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In this paper we initiate the study of entanglement-breaking (EB) super-
channels. These are processes that always yield separable maps when acting
on one side of a bipartite completely positive (CP) map. EB superchannels
are a generalization of the well-known EB channels. We give several equiva-
lent characterizations of EB supermaps and superchannels. Unlike its chan-
nel counterpart, we find that not every EB superchannel can be implemented
as a measure-and-prepare superchannel. We also demonstrate that many EB
superchannels can be superactivated, in the sense that they can output non-
separable channels when wired in series.

We then introduce the notions of CPTP- and CP-complete images of a su-
perchannel, which capture deterministic and probabilistic channel convert-
ibility, respectively. This allows us to characterize the power of EB super-
channels for generating CP maps in different scenarios, and it reveals some
fundamental differences between channels and superchannels. Finally, we re-
lax the definition of separable channels to include (p, ¢)-non-entangling chan-
nels, which are bipartite channels that cannot generate entanglement using
p- and ¢g-dimensional ancillary systems. By introducing and investigating k-
EB maps, we construct examples of (p, ¢)-EB superchannels that are not fully
entanglement breaking. Partial results on the characterization of (p, ¢)-EB su-
perchannels are also provided.
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1 Introduction

Suppose that Alice and Rachel have access to some bipartite quantum channel
gAoRo=ALR1 They are interested in using this channel to generate entangled states across
their spatially separated laboratories. As shown in Fig. 1, the most general method for
doing so would involve using local quantum memories. Alice prepares a locally entan-
gled state p04#, with A being her memory register, and Rachel does likewise with the
state wf0®E. Sending systems A and Ry through the channel leads to the state

)

O-AEAIIRERI — ldAERE ® 5AOR()—>A1R1 (IOA()AE ®CUB()BE)

which they hope is entangled. It is known that such a procedure can be used to generate
entanglement if and only if £40fo=41f1 does not have the form of a so-called separable
channel [1]. Hence for Alice and Rachel’s goal of obtaining bipartite entangled states,
separable channels are completely useless.

Frustrated with the situation, Alice naively wonders if manipulating her part of the
channel could improve their prospects of obtaining entanglement. Any physical proce-
dure she attempts can be described as in Fig. 2; it involves her first applying some pre-
processing map that couples her input system Ay to the memory register Ag, and then ap-
plying a post-processing map to system Ag and her channel output A; [2]. Such a process
is known as a superchannel, and specifically here it is a local superchannel since it is be-
ing implemented only in Alice’s laboratory. Unfortunately for Alice, local superchannels
are not able to transform a separable channel into a non-separable one. Consequently, if
gAoRo=ALR1 g yseless for entanglement generation before Alice’s manipulation, it will be
useless after. On the other hand, it is quite possible that a local superchannel converts a
non-separable channel into a separable one. This begs the question of whether there exist
certain local superchannels for Alice that convert every bipartite channel into a separa-
ble channel. We refer to such processes as entanglement-breaking superchannels since they
completely eliminate any channel’s ability to distribute entanglement, and they are the
focus of this paper.

Entanglement-breaking superchannels (EBSCs) generalize the class of entanglement-
breaking channels (EBCs), a well-studied object within quantum information theory [3].
A channel N41751 is called entanglement breaking (EB) if id/"t @ N417B1(pf141) is sep-
arable for every pf141 and all systems R;. That an EBC is a special case of an EBSC comes
from the fact that every quantum state can be regarded as a quantum channel with a one-
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Figure 1: Alice and Rachel can use the their bipartite channel £ with local quantum memories to
generate entanglement in gA241: 251 if and only if £ is not a separable channel.
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Figure 3: A state pf®*41 represents a special type of bipartite channel, and a standard EBC can be seen
as an EBSC post-processing map.

dimensional input. An EBC AV41751 can then be seen as an EBSC that locally transforms
quantum channels with trivial input (see Fig. 3).

A central theorem is that every EBC can be realized by a measure-and-prepare pro-
tocol [3]. That is, N417B1 is EB if and only if there exists a measurement described by a
positive operator-valued measure (POVM) {F;*'},, along with a family of states {w;' }4
such that

NAZE () = 3 I[F ot (1)

k

for all states p1 of system A;. The interpretation is that the EBC A*41751 can be imple-
mented simply by first measuring system A; with POVM {F;*' },, and then preparing the
state wp’! contingent on outcome k. A chief question of interest in this paper is whether
there exists a similar type of implementation for EBSCs. We find that obvious forms of
EBSC implementation fail to capture the entire class of EBSCs, including the generaliza-
tion of measure-and-prepare channels to superchannels.

The study of EBSCs falls within the broader research program of understanding
dynamical quantum resources. A quantum resource theory (QRT) describes a generic
framework for isolating some particular feature of a quantum system, like entanglement
or coherence, and analyzing how that feature, or “resource”, behaves under a restricted
set of operations [4]. Most attention has been previously devoted to studying static re-
sources, that is, features that arise in particular states of a quantum system. However,
recently, significant progress has been made in developing the theory of dynamical quan-
tum resources, which refer to certain properties of quantum channels that are of interest
for quantum information processing [5-9]. For example, in the QRT of entanglement
for bipartite channels [10, 11], a channel’s ability to distribute entanglement is a resource,
and when separable processing is taken as free, an EBSC can be interpreted as a one-sided
resource-erasing map.

The paper is organized as follows. In Section 2, we fix notations and provide neces-
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sary preliminaries. In Section 3, we formally define entanglement-breaking superchan-
nels and give several equivalent characterizations. We also characterize a subset of EBSCs
which allows for intuitive pre/post-processing realizations. In Section 4, we show how
two copies of an EBSC can be combined to no longer be an EBSC, thereby demonstrating a
type of superactivation. In Section 5, we introduce the notion of CPTP and CP-complete
image and consider what is the largest set of CPTP (CP) maps that can be generated
through the action of EBSC, as well as two important subsets of EBSC. In Section 6, we
generalize EBSCs to superchannels that output k-non-entangling maps, and we connect
these superchannels to the family of k-entanglement-breaking maps, the latter being a
type of map that we introduce and thoroughly discuss. We summarize our results and
conclude with some discussion in Sec. 7.

2 Preliminaries

2.1 Notations

Throughout this paper we adopt most of the notations used in Ref. [10]. We use capital
Latin letters A, B, C, etc. to denote physical systems, and HA, HEB, HC, etc. to denote their
corresponding Hilbert space. Sometimes we also use capital letters to denote Hilbert
spaces for simplicity. The collection of all bounded operators on system A will be denoted
by B(A), all Hermitian operators by Herm(A), all positive operators by P(A), and all
density matrices by D(A). The set of all linear maps from B(A) to B(B) will be denoted as
L(A — B), among which all completely-positive maps (CP) and all completely-positive
and trace-preserving maps (CPTP) are denoted as CP(A — B) and CPTP(A — B),
respectively. A CPTP map is also called a quantum channel.

Since we are considering here dynamical resources, we will always assume that a
system A has an associated input and an output system, denoted by Ay, A1, respectively.
Therefore, we can use the shorthand notation £(A) := L(Ay — A1), CP(A4) := CP(4p —
Ayp), etc. A linear map from L(A) to £(B) is called a supermap, and the set of all such
supermaps will be denoted by L(A — B). The action of a supermap will be written as
a square bracket, like ®[£], whereas the action of quantum channel will usually denoted
by round brackets, like £(p).

We use A to denote a system with the same dimension of A, and dﬁ‘A =

Zg;‘zl i) (j j|AA is the unnormalized maximally entangled state on space AA. For any
linear map € € L(Ap — A,), its Choi matrix is defined as [12, 13]

Jeot =i g gt go), @

which establishes an isomorphism between £(Ay ® A;) and £L(Ay — A;), known as the
Choi-Jamiolkowski isomorphism. The inverse of Eq. (2) is

M7 (p0) = Tea, (((p")7 @ 1) JoM). (3)

Furthermore, £40~41 js a CP map iff J, ?OAl > 0 (which means it is positive semidefinite),
and 40741 §s TP iff Try, (J504) = [0,

Throughout this paper, we denote the identity operator on state space H as I, the
identity channel as id (i.e. id(p) = p), and the identity superchannel as ¥ (i.e. ¥[€] = &).
Hence, when we write ¥ ® O[£], it should be unambiguously understood as (¥ ® ©)[£]
since ¥ is a supermap, and should not be confused with id ® ©[€].
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2.2 Separable and Entanglement-Breaking Maps
We next review the meaning of separable and entanglement-breaking maps.

Definition 2.1. [14, 15/ A CP map g € CP(AOR(] — A1R1) 1s called AgAy : RoRy
separable if it can be written as € = Y, P ® Yy for some &, € CP(Ayg — A1) and
U, € CP(Ry — Ry).

It is not difficult to see that E40Ro= 4171 jg separable iff its Choi matrix

J?0R0A1R1 .= iq4oRo g 5A01?0%A1R1(¢£0A0 ® d)fof%()) (4)

is AgA1 : RoR; separable [1]. This means that we can write Jg‘oA“RORl = My ® Ny, for
some M}, € P(ApA1) and N, € P(RoR;). As alluded to in the introduction, separability
of £A0Ro=A1F1 means that it cannot be used for distributing entanglement between Alice
and Rachel, and this fact can be most easily established by examining its Choi matrix and
using the identity &(p) = Tra, g, [(p0F0)T @ [M1F jlofodifa]

A close cousin to the separable maps are those that are entanglement breaking.

Definition 2.2. [3] A CP map N € CP(A; — By) is called entanglement breaking
(EB) if idfr @ N4 =B (pFiAvy s separable for any p™ 4 and any system Ry. An EB map
N is called an entanglement breaking channel (EBC) if it is also trace-preserving.

The following provides different characterizations of EB maps and clarifies the relation-
ship between EB and separable maps.

Proposition 2.1. For a CP map N4 =B1_ the following are equivalent.
(A) N4=BL s BB,
(B) Its Choi matriz Jflel is Ay : By separable.
(C) NAa=Bi(p) =3, Tr(F,flpAl)wfl, for F,?l >0 and wi € D(By).

(D) For any system R and any bipartite channel EFoB1=FiAr - the  composition
FRoAi=RaByr — \fAi=B1 o gRoBi=Bid o NrAi=B1 g g separable map.

Proof. Items (A)—(C) are standard results found in Ref. [3]. From the form of Eq. (1), it
is easy to see that J]I_?OAlRlBI is RoR; : A1 By separable whenever A is EB, and so (A) =
(D). Conversely, if (D) holds for all bipartite channels £FoB1=E141 then by considering
the discard-and-prepare channel £(Xf0P1) = Tr[X }igﬁf”‘l for Ry = A;, we see that

separability of F implies that N is EB; hence (D) = (A). O

Remark: In Section 3.3, we will see that the channel FRo41=R1B1 constructed in (D) of
this proposition is the output of a conditional prepare-and-measure superchannel £

NoEoN.
2.3 Supermaps and Superchannels

We next review the basic structure of superchannels. The following definitions and theo-
rems can be found in [16].

Definition 2.3. [2, 16] A supermap © € L(A — B) is called a superchannel if both of
the following are satisfied:
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(A) © is completely CP preserving: 1% @ O[ERA] is completely positive for any CP map
E and arbitrarily large system R.

(B) © is TP preserving: ©[E] is trace preserving for every TP map .
We call © a CP supermap if condition (A) is satisfied.

The notion of superchannel defined here is equivalent to the deterministic supermap defined
in [2], and the term CP supermap here is equivalent to probabilistic supermap or simply
supermap in [2]. In contrast to [2], here we use supermap to refer to any linear map in
L(A — B).

@A—>B

The Choi matrix of a supermap is defined as

TP =3 JA . © I8

ap,a1

wgan]? ()
where Jéloal and Jg[saoall are the Choi matrices of £,,, € L(A) and O[Eyyq,] € L(B)

respectively, and {gq, },, 4, 1S @ complete orthogonal basis of £(A) whose action in the
computational basis is given by

Eigra(p ™) = Gl 1) KU (6)
Alternatively, 742 equals the Choi matrix of (14 ® @A*B) [q)ﬁfi]l where

0= Y eh, e el )

ap,a1

The action of @ﬁfi can be expressed as
A (p 00y = Tr(pg o) g, (8)

and hence it can be viewed as a maximally entangled map, in analogy with ¢. Note that
® is not trace-preserving and hence not a quantum channel.

From the Choi-Jamiolkowski duality, there is a one-to-one correspondence between
supermaps and their Choi matrix. Hence, the linear spaces L(A — B), L(A) ® A1 —
By ® By), L(Ag ® By - A1 ® By), and L(A; ® By — Ap ® By) are all isomorphic. We
have already seen that (14 @ ©475)[®44] has the same Choi matrix as ©. Further define
Ag € L(A — B) to be the unique map that satisfies Ja, = J57, and T'e € L£(A41By —
AoB:) to be the unique map that satisfies Jr, = J4' . The properties of ©4~7 are then
directly related to these three maps. Specifically, © is a CP supermap iff (1 ® ©)[®44],
Fng 0= 40B1 and A48 are CP. The condition when © becomes a superchannel is a little
bit more involved and is given by the following lemma.

Lemma 2.1. [2, 16] Let © € L(A — B). The following are equivalent.
(A) © is a superchannel.
(B) The Choi matrix Jé43 >0 has marginals
JéBo — pAiBo, gABo _ qAoBo g A 9)

where vt = ﬁIAl is the normalized mazimally mixzed state on Aj.
1
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(C) There exists a Hilbert space Hg with dg < da,dp,, and two CPTP maps Fﬁ%"AoE

and Fglolg_)Bl such that for all linear maps £4,
O] = Tji ™7 o (E4 @id”) o THg0F (10)

PA1E—>31 ['Bo—AoE ig

For a superchannel ©475, one can verify that the Choi matrix of post e

J4E, and hence g P07 40P = /=81 o TBo~4AE On the other hand, by the Choi-
Jamiolkowski duahty we have
I8 = Tea (787 (I 17)). (11)

Therefore, the CP map AS~5 has a property that it transforms the Choi matrix of a chan-
nel to another Choi matrix of a channel, i.e. Ag(J£) = @[ B

Pictorially, the calculation of the Choi matrix of a superchannel ©475 is shown in
Fig 4.

Bg Bo

- BO—>EA0 AE-B,
BO l—‘pre l—‘pOS'E Bl

o

(DAA AUAO = Tr(p ¢A0A0 s

P+

AO AO

Figure 4: Circuit diagram for calculating the Choi matrix J&'Z of a superchannel ©4-5.

3 Characterization and Realizations of EBSCs

3.1 Characterization of EBSCs

With the background concepts in place from the previous section, we are now able to in-
troduce the notion of entanglement-breaking supermap and entanglement-breaking su-
perchannel.

Definition 3.1. A CP supermap ©47F is called an entanglement-breaking supermap
if 1% @ ©[ERA] is a separable map for every & € CP(RA), with R being an arbitrary
finite-dimensional system. If ©A7B s furthermore a superchannel, then it is called an
entanglement-breaking superchannel (EBSC).

In this work we primarily focus on EBSCs which is a more physical object. However, in
order to better understand the properties of EBSCs, in this and the next subsections, we
will also look at EB supermaps. Our first result provides several equivalent characteriza-
tions of EB supermaps and EBSCs, in analogy to Proposition 2.1 for EBCs.

Theorem 1. For a CP supermap ©478 the following are equivalent.

(A) ©478 js an EB supermap.
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(B) 14 ® @AHB[CI%A] is separable for @ﬁg(p) = Tr(p(ﬁ’io’go) JA?AH.
(C) TS is separable with respect to A : B.

I_‘BO_>A0E FAIE;)BI
pre

and T'50s such

(D) © can be realized with pre/post-processing CP maps
that I‘SlBoﬁAoBl — FAlE%Bl o ['Bo—AoE

post pre is a separable map (with respect to A1 Ay :
ByB).

(E) Ae € L(A — B) defined as the unique map with Choi matriz J& is an entanglement
breaking map.

If © is furthermore a superchannel, then the CP conditions in (D) can be strengthened to
CPTP.

Sketch of the proof of Theorem 1: (B), (D), (FE) correspond to three different CP
maps that have the same Choi matrix as O, as discussed in Sec. 2, so it is easy to show
they are equivalent to (C). (A) = (B) is by definition of EBSCs. (C) = (A) can be shown
by considering the Choi matrix of 1 ® ©[€] for any bipartite CP map £.

Proof. (A) = (B) is by Def. 3.1 of EBSCs. 14 @ ©475[944] is separable if and only if
its Choi matrix Jﬂ®®[q>¢f;} is separable with respect to A : B. Since jé“B = J1geead by
definition, we see that (B) < (C).

We now prove (C') = (A). For any bipartite map £#4 € CP(RyAg — R1A;), according
to Eq. (11), we have

Iiote) = Traa (THEE7 ((JENT @ 177)) (12)
= Trga ((qsfol?o ® (;Sflél & t7®AB> ((JéiA)T ® IRB)) (13)
= Tra (747 ((JEY 1 0 17)), (14)

where the superscript I'4 denotes partial transpose on system A. Since system R is actually
unchanged, let R = R and rewrite this equation as

I
JI{%®B®[5] = TI‘A (ng (Jé%A) A) 7 (15)

where we omit the identity operator. Now j(f)‘B is separable, which means it can be written
as

K
J&P =3 M @ NP (16)
k=1
for some M{* € P(A), NP € P(B), and positive integer K. Substituting into Eq. (15), we
get

r
Tizoe) =D Tra (le (J§A> A) ® N7, (17)
k

which means J]{%@?e[g] is separable, and hence 17 @ @AHB[SRA} is separable. Since £f4

is an arbitrary bipartite CP map, we conclude that © is an EBSC, which completes the
proof of (C') = (A).

This has established the equivalence (A) < (B) < (C). As for the equivalence of
(C), (D), (E), we know that the Choi matrix of Fngo_’AOBl and A§7P are both J&'P,
as shown in the last section. Therefore, the separability of jé“B with respect to A : B is
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equivalent to the separability of Fng 04081 with respect to A1 Ag : BgBi, which is also
equivalent to the fact that A475 is entanglement breaking.

The final remark on the case © being a superchannel is by Lemma 2.1 that the pre/post-
processing map of © can always be chosen to be CPTP (with Fng 0=4oB1 unchanged). [

BO Bl

l-.BO—>A0E

pre EE

AE-B;

post
Ay A,

Figure 5: The map g%~ 40P = 701781 o TBo=A0E For any EB supermap ©47F, Theorem 1

(D) requires this map to be AgA; : ByBj separable.

3.2 EBSCs realized by EB pre/post-processing maps

Theorem 1 (D) provides a structural requirement for the pre/post-processing maps of
an EBSC. However, the separability on I'g only characterizes the concatenation of the
pre/post-processing maps, as depicted in Fig. 5. It remains unclear what constraints
are placed on the pre/post-processing maps individually in order for the resulting
superchannel to be entanglement-breaking. Here, we obtain such a condition when
the physical constraint of being trace-preserving is relaxed for the pre/post-processing
maps. Namely, we show that the pre/post-processing maps can be expressed as partly
entanglement-breaking maps, as defined below. While this provides some mathematical
insight into the structure of EBSCs, it is not a statement about physical implementation
due to the non-TP property of the maps. When the pre/post-processing maps are re-
quired to valid quantum channels, it is unclear whether the pre/post-processing maps
can always be taken as party-EB maps. Instead, we show that entanglement needs to be
carried by the side channel E' that connects the pre and post-processing channels for the
implementation of certain EBSCs.

We begin by generalizing the definition of entanglement breaking for CP maps that
have bipartite input or output.

Definition 3.2. A CP map EBo74F s called partly entanglement breaking for
output Ay if id® ® EBo=AB(pRBoY s separable with respect to Ag : RE for any p €
D(RBy) and any system R with finite dimension.

Definition 3.3. A CP map EF4 =By s called partly entanglement breaking for
input A, if id @ EFAB(GRE @ ,S41) s separable with respect to S : RBy for any
of'F ¢ D(RE) and w1 € D(SAy) for any system R, S with finite dimension.

The following two lemmas offer alternative characterizations of partly EB maps, sim-
ilar to Proposition 2.1 for standard EB maps.

Lemma 3.1. For a CP map EBo74F the following are equivalent:

(A) EBo=AE s partly EB for output system Ay.
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(B) idPo @ SBoﬁAoE(qﬁfOBO) is separable with respect to Ao : BoFE.
(C) EBo=AE can be written as

BB (pboy = 3777 (pP) @ 0, (18)
k

for some SEO%E € CP(By — E) and a,‘?o € D(B) independent of the input.

If € is furthermore CPTP, then {EfoﬁE}k in (C) is a quantum instrument, which means
> 1€k is CPTP.

Proof. (A) = (B) is by definition and (C') = (A) is trivial. It remains to prove (B) = (C).
Note (B) says that the Choi matrix J f 04oE i separable with respect to Ay : BoE. Hence
we can write

JPoAE = N N E ) gilo (19)
k
L BoE Ao : 3 AO —
for positive operators M, °", 0;,°°, and without loss of generality, Tr(c,.°) = 1 for all k.

Taking 5,? °=E £4 be the unique CP map whose Choi matrix equals M [E(;OE completes the

proof. When & is furthermore CPTP, we have 150 = Jfo =>4 M,fo. Hence, each M,fo
is the Choi matrix for a CP map 5,? 0=F and their sum is trace-preserving. O

Similar conclusions hold for partly EB maps with a bipartite input.
Lemma 3.2. For a quantum maps EEA17B1 the following are equivalent.
(A) EEM=BY s partly EB for input system Aj.
(B) idF @ SEAlﬁBl(qbflAl ® qbe) is separable with respect to Ay : EBy.

(C) EEA=BL can be written as

gEM=BL(pBALY _ ZglfﬁBl (TI‘Al(FlflpEAl)) _ (20)
k

for some EF7PY € CP(E — By) and {F,fl} € P(A1).

If € is furthermore CPTP, then {EfﬁBl}k in (C) forms a quantum instrument and {F,fl}k
forms a POVM.

Proof. The proof is very similar to the previous lemma. We only need to show (B) = (C).
For any p € D(EA;),

EFAB (o) = Tupa, (JE 1P (pP4)T) (21)

= > Tepa, (BT @ NP (pP4)T) (22)
k

Taking E,f ~B1 t6 be the unique CP map whose Choi matrix equals NV ,f B completes the

proof. When & is furthermore CPTP, we have that 1741 = JE4 = 5~ (FANT @ NP
Hence {F},}), defines a POVM, and {N,P'}; are Choi matrices for an instrument. O
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Note that partly-EB maps are equivalent to bipartite separable maps with one trivial
input/output system. That is, £80740F is partly EB for output Ay iff it is a separable map
w.r.t. Ay : BoE. Similarly, £ EA1—B1 g partly EB for input A, iff £ EA1—B1 g separable w.r.t.
Ay : EB,. This can be seen from item (B) in Lemmas 3.1 and 3.2. One may also notice
from Eq. (18) and Eq. (20) that partly EB channels take a “measure-and-prepare” form.
But we must be careful here. Although Eq. (18) can indeed be interpreted as preparing a
state conditioned on the measurement outcome, Eq. (20) is like preparing a CPTNI map
conditioned on the measurement outcome, which in general cannot be done physically.
Even when £F41751 is trace-preserving, the individual E,;_E 51 need not be proportional
to a trace-preserving map. This is the core reason why EBSCs differ from prepare-and-
measure superchannels as will be discussed later.

To see the relevance of partly EB channels to our problem, let us split system E in
definitions 3.3 and 3.2 into two parts: E = E4Ep (see Fig. 6). In this case, EPo740FaEs
is partly EB for output AL, iff it is a separable map w.rt. AgE4 : BoEp. Similarly,
EEaBEpA1—=B §g partly EB for input A, E, iff EEAI—-B g separable w.r.t. A1E4 @ B1Ep.
Then it is not difficult to show that every EB supermap can be realized with partly-EB
pre/post-processing maps of this form.

Theorem 2. For a CP supermap © € L(A — B), the following are equivalent
(A) ©478 js an EB supermap.

(B) There exists a CPTP map Ffr%_)AOEAEB that is partly EB for the output system
AoE 4, and a CP map P BaBs=By ypop g partly EB for the input system Ai1FE4,

post
such that
@A—>B[5A] _ Fg;SIfAEBHBl o (5,4 2 idEAEB) o Fﬁ%—)AoEAEB (23)
Ep

Bo—EAEBAg| 7 N\ A{EpEg—B;

Fproe AEBTOL EA S l-‘post

7 \
\
BO // S\ B1
— ’ - ] \
N
7/ - AO Al ~ R

SEP SEP

B()HEAEBAQ
pre

is partly-EB for the input system F4A;.

Figure 6: A general way to implement an EB supermap. T’ is partly EB for the output

I‘AIEAEBA)B

system E4Ag and I}

Proof. (B) = (A): As is obvious from Fig. 6, a CP supermap which can be realized as in
(B) must be an EB supermap.
(A) = (B): By Theorem 1, the Choi matrix of any EB supermap can be written as

J&B =3 Mo NP, (24)
J

for MJ‘-4 € P(A), NJB € P(B). Let E4 = Ay, Ep = By. Define the following pre/post-
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processing map

1
B 40458 () = %255 () L 25
0
FﬁégAEBHBl(P) _ dAo Z'N‘jEB%Bl (TI"EAAl ((MjEAAl )Tp>) ’ (26)

J

where J\/JB 02B1 s defined to be the unique CP map whose Choi matrix equals to NJB .
Obviously these two maps are CPTP and CP respectively.

One can verify that the Choi matrix of FﬁgszEB%Bl o Fﬁ%ﬁAoEAEB equals to Jg'P,
which means that this pair of pre/post-processing maps indeed implements ©4~B. On
the other hand, by Lemma 3.1 and Lemma 3.2, we see these two maps are partly-EB with

respect to system E4Ag and E4 A1, respectively. This completes the proof. O

The above theorem provides a structural condition on the pre/post-processing maps
that can be used to construct any EB supermap. However, it fails to conclude that every
EBSC can be realized by a pair of partly-EB pre/post-processing channels since the con-
struction involves a non-TP map in Eq. (26). Nevertheless, we conjecture that it is still
possible to realize every EBSC by partly-EB pre/post-processing channels using a differ-
ent construction than the one given in Theorem 2. We leave this conjecture as an open
question to pursue elsewhere. One difficulty in tackling this problem is that the splitting
of side channels F into two parts £ = E4Ep makes the general structure of partly-EB
pre/post-processing channels rather complex. Here we show that an implementation as
in Fig. 6 but with E4 removed is not strong enough to implement all EBSCs. Hence,
implementing an EBSC will in general requires entanglement to be distributed across a
memory side channel. To see this, we first make a simple observation.

Proposition 3.1. Suppose that © is a superchannel realized by a partly EB pre-processing

map Fg%ﬁAoE for Ag and any CPTP post-processing map Ff(ﬁtl_}Bl. Then for any pfBo
and w341 | the output state

is separable across Ag : RB1S. Similarly, if © is realized by a partly EB post-processing
map for Ay, then this output state is separable across AgRBy : S.

Proof. By definition, 040 FE = id® @ Fﬁ%"AoE (pRBO> is separable across Ag : RE. Then

id% ® rftﬁg*B Lo A0 RE @ 541 will also be separable across Ag : RB1S. An analogous

argument proves the second statement when the post-processing map is partly EB. O

From this proposition, it follows that if ©47B is an EBSC that can be realized by a
partly EB pre-processing (resp. post-processing) map for system Ag (resp. system A;),
then we must have that jé‘B is both AgA; : BoBy separable as well as Ay : A1 ByB; (resp.
Ay : AgBoB;) separable. It is not difficult to construct superchannels that fail to have this
separability structure.

Theorem 3. There exist EBSCs that cannot be realized using either a pre-processing
channel that is partly EB for Ag or a post-processing channel that is partly EB for Ay. In
other words, in Fig. 0, input system Ay must be entangled with some side channel E4 and
output system Ay must couple with E 4 nonlocally.
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Proof. By the previous proposition, it suffices to construct pre/post-processing maps

Fg%ﬁAoE and Pf(;:g*B ! such that

. EA,—B B A B
jé43 _ 1dBOA1 ® Fposéﬁ 14 ngg—)AoE (¢+A1A1 ® ¢+BOBO)

is AgAy : BB separable, but neither Ay : A;ByB; nor Ay : AgByB; is separable. Let
dp, = da, = da, =2 and dp, = dg = 3. Define the isometry Fﬁ%ﬁAoE by

0y50 = 5(100) + [11))%F, P = J02) . (28)
Hence id™ @ THy>A0P(¢+Polo) — |r)(r|, where |7) = J5(|00) + [11)%F|0)™ +
102)497)1)P0 . The post-processing map Ffiﬁ,}_}B ' is then a POVM with elements
1 ~
HO = §¢+EA17

~ 1 ~
= (T - )" & I — Jg+Ph
I, = [2)(2]F @ I (29)
This leads to the Choi matrix

JEP = Jot 4o @ 100) (0070 4§ (140 — Lt Ao g jo1)(01|Bo
+ [0)(0]4° @ I @ [12)(12|BoBr, (30)

Clearly it is A : B separable, and yet it is entangled for both parts Ag and A; since
projecting onto ]0()>B°B1 leads to the maximally entangled state i(b*AoAl. O

3.3 EBSCs realized by measure-and-prepare superchannels

On the level of channels, entanglement-breaking is equivalent to measuring and prepar-
ing, as described in Eq. (1). A natural question is whether the same holds for EBSCs. To
this end, we first need a generalized notion of measurement that also applies to dynam-
ical resources. Recall that a quantum instrument is a collection of CP maps {& }, whose
sum >, & is TP. For a generalized measurement on state p described by instrument
{&k }k, outcome k occurs with probability p;, = Tr[Ex(p)] and the post-measurement state
is &x(p)/pk- In Ref. [17], the authors introduce the concept of a quantum super-instrument,
which is a set of c-CPTNI (completely CP preserving and trace-non-increasing preserv-
ing) supermaps {©,} such that ), ©, is a superchannel. A quantum super-instrument
therefore describes in one sense how a quantum channel can be measured. It is proven
in [17] that every super-instrument can be realized with a CPTP pre-processing chan-
nel and a post-processing quantum instrument, as shown on the left side of Fig. 7. We
are particularly interested in a special kind of super-instrument with trivial output chan-
nel, which is a generalization of the positive operator-valued measurement (POVM) to
quantum channels, as shown on the right side of Fig. 7. Such object has been considered
in the study of quantum channel discrimination [18, 19] where it is called a tester or a
process-POVM, and in the study of quantum games [20] where it is called a co-strategy.

With the concept of a channel POVM in place, we next combine it with a channel
preparation step to obtain a measure-and-prepare superchannel. This is depicted in Fig. 8
where the channel 72 is prepared contingent on the outcome z of the proceeding channel
POVM.
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Figure 7: (Left) Implementation of a quantum super-instrument. A CPTP map £ is performed as pre-
processing while a quantum instrument A = )" A, ®|z) (x| encompasses the post-processing. (Right)
A POVM of quantum channels. The pre-processing is a quantum state p and the post processing is a
bipartite measurement channel P = 3" Tr,(-P,) ® |x)(x| for POVM {P,},.

@A—)B

Definition 3.4. A superchannel is called a measure-and-prepare superchannel

(MPSC) if it can be realized as

O FEN = 3 T (id” @ EA () P E) FE, (31)

where pAoF is some quantum state, {PMF} is some POVM, and {FEP} is a collection of
CPTP maps.

0 | E f‘
p PF

Ao Mg

Figure 8: A measure-and-prepare superchannel (MPSC).

There is a good physical motivation to consider MPSCs from the point of view of
quantum memories. An experimenter might want to transform an input channel £ into
a new channel that could be used at some later time. For an MPSC, no quantum memory
is needed to accomplish this goal. Input channel £ 4 can be processed at time ¢y with
output z stored in classical memory. Then at some later time ¢;, system By can be directly
processed by map F,. Note, for this interpretation to hold, it is crucial that F, be trace-
preserving.

In the definition of an MPSC, the choice of pre-processing state p provides an
extra degree of freedom that is not present in the channel case. Furthermore, the state
pP140 is independent of the input system By. One may also want to apply a quantum
instrument on By and generate different pre-processing states conditioned on the mea-
surement outcome of this instrument. We will refer to a superchannel having this type
of structure as a controlled measure-and-prepare superchannel, or CMPSC for short. Its
rigorous definition is as follows.

E1 A

Definition 3.5. A superchannel @378 s called a controlled measure-and-prepare

superchannel (CMPSC) if it can be realized as

@A—>B [SA] _ ZTr (idEl ® 5A(p;40E1)PmAIE1> f£2—>B1 o Afo—ﬁE7 (32)
zy

where {Ay}y is a quantum instrument, p;;loE is some quantum state, { P/FY, is a POVM,
and {Fy}o is a family of CPTP maps.
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Figure 9: A controlled measure-and-prepare superchannel (CMPSC).
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Figure 10: When Aj is one-dimensional, a CMPSC reduces to a 2-way LOCC map on product states.
Since there are separable maps that cannot be implemented by 2-way LOCC, there exist EBSCs that
are not CMPSCs.

The realization of a CMPSC is shown in Fig. 9.
One can easily verify that every CMPSC is an EBSC. It is therefore natural to conjecture
that every EBSC can be realized as an MPSC, similar to the case of EBCs. However, we
will now show below that this conjecture fails to be true.

Theorem 4. There exist EBSCs that are not CMPSC.

Proof. The construction uses the fact that there exist channels £7241751 that are partly
EB for A1, yet they are not implementable by local operations and classical communication
(LOCC). From the remark following Lemma 3.1, a partly EB channel for input A4; is an
Ay : BB, separable channel. Let EB2A1=B1 16 any such channel whose action on a
collection of product states {|a;)!' @ [8;)72} cannot be simulated by LOCC. Such maps
arise, for instance, when considering orthogonal product bases that can be distinguished
by separable operations but not LOCC, a phenomenon famously known as monlocality
without entanglement [21]. Another example is the so-called double-trine ensemble [22],
given by |og) = |B;) = U'|0) for i = 0,1,2, where U = exp(—ifo,). While an optimal
minimum-error discrimination measurement on {|a;) ® |5;)}i—0,1,2 can be achieved by a
separable map, it cannot be implemented by LOCC [23]. Let £F2417B1 be any such
non-LOCC channel whose action is
EBMTB ) |Bi) = pi

for all . We can regard this as a post-processing map for a superchannel that converts
each state |a;) into a QC channel having action |3;) — p;. Since £F2417B1 ig separable,
it is clearly an EBSC. However, with system A being one-dimensional, the possible im-
plementation by a CMPSC reduces to two-way LOCC, as shown in Fig. 10, which is not
possible by construction. Therefore the superchannel is not CMPSC. O
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Figure 11: A parallel implementation of two EBSCs is still an EBSC.

4 Superactivation of EBSC

Entanglement-breaking channels have the property that they are closed under tensor
product. That is, if £ Ao—=A1 gand NFo=F1 gre both EB channels, then so is their tensor
product, [E@N]A0Fo= 411 n this section we consider whether an analogous result holds
for EBSCs. The problem has an added level of complexity when dealing with superchan-
nels since the dynamic nature of channels allows them to be processed in different ways.
On the one hand, two copies of a superchannel can be used for parallel processing, which
means that their pre/post-processing occurs simultaneously, as shown in Fig. 11. Alter-
natively, the two superchannels can implement a processing of channels in series, such
that the output of one superchannel can be used as the input for the other, as shown in
Fig. 12. While the full theory of sequential processing can be described using the formal-
ism of quantum combs [24, 25] or quantum strategies [20, 26, 27], here we do not need to
invoke these to demonstrate the generic superactivation of EBSC.

Theorem 5. Suppose ©47F is an EBSC. Then two copies of @478 will be an EBSC
when used in parallel. However, if jngOBl is entangled across A1 By : By and da, > dp,,

then two copies of ©478 is no longer an EBSC when used in series.

Proof. When two copies of ©475 are used in parallel, they become a single superchannel

OAA=BB’  1tg Choi matrix satisfies jé“A/BB/ = Jé“B ® jng/, and since two copies of
a separable operator is separable, it follows that jé“A/BB/ represents an EBSC. On the
other hand, suppose that each copy of ©475 can be used in series. Let dr, = da,,
dr, = da,, and define the channel 50RA that discards its input and prepares the state

p . . ! Al . /A/
ﬁ fIBO. Likewise, let £F4" be the channel that discards and prepares iqﬁfl '. Then

with the wiring shown in Fig. 12, it follows that the resulting channel will be the state

QR = dpld ! Ty (107 @ Tl 0a® o TP (60 0 61140)) . (a3)

However, this is proportional to jéq 15oB1 ith Al replaced by R} and By replaced by R;.
The A} By : B} entanglement implies that Q17151 is entangled between Rachel and Bob.

Hence Ef*4 and /Y4’ is transformed into an entangled channel by two copies of the EBSC
OA—=B, I
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Figure 12: A series implementation of two EBSCs that can yield a non-separable channel. The channels
5&“ and EF 4 discard their inputs and prepare maximally entangled states.

5 Image of EBSC

In Section 3 we introduced EBSC and its two subsets MPSC and CMPSC. Here, we in-
vestigate the comparative powers of these operational classes. In particular, we consider
whether every bipartite separable channel can be generated by applying an EBSC on
one part of some bipartite channel, and whether MPSC/CMPSC has the same channel-
generation power as EBSC. For this purpose, we introduce the notion of CPTP-complete
image.

Definition 5.1. Given a superchannel @478 the CPTP image of ©478 is defined as
Ime = {G# € CPTP(B) | ¢ = ©4F[e4], £4 € CPTP(4)}. (34)
The CPTP-complete image of O47B s defined as

Co = Ulmﬂ%@, (35)
R

which is the union of CPTP images 170478 for all systems R. The CPTP-complete
image of a set of superchannels S is defined as Cs = Jges Co.

Similarly, we introduce the CP-complete image as follows.

Definition 5.2. Given a superchannel ©475 the CP image of 0478 is defined as
img = {G” € CP(B) | g7 = ©4°P[e4], ¢4 e CP(4)}. (36)
The CP-complete image of ©478 is defined as

Cy = Ulm;%@, (37)
R

which is the union of CP images 1220478 for all systems R. The CP-complete image
of a set of superchannels S is defined as C5 = Uges C6-

Alternatively, we can say that the CPTP image of ©477 is its image when the domain

is restricted to CPTP maps, and likewise the CP image of ©477 is its image when the
domain is restricted to CP maps.

With these definitions in place, a superchannel 0478 js an EBSC if and only if C§ C
SEP*. Here we use SEP* to denote the set of separable CP maps while SEP denotes the
set of all separable CPTP maps. An interesting question is whether Cggsc = SEP and

EBsc = SEP* hold, which will be the main concern of this section.
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Let us first consider this question for EBCs. Note that our definition of CPTP (CP)
complete image also applies for channels since they are a special case of superchannels.
Specifically, for a channel &, the set Img (resp. Imy) is the image of £ when the domain
is restricted to density operators (resp. positive operators). In this case, it is easy to
see that both Cggc = SEP and Cjz = SEP”* hold. Indeed for an arbitrary separable
positive operator pfB = 37, p;|1;) (1| @ |a;){;|P, one need only consider the action of
the EBC £478 on the positive operator o4 = 3=, p;[v;) (1 |F @ |i)(i|4, where E4(X) =
(i| X |i)* i) (os| B, and o4 is a density matrix if and only if p?5 is

In following part of this section, we set out to study the image of general EBSC. Re-
garding the CPTP-complete image, while we are unable to precisely characterize Cgpsc,
we relate Cypsc and Ceopmpsc to LOCC channels of certain communication rounds. As
for the CP-complete image, we show that Cipqc = SEP™ holds exactly. These results
reveal some fundamental differences between channels and superchannels of physical
significance, and we discuss this further at the end of this section.

5.1 CPTP-complete Image of EBSC

As noted above, one of our primary interests is determining whether Cgpsc = SEP.
We consider here a special subset of the separable channels that can be generated by
LOCC. While LOCC is a notoriously difficult class of operations to analyze, here it will
be sufficient to just consider one-round and two-round LOCC. A precise definition of
these operational classes is as follows.

Definition 5.3. [28] A channel & € CPTP(RyBy — R1By) is called a (B — R — B)
two-round LOCC channel if it can be written as

(c/‘RB — ZFﬁS%Rl ® (fi?QHBl o AiBQA)Bz) (38)
]

for some quantum instrument {AP°752}; and family of channels {.7-'2-]-2HB1 }ij for Bob, and
a family of instruments {I’f‘?_ﬂl}i,j for Rachel. An (R — B) one-way LOCC channel

|
is defined similarly except with the added condition that all the A; are trivial; i.e. ERB =

R B

Proposition 5.1. The CPTP-complete images of EBSC, MPSC and CMPSC satisfy the

following relation.
Cumpsc = LOCCy - LOCCy = Compsc - Cgnsc C SEP, (39)

where LOCCy denotes the set of all (R — B) one-round LOCC channels, LOCCy denotes
the set of all (B — R — B) two-round LOCC' channels, and SEP denotes the set of all
bipartite separable channels.

Proof. For the second equality, first notice that if © is CMPSC, then 1 ® ©[€] is a two-
round LOCC channel for every quantum channel ££4, as can be seen from Fig. 13. This
establishes Coypsc € LOCCs. On the other hand, consider an arbitrary (B — R — B)
two-round LOCC channel G. By definition 5.3, it can be written as
GMB =3 "I @ (F27 P o AP P2) (40)
ij

jli
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for some CPTP maps ]:5 and deterministic quantum instruments {AF}, {T ﬁl} Set
By = E5 and construct a superchannel © with the following realization:

D PP () = ST @ Ji) (i)™ @ AP (), (41)
TP B () = S|y ] i) P EE ), (42)
4,J

Here, system FEj is taken to be trivial. It is easy to see that © is a CMPSC by Def. 3.5.
Then consider the quantum channel

ERA() = SR @ Gl ™ @ ). (43)

One can immediately verify that GFP = 17 @ @428 € RA], which means G € Ceypse.
By the arbitrariness of G we have LOCCsy C Ccmpsc, hence LOCCy = Conmpse-

For the first equality in Eq. (39), we can similarly verify that Cyjpsc € LOCC; from
Fig. 13 when the classical channel from Bob to Rachel is removed. For an arbitrary
(R — B) one-way LOCC channel G#P = °. TR @ FP with CPTP maps F; and quantum
instrument {I';};, construct a superchannel O417B with trivial A system as

NP =Yl - iy @ FP, (44)

i

and further define a quantum channel £fo>fidr = 5~ TR & |i)(i|**. Then we have 18 @
0417B[g] = GRB| Tt is obvious that @418 is an MPSC, and so G € Cypsc. Combining
the above results we get Cyipsc = LOCC;.

As for Compsc € Cepsc, recall the EBSC we constructed to prove Theorem 4. By

applying that EBSC at an input noiseless channel id0 741 we obtain a separable channel
that cannot be implemented by LOCC. This complete the proof of proposition 5.1. O

The above proposition precisely characterizes the CPTP-complete image of MPSC and
CMPSC. Also, it tells us Cgggc contains all (B — R — B) two-round LOCC channels and
some non-LOCC separable channels. It remains an open problem whether Cgpsc = SEP.
We next turn to the CP-complete image.

Bob
E,
B By—ELE; / EzE;-By B
0 l—‘pre = 1—‘post 1
E;
\ 7

\ /

Rachel \[ E, ]/

Figure 13: A CMPSC superchannel transforms any £%4 into a channel F%Z that can implemented by
a two-round LOCC channel from Bob to Rachel.

Ry
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5.2 CP-complete Image of EBSC

Interestingly, we can easily prove Ciggc = SEP*. We first present a proof by direct
construction, and then later discuss how this result is related to the notion of stochastic
LOCC (SLOCC) strategy.

Proposition 5.2. The CP-complete image of EBSC and CMPSC satisfy
Compsc = Crpsc = SEP, (45)
where SEP* is the set of all bipartite separable CP maps.

Proof. By definition, Cipge € SEP*. We only need to prove that Cipgc 2 SEP*. It is
enough to show that Cfpgc contains all CPTNI separable maps, because every CP map
can be normalized to be CPTNI by dividing a positive factor, and we can always multiply
this factor to the input CP map.

For any bipartite separable CPTNI map G*# | its Choi matrix can be written as JgB =
Dy P,fORl ® QkBoBl such that Py, Qp are positive operators. Without loss of generality
we take Tr(P;) = 1. Since G*# is CPTNI, we have Y, P,fo ® QkBO < IfoBo and so
Yok Qf“ < IPo. Let FBoBi be a positive operator satisfying FBo = [P0 — 3, QkBO. Then
for an (r 4+ 1)-dimensional system A and system A; being one-dimensional, construct a
supermap © whose Choi matrix is as follows.

T
8P = 3 [BEIY © QRO 4|1+ Ly + 110 @ FF (46)
k=1
Since A; is one-dimensional, it holds trivially that jéqBO = jé%BO ® u and jéLhBO =
I41B0 and hence © is a superchannel. Furthermore, since jé43 is separable with respect
to A : B, it is also an EBSC, by Theorem 1. Define a CP map £ whose Choi matrix is
given by
T
TEA =3 PR @ [k) (k™. (47)
k=1
Note the condition ) P,fo = I need not be enforced here since we allow £ to be non-
trace-preserving. Then,

r
JRE e = Tra (jg)‘B (784) A) (48)

=Y PioQi=J5", (49)
k

hence G = 1 ® ©[&]. By the arbitrariness of G and the argument before, we have
SEP* C Cgpges hence Cgpge = SEP*.

Notice that the EBSC © in the above proof is actually a CMPSC. To see this, take
the pre/post-processing map to be

T

DB Al = N2 AP E @ ) (k] Y0 + FP2E @ |r 4 1) (r + 117, (50)
k=1

Do P =idP=B @ Try,, (51)

where AE(HE (resp. FPo7F) is the unique map with Choi matrix QfOE (resp. FBoE) Tt
is easy to check Fgoe_’AoE is CPTP. Therefore, we have Cypgc = Cipgc = SEP*. This
complete the proof of Proposition 5.2. O
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It is interesting to consider the physical interpretation of the superchannel and in-
put CP used in the previous proof. In order to implement the CPTNI map GF*8 =
k1 P,f ® QkB , Bob first performs a quantum instrument {Aq, ..., A,, 7} and sends the
outcome (stored as classical information in system Ag) to Rachel. Rachel then acts as
follows. If Bob’s action is A, Rachel implements the CPTNI map with Choi matrix P
to complete the procedure. If Bob’s action is F, the protocol aborts. Of course, it may
only be possible for Rachel to implement the CPTNI map P, with some nonzero prob-
ability. In this case, Rachel needs an extra round of classical communication to let Bob
know whether her implementation is successful. Bob’s final CPTP map would then be
the identity in the case that she succeeds, and some other fixed “failure” channel in the
case that she does not.

The above procedure describes a general stochastic LOCC (SLOCC) protocol. It is
shown in [29] that every separable map can be implemented by an SLOCC protocol,
which provides a rough explanation for why Proposition 5.2 holds. It also helps shed
light on the physical significance of CP image, as defined in Definition 5.2. This is related
to stochastic quantum processes, which we discuss further in the next subsection.

5.3 Discussion on CP Image
Suppose that, for superchannel ©477 and CP maps G” and £4 one has
gB _ @A—)B[gA]. (52)

If both G and £ are CPTP, the physical interpretation of this equation is clearly determin-
istic channel conversion. What if they are not trace-preserving? Let us consider the case
when G? is CPTNI and £ is a general CP map. We can always find a positive number
p < 1such that p& is a CPTNI map, hence we can find another CPTNI map 7 to make up
a quantum instrument {p€, 7 }4. By applying ©475 to this instrument (see Fig. 14) we
get a new instrument {pG, ©[T|}P. This provides an implementation of the CPTNI map
G with success probability p. Therefore, the physical interpretation of the above equa-
tion is probabilistic channel conversion. Hence the CPTP (resp. CP) image describes the
channels (resp. CP maps) that can be deterministically (resp. probabilistically) generated
by a superchannel.

E
Pre- Post-
BO Processing AO A1 Processing Bl
L A | i
1 Quantum Instrument l
B
{O[Ai]};

Figure 14: A quantum instrument {©[A;]}7

7

(_)A—)B

resulting from applying superchannel at a bipartite

quantum instrument {Ai}f.

Comparing Propositions 5.1 and 5.2, which say that Ccowmpsc = LOCCy but
tmpsc = SEP*, we see that there are CPTP maps that can be probabilistically imple-
mented by CMPSC but not deterministically, since there are non-LOCC CPTP maps in
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SEP C SEP* that are not in LOCCs,. Hence, there are separable channels GEB and valid
superchannels 475 for which G#8 = 17 @ @478 [£F4] holds only for some CP non-TP
map & RA Such a phenomenon does not exist at the level of channels and states because
we cannot transform an unnormalized state into a normalized one by a quantum chan-
nel. This result shows that the structure of unnormalized maps is much more complex
than the structure of unnormalized states, which is one of the reasons why QRTs of chan-
nels are often more challenging to formalize than QRTs of states (see also Ref. [17] for a
related discussion on this point).

6 Alternative definitions of entanglement breaking

In the final section, we examine certain relaxations to the definition of entanglement
breaking. To this end, we first consider relaxations to separable channels. Recall that
a bipartite channel £ € CP(AgRy — AiR;) is separable if oRARIAL — qRA" o
EAofo— A1l (pR/RO ® wA/AO) is R'Ry : A’A; separable for all PR @ wA' 40 and all sys-
tems R’ and A’. In fact, it suffices to consider systems R’ and A’ of dimension dg, and
d 4,, respectively. A relaxation would be to require that ¢/¥'4'f141 is separable only for
systems R’ and A’ of smaller dimension.

Definition 6.1. A bipartite channel & € CP(AgRy — AiR1) is called (p,q)-non-
entangling if id%4 @ gAolo=AiRi(pR'Fo @ (,A'A0)y s R'Ry : A'Ay separable for all
Pl @ wA A0 with any systems R’ and A’ of dimension da = p and dg = q.

A (k, k)-non-entangling channel is also called k-non-entangling in previous literature
[30]. We call a channel (p, complete)-non-entangling if it is (p, ¢)-non-entangling for ev-
ery positive integer ¢q. A separable channel is then a (complete, complete)-non-entangling
channel.

Definition 6.2. A superchannel ©478 is called a (p,q)-EBSC if 1% @ @47 B[R] is o
(p, q)-non-entangling map (p with B and q with R) for every £ € CP(RA), with R being
an arbitrary finite-dimensional system.

Although the general structure of (p, ¢)-EBSCs could be rather complicated, we can ob-
tain some decent results when restricting our attention to superchannels that have an im-
plementation without a side-channel (see Def 6.4 below), and only (k, complete)-EBSCs.
Before doing that, we first introduce a class of k-entanglement breaking channels in the
following subsection.

6.1 k-Entanglement Breaking Channel

Definition 6.3. [31] A quantum channel A € CPTP(By — Bj) is called a k-
entanglement breaking channel (k-EBC) if id® @ A(p) is separable for any p €
D(R ® By), where R is any k-dimensional Hilbert space.

This class of k-EBC was first introduced in [31] to study the condition when con-
catenated maps become entanglement breaking. Note that, this definition differs from
the k-partially entanglement-breaking channel studied in Ref. [32], which is a channel
ABo=B1 that satisfies SN(id”* @ A(p)) < k for any p € D(R ® By) with arbitrarily large
system R, where SN denotes the Schmidt number.

For simplicity, in the following we only consider channels with the same input and
output dimension, d > 2. A k-EBC is a completely-EBC whenever £ > d [3]. For 1 <
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k < d, the set of k-EBC is clearly a subset of (k+1)-EBC, and the set of all 1-EBCs trivially
equals CPTP(By — Bj). To summarize, we have

completely-EBC = d-EBC C (d-1)-EBC C ... C 1-EBC = CPTP. (53)

In Theorem 6 below, we show that each of the above inclusions is strict. That is, there
exists a k-EBC that is a not (k+1)-EBC forall 1 < k£ < d.

Theorem 6. For all integers k and d with 1 < k < d, there exists a k-EBC A €
CPTP(C? — C%) that is not (k +1)-EBC.

The proof of this theorem is inspired by Theorem 20 in [30], which establishes the
existence of k-non-entangling map that is not (k + 1)-non-entangling. Interestingly, The-
orem 20 in [30] turns out to be a corollary of Theorem 6 presented here.

Corollary 6.1. [30] For all integers k and d with 1 < k < d, there ezists a k-non-
entangling map A : L(C? @ C?) — L(C? ® C?) that is not (k + 1)-non-entangling.

Proof. The channel SWAP o (A ® A) with k-EBC but not (k+1)-EBC A is by definition
k-non-entangling but not (k+1)-non-entangling map, for all 1 < k < d. O

Now we set out to prove Theorem 6. In the following, we assume Hr = CF and
Hp, = Hp, = C?and A € CPTP(By — By). First notice that, in order to prove a channel
A is k-EBC, it suffices to show idr ® A(yp) is separable for all pure states |¢) € Hr ® Hp,,
since we can then apply convexity to cover mixed states. Any such pure state can be
written as

) = X @ida|g ) (54)
for some operator X € L£(C? — CF). Let X = Y7_; \i|ai;)(Bi| denote a singular value
decomposition of X, and define X~ := S7_, A7 8;) (| (with \; > 0 fori = 1,---7).

Then X !X = P = Y1, |8:)(8:] is a projector of rank r < k. Then since local operators
preserve separability, we have that

id ® All¢) (] = id ® A[(X ® L)é (X ® L)1)
is separable if and only if
(X 'oDide A[(X @Ly)éf (X @ L) (X' e D)l = (P®idg)Jy(PT @idg) (55)
is separable. We summarize this observation in the following lemma.

Lemma 6.1. A channel A € CPTP(By — By) is k-EBC' if and only if the operator
(P ® 15)JA(PT® 1) (56)
is separable for all projectors P with dimension no larger than k.

Now we introduce the Werner states [33] which will play an important role in our
construction of k-EBC. The Werner states are a family of states on C? @ C¢ which take the
following form,

P = gy (e = ). 67)

for —(d +1) < B < d— 1, where Fy = >, 1i)(j| ® |4)(i] is the swap operator (or the
partial transpose of ¢}). A crucial observation is that the partial trace of a Werner state
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is 21,, which means it is a valid Choi matrix of some CPTP quantum channel (with some
normalization). Specifically, consider the following map,

AB(pBo) = dTrBo [pgv(ﬁ)(pgo ® IB1)]' (58)

This map is clearly completely positive, and it is also trace-preserving since

Tr (Ag(ps,)) = Trld Trs, (0} (8)) pso)
=Tr(Iq pBo) (59)
= Tr(pBo)a
where the second equation is from our observation on the partial trace of Werner states.
We conclude that Ag € CPTP(By — By).
Since pY(B) is the Choi matrix of Ag up to normalization, we can apply Lemma 6.1

by studying the separability properties of p}¥(53). The following lemma is modified from
Lemma 19 in [30].

Lemma 6.2. Let k and d be integers such that 1 < k < d and let —(d+1) < <d—1.
The operator

P = (P Ig)py (B)(P ® 1)

1s separable for all projectors P with dimension no greater than k if and only if § <
(d—k)/k.

Proof. (Proof of lemma 6.2) We first require P to be a k-dimensional projector in £(By —
Bj). By direct calculation, we have

oRs o I = T (P o L) Fu(PY @ 1) (60)
= -2 (P o Lo (P e 1) (61)
:Ikd—ﬁzlchF, (62)

for some normalized pure state |[¢)) = (P* ® idd)‘¢j> /+/¢, with normalizing factor

c="Tr ((P*@ I)of (PT © 1)) (63)
=T (PP) = T (PPT) = k. (64)

If B> (d — k)/k, then ZHk > 1 and so

T0j r /6 +1
(Ppjol) =g ——7— k¥ (65)
is obviously not positive. A non-positive partial transpose implies that pggjl is entangled.
On the other hand, if 8 < (d — k)/k, we apply Theorem 1 from [34] which states that the
operator id + A is separable for all Hermitian A with ||A|l2 < 1, where ||All; = VTr ATA
is the Frobenius norm. Here, we have

1
|22k r| < 1t = e = 1 (66)

2

kb
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since 1 is a normalized pure state. We therefore conclude that pfggjl is separable. This

establishes that p%rgjl is separable for all k-dimensional projectors P if and only if 8 <
(d — k)/k. Since any projector of dimension strictly less than k can be implemented by
first performing a k-dimensional projector and then projecting into a smaller subspace, it
immediately follows that prggjl is separable for all projectors P of dimension no greater

than k if and only if 8 < (d — k)/k. This completes the proof of Lemma 6.2. O

As a direct result of Lemma 6.1 and Lemma 6.2, the channel Az constructed in Eq. (58)
is k-EBC if and only if 5 < (d—k)/k, for 1 < k < d. This completes the proof of Theorem 6.

Finally, we note that, a special case of Theorem 6 for 2-EBCs is also established in [31,
Corollary III.4] using the Holevo-Werner maps similar as in the above proof.

6.2 Interplay between k-EBC and (k, complete)-EBSC

In this subsection, we discuss the interplay between generalized EBC and general-
ized EBSC. For simplicity, the systems A, B, we consider are both required to have d-
dimensional input and output systems. We will also restrict attention to the special class
of superchannels that allow for a realization without the side-channel E.

Definition 6.4. A superchannel © is said to be without side-channel, if it can be
realized as

@A—}B [gA] — 1-\1;015?31 o gA o FEI%—LAO (67)

for some CPTP maps I'yre and I'post.

Corollary 6.2. If an EBSC ©478 has a realization without side-channel as in Eq. (67),

then both Fg%_)AO and FS&;B ' must be entanglement breaking channels.

Proof. This simply follows from Thm. 1. (D) and the definition of EB channels. O

The following proposition discusses the relation between k-EBC and (k, complete)-
EBSC, for any positive integer k£ < d.

Proposition 6.1. For a superchannel ©478 without side-channel as in Eq. (67), the
following are equivalent.

(A) 0478 s a (k, complete)-EBSC.

(B) FfroeﬁAO is a k-EBC, and T8 is a completely-EBC.

post

As a result, the realization of a (k, complete)-EBSC without side-channel is shown in
Fig. 15.

Proof. (A) = (B): Choose system R to have dr, = dr, = d, Let D be a d-dimensional
system, K be a k-dimensional system. Consider the CP map ®%#4(-) = Tr((+) fOAO)gbflAl,
the maximally entangled state gbeD , and an arbitrary quantum state p € D(ByK). We

have

(1a"P @ (1% © @4 P[@f)) (7K @ 07) (68)
= DR P (o™ @ Do P (). (69)

Since © is (k,complete)-EBSC, the above state must be separable with respect to KBy :

DRy, which means both Fﬁ%"D (pPoK) and FS&S?B 1(¢E1A1) are separable. The former
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Figure 15: Realization of a (k, complete)-EBSC without side-channel (in the blue dash box).

implies I'pre is k-EBC since p is an arbitrary state on BoK. The latter implies I'pog¢ is
(completely) EBC by Proposition. 2.1 [3]. This complete the proof of (A) = (B).

(B) = (A): Consider the circuit in Fig. 15. For any separable input pPo¥ @ ofoD it
is easy to see the output state is K : By : R1D separable, which means ©475 is indeed
(k,d)-EBSC. O

Since the hierarchy of k-EBC is non-trivial, there is also a non-trivial hierarchy of
(k,complete)-EBSC, for 1 < k < d.

As a final comment, the series of study about when composed maps become entan-
glement breaking [31, 35-39] may also be generalized to supermaps. As an example, the
Schmidt number iteration theorem [31] can be directly applied here to get the following
corollary.

Corollary 6.3. If 0474 is a (k,complete)-EBSC without side-channel and M is an integer

no less than [%1 , then an M times concatenation of © as

OM=0000---00
—_—

M times

is an EBSC.

Proof. The Schmidt number iteration theorem [31] states that a {%W times concatenation

of a k-EBC £4 becomes completely-EB. Combining it with Proposition 6.1 gives this
corollary. O

We leave the question when general composed superchannels become EBSC as an
interesting future research direction.

7 Conclusion and Discussion

In this paper, we introduce and thoroughly study the notion of entanglement-breaking
superchannels (EBSCs). These are objects that generalize and extend the standard no-
tion of entanglement-breaking channels (EBCs) to “higher-order” quantum maps. On
the one hand, EBSCs (and EB supermaps) allow for relatively simple characterization via
the Choi matrix, just like its channel counterpart. On the other hand, they can also exhibit
some interesting properties, which make them much more complex than EBCs in many
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aspects. Firstly, we show that all entanglement-breaking supermaps can be decomposed
into partly-EB pre/post-processing CP maps. While left open the question whether ev-
ery EBSC can be implemented with partly-EB pre/post-processing channels, we show
that a generic implementation must allow entangling the input system to the memory
system of a superchannel. Secondly, we show that EBSC is more general than measure-
and-prepare superchannels (MPSCs), and even controlled-measure-and-prepare super-
channels (CMPSCs), while for EBC these three classes coincide. Finally, we illustrate a
super-activation phenomenon of EBSCs.

We further investigate which quantum channels can be generated using EBSCs, as
well as the smaller classes of MPSCs and CMPSCs. We show that the CPTP-complete
image of MPSC/CMPSC equals one/two-round LOCC maps, respectively. Although
we are not able to precisely characterize the CPTP-complete image of EBSC, we show
that its CP-complete image equals the collection of all separable maps. We argue that
the notion of CP image captures some fundamental difference between channels and
superchannels, and we hope these results might inspire new lines of investigation into
probabilistic channel conversion.

In the final section of this paper, we establish a relationship between k-EBC, k-non-
entangling channel and (&, complete)-EBSC without side-channel. By generalizing the
method of [30], we show that all these three objects have a non-trivial hierarchy for
1 < k < d. We remark that other alternative definitions of EBSC are also possible.
One can require the output of EBSC to be not only separable, but also LOCC, or even
LOSR (local operations and shared randomness). In this sense, our definition of MPSC
(CMPSC) is just an example of one-round (two-round) LOCC-EBSC, but it remains un-
clear whether every one-round (two-round) LOCC-EBSC can be realized this way. In
other words, whether MPSC C LOCC-EBSC and CMPSC C LOCC,-EBSC are strict
inclusions needs further investigation.

Our work provides a useful tool for the dynamical resource theory of quantum entan-
glement. Many results in entanglement theory based on EBCs can possibly be general-
ized to the dynamical resource theory with EBSC. For example, inspired by the resource
theory of quantum memory where EBCs are a free resource [40], one can consider the
ability to faithfully store a quantum operation, perhaps call it a “super-memory”, where
EBSC may serve as free resource. We leave this for future work. Also, since we have
characterized the Choi matrix of an EBSC, it is straightforward to calculate a robustness-
type quantity with respect to it, similar to what has been done in [41]. We anticipate
there being other applications of EBSC within the study of dynamical quantum resource
theories.

There are some problems left open in our work. The first is whether the deterministic
image of EBSC equals the set of all separable channels, namely whether Cgpsc = SEP or
not. Currently we only know that all two-round LOCC and some non-LOCC separable
channels are in Cgpsc. The second is whether every EBSC can be realized as in Fig. 6
with the pre/post-processing maps being CPTP. Answering these questions will help us
better understand the intricate structure of EBSCs.
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