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Abstract— Real-time gait detection and pose estimation are
critical for safety monitoring and prevention of work-related
musculoskeletal disorders for construction workers. We present
a single wearable inertial measurement unit (IMU)-based gait
detection and pose estimation for human walking on flat and
sloped surfaces. The gait detection algorithm is built on a
recurrent neural network-based method and its outcome is then
used in the full-body pose estimation. The detection scheme
also predicts the terrain slope information in real-time. The
pose estimation is obtained through learned motion manifold in
latent space with the Gaussian process dynamic model. Extensive
experiments of different walking patterns and speeds on the level
and sloped surfaces are conducted to validate and demonstrate
the design. The proposed algorithm can detect gait activities with
96% accuracy, the estimated human pose errors are within 8.30
degs, and the detection latency is within 18.6 ms using only a
single IMU attached to a human shank.

I. INTRODUCTION

Construction workers often suffer intense physical effort,
and are exposed to serious safety and health risks in hazardous,
dynamic working environments. One of the most common
locomotions in construction trades is walking gait on flat
and sloped surfaces (e.g., scaffold workers and roofers). It
is critical to monitor workers’ gaits and body poses in real-
time for safety and health conditions [1]. Wearable inertial
measurement units (IMUs) are particularly attractive for gait
detection and posture estimation in construction because they
are small-size, low-cost and non-intrusive [2]. In [3], two IMUs
were attached to the back of the helmet and the worker’s back
for head, neck and trunk inclination estimation. The wearable
sensors in [4] included eight IMUs on the trunk and limbs
to detect gaits and motion of construction workers. In [5],
17 IMUs were used to identify poses of masonry workers
using support vector machines. Comparison results of various
IMU locations on the human body were reported in [6]. The
pose estimation accuracy of the IMU measurements in these
studies has however not been systematically and extensively
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validated. Moreover, wearable IMUs were not studied for real-
time applications in the above-mentioned work and accurate
limb poses were not among the focus.

In [7], a real-time gait detection was presented to capture
walking gait events over level and inclined surfaces and stair-
cases using one single IMU. Similar types of real-time walking
gaits detection were also reported in [8]–[10] for periodic
movement using machine learning methods. For gait detection
of non-periodic human movements, [4] used a set of wearable
IMUs on human limbs and trunk to monitor construction
workers’ activities. Wearable IMU-based human gait detection
was also presented in [11] for real-time applications.

As mentioned above, increasing use of machine learning
techniques was reported in the recent years for human activity
or gait classifications, and readers can refer to two reviews [12],
[13]. In [14], recurrent neural network (RNN) with long short-
term memory (LSTM) cells were used to reconstruct human
poses during various motions in real time. A hierarchical
multivariable hidden Markov model was employed in [15]
for full-body locomotion reconstruction of human walking,
running, jumping, and hopping motion on a flat floor using one
IMU attached to the subject’s shank. Considering the periodic
walking gait, a phase-functioned neural network model was
presented in [16] to generate the human walking character in
animation with a fast computational capability.

Inspired by these work and motivated by construction ap-
plications, we present a real-time gait detection and pose
estimation scheme for walking on flat and sloped surfaces
using one single wearable IMU. An LSTM approach is first
used to detect the human walker gaits and the slope angle.
A learned motion manifold is then constructed using the gait
activity information. The pose estimation is built on the learned
motion manifold and the IMU measurements. We use the
Gaussian process dynamic model (GPDM) to construct the
human motion manifold [17]. Due to periodic feature in biped
walking, the learned GPDM is a closed manifold in latent space
and similar to [16]. A phase variable is used to parameterize the
GPMD model to predict the joint angles in real time. Extensive
human experiments are conducted on flat and sloped surfaces
that represent roof workers in construction. The experimental
results demonstrate the efficacy and effectiveness of the design.
The main contribution of the work lies in the novel integrated
LSTM and GPDM gait detection and pose estimation for real-
time applications using one single IMU. The design provides a
potential enabling tool for wearable robotic systems to reduce
the risk of work-related musculoskeletal disorders [18], [19].
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II. EXPERIMENTS AND DATA COLLECTION

A. Experimental Setup

We created a laboratory environment that mimicked con-
struction workers on the level and sloped surfaces. A wooden
slope structure with glued anti-skid tapes was designed as a
roof surface and the roof slope can be adjusted to reach any
angle up to 40 degs. Fig. 1 shows the overview of the data
collection systems used in the experiments.

(a) (b)

Fig. 1. Laboratory experimental setup mimicking roof workers in construc-
tion. (a) Wearable IMU and embedded systems. (b) Walking setup on variable
slopped wooden structure.

To measure the human kinematics and motion, an IMU
sensor (from WitMotion Inc.) was attached to the right shank
of the subject; see Fig. 1(a). The raw IMU signal consists
of 12 measurements (i.e., 3-joint angles, 3-gyroscope, 3-
linear acceleration, and 3-magnetometer). The IMU sensor
was carefully placed on the same location of the shank
segment with a fixed orientation before each trial. A motion
capture system (8 Vantage cameras, Vicon Motion Systems
Ltd.) was used to collect marker position for reference human
motion at a sampling frequency of 100 Hz. A total of 39
markers were placed on subjects’ lower and upper limbs,
trunk and head to represent full-body motion. Joint angles
were calculated using custom algorithms in MATLAB software
(Version R2020a, MathWorks Inc.) using the marker positions.
The IMU measurements were sampled at 100 Hz, and the
data were wirelessly transmitted to the portable embedded
computer (Intel NUC7i7DNK, Intel Corp.) which was worn
by the subject; see Fig. 1(a). In the training phase, all the data
were connected and synchronized through a desktop computer
and portable high-performance embedded computer. In the
testing phase, data collection, real-time gait detection, and pose
estimation algorithm were implemented on a desktop computer
(Dell XPS-8953, Dell Inc. The desktop computer is equipped
with Intel i7-8700 CPU, Nvidia 1030 GPU, and 16 GB RAM.

B. Experimental Protocol

Five healthy subjects (n = 5, age: 30 ± 3 years, weight:
73.3 ± 6.5 kg, height: 172.0 ± 6.7 cm) were recruited for
experiments, and they are capable of walking on flat and
sloped surfaces. Four types of walking patterns were defined
in experiments: walking on the level ground, walking up on
the slope, walking transverse on the slope and walking down

the slope; see Fig. 1(b). The subjects were instructed to use
their normal gaits and self-selected speeds to walk on the level
and sloped surfaces. An informed consent form was signed by
all the subjects, and the Institutional Review Board (IRB) at
Rutgers University approved the testing protocols.

The subjects started walking on the level ground surface
and then followed the sequence of up the slope, transverse
the slope and down the slope in the clockwise direction and
finally returned to the starting location. The subjects repeated
the sequence in the first four minutes for the training data
collection phase, and then in the last minute they only walked
transverse the slope from one side to the other side to collect
the data in the symmetric direction. Three slope angles were
selected in the training experiment: 5, 10, and 15 degs. Each
data collection trial was repeated several times to obtain
enough training data set. For real-time pose estimation tests,
IMUs data were streamed live to a local computer and treated
as inputs of the trained model.

C. Data Preprocess

The IMU and motion capture data were preprocessed by
customized scripts. The walking activities were labeled based
on the four different patterns. In each activity, only the com-
plete strides were used for data analysis. The stride information
was extracted from motion data, and stride length and walking
speeds were calculated. The beginning and ending of each
stride were defined by using the location of heel markers. The
current and next right foot heel strikes were set as s = 0%
and 100% of the gait phase, respectively, where s is the
gait phase variable. To enlarge the training data set, multiple
strides of the same activity were concatenated. To derive the
latent space variables, averaged strides parameters from all the
subjects were calculated. The strides from the same activity
were resampled to be in the same frame length.

The corresponding IMU data were also concatenated for
the same activities. IMU data were reshaped for the training
purpose and 60 consecutive frames were combined as one
frame data. The IMU sequence data was normalized with the
mean and standard derivation of the entire data set, which was
then used as inputs of the model. In the testing phase, 59 past
frame with one current frame data were combined to form
the input to the pose estimation model. The same mean and
standard deviation were used to standardize and normalize the
real-time IMU data, that is, the IMU sequence was subtracted
by mean and divided by standard derivation of the training
data.

The pre-trained learning models and neural network param-
eters were stored in the local computer. The real-time IMU
sequence data were streamed into the learned model, and the
subject’s motion activities and pose were estimated. In a real-
time application, we detected foot strike by inspecting the
sudden drop of the gait phase variable and the variation of the
linear acceleration data. When walk cycle ends and foot strike
is detected, the gait phase variable s is reset to the beginning
of the stride, that is, s = 0.
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III. LEARNING-BASED GAIT DETECTION AND POSE
ESTIMATION

A. Overview

Fig. 2 illustrates the overview of the human walk gait
detection and pose estimation scheme. The approach contains
three tasks: walking activity detection, gait phase detection and
full-body pose estimations. An LSTM-based classification and
regression model is used to identify the walking activities, and
the estimated slope angle (denoted as θ) is also obtained. The
gait propagation and phase variable s ∈ [0, 1] are estimated
using a second LSTM-based RNN. Finally, a full-body human
pose estimation scheme is obtained using the GPDM model.
In the following, we describe each of these modules in details.

Fig. 2. Human pose estimation scheme in three stages (activity detection,
gait propagation detection and pose estimation).

B. RNN-based Activity Detection and Gait Phase Estimation

The three layers in Fig. 3 show the schematic of the LSTM-
based walking activity detection, slope angle estimation and
gait phase estimation. The LSTM is a recurrent neural network
architecture to learn sequential information using memory cells
that store and output information to capture the temporal rela-
tionships. As shown in the left bottom of Fig. 3, the information
update is through various gates and the relationships among the
input gate, forget gate and output gate [20]. For the training
purpose, the raw IMU data are collected and labeled for four
walking patterns on level surface, up the slope, transverse the
slope, and down the slope with different slope angles (i.e.,
θ = 0, 5, 10, and 15 degs). The IMU data are scaled and
reshaped to three-dimensional input (i.e., samples, timesteps,
features) for the LSTM models.

For the activity classification model, the single LSTM
hidden layer has 50 neurons and the output of the LSTM
layer is passed through a Dropout (0.2) layer to randomly
drop 20% units from the network to prevent overfitting of
the model. The outputs from the dropout layer are passed
through a fully connected layer with 50 neurons with ReLU.
Finally, the fully connected hidden layer is connected to
the Softmax activation function, which converts the class
scores to probabilities such that the activity with the highest
probability can be recognized. The slope detection model
consists of a two-stacked LSTM-based networks. The first
LSTM hidden layer has 64 neurons followed by a Dropout
(0.2) layer and the second LSTM and dropout layers are

used to generate the output. For the classification model, the
categorical cross-entropy and mean squared error are used as
loss functions. Adam optimizer is used for both the activity
classification and the slope angle estimation models. The model
loss and accuracy curves are assessed to determine the model
fit. The gait phase variable s represents the current percentage
of the stride, and is assumed to be increasing within one
stride. The gait phase estimation model contains a two-stacked
LSTM-based networks with one Dropout (0.2) layer between
them, while each LSTM hidden layer has 32 neurons. Adam
optimizer is used for the gait phase estimation models and
mean squared error is used as the loss functions.

Fig. 3. Schematic of the LSTM-based gait activity and phase variable
estimation scheme.

C. GPDM Model and Full-Body Pose Estimation

The periodic walking gaits in the high-dimensional joint
angle space are represented in low-dimensional latent space
through a manifold learning technique (i.e., GPDM). Let us
denote the full-body joint angle as y ∈ RD and the latent
state variable as x ∈ Rd, where d and D (d � D) are
the dimensions of the latent space and the joint angle space,
respectively. For each type of the N walking activities ai,
i = 1, . . . , N , and slope angle θ, the latent dynamics for human
motion are formulated as

Mi(θ) :

{
dxi

ds = f i(xi,αi,ui) +wpi,

yi = gi(xi,βi,ui) +woi

(1)

where xi = xi(s), y = yi(s), and ui = ui(s) are latent state,
joint angles and IMU measurements at gait phase variable s,
respectively. αi and βi are GP parameters and obtained from
learning process, wpi and woi are zero mean model noises
for the state dynamics and the output models, respectively.
In the training phase, the IMU data set U i = {ui}Mθ and
joint angle set Y i = {yi}

M
θ have number of M training data

points that are obtained for walking on surface with slope
angle θ. We then estimate the mappings f i(·) and gi(·) in (1)
by identifying parameters αi and βi through minimizing the
posterior probability

Li = − ln p(Xi,αi,βi|Y i,U i, X̂i), (2)

where X̂i = {x̂i}M is used to initialize
X in the optimization process (i.e., label of
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Fig. 4. Schematic of the learned manifolds Mi(θ1) and Mi(θ2) that are
obtained at slope angles θ1 and θ2 for activity ai. Manifold Mi(θ

∗) is an
estimated from interpolation from Mi(θ1) and Mi(θ2).

X)), and probability p(Xi,αi,βi|Y i,U i, X̂i)
∝ p(Y i|Xi,βi)p(Xi|U i,αi)p(Xi|X̂i)p(αi)p(βi).

It is known that nearby points in the joint angle space are
likely located close together in the latent space from manifold
learning results [21]. Therefore, we consider that the level
curves that belong the same activity share the same topological
shapes in the latent space with small variations. Fig. 4 illus-
trates the above-discussed learned motion manifold concept.
Manifolds Mi(θ1) and Mi(θ2) are obtained respectively by
training the GPDM models with data sets at slope angles θ1
and θ2 for activity ai. To estimate the manifoldMi(θ

∗) at any
given slope angle θ∗ = γθ1 + (1 − γ)θ2, where 0 < γ < 1
is weight factor, we interpolate from Mi(θ1) and Mi(θ2) as
shown in Fig. 4. Once Mi(θ

∗) is obtained from activity ai
on surface with slope angle θ∗, with the gait phase variable s,
latent state xi(s) is predicted by the state dynamics and thus
joint angles yi(s) by the output equation of (1).

IV. EXPERIMENTAL RESULTS

We only consider upper- and lower-limb joint angles in the
sagittal plane, and 12 joint angles are captured in the study. In
the GPDM models, the latent space dimension is taken d = 3
and the dimension of the joint angle space is D = 12. The
total number of walking activity is N = 4 (i.e., walking on
level surface, up the slope, transverse the slope, and down the
slope) and the slope angle is considered within 15 degs.

Fig. 5 shows the confusion matrix for walking activity
detection results and the overall detection accuracy is 96.73%.
The model can successfully detect each individual activity
with more than 95% accuracy. Fig. 6 further illustrates the
performance of activity predictions on a sample of a test
data for four activities. The blue spikes in the figure indicate
false classifications by the LSTM-model. Only occasional false
classifications occur between walking on the level surface and
walking up or down the slope, due to the close similarity
among these types of gaits.

To validate the feasibility of our method, gait propagation
and human joint angles are estimated and compared with actual
values calculated from motion capture system. Twelve human

Fig. 5. Confusion matrix for classification of four different activities (walking
on the level surface, up the slope, transverse the slope, and down the slope).

Fig. 6. Comparison of the activity predictions with the actual one for walking
on a 10 deg slopped surface. Shown are rare occasional misclassification that
occur due to similarities between those gaits, due to the small slope angle.

joint angles from lower- and upper-limbs were selected for
validation in our application, namely, left and right side hip,
knee, ankle, shoulder, elbow and wrist limb joints. Fig. 7(a)
shows the gait phase prediction from the LSTM model for five
complete gait cycles of a subject walking on the level surface.
A representative length of a gait cycle is marked in Fig. 7(a), as
the gait phase variable s increases from 0 to 100%. Gait phase
prediction was less accurate at the start of each stride, and it
however convalesces as the gait propagates. Fig. 7(b) illustrates
three selected joint angles (knee, hip, and wrist) from all twelve
joints to demonstrate the performance of the pose estimation.
The estimation results match closely with the joints that are
close to the IMU location; see knee angle results in the top
plot. On the other hand, the estimation errors for the wrist joint
(the bottom plot) show a slight increase in discrepancies.

Table I lists the overall mean absolute errors of all joint
angles for each activity with respect to different slope angles.
The joint angle errors were calculated from all 12 joints during
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Fig. 7. Gait phase and joint angle profile of a representative subject during level surface walking. (a) Predicted gait phases (blue solid lines) compared with
the actual gait phases (red dash-dotted lines). (b) Predicted (blue solid lines) and actual (red dash-dotted lines) angles of the knee (φknee), hip (φhip) and wrist
(φwrist) joints.

(a) (b)

(c) (d)

Fig. 8. Comparison of the joint angle error profiles for variable slope angles (θ = 5, 10, 15 degs) during different activities. Walking (a) on flat surface, (b)
up the slope, (c) transverse the slop, and (d) down the slope. Knee (eknee), hip (ehip) and (ewrist) wrist mean absolute joint angle error profiles are shown
on the top, middle, and bottom subfigures, respectively. The thick curves are the mean error profiles, while the shaded ares show the one standard deviation
around the mean values of all subject experiments.

the entire stride. The largest estimation error is for the subjects
walking down the slope, which might result from the fact
that the gait during walking down the slope is similar to that
on the flat surface when the slope angle is small as seen
in Fig. 5. Table I also includes results of the joint angle
estimation error for the walking gaits on two sloped surfaces
(8 and 12 degs) which were obtained by using the manifold
interpolation approach. Note that the data from these two tests

were not present in the original training data. The average joint
angle estimation errors are slightly higher than those for the
“trained” slope angles in experiments. In Table I, we also list
the accuracy of the slope angle estimation results. The average
slope angle estimation error is around 3.4 degs and standard
derivation is around 2.2 degs. The estimation accuracy is not
high and one possible reason is that the training data set sizes
are not large enough.
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TABLE I
AVERAGE ESTIMATION JOINT ANGLE ERRORS FOR ALL SUBJECTS AND

SLOPE ANGLE ESTIMATION ERRORS DURING DIFFERENT ACTIVITIES.

Learned model Interpolated

Activity
Slope Angle 5◦ 10◦ 15◦ 8◦ 12◦

Up Slope 6.88◦ 8.00◦ 6.32◦ 12.13◦ 11.07◦

Transverse 5.35◦ 6.15◦ 5.49◦ 10.86◦ 10.25◦

Down Slope 8.95◦ 5.80◦ 7.31◦ 12.30◦ 10.52◦

Level 5.39◦

Slope Angle Estimation 4.02±
2.59◦

2.67±
2.49◦

3.01±
1.51◦

2.19±
3.04◦

4.14±
1.58◦

Furthermore, Fig. 8 shows the mean joint angle errors of
three selected limb joints with their variances over different
slope angles (θ = 5, 10 and 15 degs) for all subjects. The
joint angle error profiles of walking on flat surface, up the
slope, transverse the slope and down the slope are shown
in Fig. 8(a) to 8(d), respectively. The knee and hip joint
angles have large mean errors with high variance in certain
portion, which might be due to the detection latency and larger
ranges of motion of these joints compared to the wrist joint
when the subjects walk up on the slope. The accuracy of the
joint angle reconstruction using several IMUs for various non-
walking 3D human motions in [14] was approximately 16 degs.
The preliminary results in this paper show that the proposed
approach achieved a similar accuracy for human walking pose
estimation using a single IMU.

We evaluated the latency of our framework by feeding the
pre-recorded unknown data offline to the network in real-
time. The latency of activity detection is about 2.2 ms, the
slope angle detection latency is about 2.58 ms, and the latency
of pose estimation is about 13.82 ms. Therefore, the overall
latency of the algorithm is approximately 18.6 ms. The joint
angle estimation errors might result from several plausible
sources. The training data quality and size might restrict the
learning model accuracy. We only considered using mean
values of gait cycles for each activity for full-body pose
estimation. This requires a specialized tuning of the GPDM
hyperparameters. Instead of using the manifold interpolation
for any estimated slope angles, we might be able to further use
topological constraints to enhance the GPDM model accuracy.

V. CONCLUSION

This paper implemented a real-time walking gait and pose
estimation framework for construction workers on flat and
sloped surfaces. A combination of the LSTM-based network
and the GPDM was mainly used in the estimation scheme.
The walking activities were predicted, and human pose was
predicted with average joint angle errors within 8.30 degs. One
attractive property of the proposed scheme was the real-time
capability with 18.6 ms latency using a single IMU attached
to the distal portion of the right fibula. We are currently
working on improving the real-time performance and also
integrating the design with wearable assistive robotic devices
for construction workers.

REFERENCES

[1] C. R. Ahn, S. Lee, C. Sun, H. Jebelli, K. Yang, and B. Choi, “Wearable
sensing technology applications in construction safety and health,” J.
Constr. Eng. Manage., vol. 145, no. 11, 2019, article 03119007.

[2] S. S. Bangaru, C. Wang, and F. Aghazadeh, “Data quality and reliability
assessment of wearable emg and imu sensor for construction activity
recognition,” Sensors, vol. 20, no. 18, 2020.

[3] X. Yan, H. Li, A. R. Li, and H. Zhang, “Wearable IMU-based real-
time motion warning system for construction workers’ musculoskeletal
disorders prevention,” Automat. Constr., vol. 74, pp. 2–11, 2017.

[4] E. Valero and A. Sivanathan and F. Bosche and M. Abdel-Wahab,
“Analysis of construction trade worker body motions using a wearable
and wireless motion sensor network,” Automat. Constr., vol. 83, pp. 48–
55, 2017.

[5] A. Alwasel and A. Sabet and M. Nahangi and C. T. Haas and E.
Abdel-Rahman, “Identifying poses of safe and productive masons using
machine learning,” Automat. Constr., vol. 84, pp. 345–355, 2017.

[6] G. P. Panebianco, M. C. Bisi, R. Stagni, and S. Fantozzi, “Analysis of
the performance of 17 algorithms from a systematic review: Influence
of sensor position, analysed variable and computational approach in gait
timing estimation from IMU measurements,” Gait Posture, vol. 66, pp.
76–82, 2018.

[7] J. Figureiredo, P. Félix, L. Costa, J. C. Moreno, and C. P. Santos, “Gait
event detection in controlled and real-life situations: Repeated measures
from healthy subjects,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 26,
no. 10, pp. 1945–1956, 2018.

[8] J. Yang, T.-H. Huang, S. Yu, X. Yang, H. Su, A. M. Spungen, and C.-
Y. Ysai, “Machine learning based adaptive gait phase estimation using
inertial measurement sensors,” in Proc. ASME Design Med. Dev. Conf.,
Minneapolis, MN, 2019, Paper #DMD2019-3266.

[9] Y. Huang, Y. Liu, R. Yang, X. Zhang, J. Yi, J. P. Ferreira, and T. Liu,
“Real-time intended knee joint motion prediction by deep-recurrent
neural networks (RNNs),” IEEE Sensors J., vol. 19, no. 23, pp. 11 503–
11 509, 2019.

[10] I. Kang, P. Kunapuliu, and A. J. Young, “Real-time neural network-based
gait phase estimation using a robotic hip exoskeleton,” IEEE Trans. Med.
Robot. Bionics, vol. 2, no. 1, pp. 28–37, 2020.

[11] Q. Mascret, M. Bielmann, C.-L. Fall, L. J. Bouyer, and B. Gosselin,
“Real-time human physical activity recognition with low latency predic-
tion feedback using raw IMU data,” in Proc. IEEE Int. Conf. Eng. Med.
Bio. Soc., Honolulu, HI, 2018, pp. 239–242.

[12] A. S. Alharthi, S. U. Yunas, and K. B. Ozanyan, “Deep learning for
monitoring of human gait: A review,” IEEE Sensors J., vol. 19, no. 21,
pp. 9575–9591, 2019.

[13] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for
sensor-based activity recognition: A survey,” Pattern Recog. Lett., vol.
119, pp. 3–11, 2019.

[14] Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and
G. Pons-Moll, “Deep inertial poser: Learning to reconstruct human pose
from sparse inertial measurements in real time,” ACM Trans. Graph.,
vol. 37, no. 6, 2018, article 185.

[15] C. Mousas, “Full-body locomotion reconstruction of virtual characters
using a single inertial measurement unit,” Sensors, vol. 17, 2017, article
2589.

[16] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural networks
for character control,” ACM Trans. Graph., vol. 36, no. 4, 2017, article
42.

[17] K. Chen, Y. Zhang, J. Yi, and T. Liu, “An integrated physical-learning
model of physical human-robot interactions with application to pose
estimation in bikebot riding,” Int. J. Robot. Res., vol. 35, no. 12, pp.
1459–1476, 2016.

[18] S. Chen, D. T. Stevenson, S. Yu, M. Mioskowska, J. Yi, H. Su,
and M. Trkov, “Wearable knee assistive devices for kneeling tasks in
construction,” IEEE/ASME Trans. Mechatronics, pp. 1–1, 2021.

[19] M. Trkov, K. Chen, J. Yi, and T. Liu, “Inertial sensor-based slip detection
in human walking,” IEEE Trans. Automat. Sci. Eng., vol. 16, no. 3, pp.
1399–1411, 2019.

[20] K. Kim and Y. K. Cho, “Effective inertial sensor quantity and loca-
tions on a body for deep learning-based worker’s motion recognition,”
Automat. Constr., vol. 113, 2020, article 103126.
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