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ABSTRACT: The Chevrel phase (CP) is a class of molybdenum
chalcogenides that exhibit compelling properties for next-generation
battery materials, electrocatalysts, and other energy applications.
Despite their promise, CPs are underexplored, with only ∼100
compounds synthesized to date due to the challenge of identifying
synthesizable phases. We present an interpretable machine-learned
descriptor (Hδ) that rapidly and accurately estimates decomposition
enthalpy (ΔHd) to assess CP stability. To develop Hδ, we first used
density functional theory to compute ΔHd for 438 CP compositions.
We then generated >560 000 descriptors with the new machine
learning method SIFT, which provides an easy-to-use approach for
developing accurate and interpretable chemical models. From a set
of >200 000 compositions, we identified 48 501 CPs that Hδ predicts are synthesizable based on the criterion that ΔHd < 65 meV/
atom, which was obtained as a statistical boundary from 67 experimentally synthesized CPs. The set of candidate CPs includes 2307
CP tellurides, an underexplored CP subset with a predicted preference for channel site occupation by cation intercalants that is rare
among CPs. We successfully synthesized five of five novel CP tellurides attempted from this set and confirmed their preference for
channel site occupation. Our joint computational and experimental approach for developing and validating screening tools that
enable the rapid identification of synthesizable materials within a sparse class is likely transferable to other materials families to
accelerate their discovery.

■ INTRODUCTION

Chevrel phases (CPs) are pseudomolecular solid molybdenum
chalcogenides that have shown promise for a variety of
applications. Although first explored in the 1970s as high-
temperature superconductors,1,2 a renewed interest in these
materials was catalyzed by recent demonstrations of their
potential as state-of-the-art monovalent and multivalent battery
electrodes,3−9 artificial solid-electrolyte interphases (SEI),10,11

photovoltaics,12 and electrocatalysts for hydrogen evolu-
tion,13−15 oxygen reduction,16 and CO2 reduction.17,18 The
breadth of CP applications arises from their highly tunable
electronic and thermodynamic properties (e.g., band gap,12,19

band edge positions,13,20 storage capacity,21 ionic transport22)
enabled by varying their composition (Figure 1a). Many
thousands of multinary CP compositions are possible and are
described by the general formula MyMo6X8 (0 ≤ y ≤ 4), where
M is an alkali, alkaline-earth metal, transition metal (TM),
post-TM, lanthanide, or combinations thereof, and X is a
chalcogen (S, Se, Te) or combination of chalcogens.
Despite their broad chemical space and favorable properties

for multiple energy applications, the CP family is significantly
underexplored, with only ∼100 synthesized compositions.2

This is particularly evident for the CP tellurides, where only

five multinary compositions have yet been synthesized.23,24

Unfortunately, synthesizable CP compositions are not easily
predicted because cation intercalation gives rise to competing
effects on their stability.25 As a result, determining the
synthesizability of CP compositions generally requires
computationally demanding ab initio calculations or exper-
imental characterization. This poses a major obstacle to the
discovery of new CPs. We propose that a rapid and accurate
method to predict CP stability would greatly accelerate the
discovery of new phases within this auspicious class of
materials.
Machine learning (ML) has been used to accurately estimate

density functional theory (DFT) formation enthalpies (ΔHf)
of materials.26−29 However, decomposition enthalpies (ΔHd)
provide a more relevant metric for determining stability, where
ΔHd indicates the energy of a material relative to the convex
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hull (i.e., the minimum energy of all competing phases at the
same elemental composition, see Experimental Section).30

ΔHd ≤ 0 indicates a stable material, whereas ΔHd > 0 indicates
that a material is metastable or unstable. Herein, we report an
accurate and interpretable ML descriptor, Hδ, for ΔHd that
requires only the CP composition as its input, thereby enabling
exceedingly fast and highly accurate predictions of CP stability.
Hδ was generated using symbolic regression with intermediate
feature trimming (SIFT), a newly developed ML method that
generates accurate and interpretable ML models from a large
primary feature set. We created the largest computational data
set of CPs to train Hδ using SIFT. This data set contains 438
compositions computed with the accurate SCAN functional
(see Experimental Section) and expands the number of
tabulated ab initio CP structures and enthalpies in existing
materials databases by an order of magnitude. We applied Hδ

to a set of 205 548 CP compositions and applied data-driven
boundaries for ΔHd that bracket stable and persistently
metastable materials to identify 27 132 compositions that Hδ

predicts are synthesizable as CPs via conventional high-
temperature methods and another 21 369 that may be
synthesizable with medium-temperature intercalation. We
verified the ability of Hδ to predict new CPs by synthesizing
five of five CP tellurides attempted from this set, doubling the
space of known CP tellurides. We also demonstrate the failed
synthesis of a CP telluride that Hδ predicts lies beyond the
synthesizable boundary. Our approach to identify synthesizable
CPs via DFT and ML, and to verify these predictions
experimentally, is highlighted in Figure 1b. Because our
approach does not require any parameters specific to the CP
structure, it can be broadly applied to other material classes to
accelerate their discovery. As interest in the unique CP class
continues to grow, we expect the rapid identification of
synthesizable CP compositions enabled by Hδ to catalyze the
discovery of new materials and to facilitate further develop-
ment of CP design criteria that correlate composition and
functionality for relevant applications.

■ RESULTS AND DISCUSSION
Data Set Generation and Analysis. We generated 438

CPs with the formula MyMo6X8, where X = S, Se, or Te and y
= 0, 1, or 2. M is one of 53 elements that act as an intercalant

cation that can occupy three unique sites around the Mo6X8
cluster: site 1, site 1 off-center, and site 2 (see Figure 2). The

six Mo atoms form an octahedral cluster with 2 (4) Mo atoms
with +2 (+3) charges, resulting in an average charge of +2.66
per Mo and an overall neutral charge for Mo6X8. The four Mo
atoms with +3 charge can each be reduced to +2 upon cation
intercalation, allowing for the total charge of the M cations to
sum to +4 (e.g., a single intercalant with a +4 charge or four
intercalants with a charge of +1 each).31 Additionally, cation
size regulates site preference and limits y.
For the 154 compositions in this set of 438 CPs with y = 1,

we calculated ΔHd for the three unique sites of the intercalant
M. In order to show the relative differences in stability between
these three sites and the trends in stability as the cation and
chalcogenide are varied, we calculated the Boltzmann factor
(i.e., the ratio of probabilities) between the ΔHd of each site
configuration and the lowest ΔHd for the composition (see
Experimental Section; note that entropy and zero-point energy
were not included). These Boltzmann factors were normalized
and plotted as stacked bars in Figure 3, where for each cation
the areas indicate the degree of stability of each site. The most
stable site configuration has the largest area, and the other sites
have smaller areas that are proportional to the difference
between their ΔHd and the minimum ΔHd. This analysis
shows that large cations (e.g., alkali/alkaline, lanthanides, post-
TMs) strongly prefer site 1 with hexahedral coordination
(orange in Figure 2). In contrast, smaller cations (e.g., late 3d
TMs) prefer site 1 off-center with tetrahedral coordination
(blue in Figure 2). These observations are consistent with the
literature.2,31

While site 2 is commonly occupied for y > 1,32 occupation of
site 2 at y = 1 has only been observed for the Mo6Se8 CPs
intercalated with 3d TMs (Ti, Cr, Mn, Fe, Co, Ni).33,34

However, our calculations predict that site 2 preference at y =
1 occurs among the CP sulfides with 4d and 5d TM

Figure 1. Expanding Chevrel phase materials. (A) The Mo6X8 CP
framework can accept a broad range of intercalant elements to enable
the tuning of many material properties of interest for advanced energy
applications. (B) Computational and experimental approach used to
discover synthesizable phases in the underexplored CP materials
space. This approach is likely transferable to other material classes to
accelerate their discovery.

Figure 2. The CP structure. The CP crystal structure is composed of
repeating Mo6X8 clusters (red) with cavities and channels between
each cluster. This framework can host a variety of cation intercalants
at three unique sites: site 1 is centered in the cavity between eight
Mo6X8 clusters (orange), site 1 off-center includes other positions
around the cavity (blue), and site 2 is a channel site that connects two
cavities (magenta).
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intercalants (Figure 3a). Furthermore, a wealth of additional
compounds exist with this site preference when X = Se or Te
(Figure 3b and c). We expect these CPs to exhibit high cation
mobility driven by exothermic migration into site 2 channels,
which may have substantial implications for advanced battery
materials (e.g., battery electrodes, artificial SEIs). The
preference for occupying site 2 may also enable a new avenue
for tuning catalytic reactivity in CPs due to a change in both
the density of states and cation site occupancy that respectively
contribute to ligand and ensemble effects that regulate
adsorption kinetics on CP surfaces and nanoparticles.17,18

CPs with smaller cations can achieve y > 1.31 Therefore, we
also investigated 281 double-cation CP compositions (i.e.,
M2Mo6X8 or MaMbMo6X8 for two different cations). These
structures were initialized in two starting configurations: (a)
with both cations occupying off-center positions neighboring
site 1 (blue in Figure 2) and (b) with the larger cation in site 1
and the smaller cation in site 2 (orange and magenta,
respectively, in Figure 2). These configurations constitute the
variety of CP crystal structures observed in the literature.2,31−33

In some cases, multiple initial configurations converged to the
same final configuration; this was particularly common for y =
1 with large cations in site 1 and site 1 off-center.
In addition to analyzing the change in the stability of these

sites upon variation of the intercalant, it is also important to

investigate the impact of the site occupation on electronic
structure. From our data set of 438 CPs, 42 are calculated to
transition from metallic to semiconducting as the cation site
changes (Table S1), and 83 are predicted to transition from
nonmagnetic or antiferromagnetic to ferromagnetic as the
cation site changes (Table S2). Properties such as the Fermi
energy and unit cell volume vary with cation site occupation
and may provide an approach to control cation site and thus
conductivity and magnetic moment, which could enable
advanced CP-based nanoelectronics.

Composition-Based Descriptor for Stability. We next
trained an accurate and interpretable model using our database
of calculated CP ΔHds and our new symbolic regression
approach, which we call SIFT (see Experimental Section and
Figure S1). The intermediate feature trimming step in SIFT
enables the use of a large primary feature set that would not be
computationally tractable using other symbolic regression
approaches, such as the related SISSO (sure independence
screening and sparsifying operator) algorithm,35 where the size
of the generated feature space greatly limits the number of
primary features that can be examined.36

Starting from an initial set of 62 primary features, SIFT
recursively applied a set of four mathematical operations over
three iterations to develop increasingly complex combinations
of features that describe ΔHd (i.e., descriptors). Out of

Figure 3. Intercalant site preference. Energetic preference for each site (see Figure 2) within the Mo6X8 framework as the identity of the intercalant
M is varied in the Mo6S8 (A), Mo6Se8 (B), and Mo6Te8 (C) structures with y = 1. For each cation, the areas indicate the relative stability of each
site, where a larger area indicates greater stability relative to competing polymorphs. Not all cations were studied for each chalcogenide due to the
stochastic composition generation.

Figure 4. The machine-learned descriptor Hδ is accurate and interpretable. (A) Hδ reproduces CP ΔHds with mean absolute errors (MAEs) of 26
and 26 meV/atom and RMSEs of 33 and 33 meV/atom for the train (gray) and test (blue) sets, respectively. (B) Using ΔHfs of competing phases,
predicted ΔHds from Hδ can be converted to CP ΔHfs without decreasing accuracy. Averaging chalcogenide features further enables Hδ to
accurately predict ΔHd of mixed-chalcogenide CPs (red triangles). (C) Multinary CP stability can be rationalized from Hδ as an ionic−covalent
spectrum of M−X bonding. Greater ionicity of the M−X bond (red) increases the covalency of the Mo−X bond via the inductive effect, the
magnitude of which is proportional to IEMed; this increases overall CP stability.
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>560 000 generated descriptors, Hδ (eq 1) yielded the lowest
training set root mean squared error (RMSE) using an 80/20
train/test split of the 438 CP compositions, where only the
minimum ΔHd cation configuration for each CP was
considered:

= − +δ

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzzH a e

H
bIE

pol
pol CEM d

M

X

fus,tM

X (1)

IEM is the average first ionization energy of the cations (M) in
eV/atom. ed is the number of electrons donated from M to the
Mo6X8 cluster, calculated from estimated oxidation states and
bounded by 0 ≤ ed ≤ 4. polM and polX are the average electric
dipole polarizabilities of M and X, respectively, in Å3. Hfus,tM is
the total enthalpy of fusion summed over all M(s) in eV/atom
(i.e., ∑M yM ΔHfus,M). CEX is the average cohesive energy of X
in eV/atom. a and b are fitted constants equal to −0.0380
(unitless) and 0.0297 (eV/atom), respectively. All features
except ed are tabulated, and elemental values for these are
included in Table S3. Hδ yields predicted ΔHd in eV/atom
(i.e., ΔHd = Hδ). Figure 4a shows the accuracy of Hδ on the
training and testing sets, converted to meV/atom. CP ΔHf
values are calculated from the sum of the predicted ΔHd (from
Hδ) and the minimized ΔHf of competing phases (see
Experimental Section). Because only ΔHd is predicted, ΔHfs
computed in this way have the same accuracy relative to DFT
as the predicted ΔHds (Figure 4b).
Equation 1 can be decomposed into three combinations of

features: polM/polX, Hfus,tM/CEX, and IEMed. The polarizability
of the ions of a crystal greatly affects the localization of
electrons and thus the overall ionic bonding.37 Increasing the
ratio of cation to chalcogen dipole polarizability polM/polX
results in larger dipole moments and greater ionic bonding
between M and X (i.e., increased ionicity, Figure 4c). This
decreases Hδ and increases the stability of the multinary CPs,
consistent with our recent results on 3d-TM intercalated
sulfide CPs.25 Conversely, increasing Hfus,tM/CEX increases Hδ

and decreases stability. Hfus,tM and CEX are measures of the
total bond energy of the elemental solids M and X,
respectively, which are composed of covalent or metallic M−
M or X−X bonds. Increasing the total covalent/metallic
bonding (i.e., covalency/metallicity) of M and decreasing the
covalency (increasing metallicity) of X yields a more covalent
M−X bond due to greater delocalization of electrons from X
and increased electron sharing between M and X. Thus, the
ratio Hfus,tM/CEX provides a gauge for the covalency of the M−
X bond (Figure 4c). − Hpol /pol /CE ,M X fus,tM X that is, the
difference between M−X ionicity and covalency, indicates the
degree of ionicity of M−X along the ionic−covalent bonding
spectrum (Figure 4c). This is consistent with previous work
that attributed the stability of intercalated CPs to competing
shifts in ionic and covalent bonding that arise from the transfer
of up to four electrons from M to the Mo6X8 cluster.

25,31

The inductive effect has important consequences for the
stability of multinary systems,38 where greater covalent
bonding between a cation and anion (i.e., M−X) reduces the
covalent bonding between the same anion with another
element (i.e., Mo−X).39 Thus, the degree of ionicity of M−X
regulates the inductive effect in CPs and the covalency of the
Mo−X bond, which has been shown to drive overall covalent
bonding in CPs.25 A more ionic M−X bond yields a more
covalent Mo−X bond and a more stable CP via greater ionicity
a n d c o v a l e n c y , a n d v i c e v e r s a . W h i l e

− Hpol /pol /CE ,M X fus,tM X regulates the position of M−X
along the ionic−covalent spectrum, it does not determine the
strength of these bonds. The term IEMed of Hδ is approximately
the ionization energy per electron multiplied by the number of
donated electrons (i.e., overall ionization energy). Because the
coefficient a is negative, this term quantifies the exothermicity
of returning ed electrons to M and therefore approximates the
strength of the M−X bond. IEMed is multiplied by

− Hpol
pol CEM

X
fus,tM

X
to describe ΔHd, and increasing IEMed

results in a greater contribution to the inductive effect in
CPs (Figure 4c). When M−X is predominantly ionic (

> Hpol
pol CEM

X
fus,tM

X
), additional charge transfer to X arising

from greater IEMed increases the inductive effect and overall CP
stability. Conversely, when M−X is more covalent in nature,
increasing IEMed increases M−X covalency and further
destabilizes Mo−X bonding, reducing CP stability.
The performance of Hδ and SIFT relative to other ML

models and a simple, physically motivated baseline model is
analyzed in Section S1. This analysis indicates a trade-off
between accuracy and simplicity, where Hδ provides superior
accuracy over the baseline model (RMSE = 58.5 meV/atom)
and over the other interpretable symbolic regression model
(RMSE = 38.4 meV/atom). Although our goal was to generate
a model that is both accurate and interpretable through low-
dimensional linear regression, benchmarking against a high-
dimensional nonlinear method provides a good lower bound
on the error that can be obtained with our data set and
features. The model based on kernel ridge regression (KRR)
provides improved accuracy (RMSE = 17.7 meV/atom)
relative to Hδ, but this comes at the cost of not being
interpretable and the need for all 62 features to be input
simultaneously. Therefore, the KRR model provides no insight
regarding feature importance or the underlying chemical
phenomena.

Metastability Range of Chevrel Phases. Sixty-seven of
the CPs in our data set (Table S4) have been synthesized
p rev iou s l y w i th a r ange o f s yn the s i s t e chn i -
ques.19,22−25,32,34,40−56 These techniques can be classified as
three general approaches, each used in a different temperature
range: (a) direct high-temperature (T > 1000 C) synthesis
from stoichiometric mixtures of the constituent elements and/
or non-CP binaries (e.g., MoX2); (b) medium-temperature (T
≈ 500 C) intercalation (MTI) of elemental M into Mo6X8; or
(c) room-temperature intercalation of the dissolved cation M
into Mo6X8. The large temperature differences between these
different techniques indicate a wide range of stabilities of
observed CPs.
Of the 67 previously synthesized CPs, DFT (Hδ) indicates

that 34% (28%) are stable (ΔHd ≤ 0) and that the remaining
66% (72%) are unstable or metastable (ΔHd > 0). The 90th
percentile of ΔHd for these 67 CPs is 47 meV/atom (Figure
S2), comparable to the 90th percentile of metastable sulfides
and selenides observed in the literature.57 Below this boundary,
high-temperature synthesis is the most commonly used
method, especially for the stable CPs. In contrast, MTI is
most commonly used to synthesize the metastable compounds
with ΔHd > 47 meV/atom. For the subset of CPs synthesized
via MTI, the 90th percentile of ΔHd is 65 meV/atom. This is
consistent with failed efforts to synthesize highly metastable
CPs at high temperatures (e.g., HgMo6Se8, ΔHd = 59 meV/
atom),19 despite successful synthesis via MTI.47 MTI may
therefore enable synthesis of metastable CPs in the range 47 <
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ΔHd < 65 meV/atom that are less likely to be accessible via
high-temperature synthesis, enabling a large stability window
for the synthesizability of CPs. Above 65 meV/atom, CPs are
increasingly less likely to be synthesizable, although the
maximum ΔHd among this set is 83 meV/atom. In order to
approximate the probability that Hδ misclassifies CP
synthesizability relative to these boundaries, we added noise
to the 438 DFT-calculated ΔHds using a Gaussian distribution
with σ = 32.6 meV/atom (see Experimental Section). With this
noise, ∼16% of CPs are misclassified relative to the 65 meV/
atom upper boundary for synthesizability, and the false positive
rate for CPs predicted to be synthesizable is ∼7%. The
probability that a material is misclassified decreases as the
difference between the predicted ΔHd and the upper
synthesizability boundary increases.
We generated 205 548 CP compositions and applied Hδ to

predict their ΔHds (Figure S3). These compositions were
generated from up to two chalcogenides and three cations (63
total), with the sum of the cation coefficients limited to ≤2
(see Experimental Section). Although Hδ was developed for
single-chalcogenide CPs, it predicts ΔHd of mixed chalcoge-
nide CPs (e.g., Mo6S4Se4) with similar accuracy (mean
absolute error, MAE = 26 meV/atom and RMSE = 33 meV/
atom on 27 mixed CPs, Figure 4a,b). Mixed chalcogenide CPs
are included because they show promise as battery electrodes,
electrocatalysts, and thermoelectrics.13,58,59 Furthermore, our
calculations indicate that varying chalcogenide stoichiometry
results in linear control over CP band gaps (1.52, 1.48, 1.46,
and 1.38 eV for x = 0, 2, 4, and 8 in Mg2Mo6S8‑xSex),
expanding the potential applications of these phases to
photovoltaics and photoelectrocatalysts.
Categorizing these 205 548 CPs using the 90th percentile

boundaries for the various reaction temperatures (see above)
indicates that 2877 (1.4%) of these compositions are predicted
to be stable (ΔHd < 0 meV/atom); 24 255 (11.8%) are
metastable and directly synthesizable via high-temperature
methods (0 ≤ ΔHd < 47 meV/atom); and 21 369 (10.4%) are
metastable and synthesizable via MTI (47 ≤ ΔHd < 65 meV/
atom). The remaining 157 047 (76.4%) compositions are
predicted to be unstable (ΔHd ≥ 65 meV/atom) by these
definitions.
Synthesis of Chevrel Phase Tellurides. The multinary

CP tellurides are an ideal chemical space to validate the
accuracy of Hδ for predicting synthesizability and to investigate
our predictions of site 2 preference among these phases, which
may make them attractive as advanced battery materials and
electrocatalysts. Furthermore, the CP telluride space is sparse,
with only five synthesized phases (MyMo6Te8, M = Cu, Ag, Ni,
y = 0.85−2), of which refined atomic coordinates and
interatomic separations have only been reported for
Ni0.85Mo6Te8.

23,24 We selected five CP telluride compositions
to target for synthesis that have not been previously reported
and that Hδ predicts are synthetically accessible (MMo6Te8, M
= K, Ti, V, Cr, Fe), three of which are calculated to have
preferential site 2 occupancy. We also selected one CP
telluride that Hδ predicts to be unstable (Ni2Mo6Te8). High-
temperature direct synthesis was attempted for all of the
targeted CPs, and MTI into the binary Mo6Te8 was attempted
when direct synthesis was unsuccessful (Table 1). DFT-
calculated ΔHds are included alongside Hδ predictions in Table
1. The MAE between Hδ and DFT on this subset (39.4 meV/
atom) is larger than that of the full test set (26.0 meV/atom);
however this increased error is not unexpected due to the

prevalence of TM intercalants in this subset that are known to
be less accurately predicted by SCAN relative to other
elements.30,60 Despite this larger error, Hδ and DFT both
accurately categorize all materials relative to the upper
synthesizability boundary of 65 meV/atom.
All of the CP tellurides except KMo6Te8 and Ni2Mo6Te8

were successfully synthesized via microwave-assisted high-
temperature reactions of the element precursors. This is the
first report of microwave-assisted synthesis of multinary CP
tellurides. Synthesis of Ni2Mo6Te8 was unsuccessful, which
instead yielded Ni1.32Mo6Te8, a new stoichiometry for Ni-
intercalated Mo6Te8 (Table 1). This demonstrates the
predictive ability of Hδ in conjunction with the established
synthetic boundaries, which predict that Ni2Mo6Te8 is
unstable, whereas a Ni content of 1.32 per Mo6Te8 approaches
the highest Ni content (1.36) composition within the ΔHd
boundary of 65 meV/atom (Figure S4).
MTI was necessary to synthesize KMo6Te8. This is the first

report of successful synthesis of a large alkali metal (K, Rb, Cs)
intercalated CP with refined atomic coordinates. The
attempted high-temperature direct synthesis yielded a mixture
of MoTe2 and KMo3Te3, a chalcogenide-deficient 1D pseudo-
Chevrel phase (Figure S5). The sulfide analogue KMo3S3 was
previously preferentially synthesized over KMo6S8 by high-
temperature (∼750 °C) direct synthesis.61 The structural
similarity of these pseudo-CPs likely results in lower kinetic
barriers to decomposition into these phases, necessitating the
use of MTI to synthesize large alkali metal intercalated CPs
(e.g., KMo6Te8) despite their predicted and calculated ΔHds
falling below the MTI range. DFT indicates that KMo3Te3 is
the stable decomposition product for KMo6Te8. Although Hδ

correctly classifies the five synthesized CPs with TM
intercalants as being synthesizable, four of these materials are
classified in the MTI synthesizability range of 47 to 65 meV/
atom, indicating the greater challenge of predicting ΔHd for
materials with TM elements. However, DFT still correctly
classifies these five materials as being accessible via high-
temperature synthesis.
Bulk and surface CP compositions were determined via

energy dispersive X-ray spectroscopy (EDX) and X-ray
photoelectron spectroscopy (XPS), respectively (Figures S6−
S17). Scanning electron microscopy (SEM) and powder X-ray
diffraction (PXRD) (Figure 5) indicate that the synthesized
CP tellurides are less crystalline than previously reported CP

Table 1. Synthesis Results and Computed Stabilities of
Seven CP Telluridesa

Chevrel composition Hδ DFT ΔHd synthesis technique

KMo6Te8 16.2 36.6 MTI
FeMo6Te8 45.2 21.4 high temp. direct
TiMo6Te8 47.2 −2.9 high temp. direct
CrMo6Te8 50.8 −0.1 high temp. direct
VMo6Te8 62.0 −13.6 high temp. direct
Ni1.32Mo6Te8 62.9 41.1 high temp. direct
Ni2Mo6Te8 113.0 79.5 failed

aSynthesis of six telluride CPs was attempted, of which five were
predicted to be synthesizable. Their compositions are listed alongside
their calculated ΔHd from Hδ and DFT and the synthesis technique
used to produce each phase. Ni1.32Mo6Te8 was not targeted for
synthesis but was identified from the failed synthesis of Ni2Mo6Te8,
which was predicted to not be synthesizable and used as a negative
test.
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sulfides and selenides obtained through microwave-assisted
synthesis.13,17,20,25 The crystallinity of this series decreases with
increasing cation electropositivity. To confirm the predictions
of channel site preference for the TM-intercalated CP
tellurides with y = 1 (Figure 3), Rietveld refinement was
performed using site 1 off-center and site 2 occupancy (Figures
S6ab, S8ab, S10ab, S12ab). For all of the phases, improved
refinement results were obtained for site 2 over site 1 off-
center. However, both fits have large weighted-profile R-factors
(Rwp), suggesting a mixture of both phases. This agrees with
our data set, which predicts that a mixture of site 1 and site 2
occupancy should be observed, with site 2 being more
prevalent at ambient conditions. The poor crystallinity of the
CP tellurides yielded low signal-to-noise ratios and large full-
profile fitting factors (Tables S5 and S6). Although the
crystallinity of these phases may be increased by using slower
heating rates, low CP crystallinity may be desirable in
applications where high surface area improves performance
(e.g., electrocatalysis).

■ CONCLUSION
The renewed interest in multinary CPs has been driven by
recent examples of their promise for advanced energy storage
and conversion technologies, including electrocatalysts and
battery materials. To overcome the gap between known and
possible CP compositions, we developed the interpretable
descriptor Hδ to predict CP stability and to enable the rapid
identification of synthesizability when applied alongside data-
driven boundaries that bracket synthesized materials. Hδ was
trained on 438 CPs, which greatly expands upon the current
space of computationally characterized CPs and includes
properties such as band gap and magnetic moment to guide
experiments in key applications. The prediction and exper-
imental verification of site 2 occupancy in CP tellurides in this
data set opens a new route for tuning CP properties that may
be relevant for battery and electrocatalyst applications, owing
to the additional interstitial volume that is now synthetically

accessible for intercalant occupation. Furthermore, Hδ was
used to predict over 48 000 CPs as synthesizable and their
likely synthesis conditions from a set of >200 000 composi-
tions. We anticipate that this set will catalyze exploration of
this auspicious material class. More broadly, the SIFT method
can be applied to develop accurate and interpretable
descriptors for other materials properties, and we expect that
our combined computational and experimental approach is
transferable to other material classes to accurately predict ΔHf
and ΔHd, to identify synthesizable materials and to validate
their existence.

■ EXPERIMENTAL SECTION
Data Generation. CP structures were generated stochastically by

first selecting the chalcogenide (S, Se, or Te) from a uniform
distribution and then selecting the total number of intercalated
cations. For compositions with a single cation, the cation was chosen
from a set of 53 unique elements (Table S7), and three structures
were generated with the cation positioned at (0,0,0), at (0.95, 0.15,
0.9), or at (0, 0.5, 0). These three positions represent site 1, site 1 off-
center, and site 2 cation positions. A total of 154 single cation
compositions were generated. For compositions with two cations, the
first cation was selected from a set of 17 unique elements (Table S7).
We set a 10% probability of the second cation being the same element
as the first cation to increase the number of ternary CPs in the data
set; otherwise, it was selected from a uniform distribution of the
remaining 16 cations. Two structures were generated for each double
cation composition with the cations positioned at (0.95, 0.15, 0.9)
and (0.05, 0.85, 0.1), or (0,0,0) and (0,0.5,0), where the cation with
the larger ionic radius was placed at the first of the two positions for
each structure. A total of 281 double cation compositions were
generated. Ground-state structures for all elemental reference states
used in this study were obtained from Materials Project and were
further relaxed. All relaxations were performed using the Strongly
Constrained and Appropriately Normed (SCAN)62 density functional
and the Vienna Ab initio Simulation Package (VASP).63 SCAN was
selected over the conventional PBE functional for its superior
accuracy for calculating ΔHf and ΔHd, relative to experiment,30,60 and
for its accuracy for ordering polymorph stability.64 The errors
between SCAN ΔHd and experiment increase ∼45% for materials
with transition metals; however these errors are still about 50% lower
than those of PBE.30

The ion positions and unit cell lattice vectors were allowed to
independently optimize during structure relaxation; symmetry
constraints were not used. A plane wave cutoff of 520 eV and a Γ-
centered Monkhorst−Pack k-point grid with a density of 1200/
number-of-atoms were used for all calculations. ΔHf values were
calculated as the difference between the minimized CP total energies
(ECP) and the sum of the reference element total energies for each
atom in the CP unit cell (eq 2).

∑Δ = −H E E (el)f CP
el

atoms in unit cell

ref
(2)

∑Δ = Δ − Δ | ≠⎯⇀
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zzzzzzzH H x HMini i x
j

n

j j i jd, f, f,
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ΔHd were calculated from ΔHf using the convex hull method (eq 3)
where x  is the array of stoichiometries for all competing phases (n)
that minimizes the summation term with the constraints that the
atoms in material i must be conserved: = ∑ * | ≠

÷ ◊÷÷÷÷÷÷÷÷÷÷÷÷ ÷ ◊÷÷÷÷÷÷÷÷÷÷÷÷
xatoms atomsi j

n
j j j i and

all xj ≥ 0. ΔHf for competing phases used in the convex hull
construction were obtained from ref 30; 211 binary chalcogenides
were included in this set (Table S8). This data set did not include
competing phases for the chalcogenides of Be, Sc, V, Co, Rb, Nb, La,
Ce, Pr, Nd, Sm, Tb, Dy, Hf, Ta, Os, Re, and Ir. For this set of
elements, the structures of the stable chalcogenide (S, Se, Te) binary

Figure 5. SEM micrographs of intercalated Mo6Te8. SEM micro-
graphs of Mo6Te8 intercalated with (A) Ni, (B) Fe, (C) Cr, (D) V,
(E) Ti, and (F) K depict decreasing crystallinity as cation
electropositivity increases. (G) PXRD spectra of the synthesized CP
tellurides. Rietveld refinement of the CPs with M = Fe, Cr, V, and Ti
indicates that most cations occupy site 2 channels, confirming the
predicted preference for this site in our data set.
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phases were obtained from Materials Project and relaxed using the
aforementioned calculation standards. A total of 154 of these
structures were obtained and relaxed to be used as additional
competing phases (Table S9). Furthermore, we generated and relaxed
a set of nine 1D pseudo-CPs for the cations Na, K, and Rb and the
chalcogenides S, Se, and Te, as these have been previously
demonstrated as competing phases for CPs with these cations.61

Boltzmann factors were calculated using eq 4, where ΔHd,i is the
decomposition enthalpy of cation site configuration i, ΔHd,min is the
minimum ΔHd of the CP composition, and kb is Boltzmann’s
constant.

= Δ − Δp H H k Texp(( )/ )i id, d,min b (4)

The set of 205 548 CP compositions was generated from 63 cations,
53 of which are included in Table S7 and the remaining 10 are As, W,
Pm, Eu, Gd, Ho, Er, Tm, Yb, and Lu. Up to three cations were
allowed per generated composition, with the sum of the coefficients
limited to ≤2 and the coefficients being within the set: 0, 0.5, 1, 1.5, 2.
The sum of cation coefficients was limited to ≤1 for compositions
containing cations with average ionic radii greater than that of Mg,
which is the largest cation with coefficients greater than 1 in the
experimental CP set. The limits on cation stoichiometry were chosen
to reduce the degree of extrapolation beyond the training and testing
sets, where the accuracy of Hδ is not quantified. Allowed
chalcogenides and mixed chalcogenide coefficients are S8, S6Se2,
S4Se4, S2Se6, Se8, Se6Te2, Se4Te4, Se2Te6, Te8, S6Te2, S4Te4, and
S2Te6.
Machine Learning. Symbolic regression methods involve

recursively combining features (e.g., electronegativity) via mathemat-
ical operations (e.g., + , −, *) to develop increasingly complex
functions that describe a target property (e.g., ΔHd), and methods
such as SISSO and GPlearn have been used to develop impressive
materials science models.35,36,65,66 However, given a large set of
mathematical operations or primary features, the set of generated
features in each iteration can quickly become computationally
intractable. To address this, we developed the SIFT machine learning
method.
A block flow diagram for SIFT is shown in Figure S1. SIFT was

implemented in Python 3 and is available at 10.5281/zenodo.
4796358. Inputs to SIFT include a matrix of data where the rows are
unique entries (i.e., materials) and the columns are primary features
(e.g., polM, polX), a vector containing the target property for each
unique entry in the same order as the data matrix, the number of
iterations of combining features, and the number of features retained
after each iteration. Optionally, a python dictionary containing each
primary feature and its respective units can be input to SIFT. This
allows the user to limit how features can be combined based on their
units; addition, subtraction, and division will operate only between
features with the same units, and multiplication will be performed
only if at least one of the two features is unitless to limit unit
complexity. Depending on the application, these restrictions can be
modified to allow for potentially more complex models. For this work,
we restricted feature combinations based on units and only used the
mathematical operations addition, subtraction, division, and multi-
plication. A total of 62 primary features were used for SIFT to develop
Hδ (Table S10).
SIFT begins by generating all of the allowed feature combinations

(limited based on defined unit and maximum complexity constraints)
from the primary feature set and calculating the RMSE between the
generated feature combinations and the target property. The
generated features are then ranked by their RMSE, and this set is
trimmed to only retain the lowest error generated features using a
predefined cutoff. These are then combined with the primary feature
set for the current iteration to be used as the starting feature set for
the following iteration. In this work we retained the 500 best
generated features after each iteration. SIFT is similar to the SISSO
approach,35 which also iteratively combines a set of primary features
to develop an increasingly large set of feature combinations. However,
the intermediate feature trimming step in SIFT significantly improves

scaling over multiple iterations and allows for a larger set of primary
features, at the expense of being less comprehensive by not retaining
all generated features at each step as SISSO does. We ran SIFT for
three iterations in this work to develop a sufficiently accurate model.
The maximum complexity allowed for the SIFT models was set to six
total features (e.g., (A/B − C) + D/E + A). Hδ and SIFT, using the
specified parameters, were benchmarked against other ML methods in
Section S1, including SIFT with different parameters that enabled
greater model complexity. Eighty percent of the compositions in our
data set were used for training SIFT, and the remainder were used for
testing; only the most stable cation configuration for each of the 438
compositions was used for model development.

Fifty-five of the 62 initial features used in this work to describe CP
compositions were derived from 21 elemental properties obtained
from Matminer and WebElements (see Table S10).67 This data set of
elemental properties was initially compiled for use in refs 36 and 65.
Five of the 62 initial features were derived from oxidation states that
were calculated for each CP composition using the ‘add_charges_-
from_oxi_state_guesses’ function in Pymatgen.68 Oxidation states
were fixed to −2 for the three chalcogenides and were constrained to
be either +1, +2, or +3 for the Mo atoms. Cation oxidation states were
constrained to be greater than zero. The electrons donated from the
cation, ed in Hδ, are calculated as the sum of the oxidation states of the
intercalated cations and are limited to 0 ≤ ed ≤ 4. The remaining two
initial features were calculated directly from the composition (i.e., the
total number of elements and the number of intercalated cations).
Features were normalized by dividing by a normalization constant.
For average features of M and features of X, the normalization
constant was the largest magnitude value (i.e., the max or min) of the
respective feature ( f) resulting in a feature range of −1 ≤ f ≤ 1. For
total features of M (i.e., the sum of the feature over all cations in the
composition) the normalization constant was halved, resulting in a
feature range of −2 ≤ f ≤ 2 so that cation stoichiometry was
considered in feature magnitude.

Hδ directly predicts ΔHd (i.e., Hδ = ΔHd). As a result, CP ΔHf
values can also be calculated from Hδ using eq 5, which is derived
from eq 3.

∑Δ = + Δ |δ ≠⎯⇀

i

k

jjjjjjj
y

{

zzzzzzzH H x HMini i x
j

n

j j i jf, , f,
(5)

We approximated the probability that Hδ (or a model with equivalent
accuracy) will correctly classify CP synthesizability with respect to the
MTI upper synthesizability boundary (i.e., 65 meV/atom) by adding
noise to the ΔHd values of the 438 CPs in our data set. Noise was
applied using a Gaussian distribution centered at each ΔHd with a
standard deviation (σ) equivalent to the RMSE of Hδ on the test set
(32.6 meV/atom). With this added noise, we calculated the percent of
CPs that were still classified correctly as synthesizable or not
synthesizable (i.e., < or >65 meV/atom). The false positive rate was
obtained from the subset of incorrectly classified CPs where the noisy
ΔHd indicated that the CP was synthesizable (<65 meV/atom), but
the calculated ΔHd indicated that the CP was not synthesizable (>65
meV/atom). Classification percentages were averaged over 100 runs.

Chemicals and Materials. Cr (99.95%, ∼200 mesh), V (99.5%,
∼325 mesh), Ti (99.5%, ∼325 mesh), and Fe (99.998%, ∼200 mesh)
powders, and K (99.95%) metal were used as purchased from Alfa
Aesar. Mo powder (99.99%, ∼100 mesh) and Te powder (99.8%,
∼200 mesh) were used as purchased from Sigma-Aldrich. Al2O3
microfiber was used as purchased from ThermoFisher. Fused quartz
tubes (2 mm thick) were purchased from AdValue Technology and
made into round-bottom tubes with an in-house oxy-hydrogen torch.

Telluride Synthesis. The CPs studied herein were synthesized
through a previously described microwave-assisted solid-state syn-
thesis approach.17,20 The general procedure involved weighing
stoichiometric amounts of the appropriate precursors in a dry N2
glovebox, followed by ball-milling and hydraulic pressing to attain a
homogenized pellet. The pellets were transferred into quartz tubes
and packed under N2 with Al2O3 microfiber. The tubes were placed
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inside an alumina crucible filled with fine-mesh graphite powder. This
reaction vessel was placed inside a conventional microwave oven
under an Ar atmosphere. Samples were irradiated for 10 min at a
power of up to 1000 W. The color temperatures of the graphite
powder and the quartz tube were monitored to maintain the
temperature between 900 and 1000 °C for Mo6Te8 and MyMo6Te8
(M = Ti, V, Cr, Fe, Ni). Impurities such as MoTe2 and Mo were
observed if synthesis temperatures were below 900 °C or above 1000
°C, respectively. KMo6Te8 was obtained through MTI by similarly
mixing and pressing the metallic potassium with Mo6Te8 and
maintaining the microwave temperature at just below 450 °C for 10
min. Decomposition of Mo6Te8 at higher temperatures was observed.
Structural Characterization. The phase purity of each CP was

analyzed via PXRD using a Bruker D8 Advance diffractometer with
Cu K-alpha radiation (1.5406 Å). Catalyst morphology and bulk
composition were analyzed using a FEI (Hillsboro, OR, USA) 430
Nano SEM and a FEI Scios dual-beam SEM with an Oxford EDX
detector, respectively. Composition stoichiometry was confirmed by
averaging the EDX average atomic % over multiple sites, which agree
with an MMo6Te8 composition for M = K, Ti, V, Cr, and Fe within an
∼1% error based on instrumental counting statistics. Surface
composition analysis was performed using a PHI Versaprobe 3 XPS
for all synthesized CPs aside from VMo6Te8, which was analyzed
using a Kratos Supra Axis XPS. Rietveld refinements were performed
with Topas diffraction analysis software from Bruker.
Data sets and code are available for free at 10.5281/zenodo.

4796358.
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