applications in many areas such as wireless/sensor

MCMC is a fundamental optimization problem

networking. Despite extensive research on this problem in
the past two decades, only constant approximations were
known for general k. It has been an open problem for a long
time to determine whether a PTAS is possible. In this paper,
we give an affirmative answer to this question by presenting
the first PTAS for it. Our approach is based on a number
of novel techniques, such as Balanced Recursive Realization
and Bubble Charging, and new insights to the problem which
are somewhat counter-intuitive. Particularly, we show that
instead of optimizing each disk as a whole, it is possible
to further approximate each disk with a set of sub-boxes
and optimize them at the sub-disk level. This allows us
to first compute an approximate disk cover with minimum
cost through dynamic programming, and then obtain the
desired disk cover through a balanced recursive realization
procedure. Our techniques have the potential to be used to
other geometric (covering) problems.

1 Introduction

In this paper, we study the following Minimum Cost
Multi-covering (MCMC) problem. Given a set of n
client points C' = {c1,¢a,...,¢n}, a set of m server
points S = {s1,82,...,8m} in a fixed dimensional
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R? space, and a mapping k(-) : C — {1,2,---,m},
determine a radius assignment 7 : S — R which assigns
a non-negative real value 7(s) to every server point
s; € S as the radius of the disk centered at it so
that each of the client point ¢; € C is covered by at
least k(c;) disks, and the total cost Zsjes'y(sj)a of
all the disks is minimized, where o« > 0 can be any
positive constant. The MCMC problem has two basic
requirements: the one that requires each client point
¢; to be covered by at least k(c;) disks is called the
coverage requirement, and the other that requires the
total cost of all the disks to be minimized is called
cost minimization requirement. A set D of disks that
satisfies the coverage requirement is called a disk k-
cover for the (S,C, k) instance of MCMC. Thus, the
objective of MCMC is to find a radius assignment v so
that its induced disk set satisfies the coverage and cost
minimization requirements simultaneously.

MCMC is a fundamental geometric optimization
problem, and has been extensively studied in the past
two decades [1, 2, 3,4, 5, 6, 7, 8. Originally, the problem
was introduced for modeling the energy consumption
problem in the communication of wireless/sensor net-
works, and later on found applications in several other
areas. Broadly speaking, MCMC belongs to the family
of geometric covering problems. In some sense, it can
be viewed as a special variant of the well known geo-
metric set cover problem [9, 10, 11, 12, 13, 14, 15, 16,
17,18, 19, 20, 21, 22, 23, 24, 25] which has the following
general formulation: Given a universe C of points (or
objects) and a family G of ranges (or geometric objects
like disks and polygons) in some Euclidean space with
each range associated with a non-negative real number
as its cost, determine a set G C G of ranges such that
every element in C' is covered by at least one range in G
and the total cost of G is minimized. Clearly, MCMC
can be formulated as a special geometric set cover prob-
lem, where G is the set of all possible disks centered at
some server points and having at least one client point
on their boundaries. The difference is that each client
point ¢; € C is required to be covered by not one, but
k(c;) disks centered at different server points.

Geometric set cover problem is in general quite
challenging to be solved optimally, even for some simple
versions. For example, the unit disk covering problem,
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where G is a set of unit disks on the plane and C'is a set
of 2D points, was shown by Feder and Greene to be NP-
hard [20]. Thus, finding polynomial time approximation
algorithms is the main objective for such problems. In
[21], a polynomial time (14 €)-approximation algorithm
has been achieved by Hochbaum and Maass for the
above unit disk covering problem. Chekuri, Clarkson
and Har-Peled [9] studied the general geometric covering
problem for any shapes under fixed VC dimension, and
achieved an O(log OPT)-approximation.

Due to its connection to the geometric set cover
problem, it is thus not surprising that MCMC is NP-
Hard. In fact, it was shown by Alt et al. and Bilo
et al. in [4, 1] that even for the case of k(¢;) = 1
for all client points ¢; and d = 2, MCMC is still NP-
Hard for any o« > 1. Our goal for MCMC is thus to
design a polynomial time algorithm with the smallest
approximation ratio.

1.1 Related Works A number of results exist for
the MCMC problem. Below we discuss the ones that
are most relevant to ours. Early efforts on this problem
have focused on the version of MCMC where k(c) =
K for some fixed number K and any client ¢ € C.
Charikar and Panigrahy [3] and Freund and Rawitz [26]
considered the case of K = 1, and presented a linear
programming based and a primal-dual based method,
respectively, to achieve constant factor approximations.
Lev-Tov and Peleg [2] studied the case of @« = 1 and
designed a PTAS (Polynomial Time Approximation
Scheme) for any constant dimensional space. Their
approach is based on a dynamic programming method
and can achieve optimality for d = 1 and a (1 + €)-
approximation for d > 1. Later, Bilo et. al. [1]
presented a PTAS for any o > 1 in constant dimensional
space. Both of the above PTASes make use of a plane
subdivision and shifted quad-tree technique from [27]
for solving the minimum vertex cover problem on disk
graphs. For the case of K > 1, Abu-Affash et al.
[5] gave an O(K)-approximation for o = 2 using a
geometric approach. Later, Bar-Yehuda and Rawitz [28]
achieved an O(3“K + ¢€)-approximation for any a > 1
and € > 0, using a local-ratio technique.

For the general MCMC problem (where k could
be any mapping), Bhowmick, Varadarajan and Xue [6]
proposed the first constant factor approximation (with
approximate ratio p = 2d(27v/d)®). (This is also the
first polynomial time constant factor approximation for
the case of k(c) = K for any 1 < K < m.) To solve
the general MCMC problem, they first introduced the
concept of outer cover, which is a radius assignment
for the set of server points so that every client point is
covered by a large enough disk. Then, they adopted a

geometric approach to obtain a disk k-cover from a disk
(k — 1)-cover by utilizing an outer cover produced by a
primal-dual scheme.

1.2 Our Contributions and Main Ideas Despite
the aforementioned tremendous progresses, it remains
open to determine whether it is possible to achieve a
PTAS for the general MCMC problem. To answer this
question, we first analyze all previous approaches for
MCMC.

A common feature of existing approaches for the
MCMC problem is that they all treat each disk as a non-
splittable entity and minimize the cost at the disk level
(note that even though primal-dual based methods may
increase their variables fractionally, they still view each
disk as a whole and represent it by a single variable).
A consequence of this is that it can easily cause too
much rounding error for linear programming (or primal-
dual) based approaches, and introduce an exponential
number of sub-problems in dynamic programming based
approaches, making them difficult to achieve a (1 + €)-
approximation for the general MCMC problem.

To overcome this challenge, our idea is to divide the
task of finding a disk k-cover into two steps. In the first
step, we use a shifted quad-tree like technique (called
I-tree) to partition the space into a set of hierarchically
organized boxes, and then develop a dynamic program-
ming procedure on these boxes. To avoid the issue of
having a possibly exponential number of sub-problems
associated with each box in the dynamic programming,
we view each disk as the union of a set of sub-boxes.
This set of sub-boxes (called A-Disk) jointly approxi-
mates the shape of the disk, and is centered at a sub-
box that contains at least one server point. Similarly, all
client points are replaced by the sub-boxes containing
them. By approximating the disks with A-Disks and
replacing the input client/server points with sub-boxes,
we can dramatically reduce the number of sub-problems
associated with each box in the dynamic programming
from exponential to polynomial. Thus, a dynamic pro-
gramming procedure can be used to optimize the prob-
lem at sub-disk level and find in polynomial time a set
of A-Disks (called AD-Cover) that satisfies the coverage
requirement of the MCMC problem. It can be shown
that the cost of the AD-Cover is quite close to the min-
imum cost of a disk k-cover.

The second step of our approach is to transform
the obtained AD-Cover to a disk k-cover through a
balanced recursive realization procedure. The main task
of realization is to find a distinct server point for each
A-Disk as the center so that the set of resulting disks
preserve the coverage of the AD-Cover and do not
incur too much additional cost. Since the A-Disks are
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determined in a bottom-up manner along the leaf-to-
root paths of the I'-tree in the dynamic programming
procedure, A-Disks in sibling boxes of the I'-tree are
computed independently. A major issue is that they
could compete for server points during the realization
procedure. It is not always possible to resolve their
conflicts locally (i.e., within the same box), and needs to
be resolved in a much larger region (i.e., an upper level
box). A consequence is that some conflicting disks have
to expand their radii considerably. This imposes the
risk of dramatically increasing the cost of the realized
disks. Our idea is to start with a special AD-Cover
called Balanced AD-Cover that reserves server points
for the realizations of A-Disks in a ”balanced” way
across all levels of the I'-tree. This Balanced AD-
Cover can be obtained in the first step through dynamic
programming, and ensures that most of the A-Disks
can be realized locally. For the remaining conflicts, we
liftt them to an upper level box and resolve them there
through a re-coordination procedure. By using a scheme
called bubble charging, we are able to show that the total
increased cost (due to disk expansions) can be bounded
by an € factor of the optimal cost. This leads us to
the first PTAS of the general MCMC problem, which
is summarized in the following main theorem. For any
fixed @ > 0 and dimension d:

THEOREM 1.1. Given an MCMC instance (S,C, k), it
is possible to find a (1 + €)-approximate minimum cost

disk k-cover in O(nou)mou/e)‘?(d/“)) time.

Our approach is somewhat counter-intuitive, espe-
cially the idea of sub-disk level optimization, since de-
composing each disk into a set of sub-boxes often in-
creases the complexity of the problem, thus making
it more difficult to solve. However, as shown in our
approach, it also gives us the room to optimize the
disks more precisely. We believe that such an approach,
along with the balanced recursive realization and bubble
charging techniques, has potential to be used to solve
other geometric (covering) problems.

2 Preliminaries

Let (S, C, k) be an instance of the MCMC problem with
S = {s1,82,-+ ,8m} and C = {ec1,¢a, - ,cn}, and
Costopr be the cost of an optimal disk k-cover Do pr of
(S,C. k). (S,C,k) is called a bounded instance if there
exists a real number Rpoung Such that (CostopT)l/" <
Ryound < (pCostopT)l/“ for some constant p > 1 and
the diameter of the server point set S in R? is no larger
than 3mRpound. Rbound 18 called the radius bound of
(S,C, k), and p is called the bound factor.

It can be shown that any instance of MCMC can
be decomposed into a set of bounded instances of

MCMC that can be solved independently, where p is the
constant approximate ratio for MCMC achieved in [6]
(The proof would be omitted due to space limitation and
is left to the full version of this paper). Therefore, we
will always assume that (S, C, k) is a bounded instance
with radius bound Rpounqg and bound factor p, and
our objective is to obtain a PTAS for (S, C, k) through
dynamic programming.

We make use of a tree data structure called I'-Tree
for our dynamic programming algorithm, which is based
on a shifted gird technique in [27]. (Here I is an integer
factor whose value depends on ¢ and d and will be
determined later.)

DEFINITION 1. A T-Tree is a T'%-ary tree, where each
node represents a box (i.e., an azis-aligned hypercube)
in R%, and the children of every internal node B are
obtained by decomposing B into T'? box equally using a
't grid.

Let T be a I'-Tree with root B, and height h.
Each node (or box) B of T is associated with a level,
which is its distance to B, in T. The edge length of a
box at level i is denoted by L(i), which has the value
of L(i) = L(0)/(T')", where L(0) is the edge length
of the root box. For any closed disk D in R?, if it
is completely contained inside the box of B,, and its
diameter L(:)/T(T' — 1) < Diam(D) < L(3)/(T — 1),
then we say that D fits T and is at level i. We say
that a disk set D fits T" if every D € D fits T. A level-i
disk D is good for T if and only if D fits T and its
interior does not intersect the boundary of any level i
box of T'. Otherwise, D is bad for T.

For any d-dimensional disk D with radius r, we
define its cost Cost(D) as Cost(D) = r*  Thus,
the cost Cost(D) of a set D of disks is Cost(D) =
> pep Cost(D). By using a shifted quad-tree based
technique in [27], for any given constant A, it is possible
to construct a set T(S,C,k) of T T-trees (called
candidate trees) for (S,C, k), such that there exists a
tree T € T(S,C,k) and a disk k-cover D of (S,C,k)
that fits 7' and satisfy the following;:

1. Cost(Dyood) > (1 — 1/(T' — 1))?Cost(D), where
Dgood is the set of disks in D that are good for
T.

2. Cost(D) < (14 A)Costopr where Costopr is the
minimum cost of a disk k-cover of (S, C, k).

Each tree in T(S,C,k) has height O(log(mp/X))
and (mp/X\)°(@1°eT) nodes in total. Construction would
take O(T'¢(mp/N)°(@1°eT)) time. Details about the
construction would be left to the full version of this

paper.
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To approximate each disk by smaller boxes, we
further partition each box B at level ¢ of a I-tree T into
A? small boxes of the same size by a A? grid, where
A > 1 is a to-be-determined integer constant (depends
on ¢ and d) satisfying the conditions of A > 24/dI'? and
A/2(T(T"'—1)) > 1 is an integer. These boxes are called
sub-boxes of T at level i. A level-i sub-box U is called
an inner sub-box of B at the same level, if U is contained
inside B. The set of all inner sub-boxes of B is denoted
by Z(B). The ﬁ layers of level-i sub-boxes around
B (see Figure 1) are called the outer sub-bozes of B and
denoted by O(B). All boxes in S(B) = Z(B) U O(B)
are called the sub-boxes of B.

From the above discussion, it is easy to see that for
any sub-box U at level ¢, there exists exactly one level-:
box that has U as its inner sub-box. There are at most
2¢ — 1 level-i boxes that have U as one of their outer
sub-boxes. A sub-box U at level i is the union of I'¢
sub-boxes at level i+ 1, except for the case where U is a
sub-box of a leaf node of T'. Since the number of layers
(i-e., A/2(I" — 1)) of outer sub-boxes is divisible by T,
for any sub-box U at level ¢ and any node B at level
1+ 1, either none of the sub-boxes of B is covered by U,
or U is a union of I'Y sub-boxes of B. If U is a sub-box
of level i and U’ is a sub-box of level ¢/ > i, then U’ is
either completely inside or completely outside of U. If
U’ is contained inside U, U is an ancestor sub-box of
U’ and U’ is a descendant sub-box of U. Particularly,
if / =i+ 1, U is an parent sub-box of U’ and U’ is a
child sub-box of U, denoted by U’ C U.

2.1 Overview of Our Approach As mentioned
earlier, our approach consists of two steps, 1) finding
a Balanced AD-Cover and 2) realizing the AD-Cover
to obtain a disk k-cover. Below is the outline of our
strategy for achieving a PTAS of the general MCMC
problem.

(1) We first show that there exists a disk k-cover D
whose corresponding A-Disk multi-set (generated
through a procedure called discretization) on one
of the I'-trees T in T(S,C,k) has a cost close to
Costopr. (Section 3)

We then introduce the concept of Balanced AD-
Cover for A-Disk multi-set A (Section 4) and
show that such defined Balanced AD-Covers indeed
exist; actually the discretization of any disk k-cover
is a Balanced AD-Cover (Section 6).

We demonstrate that any Balanced AD-Cover can
be realized to a disk k-cover with similar cost
through a Balanced Recursive Realization algo-
rithm. (Section 5)

(4) We show that given any I-tree T in T(S,C, k), a
minimum cost Balanced AD-Cover A of T' can be
found in polynomial time by a dynamic program-
ming procedure. (Section 7)

Repeatedly apply the algorithm in step (4) to all
[-trees in 7(5, C, k), and identify the A-Disk multi-
set Aopr with the minimum cost. Then, the
realization of Appr (using the algorithm in step
(3)) will have a cost close to Costopr. This leads
to a (1+4¢€)-approximate minimum cost disk k-cover
for (S,C, k).

The most challenging part of our approach lies
in Section 5, which heavily relies on the concept of
Balanced AD-Cover in Section 4.

3 Approximate Disks and Discretization

For alevel-l box B of T and its two sub-boxes Uy € S(B)
and Uy € Z(B), let o and 07 be the center of Uy and Uy,
respectively. Assume that ||ogor|| > (ﬁ — V)L,
where L is the edge length of Uy (or Uy). We define the
approximate disk determined by Uy and U; as follows,
where D is the disk centered at oy and with radius
l[ogor |-

DEFINITION 2. Let A C Z(B) be the set of inner sub-
boxes intersecting the interior of D. A is called an
approximate disk (or A-Disk) of B determined by Uy
and Uy, and Uy is called the center box of A.

From the definition, it is easy to see that if Uy and
U, are far enough, their determined A-Disk is a good
approximation of the disk centered at some server point
in Up and with radius |logo1]|. Note that an A-Disk
may only approximate a portion of the disk, instead of
the entire one. Below we discuss how to transform an
A-Disk into a disk.

DEFINITION 3. Let A, Uy, Uy, 00,01 be defined as above,
and s € S be a server point in Uy. A realization of A at
s is a disk centered at s and with radius ||ogo, || +2VdL,
where L is the edge length of Uy.

Figure 2 shows a possible realizations of an A-Disk.
Intuitively, if the grid is dense enough (i.e., A is large
enough), an A-Disk could be geometrically close to its
realization (see Figure 2 (a)). We define the cost of an
A-Disk A to be Cost(A) = (||ogo1| + 2VdL)®, which
is the a-th power of its realization disk’s radius. We
denote by D4 a realization of an A-Disk A.

LEMMA 3.1. A is completely contained inside D 4.

The following definition shows how to transform a
closed disk D into an A-Disk, or a number of A-Disks.
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(a) (b) (c)

Figure 1: Illustration of a node (box) of a I'-tree and its children, together with their sub-boxes, where
I' =3,A =12 and d = 2. Note that for better illustration, values of I', A in the examples might not satisfy all
of the requirements (e.g. A > 2v/dl'?). (a) A box B is divided (shown by the bold line) to 9 children boxes.
Each child is divided to 12 x 12 inner sub-boxes. (b) Red lines divide B to 12 x 12 inner sub-boxes. Sub-boxes
at child level are also shown. Note that each sub-box of B is a union of 3 x 3 child sub-boxes. (c) Inner (Colored
green) and outer (Colored blue) sub-boxes of the middle child of B. Outer sub-boxes of a node are the A/2(I' — 1)
(which is 3 in this example) layers of sub-boxes at same level around it.

~ I

(a) (b)

Figure 2: Illustration of 2 A-Disks and their realizations. The centers of both A-Disks are colored in green. The
center of a realization is a server point in the center box of the A-Disk. In (b), the A-disk is on the upper right
box B, but the center is an outer sub-box of B. In this case the center is not considered geometrically a part of
the A-Disk.

N N

I
LI

(a) (b)

Figure 3: Tllustration of 2 disks and their discretizations. In (a), the disk is entirely contained in a node, and
thus has exactly one discretization. In (b), the disk intersects 4 nodes, and thus has 4 discretizations (marked in
4 different colors). All discretizaions have the same center, marked in green.
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DEFINITION 4. Let D be a disk that fits T. A dis-
cretization of D on T is an A-Disk that is created
through the following process.

1. Choose a box B of T at the same level | as D such
that B and D have non-empty intersection.

2. Let Uy be the level-l sub-box containing the center
of D and U; be the farthest inner sub-box of B to
Uy (where the distance between Uy and Uy is defined
as the distance of their corresponding centers) that
has non-empty intersection with D.

3. The A-Disk A determined by Uy and Uy with Uy as
the center is then a discretization of D.

We first show in the following lemma that the
definition is consistent with the notion of A-Disk by
showing (1) Uy is a sub-box of B and (2) the distance
between Uy and U; is at least (ﬁ —Vd)L.

LEMMA 3.2. The discretizaion procedure in Definition
4 generates an A-Disk of B.

An example of discretization is shown in Figure
3. Note that a disk D that fits T" has at least one
and at most 2¢ discretizations on T. (Recall the size
requirement for a disk at level [. A disk at level [ could
intersect at most 2¢ level [ boxes.) The following fact
about discretization is important: Let D be a disk that
fits T. D has exactly one discretization on 7' if and only
if D is good for T.

It is easy to see that D is fully contained inside the
union of all its discretizations.

LEMMA 3.3. Let Ap be the set of all discretizations of
a disk D on T. The union of sub-bozes in Ap covers
the whole region of D.

The following lemma shows that the cost of a
discretization of a disk D is close to that of D, with
appropriately chosen parameters A, I and .

LEMMA 3.4. Let A be any discretization of a disk D
on T. Then, Cost(D) < Cost(A) < (1 + 2V/dI'(T —
1)/A)*Cost(D).

3.1 Discretization of a Disk Set Given a disk set
D such that all the disks in D fit T', it is possible to pro-
duce a set of A-Disks from D through the discretization
process.

DEFINITION 5. The discretization of D on T is the set

of A-Disks that are discretizations of every disk in D on
T.

Note that each disk in D can contribute up to 2¢
A-Disks in the discretization of D . As a result, the
discretization of a disk set could have a much larger
cost than the disk set, even though the cost of a single
discretization is quite close to that of the corresponding
disk (with carefully chosen parameters). However, if T
is good for D (i.e. the total cost of bad disks in D is
only a small fraction (< (1 — (I' — 1)71)?) of the total
cost of D), we know that its discretization could have a
similar cost.

LEMMA 3.5. Let T be a I'-tree good for a disk set D,
A be the discretization of D on T. Then, Cost(D) <
Cost(A) < (1 +2VdD(T —1)/A)*((1 — (T — 1)~ H)¢ +
2¢(1 — (1 — (T = 1)"H))Cost(D).

It is not hard to see that if I" and A are large enough,
Cost(D) and Cost(A) could be arbitrarily close. By
Lemma 3.5 and properties of 7(S,C, k), we have the
following key fact, where A > 0 is a constant used in the
creation of T(S,C, k).

LEMMA 3.6. There exists at least one I'-tree T from
T(S,C,k) and one disk set D such that the following
is true. (1) D is a disk k-cover for (S,C,k). (2) D fits
T. (3) The discretization A of D on T has a cost no
more than

(3.1)
Cost(A) < (1+N)(1+2VdI (L —1)/A)°
(1-C-1)"H+291— (1 —(C—1)"HY)Costopr,

where Costopr is the minimum cost of a disk k-

cover for (S,C, k).

4 Balanced AD-Cover

In this section, we introduce a set of key properties to
ensure that A-Disk multi-sets can be mutually trans-
formable with disk k-covers. We start with the require-
ments on an A-Disk multi-set A.

(1) Full coverage: Every client point ¢ € C should be
covered by at least k(c) A-Disks in A.

(2) Realizability: It is possible to realize every A-
Disk in A with a disk so that the resulting disk set
D preserves the coverage of A. That is, for every
client point ¢ € C, if it is covered by = A-Disks in
A, it should be covered by at least x disks in D
that are centered at different server points in S. !

TNote that we will show later that the process of obtaining D
from A is actually much more complicated than simply realizing
each A-Disk independently to a disk.
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To design properties for A to meet the above
requirements, we first observe that A-Disks are defined
on the I'-tree T, which is naturally a hierarchical
structure. This suggests that the properties should be
formulated in a recursive manner so that a dynamic
programming approach can be used to find an A-Disk
multi-set that is realizable to a disk k-cover with similar
cost. This means that we need to define A recursively
and determine its recurrence relations. For this purpose,
we let B, be the root of T', and By, Bs, ..., Bra be its
children. For i = 1,2,...,T'%, denote by T} the sub-
tree of T rooted at B;. Clearly, any A-Disk multi-set
A of T can be partitioned into T'Y 4+ 1 subsets (with
possibly some empty sets), A = A, UATUAS...UAL ,
where A, = {A € A | Aisan A-Disk of B, }, A; =
{A € A| Aisan A-Disk of B;}, and Af = {4 € A |
A is an A-Disk of a node of T;}. Thus, the process of
searching for an A-Disk multi-set A from T with the
desired properties consists of 2 tasks: (1) Determine
A, by selecting A-Disks of B,, and (2) Determine A}
from T;. Next, we discuss how to design the recurrence
relations to meet the full coverage and realizability
requirements
1. Full Coverage. Note that in the coverage
requirement of a disk k-cover, every client point ¢ needs
to be covered by at least k(c) disks with different
centers. Since any A-Disk A is fully covered by its
realization, the Full Coverage requirement for A-Disk
multi-set A naturally ensures the coverage requirement
in any realization D of A.

To enforce the full coverage requirement for A, we
restate it in a recursive manner. Consider any client
point ¢ € C that needs to be covered by k(c) A-Disks.
Let B; be the child of B, in T that contains c¢ in its
interior. If an A-disk A € A covers ¢, then either A € A,
or A € Af. Let kioc(c) and k;(c) denote the number of
A-disks in A, and A} that cover c, respectively. Then,
the full coverage requirement can be represented by
inequality kijoc(c) + ki(c) > k(c) for all ¢ in C. In other
words, for any client point ¢ in B;, it needs to be covered
by at least k(c) — kioc(c) A-Disks in A7.

In the latter statement, the client points are limited
to those in B;, A-Disks are limited to those in A} (i.e.,
A-disks of nodes in subtree T;), and the number of
times that ¢ needs to be covered is reduced by kioc(c)
(i.e., the number of times that ¢ is covered by A-Disks
of the upper level node B,). Generalizing the above
requirement to an arbitrary node B of T, we have the
following concept of K-AD-Cover. Briefly speaking, a
K-AD-Cover of a node B of T' is a multi-set of A-Disks
that requires every client ¢ in B to be covered by k(c)
minus a relieved cover number specified by a mapping
K. The relieved cover number reflects the coverage of ¢

by A-Disks of ancestor nodes of B.

DEFINITION 6. Let B be a box of T and K(-) be a
mapping that maps every inner sub-box U of B to a
non-negative integer in {0,1,2,...,m}. Let A* be a set
of A-Disks of B or its descendants. A* is called a K -
AD-Cover of B for instance (S,C, k), if for any client
c € C that lies in some sub-box U of B, it is covered by
at least k(c) — K(U) A-Disks in A*.

Note that A satisfies the full coverage requirement if
and only if it is a Ko-AD-Cover of B,., where Ky(-) := 0.

2. Realizability. Recall that the realization of an
A-Disk involves choosing a server point s from its
center box and creating a disk using s as the center.
Consider transforming A to a disk k-cover by realizing
each of its A-Disks. Note that in a disk k-cover,
disks should have distinct centers, thus a server point
cannot be chosen multiple times as the center during the
transformation. Since A-Disks could compete for server
points (as their centers) in their realizations, a certain
mechanism is hence needed to ensure that conflicts can
be properly resolved and the realizability requirement
can be satisfied.

We informally describe the process of realizing A-
Disks in A as a recursive procedure, which consists of
2 main steps: (1) Realize each of the A-Disks multi-
sets Af for i = 1,2,...,T'% (2) Realize each of the A-
Disks in A,; in this step, avoid using the same server
point as center multiple times, and avoid using server
points that had already been used in the realization of
AZ. Note that step (2) can be completed only if there
is a sufficient number of unused server points after the
realization of all A}. More specifically, consider any sub-
box U of B,. Let ®y be the number of A-Disks in A,
that have U as the center box, and w(U) be the number
of server points that lie in U. Then, step (2) is possible
only when the number of server points in U that are
used to realize all A} does not exceed w(U) — &y for
every U of B,. In other words, the realization of all A}
should reserve at least &y points (for every U of B,)
for the realization of upper level A-Disks in A,.

The above discussion leads us to introduce a param-
eter @ to control the number of reserved server points
for the realization of upper level A-Disks. Let B be any
internal node of 7" and A* be a multi-set of A-Disks
of B or its descendants. Let ®(-) be a mapping that
maps every sub-box of B to a non-negative integer in
{0,1,2,...,m}. The mapping ®(-) can be interpreted
as the reservation requirement for each sub-box: when
realizing A*, for any sub-box U of B, at least ®(U)
server points in U should be reserved for the realization
of upper level A-Disks.
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With &, we can now introduce the concept of
®-Balanced. Intuitively, A* is ®-Balanced if it is
possible to realize all its A-Disks without causing any
conflict, and the server points are reserved properly
as specified by ®. Let A(B,U) be the set of A-
Disks of B in A* that are centered at U. For i =
1,2,...,T% let B! be a child of B and A}* = {A €
A | Ais an A-Disk of B/ or its descendant}. Then, in
order to realize A-Disks in A(B,U), we can only use
server points in U that are reserved while realizing
Al* to avoid conflict with lower level A-Disks. Thus,
when realizing A}*, we need to ensure that the total
number of reserved server points from all child sub-
boxes of U should be ®(U)+|A(B,U)|, where |A(B,U)|
is the number of server points for realizing A-Disks
in A(B,U), and ®(U) is the number of server points
reserved for realizing upper level A-Disks.

DEFINITION 7. A* is called ®-Balanced if the follow-
ing holds.

o |[A(B,U)|+ ®(U) <w(U) for any sub-box U of B.

e If B is an internal node of T, there exists a mapping
1 that maps every child sub-box U’ of any sub-box
of B to a non-negative integer 0 < n(U’) < m so
that the following conditions are satisfied.

1LY yicynU') = ®U)+|A(B,U)| for any sub-
box U of B.

2. Al* is ®;-Balanced, where ®; is the mapping
that maps every sub-box U’ of B} to ®;(U’) =
n(U’).

In the above definition, n(U’) is a mapping indi-
cating the number of server points in any sub-box U’
reserved for realizing upper level A-Disks. It provides
a scheme to implement ®(U) (and |A(B,U)|) which is
defined on all sub-boxes U of a node B of T. Since a
sub-box U’ can be either an inner or an outer sub-box
of (up to) 2¢ nodes of T, in some sense it serves as a
bridge and a coordinator in the otherwise independent
implementations of all those ®;(-) associated with those
24 nodes.

Note that the above definition only specifies the
number of server points that need to be reserved in
each sub-box. However, as we will see in Section 5,
realization is computed independently among all those
A%’s with overlapping sub-boxes among their corre-
sponding sub-trees T;’s. Such independent computation
may lead to different subsets of server points being re-
served in some sub-boxes. Thus, a mechanism called
re-coordination is needed to enforce consistency, which
is also one of the main challenges in realization.

An A-Disk multi-set A is called a (K,®)-AD-
Cover if it is a K-AD-Cover and also ®-Balanced. A
is called a Balanced AD-Cover for (S,C, k) if A is a
(Ko, ®o)-AD-Cover, where Ky is a mapping that maps
every inner sub-box of the root B, of T to 0, and ®g is
a mapping that maps every sub-box of B, to 0.

In Section 6, we will show that such defined Bal-
anced AD-Cover indeed exists and can be obtained from
the discretization of a disk k-cover. In Section 7, we will
demonstrate that a minimum cost Balanced AD-Cover
can be computed through dynamic programming. In
Section 5, we present an algorithm to transform a Bal-
anced AD-Cover to a disk k-cover with similar cost.

5 Realization of Balanced AD-Cover

In this section, we show that any Balanced AD-Cover A
of a I'-tree T' can be transformed into a disk k-cover for
(S, C, k) with similar cost through a balanced recursive
realization algorithm.

5.1 The Balanced Recursive Realization Al-
gorithm For any node B of T, let A(B) = {A €
A | Aisan A-Disk of B} and A*(B) = {4 € A |
A is an A-Disk of B or its descendant}. For any sub-
box U of B, let ®;,.(B,U) be the number of A-Disks of
B centered at U, i.e., ®,,.(B,U) = |A(B,U))|. From
the definition of Balanced AD-Cover, we know that it
is possible to assign to each node B of T at level [ a
mapping ®5 (to map every sub-box U of B to an inte-
ger 0 < P (U) < m) and a mapping np (to map every
sub-box U’ at level I + 1 that is a child sub-box of a
sub-box U of B to a non-negative integer) so that

e &p (U) = 0 for any sub-box U of the root B, of T.
e A*(B) is ®g-Balanced for every node B of T

o > yicuns(U) = @pe(B,U) + ®p(U) for every
internal node B of T' and any sub-box U of B.

o Op/(U') = np(U’) for every internal node B of T,
any child B’ of B, and any sub-box U’ of B’.

To realize a Balanced AD-Cover A, we assume that
two mappings, @5 and np, are also given along with
A, for every node B of T. In Section 7, we will show
that such information can indeed be computed through
dynamic programming.

The following balanced recursive Realization algo-
rithm (Algorithm 1) can then transform A into a disk
k-cover in a bottom-up manner. The algorithm takes
as input a Balanced AD-Cover A and a node B of T,
and outputs a disk set D(B) that is the transformation
of A*(B), together with a set Sp(U) of ®p(U) server
points in U for every sub-box U of B. Sg(U) is the set of
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server points that have not been used in the realization
of A*(B), and thus can be used for the realization of up-
per level A-Disks in T. D(B,) from Realization(A, B;)
would then be the disk set realized from A. Since the
algorithm runs in a bottom-up manner, it assumes that
either B is a leaf node of T or Algorithm 1 has already
been executed on all children of B.

If B is a leaf node of T', Algorithm 1 directly realizes
every A-Disk in A(B) and outputs the resulting disks.
Otherwise (i.e., B is an internal node), the algorithm
goes through a realization process for every A-Disk in
A(B), and then outputs the generated disks, together
with the realized disks D(B;) (which might be altered
by the Re-Coordination algorithm in Step 4; See Figure
4 for an illustration of the process of re-coordination)
for each child B; of B. If there are multiple disks in
D(B) that share a common center, only the one with
the largest radius will be kept. To realize A-Disks in
A(B), our algorithm generates a set Sjo.(U) of server
points in each sub-box U of B that are not used for the
realization of any A-Disk in A*(B;). Realization of A-
Disks with center U (i.e. A(B,U)) can use only server
points in Sy (U) to avoid conflict with lower level disks.
Step 4 and the Re-Coordination algorithm are to enforce
consistency on points not used for the realization of any
A*(B;), and resolve their potential conflicts.

5.2 Correctness Analysis To analyze the above
algorithm, we first show the correctness of the algorithm
(i.e., it generates a disk k-cover from a Balanced AD-
Cover), then estimate the cost of the resulting disk
k-cover, and finally analyze the running time of the
algorithm. We start with the following claims.

(1) In step 2 of Algorithm 2, it is possible to complete
the realization without using the same server point
multiple times.

(2)

In step 3 of Algorithm 2, it is possible to choose
server points for Sp(U) as described.

(3) In step 5 of Algorithm 1, for all sub-box U of B,
it is indeed possible to realize all A-Disks in A(B)
centered at U by using server points in Sj,.(U) but

not using the same server point multiple times.

(4)

The output of Algorithm 1 matches the output
description at the beginning of the algorithm.

Below, we argue that the claims are indeed true.

Proof. [Claims (1) and (2)] Note that Algorithm 2
always runs on a leaf node B. Since A*(B) = A(B)
is ®p-Balanced, for any sub-box U of B, we have
D10e(B,U)+Pp(U) < w(U) (where w(U) is the number

of server points in U). The realization of the ®;,.(B,U)
A-Disks in A(B) with U as the center takes only
D,.(B,U) different server points from U. After the
realization, at least w(U)—®joc(B,U) > @ (U) distinct
server points in U can be chosen to form Sg(U). Thus,
step 2 and 3 of Algorithm 2 can always find enough
distinct server points to output. Hence, Claims (1) and
(2) are true.
O

Proof. [Claims (3) and (4)] We first show that after
step 4 of Algorithm 1, there are ®p(U) + ®0(B,U)
server points in Sj,.(U), and none of them is the center
of a disk in Dp.(B’) for any child B’ of B. To
demonstrate this, we consider the following 2 cases.

Case 1: U does not cover any sub-box of a child of
B. This means that U does not cover the sub-box of
any descendant of B. It implies that none of the server
points in U is a center of a disk in Dp,(B’) for any
child B’ of B. Note that Sj,.(U) is created in step 4.1.
Since w(U) > ®p(U) 4+ Pioc(B, U), clearly it is possible
to choose ®5(U) + Py,.(B,U) server points from U to
form Sj,.(U), and none of them is a center of a disk of
Dp,(B') for any child B’ of B.

Case 2: U covers some sub-box of a child of B. This
means that every child sub-boxes Uy, Us,...,Ups of U
is a sub-box of some children of B. Thus, for every
child sub-box Uj;, step 4.2 calls Re-Coordination. This
means that all disks in any of Dp,.(B’) do not use any
server point in Sp;(U;) as the center. Note that the
input of the call to Re-Coordination is legitimate: for
any = 1,2,...t, |Sp (U3)] = |Sp; (U] = ns(U:) =
Dp; (Ui) = ®p;(Ui). As aresult, after step 4.2, Sjoc(U)
has np(U;) server points from U; that are not the
center of any disk in Dp,.(B’) for any child B’ of B,
and the total number of server points in Sj,.(U) is
>1<i<ra 18(Ui) = @5(U) + Pioc(B, U).

Now in step 5, when putting disks into Dy, for
every sub-box U, we need to use ®;,.(B, U) server points
to realize those A-Disks in A(B) that use U as the
center. After that, U still has ®p(U) + @joe(B,U) —
D10c(B,U) = ®p(U) unused server points, which can
be output as Sp(U). Clearly none of these points is a
center of a disk in D(B). This implies that claims (3)
and (4) are both true.

Clearly our algorithm guarantees that no two disks
in D(B) use the same server point as center. d

Next, we prove some key properties of the disk set
generated by the Realization algorithm. We start with
some facts and notations.
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Algorithm 1 Realization(A, B)

Input: A-Disk multi-set 4 that is a Balanced AD-cover
for (S,C, k), and a node B of T.

Output: A set D(B) of R? disks. A set Sp(U) of
®p(U) server points for every sub-box U of B, with
none of them used as a center for a disk in D(B). No
multiple disks in D(B) share the same server point as
center.

1. If Bis aleaf node of T', Call Realization-Leaf(.A, B)
and return the result.

2: Initialize an empty server point set Sj,.(U) for
every sub-box U of B.

3: Initialize an empty disk set Dj,c.

4: For any child B’ of B in T, let D(B’) and Sp/(+)
denote the output of Realization(A, B’). For each
child B’ of B, initialize a disk set Dp,.(B’) which is
a copy of D(B’). For each sub-box U of B, Do:

4.1 If U does not cover any sub-box of a child of
B. Pick arbitrarily ®5(U) 4+ ®;,.(B, U) server
points in U and put them into Sie.(U).

4.2 Else: Let Uy,U,,...,Uprs be the child sub-
boxes of U. For each U;, let B, B, ..., B,
(the order can be arbitrary) be the children of
B such that U; is one of their sub-boxes, Do:

e For cach B} j = 2,3,...,t,
call Re-Coordination(Dp,(Bj), Ui,
Sp;(Us), Spy (Ui)).

e Put all points of Sp; (U;) into Sjoc(U).

5. For every A-Disk A in A(B), let U be its center,
realize A using a point in Sj,.(U) as the center, and
put the resulting disk into Dj,.. Avoid using the
same server point multiple times in the realization.

6: For sub-box U of B, let Sg(U) be the set of
server points in Sj,.(U) that are not used for the
realization in the last step. Output Sp(U).

7. Set D(B) as Dioc U (U, Dpr(Bi)).

8: If there are multiple disks in D(B) that use a same
server point as their centers, only the disk with the
largest radius is kept and the others are removed
from D(B). Output D(B)

Algorithm 2 Realization-Leaf(A, B)

Input: A-Disk multi-set .4 that is a Balanced AD-cover
for (S,C, k), a Leaf node B of T.

Output: A set D(B) of R? disks. A set Sp(U) of
®p(U) server points for every sub-box U of B, with
none of them used as a center for a disk in D(B). No
multiple disks in D(B) share the same server point as
center.

1: Initialize an empty disk set D.

2: For every A-Disk A in A(B), create a disk D as
the realization of A and put it into D. During this
process, avoid using the same server point multiple
times for the realization.

3: For every sub-box U of B, choose ®5(U) distinct
server points in U and avoid those already used
during the realization process. Put these server
points into Sp(U).

4: Output D and Sp(U).

Algorithm 3 Re-Coordination(Dp,.(B’),U’,S’,S1)
Input: A disk set Dp,.(B’) generated from step 4 of
Algorithm 1. A sub-box U’ of B’. S’ and S;: two
sets of server points in U’, both with a cardinality of
®p/(U’). Every point in S’ is not a center of a disk in
Dp(B').

Output: Change the center of some of the disks in
Dp(B’), so that no disk in Dp,(B’) use any point in
S as the center.

1: Find an arbitrary bijective mapping £ : S; \ " —
S\ Sy.

2: While: There exists a disk D in Dp,(B’) whose
center is a point s in 57 \ S’, DO:

e Expand and recenter D in Dp,(B’) to the
minimum disk that is centered at £(s) and
contains D in its interior.
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Figure 4: Tllustration of Algorithm 3, which changes the
center of disks in Dp,.(B’) so that none of them will be
centered at a point in S;. (a) A sub-box U’ contains
two sets of server points Sy (in red) and S’ (stars). Two
disks in Dp,(B’) are centered at points in S’ \ Sy. (b)
A bijective mapping £ that maps S; \ S’ to "\ S1. &
is used to determine the center of the expanding disk.
(c) Disk expansion under £. After Re-Coordination, no
point in S (in red) is the center of any disk in Dp,.(B’).

Let B be a node of T  and U be a sub-box of
B. We denote by Kjo.(B,U) the number of A-Disks
in A(B) that cover U. Note that by definition, we
know that if A is a balanced AD-Cover, it is possible
to assign a mapping Kpg to every node B of T, such
that Kp maps every inner sub-box U of B to an integer
0 < Kp(U) < 'm, and the following hold.

e Kp (U) = 0 for any inner sub-box U of the root
B,.

e A*(B) is a Kp-AD-cover of B.

o Kp(U") =min(Kg(U) + Kjoe.(B,U), m), where U’
is a child sub-box of U and an inner sub-box of a
child B’ of Bin T.

The mapping K is a key to the following analysis.
The following definition and lemma imply that the
resulting disk set of the Realization algorithm is a
disk k-cover, and thus ensure the correctness of the
algorithm.

DEFINITION 8. A disk set D is a Kp-D-Cover if for
any client point ¢ that lies in an inner sub-box U of B,
there exists at least k(c) — Kp(U) disks in D that are
centered at distinct server points and cover c.

LeMMA 5.1. D(B) is a Kp-D-Cover

Proof. We prove this lemma by induction. We first
consider the case where B is a leaf node of T. D(B)
is generated in Algorithm 2 by performing a realization
operation on every A-Disk in A(B). It is clear that
no two disks in D(B) use the same server point for
their realizations, since the algorithm ensures that each
server point is never used multiple times. Note that
A*(B) = A(B) is a Kp-AD-Cover. This means that for
any client point ¢ in B, we have Kg(U) + Kjoe(B,U) >
k(c), where U is the inner sub-box of B containing c.
Thus, Kjoo(B,U) > k(c) — Kp(U). Since Kjo.(B,U) is
the number of A-Disks in A(B) that covers U, and an
A-Disk is fully covered by its realization, therefore it is
possible to find at least Kjo.(B,U) disks in D(B) (with
distinct centers) that cover U, and thus cover ¢. The
disks in D uses different server points as centers. The
lemma for the case where B is a leaf node then follows.

Now, we consider the case where B is an internal
node. We assume by induction that for any child B’
of B, D(B’) is a Kp/-D-Cover. Recall that in step
4 Algorithm 1, a set Dp,(B’) is defined for B’ and
initialized as D(B’). After the call to Re-Coordination
in step 4.2 of Algorithm 1, Dp,(B’) remains a Kp/-D-
Cover, since the Re-Coordination always expand a disk
in Dp,.(B’) to one that fully covers the original disk,
and the Re-Coordination ensures that disks in Dp,.(B’)
would continue to have different centers.

Consider any client point ¢ that lies in an inner
sub-box U of B. Let U’ be the child sub-box of U that
contains U’ and B’ be the child of B such that U’ is an
inner sub-box of B’. Let V; be the number of disks in
Dp,r(B') (after step 4.2) with distinct centers that cover
¢, and V5 be the number of disks in Dy, (after step 5)
that cover c¢. The lemma follows if we can prove that
Vi+ Vo > k(c) — Kp(U).

From the induction hypothesis, we know that
Dpr(B’) is a Kp-D-Cover. Thus, Vi > k(c) —
Kp/(U') > k(c) — (Kp(U) + Kjpe(B,U)). In step 5,
a realization operation is performed on every A-Disk in
A(B) that uses U as the center and the generated disk
is put into Dj,.. This means that there are at least
Kioe(B,U) disks with distinct centers in Dj,. covering
¢, and none of them shares a same center with any disk
in Dp,(B'). Thus, Vo > Kjoe(B,U). Therefore, we have
Vi+ Vo > k(c) = (Kp(U) + Kioe(B,U)) + Kioe(B,U) >
k(c) — Kp(U), which completes the induction step and
thus proves the lemma. 0
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The above lemma immediately leads to the conclu-
sion that D(B,) is a disk k-cover. This ensures the
correctness of the Realization algorithm.

5.3 Cost of the Realized Disk k-Cover and
Bubble Charging In this subsection, we show that
the cost of D(B,) is close to that of A. This indicates
that every Balanced AD-Cover can be transformed into
a disk k-cover with similar cost.

The proof is based on a bubble charging scheme.
The main idea of the bubble charging scheme is the
follows. First, we know that if no disk expansion occurs,
the set of disks D realized from the Balanced AD-Cover
A would have a similar cost as A and we are done.
Thus, we only need to estimate the total increased cost
due to disk expansions. For this purpose, we create
a charging token H at each time when there is a
disk expansion. The token H has a cost equal to the
increased cost of the expanded disk and is associated
with the released server point s (in Algorithm 3) which
will be used for the realization of a higher level A-
Disk. The generated tokens will transfer from server
points to server points (like bubbles) and monotonically
increase their levels at the time when Algorithm 3 is
called. The tokens associated with each server point s
will eventually transfer to the disk D that uses s as the
center during D'’s realization from some A-Disk. Since
the tokens associated with s are all generated during
disk expansions at lower levels, their total cost is thus
small, comparing to the cost of D. Thus, we can bound
the total increased cost due to disk expansions by an €
factor of Costopr.

For ease of analysis, we make some modifications to
Algorithm 1. Algorithm 1 now also outputs a disk
set Dye(B). In the beginning of Algorithm 1,
Dgei(B) is initialized as Up: iq a child of 5 Pdet(B’),
or is empty set if B is a leaf node. At the
end (step 8) of the original Algorithm 1, we put
all those to-be-removed disks into Dy, (B). In
the following, we let D,y (B) denote Dgye(B) U D(B).
Our analysis will center around estimating the cost of
Dau(B).

Observe that there is a 1-1 correspondence between
the disks in Dy (B) and the A-Disks in A*(B). During
the bottom-up execution of the Realization algorithm,
when an A-Disk A is realized to produce a disk D
(in step 5 of Algorithm 1 or step 2 of Algorithm 2),
A is called the original A-Disk of D and D the
transformation of A. Note that it is possible that
in Algorithm 3, a disk D, with original A-Disk A, will
be expanded to a larger disk with a different center.
D, is still the transformation of A, if this happens.
It is not hard to see that every A-Disk in A*(B) has

exactly one transformation in Dy (B), and every disk
in D,y (B) has exactly one original A-Disk. Note that
the transformation of an A-Disk must fully cover its
realization. Thus, when a disk expansion happens (in
Algorithm 3), the expanded disk always fully covers the
original disk. For any disk D in D,y (B) generated
by Algorithm 1, we define its level as the level of its
original A-Disk.

In the following, we show that the cost of Dy (B,)
is close to that of A. We first let Sy(B) be the union
of server points in Sp(U) for all sub-box U of B. For
analysis purpose, we augment Algorithm 1, Algorithm 2
and Algorithm 3 so that after Realization(A, B), every
s € Sy(B) and every disk in Dy (B) are associated
with a set of charging tokens. A token H has a non-
negative real-valued cost Cost(H) and a non-negative
integer-valued level level(H).

We use H(B,s) to denote the set of tokens asso-
ciated with a server point s € Sy(B) after executing
Realization(A, B). Similarly, we use H(B, D) to denote
the set of tokens associated with any disk D € Dy (B).
Below we discuss how tokens are generated and trans-
ferred, and how H(B, s) and H(B, D) are determined.

1. If B is a leaf node, after the execution of
Realization(A, B) (Algorithm 1), H(B, s) is set to
be empty for every s € Sy(B), and H(B, D) is set
to be empty for every D € D,y (B).

For the case that B is an internal node, we modify
the algorithm in the following way. For every child
B’ of B, let H(B’, D) be the set of tokens associated
with a disk D € Dy (B) while realizing A*(B’),
and H(B’,s) be the set of tokens associated with
a server point s € Sy(B’). For any server point
s covered by a sub-box of B’ but not in Sy(B’),
initialize an empty set H(B’,s). All such sets
H(B’, s) could be changed in the following process.

2. Modify step 2 of Algorithm 3 to allow changes to
some token sets H(B’,s): (See Figure 5 for an
example of this process.)

For: every s in S; \ S/, DO:

o If some disk in Dp,.(B’) uses s as the center,
expand D in Dp,.(B’) to the minimum disk
that is centered at £(s) and contains D in
its interior. (Note that this expansion
does not change the token(s) H(B’,D)
associated with D.) Create a new token
H with the same level as B’ and a cost
that equals to the increased cost of D.
Add H to H(B',s).
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e Move all tokens from H(B',&(s)) to
H(B’,s). That is, set H(B', s) + H(B’,s)U
H(B',&(s)) and H(B',&(s)) < {}.

3. Modify step 5 of Algorithm 1 to create a token set

Hioe(s) for every s € Sj,.(U) and every sub-box U
of B:
For every s € Sjoc(U): (1) if s lies in some sub-
box U’ of a child B’ of B, set Hj,.(s) to be
the union of H(B’,s) for all children B’ of B.
(2) Otherwise, set H;,.(s) to be an empty set.
For every A-Disk A in A(B), let U be its center,
realize A using a point s in Sj,.(U) as the center,
and put the resulting disk D in Dj,.. Set H(B, D)
to be Hjoe(s). Avoid using the same server point
multiple times in the realization.

4. Update H(B, s) and H(B, D) for every s € Sy(B)
and D € Dy (B) as follows.

(a) For every s € Sy(B), set H(B,s) to be
Hioc(s)-

(b) For any D € Dy (B) that is from Dp,.(B’) or
Daei(B’) for some child B’ of B, set H(B, D)
to be H(B', D).

(¢) Note: For any D € D,y (B) that is generated
at step 5 of Algorithm 1 and with center s,
H(B, D) is already set in step 5. We do need
to do anything for H(B, D) in this case.

Let H(B) denote the set of tokens associated with
a disk from Dy (B) or s € Sy(B) from realizing the A-
Disks of B. Our scheme for token creating/transferring
ensures that all tokens from H(B’) for any child B’ of B
would become a token in H(B). In fact, any token H €
H(B’, D) for some disk D € D, (B’) and a child B’ of B
becomes a token in H(B, D). Any token H € H(B',s)
for some s € Sy(B’) would eventually go to H(B’,s’)
after the execution of step 4, Realization(A, B), where
s’ is some server point in Sp,.(U) and U is the sub-box
of B that contains s. Such a token would eventually
either be associated with a disk of D, (B) generated in
step 5 using a server point s’ as the center, or be placed
in H(B,s) if ¢’ is not used for the realization and thus
s’ e SB(U)

It is also clear that any token in H(B) is either (1)
from #H(B’) for some child B’ of B, or (2) generated in
Algorithm 3 called by step 4 of 1 where a disk expansion
occurs. This allows us to show the following key fact.
Below, we use Cost(H) = ey Cost(H) to denote the
total cost of a token set H.

LEMMA 5.2. Cost(Dyy(B)) =
Cost(H(B)).

Cost(A*(B)) +

(b)
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Figure 5: An illustration of the augmented Algorithm
3. (a) A sub-box U’ contains two sets of server points
S’ (star shaped) and S; (in red). A disk in Dp,.(B’)
centered at a point in S’ \ S;. Every server point s
or disk D is associated with a set (e.g. H;p,Has, etc) of
tokens in H(B’,s) or H(B’, D) before the execution of
Re-Coordination. For any s € S1\S’, H(B', s) is empty.
(b) A bijective mapping £ that maps S\ S" to S’ \ S;.
£ is used to determine the center of the expanding disk,
and also the source/destination of transferring tokens.
(c) Disk expansion/token transfer under £. After the
Re-Coordination, no point in Sy (in red) is the center of
any disk in Dp,(B’). Every s or D is associated with a
token set H(B', s) or H(B’, D) after the execution of Re-
Coordination, which shows how tokens are transferred.
A new token H is created while expanding the disk.
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Proof. We prove this lemma by induction. We first
consider the case where B is a leaf node. For this
case, we clearly have Cost(Dyy(B)) = Cost(D(B)) =

Cost(A*(B)) + X pren(p) Cost(H), since realizing A-
Disks at a leaf node does not generate any token (i.e.,
EHGH(B) Cost(H) = 0).

We now assume that B is an internal node. Let
Ch(B) be the set of children of B. H(B) can be
partitioned as H(B) = (Upecnp) H(B')) U Heap(B),
where Heqp(B) is the set of tokens in H(B) that comes
from disk expansion. Thus, we have
(5.2)
Cost(H(B)) = (Xprecnp)Cost(H(B'
Dau(B) can also be partitioned as Dy (B) = Dioe(B) U
Dend(B), where Dy,.(B) is the set of disks generated in
step 5 of Algorithm 1 and D.pq(B) is the set of disks
from realizing the children of B (some of them might
be expanded in step 4 of Algorithm 1). Since Dj,.(B) is
generated while realizing each A-Disk in A(B), thus we
get Cost(Dioc(B)) = Cost(A(B)). Therefore, we have

(5.3) Cost(Day(B)) =

Note that when a token is generated, its cost is
the cost difference of the original disk and the ex-
panded disk. Thus, we obtain Cost(Hezp(B))
Cost(Dena(B)) — Eprecn)Cost(Day(B')). By induc-
tion hypothesis, we know that Cost(Dyy(B’))
Cost(A*(B')) + Cost(H(B’)). Putting all together, we
have

OOSt(A(B)) + COSt(Dchd (B) ) .

Cost(Da(B))

= Cost(A(B)) + Cost(Dcra(B))

= Cost(A(B)) + Cost(Hewp(B))+
Y precn(B)Cost(Dan(B'))

= Cost(A(B)) + Cost(Heap(B))+
Eprecnp)(Cost(A™(B')) + Cost(H(B')))

= (Cost(A(B)) + Xprecns)Cost(A*(B')))+
(Cost(Heap(B)) + Xprecns Cost(H(B')))

= Cost(A*(B)) + Cost(H(B)).

/\/—\

|

LEMMA 5.3. Let B be a level-l node of T.
executing Realization(A, B), for any s € Sy(B),

After
1. H(B, s) contains only tokens of level strictly larger
than l;

2. H(B,s) contains at most 2" ~Dd
for any integer ' > 1.

tokens of level I’

))+Cost(Hezp(B)).

Proof. We prove the lemma by induction. We first
consider the case where B is a leaf node of T. The
lemma for this case is trivially true, since H(B, s) is an
empty set for any s € Sy(B).

Next, we consider the case where B is an inter-
nal node. Assume by induction hypothesis that for
any child B’ of B, the lemma holds. Any server point
s € Sy(B) must be a point in Sj,.(U) after step 4 of
Algorithm 1, where U is the sub-box of B containing
s. There are two sources for s to gain tokens: (1) Gen-
erated in step 2 of Algorithm 3 during disk expansion,
(2) Transferred/Inherited from some child B’ of B: the
token is already in H(B’, s) before step 4 of Algorithm
1, or is transferred to H(B’',s) from H(B’,£(s)) in Al-
gorithm 3. Below, we count the number of tokens from
each source.

For source (1), we first observe that this can only
happen in Algorithm 3: For some child B’ of B whose
sub-box contains s, a token is created when expanding
a disk D in Dp,(B’) (which means that D is in D(B’))
originally centered at s. There are at most 2¢ such B’,
and in D(B') there is at most 1 disk centered at s. Thus,
this gives at most 2¢ tokens of level [ + 1 to H(B, s).

Now consider source (2). Let U’ be the level-(I + 1)
sub-box that contains s. s can gain tokens from a child
B’ of B only if U’ is a sub-box of B’ and H(B’, s) is non-
empty after step 4 of Algorithm 1. Recall that there are
at most 27 children that can have U’ as one of their sub-
boxes. For each child B’, if H(B’, s) is non-empty after
step 4 of Algorithm 1, one of the following two cases
must be true: (1) s is a member of both S (U’) (which
is the parameter S’ while calling Re-Coordination) and
S1 when executing Algorithm 3. The token set H(B’, s)
is not changed during this process. (2) s is in S but
not in Si(U’). This means that H(B’,s) is initially
empty, and obtains all the tokens from H(B’,£(s)) in
Algorithm 3. No matter which case happens, after
step 4 of Algorithm 1, the set of tokens in H(B',s)
obtained in this manner must equal H(B’,s) for some
s’ € Sy(B’) when realizing A*(B). We can apply the
induction hypothesis here: for each level I’ > [ + 1,
H(B, s') has at most 2(' 1= tokens of level I/ for any
s’ € Su(B'). Thus, H(B,s) can gain at most 2('~Dd
tokens of level I’ for any I’ > [ 4+ 1 through this way
from at most 2¢ of its children.

Combining the above 2 cases, we have the lemma.
O

LEMMA 5.4. Let B be a level-l node of T.
executing Realization(A, B), for any D € Dy (B),

After

1. H(B, D) contains only tokens of level strictly larger
than l;

2. H(B, D) contains at most 20" =D tokens of level I'
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for any integer I > 1.

Proof. If B is a leaf node, the lemma is trivially true.
Thus, we can assume that B is an internal node. For this
case, we only need to prove that when D is generated
in step 5 of Algorithm 1, it gains at most 2’ D4 tokens
of level I’ for any integer I’ > [. This is because in the
bottom-up process of realization, once a disk is created
and associated with tokens (this happens only in step 5
of Algorithm 1), the tokens will never be transferred.

To show that D gains at most 2(' =94 tokens of level
" for any integer I’ > [, we can use the same argument
given in the proof of Lemma 5.3 for the server point
s which is used in step 5 of Algorithm 1 as the center
to realize D. Note that D gets its tokens from H;oc(s)
in (the modified) step 5 of Algorithm 1, and from the
argument in the proof of Lemma 5.3, it can be shown
Hioe(s) contains only tokens of level strictly larger than
[, and contains at most 2('=0d tokens of level I’ for any
integer I’ > [. Thus, the lemma follows. O

LEMMA 5.5. Let B be a node of T at level I, L; be the
edge length of a sub-box at level I, and R be the radius
of a disk in Dy (B). Then, R < 6vVdAL;.

Proof. We prove this by induction. We first consider
the case that B is a leaf node. For this case, any
disk D € Dy (B) is the realization of some A-disk of
B. By the definition of outer sub-boxes, it is easy to
see that the distance between the centers of an outer
sub-box and an inner sub-box cannot exceed 4vdAL;.
Thus, the realized disk has a radius no larger than
4VAAL; 4+ 2VdL; < 6VdAL;.

Then, we consider the case that B is an internal
node. For induction hypothesis, we assume that the
radius R of any disk in D,y (B’), where B’ is a child
of B, satisfies the inequality R < 6vdAL;,,, where
L;+1 = L;/T is the edge length of any sub-box at level
I+ 1. There are two cases for any disk D in D,y (B):
(1) D is from Dy (B’) for some child B’ of B, and (2)
D is created in step 5 of Algorithm 1.

For case (1), we first note that any disk D in
Do (B) cold be expanded to a larger disk in step 4.2
of Algorithm 1 while calling Algorithm 3. Let R’ be
the radius of D before the expansion in step 4.2. Then,
R’ < 6V/dAL;/T. If the expansion never occurs, then
R = R’ and we trivially have R < 6vdAL;. Now
suppose that in step 4.2 of Algorithm 1, Algorithm
3 expands D by moving its center to a point that
has a distance to the original center at most v/dL;/T'.
Thus, after changing the center, the radius R of D
should satisfy the inequality of R < R’ 4 V/dL;/T" <
6vVdAL/T+VdL, /T = (6A/T+1/T)VdL;. WithT >3
and A > T, clearly we have R < 6V dAL;.

For case (2), Since D is the realization of an A-Disk
of B, its radius R is thus R < 6VdAL; (by the same
argument for the case that B is leaf node). ]

LEMMA 5.6. Let L; denote the edge length of a sub-
box at level I in T. Then, for any token H at level
I, if @ > 1, Cost(H) < ((6A + 1) — (6A)*)(VdL;)*.
Otherwise (i.e., 0 < a < 1), Cost(H) < (vVdL;)®.

Proof. Note that the cost of H at level [ comes from
expanding a disk D € Dy, (B) for some node B at
level [. If the original disk has a radius R, then after
the expansion, the radius should not exceed R + VdL;.
Therefore, the cost of H is at most (R + v/dL;)* — R*.
Since R < 6v/dAL;, from the convexity /concavity of the
function f(R) = R, the lemma follows immediately.
d

With the above lemmas, we can now bound the
total cost of tokens associated with each disk. Let
€ > 0 be any small constant. Assume that I' and
A are carefully chosen constants (whose values will be
determined later).

LEMMA 5.7. For any 0 < € < 1, it is possible to choose
I, A € O((2%(1/€))°1/®)) in the construction of the T'-
tree T so that - yreqy 5 py Cost(H) < e- Cost(D) for
any disk D in Dy (B).

Proof. Let Ip be the level of D (recall that the level
of D is the level of the original A-Disk of D), and L;,
be the edge length of a sub-box at level Ip. Then, the
radius of D is at least (A/2I'%)L;,. Thus, Cost(D) >
(A/2T2) L .

Let ¢ = ((6A + 1)* — (6A)*)(Vd)* if o > 1
or ¢¢ = (Vd)* if 0 < a < 1. TFor any token
H at level I' > lp, Cost(H) < (/T ~IP))L
Thus, the total cost COST) of tokens at level ! in
H(B,D) is at most (602(1/_1D)d/F(l,_lD)a)L?D. Let
€1 = ¢/(A/2T%).  Then, COST;/Cost(D) <
€1(2¢/T)!'~Ip | Thus, ,(ZHE”H(B,D) Cost(H))/Cost(D)
S Zl/>lp 61(2-(1/]_—‘0‘)l —Ip _ Zi>0 61(2d/ra)z
€1 Y 50(2¢4/T)0

It is not hard to see that for any ¢ > 0, the
term Y, (2%/T*)? can the made to be < €/3 if we
set T' > (3-241/e)l/e If @ < 0, we have ¢ =
(2I'2V/d/A)®, which can be made to be < €/3 if we
set A > (6vdl?/e)t/*. Otherwise if a > 1, we have
61 = [(6+1/A)* — 6%](I'2V/d)®, which can be made to
be < €/3 if we set A > O(v/dI'?/e)/ .

Thus in any case, it is possible choose
values AT € 0O((2%1/€))°/®),  such that
(X mewn(n,p) Cost(H))/Cost(D) < e 024/ T)E <
€. The lemma then follows.

0
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LEMMA 5.8. For any 0 < € < 1, it is possible to choose
I, A € O((24(1/€))PM/ ) in the construction of the I'-
tree T so that Cost(Dau(By)) < (1 + €)Cost(A).

Proof. From  Lemma 5.2, we  know  that
Cost(Danu(By)) = Cost(A*(B,)) + Cost(H(B;)).
Note that A = A*(B,) is a balanced AD-Cover,

which means ®p (U) = 0 for any sub-box U of
B,. Thus, Sp, (U) is empty. Therefore, any to-
ken in H(B,) must be associated with some disk
in Dyy(B,). From Lemma 5.7, we know that it is
possible to choose T, A € O((24(1/¢))°(/®)) so that
Cost(H(By)) < (1 — #E)C’ost(Da”(Br)). Thus, we
have Cost(Dau(B;)) = Cost(A*(B,))+ Cost(H(B,)) <
Cost(A) + (1 — 72-)Cost(Day(B,)). The lemma then

14+e€
follows. |

Since D(B,) C Dy (B,), we immediately have the
following.

COROLLARY 5.1. Any Balanced AD-Cover of T with
cost M can be transformed to a disk k-cover of cost
no larger than (1 + €)M by Algorithm 1 with carefully
chosen T', A € O((24(1/¢€))0 (/).

5.4 Time Complexity Analysis In this subsection,
we show that given any AD-Cover Aon T € T(S,C, k)
constructed using I', A, A, Algorithm 1 produces a disk
k-cover within polynomial time (in terms of m and n).

Let B be alevel-l node of T, and D(B), Sp(-) be the
output of Realization(A, B). Let I, be the maximum
level of any leaf node in T'.

LEMMA 5.9. The number of disks in D(B) is at most
2m(2A)4T W mas =),

Proof. Let Tp denote the subtree of T rooted at B.
From the algorithm, we know that D(B) is the set
of disks that realize the A-disks in A*(B). Each disk
of D(B) (or more precisely D,;;) corresponds to an
original A-Disk of some node of Tg. Thus, the lemma
follows if we can show that A*(B) contains no more
than 2m(2A)4T4mas =D A _Disks.

Since T is a I'*-ary tree with height a0 — 1,
its number of nodes is no more than 2I'%(me==0_ For
each node B’ of Tg, and each sub-box U’ of B’, there
are at most m A-Disk from A*(B) whose center is U’
(Otherwise, A cannot be a balanced AD-Cover). Also,
the number of sub-boxes of B’ is no more than (2A)9.
Thus, for any node B’ of Tz, the number of A-Disks
of B' in A*(B) is at most m(2A)9. Since the number
of nodes in Tz is no more than 20'%mae==1 the lemma
thus follows. a0

Next, we analyze each step of Algorithm 1.

1. Step 1: This step calls Algorithm 2, which realizes
every A-Disks of B. It takes O(m(2A)%) time,
since there are at most m(2A)? A-Disks of B in
A, and the realization of each A-Disk takes O(1)
time (recall that each A-Disk can be described by
using 2 sub-boxes).

2. Step 2: This step takes O((2A)9) time which is
the number of sub-boxes of B.

3. Step 3: This step needs only constant time.

4. Step 4: This step first initializes Dp,.(B’). It
takes O((2A)°@ (mp/N)C(@1°eD)) time, since the
number of children of B is T'%, which is O(AC),
the number of disks in D(B’) for every child B’
is 2m(2A)T % maz =D " and I,q, is O(log(mp/N))
(where constant p is the bound factor of (S, C, k)).
Then, a loop is performed to enumerate every one
of the (2A)? sub-boxes of B.

o If 4.1 is executed, then it needs only O(m)
time, since there are at most m server points.

e If 4.2 is executed, it runs a double loop; the
outer loop iterates over all (at most (2A)%)
sub-boxes of B’, and the inner loop iterates
over a set (at most I'?) of children of B. In
each iteration, Algorithm 4 is called to change
the center of some disks in Dp(B’), whose
cardinality is at most (mp/\)C(d1oel),

Thus, step 4 takes a
O((2A)° (mp/X\)C(d1oe 1)) time,

total of

5. Step 5: This step realizes a number of A-Disks and
avoids using the same server point multiple times
as the center. Since the number of server points is
m, this step takes O(m) time.

6. Step 6: This step determines the server point set
Sp(U) for every sub-box U of B. The number of
sub-boxes is no more than (2A)?, and the total
number of server points is m. Thus, this step takes
O((2A)% +m) time.

7. Step T: This step outputs D(B). Since the number
of disks in D(B) is O((2A)°D (mp/\)O(@10e 1)) the
running time of this step has thus the same bound.

8. Step 8: The step removes some of the disks
in D(B). Thus, it can be done in O((24)°(
(mp/ NP1y time.

Also, the algorithm is run on each node or 7. T is
a [-ary tree with height O(log(mp/))). Thus the total
number of nodes is (mp/\)C(¢1oel),

Summarizing the above discussion, we have the

following lemma.
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LEMMA 5.10. If A is an AD-Cover of (S,C,k) on T €
T(S,C,k), then Algorithm 1 generates a disk set from
A within O((2A)°@) (mp/\)C( @108 1)) time,

6 Discretization and Balanced AD-Cover

In this section, we mainly present the following lemma,
which shows that the discretization of a disk k-cover is
a balanced AD-Cover.

LEMMA 6.1. Let T be a T'-tree in T(S,C, k), and D be
a disk k-cover of (S,C, k) such that every disk in D fits
T. Then, the discretization of D on T is a Balanced
AD-cover of (S,C, k).

Combining this lemma with Lemma 3.6, we have
the following corollary.

COROLLARY 6.1. Let Costopr denote the minimum
cost of any disk k-cover of (S,C,k). There exists a T'-
tree T in T(S,C,k) and a Balanced AD-Cover A on T
such that:

Cost(A) < (1+A)(1+2Vdl(T —1)/A)*((1— (T -
1)1+ 20(1 — (1 - (I — 1)1)%))Costopr.

For any € > 0, it is possible to set A = ¢/2 and
find T, A € O((2%(1/€))?1/*)) which makes (1+\)(1+
2v/dl(I = 1)/A)* (1 = (T = 1)) +29(1 — (1~ (T -
1)71%)) < (1 + ¢). Combining the above corollary with
Corollary 5.1, we have the following corollary, which
shows that an approximate minimum cost disk k-cover
can be computed by finding a minimum cost Balanced
AD-Cover A on a I'-tree T in 7(S5,C, k).

COROLLARY 6.2. Let Costopr be the minimum cost of
any disk k-cover of (S,C, k). For any e > 0, by setting
A = €/2, it is possible to find a value for T and A in
O((2%4(1/€))°V/ @)Y and build T (S, C, k) based on \,T', A
such that there exists a Balanced AD-Cover A whose
cost is the minimum among all possible Balanced AD-
Covers for trees in T(S,C, k) and whose realization D
has a cost Cost(D) < (1 + ¢€)Costopr.-

7 Finding Minimum Cost Balanced AD-Cover
via Dynamic Programming

In this section, we show that given a I'-Tree T for
an MCMC instance (S,C, k), how to find a Balanced
AD-Cover for (S,C, k) on T with minimum cost. The
obtained Balanced AD-Cover (which includes a pair of
mappings ® 5 and np for every node B of T') is then used
to call the Realization algorithm to yield the desired
disk k-cover of (S,C, k). Below we assume that T is
from T(S,C, k) constructed with certain constants I,
A and A

To find a Balanced AD-Cover, we consider any
node B of T, and show how to obtain a minimum
cost (K, ®)-AD-Cover for B in a bottom-up manner.
The (K, ®)-AD-Cover for the root B, will then be the
Balanced AD-Cover. For this purpose, we let U_(B)
denote the set of sub-boxes with each of them being
a child sub-box of some sub-box of B, and ngp be
a mapping that maps every sub-box in U_(B) to an
integer in {0,1,2,...,m}. Denote by A(B, ®) the set of
all possible multi-sets A of A-Disks of B that satisfy
the following conditions: for every sub-box U of B,
the number of A-Disks in A that use U as the center
is no larger than w(U) — ®(U). Let B, Ba,...Bra
be the children of B in T, ®1,®,,...®ra be a set of
mappings with each ®; mapping every sub-box of B; to
an integer in {0,1,2,...,m}, and K, Ka,...Kpa be a
set of mappings with each K; mapping every sub-box of
B, to an integer in {0,1,2,...,n}. For any A € A(B, ®)
and any sub-box U of B, we use ®;,.(A, U) to denote the
number of A-Disks in A that are centered at U. If U is
an inner sub-box of B, we also use Kj,.(A, U) to denote
the number of A-Disks in A that cover U. We say that
the tuple (K, (I), nB, .A, Kl, Kg, cey KFd; ‘1)1, ‘1)2, ...(I)Fd)
is locally balanced at B if the following hold.

e For any inner sub-box U of B and any U’ = U that
is an inner sub-box of a child B’ of B, K;(U’) =
K(U) + Ko (A,U).

e For every sub-box U of B, } ., yns(U’) —
(bloc(Aa U) = (D(U)

e For any U’ € U_(B) that is a sub-box of some child
of B, &:(U") = s (U").

e For any sub-box U of B, ®(U)+P0.(A,U) < w(U).

The following 2 lemmas are directly obtained from
the definition of (K, ®)-AD-Cover.

LEMMA 7.1. Let A* be an A-Disk multi-set, and A be
the set of A-Disks of B in A*. A* is a (K,®)-AD-
Cover of an internal node B if and only if it is possible
to find np; K1, Ko, ..., Kpa; @1, ®o,...Ppa satisfying the
following conditions.

o The tuple (K, ®,np, A; K1, Ko, ..
18 locally balanced at B.

o A; is a (K;,®;)-AD Cover of B; for each i =
1,2,...,I% where A; denotes the subset of A* that
contains all the A-Disks of B; or its descendants.

LEMMA 7.2. If the tuple
(K,‘D,T]B,A;K17K2,...,Kpd;‘l)17©27...q)pd) 8 lo-
cally balanced at B, and A; is a (K;, ®;)-AD Cover of
B; for each i = 1,2,..., T, then (U, paAi)UA
is a (K, ®)-AD-Cover of B. o
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The above two lemmas suggest that the problem
of finding a minimum cost (K, ®)-AD-Cover of B can
be reduced to the problem of finding a minimum cost
(K, ®)-AD-Cover for each child of B. This indicates
that we can obtain a Balanced AD-Cover through the
following dynamic programming scheme. Particularly,
we construct a table DP[B, K, ®] and fill each entry
with the information that allows us to easily obtain a
minimum cost (K, ®)-AD-Cover of B. Each entry is
indexed by a tuple [B, K, ®|, where

1. Bis anode of T.

2. K is a mapping from the set Z(B) of inner sub-
boxes of B to {0,1,2,...,m}.

3. ® is a mapping from the set S(B) of sub-boxes of
B t0{0,1,2,...,m}.

Given any index tuple [B, K, @], the corresponding
table entry, denoted by DP[B, K, ®], has the following
information:

1. A non-negative real number C[B, K, ®], which is
the minimum cost of a (K, ®)-AD-Cover of B. The
field is set to be infinity if there is no (K, ®)-AD-
Cover of B.

2. A multi-set A[B, K, ®] of the A-Disks of B. If B is
a leaf node, A[B, K, ®] is a minimum cost (K, ®)-
AD-Cover of B. Otherwise (i.e., B is an internal
node), A[B, K, ®] is the A-Disk multi-set satisfies
the conditions listed in Item 3.

3. Mappings U[BaKa (I)]a Kl[B7K7(I)]7 KQ[BvKa(I)]a
7KFd[BvK7(I)]7 (I)l[Bvaq)]v"'a(I)Fd[BvKa ] (Only
when B is internal) such that

e The tuple (K,®,nB,K,?®],AB,K,d];
K,[B,K,®], K3[B,K,®],...,Kra[B, K, ®|;
®[B,K,®],...,Pra[B,K,®]) is locally
balanced at B.

o If a (K, ®)-AD-Cover of B exists, these map-
pings will allow us to determine a mini-
mum cost (K, ®)-AD-Cover of B recursively
as follows. Assume that a minimum cost
(K;[B, K, ®],®;[B, K, ®])-AD-Cover A; is al-
ready available for every child B; of B,
i =0,1,...,'%. Then, the A-Disk multi-set
(Ui o raAi) UAB,K,®] is a minimum
cost (K, ®)-AD-Cover of B.

Below we show that the dynamic programming ta-
ble can be filled in polynomial time. We first demon-
strate that the size of the table is polynomial in terms of

n and m (note that I' and A are constants). T is a I'%-
ary tree with a height of O(log(mp/A)). Thus, the total
number of nodes in the tree is O((mp/\)°(@1°e1). For
any node B of T, the total number of mappings from
Z(B) to {0,1,2,...,m} is O(m~"). The total number
of mappings from O(B) to {0,1,2,...,m} is O(on(d)).
Thus, we have the following lemma.

LEMMA 7.3. The total number of entries in

DP[B, K, ®] is O((mp/)\)o(dlogF)on(d)).

Below we present a method to fill the entries of
DP|B,K,®] in a bottom-up manner. We consider
separately the case where B is a leaf node and the case
where B is an internal node of T'. For the latter case,
we assume that the entry [B;, K, ®,] for any child B; of
B has already been filled for all possible mappings K;
and ;.

Filling entry [B, K, ®| for a leaf node B: Try
all possible A-Disk multi-sets A € A(B,®) and let
A[B, K, ®] be the one that is a minimum cost (K, ®)-
AD-Cover of B. Set C[B,K,®] to be the cost of
A[B, K, ®]. If no such an A[B, K, ®] exists (i.e. there
does not exist a (K, ¢)-AD-Cover of B), C[B, K, ®] is
set to be positive infinity, and A[B, K, ®] is set to be
NULL.

Lemma 7.1 and Lemma 7.2 suggest the following
approach to find a minimum cost (K, ®)-AD-Cover for
any internal node B.

Filling entry [B,K,®|] for an internal node
B: Enumerate all possible mappings np; K1, Ko, . . .,
Kra; ®q,Ps, ...« and A € A(B,®) that make the
tuple (K,‘b,?’]B,.A§K1,K2, ...,Krd;(pl,(pQ,...@Fd)
locally balanced. Among all such tuples, identify the
one that minimizes Cost(.A) +Z;Y=dl DP[B;, K;, ®;]. Set
n[B, K, ®]; K1|B,K,®],...,Kn[B, K, ®]; ®,[B, K, 9],
o, ®ra[B, K, ®], A[B, K, D] accordingly and
C[B,K,®] to be the minimum value of
Cost(A) + ZZ; DP[B;,K;,®;]. 1If no such a tu-
ple exists, set C[B, K, ®] to be infinity and n[B, K, ®];

K\[B,K,®|,..., Kra|B, K, ®];®,[B, K, ®|,..0r[B, K, ®],

A[B, K, ®] to be NULL.

The following lemma bounds the cardinality of
A(B, D).

LEMMA 7.4. |A(B,®)| is O(m2”).

Proof. We estimate the number of possible ways to
construct a different A-Disk multi-set A such that for
every sub-box U of B, the number of A-Disks in A that
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use U as the center is no larger than w(U)—®(U), where
w(U) is the number of server points in U. We use Ay to
denote the set of A-Disks in A that uses U as the center.
Thus, A can be partitioned as A4 = UUes(B) Ay. The
process of constructing A can be viewed as first building
Ay for each U and then concatenating them.

We claim that for each U, the number of different
ways to construct Ay is O(mAO(d)). To see this, we
first observe that it takes two sub-boxes, U and another
sub-box U’ € §(B), to jointly determine an A-Disk that
is centered at U. Since there are a total of O(A(®D)
sub-boxes in S(B), the number of distinct A-Disks in
Ay is thus O(AP@). This means that the number of
ways to construct Ay can be viewed as the number
of ways to establish a mapping P(U’) for each sub-
box U’ € S(B), where P(U’) represents the number
of copies of the A-Disk determined by U’ and U that
will be added to the multi-set Ay. Since Ay < m,
P(U’) can take values only from {0,1,2,...,m}. Thus,
the total number of different mappings for all sub-boxes
U’ € Sp is O(mA™).

Since the number of ways to construct Ay is
O(on(d>) for each sub-box U, and the total number of
sub-boxes is O(AP(®D) the number of ways to construct

A =Upesp) Av is thus O(on(d)). 0

With the above lemma, we can now bound the time
needed for filling one entry of the dynamic programming
table.

LEMMA 7.5. Fach entry [B,K,®] can be filled in
O(non(d)) time.

Proof. If B is a leaf node, the process of filling the entry
[B, K, ®] needs to first enumerate all A-Disk multi-sets
in |A(B,®)|, and then test each of them to see which
one is the minimum cost K-AD-Cover. Since there
are O(on(d)) such multi-sets, and it takes at most
O(nmA° @) time to determine whether a given multi-
set (of size at most m) is a K-AD-Cover. Thus, it takes
O(non(d)) time if B is a leaf node.

If B is an internal node, the process needs
to enumerate all possible mappings n; Ky, K, ...,
Kra; 1, Po,...01¢ and A € A(B,®). The number
of different mappings for 7 is O(mAO(d)), since there
are O(A9@) sub-boxes, and 1 maps each sub-box
to an integer in {0,1,2,...,m}. By the same argu-
ment, we know that for each ®; or K;, the num-
ber of different mappings is O(mAO(d)). Thus, the
number of combinations for n; K1, Ko, ..., Kra; ®1, P,
L Bra is O(mA”™).  TFor each of such combi-
nations, we need to determine whether the tu-
ple (K, @,77,./4; Kl,Kz, ceey Kpd; (I)l, (I)Q, ...(I)Fd) is lo-
cally balanced at B. A straightforward way of testing

takes no more than O(nmA©@) time. Thus, it is pos-

sible to fill the entry in O(non(‘”)
node B. 0

time for an internal

Combining Lemma 7.5 and Lemma 7.3, we can
bound the total time for the dynamic programming
process.

LEMMA 7.6. Given a D-tree T of a (S,C, k) instance of
MCMC, a minimum cost Balanced AD-cover on T can

be found in O(n(mp/A)O(dlogF)on(d)) time.

Combining this lemma with previous discussions,
we have the following.

1. By setting T, A to be O((2%(1/€))?/®)), and
A = €/2, the minimum cost Balanced AD-Cover of
one of the I'-trees in 7(S, C, k) can be transformed
to a (1 + €)-approximate disk k-cover of (S, C, k).

takes
where p is

2. The transformation
O((28)0() (1mp/ AYO@IED))  time,
a fixed constant.

3. There are I'¢ such I'-trees.

4. For each tree T, a minimum cost Balanced AD-
Cover can be found in O(n(mp//\)o(dlogr)on(d>)
time.

This leads to the following theorem. Note that so
far our discussion assumes that (S, C, k) is a bounded
instance.

THEOREM 7.1. Given a bounded MCMC instance
(S,C, k), it is possible to find a (1+€)-approzimate min-

O(l/e)o(d/a)) time.

imum cost k-cover in O(nm

Finally, it can be shown that every MCMC instance
(S,C, k) is decomposable to to at most m bounded
instances in (mn)°™M) time. This immediately leads to
Theorem 1.1.
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