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DRL-Based Channel and Latency Aware Radio
Resource Allocation for 5G Service-Oriented
RoF-MmWave RAN

Shuyi Shen”, Ticao Zhang *“, Shiwen Mao

Abstract—A channel and latency aware radio resource allocation
algorithm based on deep reinforcement learning (DRL) is pro-
posed and evaluated. The proposed scheme aims to optimize the
uplink scheduling for service-oriented multi-user millimeter wave
(mmWave) radio access networks (RAN) in the 5G era. In the DRL
system, multiple application flows are implemented with various
statistical models and the key function modules of the system
are designed to reflect the operation and requirements of service-
oriented RANSs. In particular, the mmWave channel characteristics
utilized in the system are collected experimentally and verified via
a radio-over-fiber (RoF)-mmWave testbed with dynamic channel
variations. Results show that the proposed DRL algorithm can
operate adaptively to channel variations and achieve at least 12%
average reward improvement compared to conventional single-rule
schemes, providing joint improvement of bit error rate and latency
performance.

Index Terms—Deep reinforcement learning, radio resource
allocation, scheduling, millimeterwave.

I. INTRODUCTION

ADIO access networks (RAN) in the 5G New Radio and

beyond are envisioned to be service-oriented, supporting
multiple users and various applications with different quality-
of-service (QoS) requirements [1]. In addition to capacity and
speed requirements, latency becomes an important performance
benchmark, especially for time-sensitive data traffic. Applica-
tions such as video streaming, low-latency gaming, and real-time
services including robotic control, intelligent factories, tele-
health will have different delay and reliability requirements [2].
As a result, for simple pre-scheduling or fixed radio resource
allocation schemes used in legacy wireless communication net-
works, it will be challenging to manage the increased QoS com-
plexity while providing operational flexibility and efficiency.
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Currently, millimeter wave (mmWave) links are implemented
for 5G RANs, which can result in dynamic channel condi-
tions that add to the complexity of radio resource management
(RRM) [3]. Although mmWave can provide wide bandwidth and
high capacity, it is subject to less diffraction in beam propagation,
high Friss path propagation loss and atmospheric absorption
loss. For example, mmWave operating in the frequency range
of 24.25 to 52.6 GHz is standardized as Frequency Range 2
(FR2) by 3GPP Release 15 [4]. In outdoor environments, such
mmWave links can experience abrupt signal strength variations
due to raindrops, moving pedestrians, or vehicles [5]. Whereas
inside a smart factory, mmWave links are susceptible to line-of-
sight (LoS) blockages caused by moving robots or stock boxes.
Considering both complex QoS objectives and dynamic chan-
nel conditions, the needs of agile and adaptive radio resource
scheduling and allocation are urgently anticipated in 5G and
beyond RANS.

To tackle the challenges, research works have been reported
to develop intelligent radio resource allocation and scheduling.
In [6], deep reinforcement learning (DRL) is utilized to optimize
resource block (RB) allocation in a mmWave mobile backhaul.
In the work, capacity is the optimization objective and the DRL
action is the direct RB allocation and user mapping, which can be
extremely complicated if the RB space scales up. In [7], Markov
decision process (MDP) is used to model the operations of a mo-
bile edge computing (MEC) system. Considering random task
arrivals and channel state variations, the method can optimize
power consumption while meeting the latency requirements.
However, only a single user is considered in the work, which
is not sufficient because multi-user contention and management
are required to solve the scheduling problem. In [8], the authors
implement deep deterministic policy gradient (DDPG) for radio
resource scheduling in a 5G RAN, taking multiple users, varied
channel conditions, and random traffic arrivals into account. Bit
error rate (BER) and delay are jointly considered. The limitation
of the work is that only Poisson distribution is used to model
the arrival patterns of user equipment (UE), despite the diverse
application arrival patterns in reality.

In this paper, we utilize DRL to achieve both delay and
channel condition aware packet scheduling and radio re-
source allocation in the uplinks of a service-oriented mmWave
RAN. In DRL, an agent interacts with the environment and
aims to optimize the decision-making process. This fits well
with the requirements of a scheduling process, which makes
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Fig. 1. System architecture design in 5G environment. (Rgst: Request; Ch:
Channel.).

prioritization and resource allocation decisions based on the re-
quest patterns and channel conditions. The schematic diagram of
the system is depicted in Fig. 1. The system will consider multi-
user multi-service scenarios with different QoS requirements, to
jointly optimize BER and latency. Furthermore, the system takes
channel variations into account by varying mmWave link condi-
tions including LoS and none-LoS (NLoS) blockages. Channel
characteristics in this work are experimentally collected via a
radio-over-fiber (RoF)-mmWave testbed and then implemented
in the DRL system. Based on the provided state information
which includes service queue status, application request patterns
and priority levels, as well as channel quality indicators, the
DRL-based scheduler will take the decision action to choose the
optimal scheduling and resource allocation rule.

The main contributions of the paper are summarized as

follows:

1) We establish a DRL framework for joint BER and latency
optimization for time-sensitive traffic in a service-oriented
5G system subject to mmWave channel variations. Differ-
ent statistical models are implemented for the arrival inter-
vals and packet sizes of diverse applications. Conventional
request-grant cycles of the uplink scheduling process are
implemented, taking into account possible congestion and
queuing delay under heavy traffic load. In addition, we
design and formulate the state and reward of the DRL
scheduler such that it will reflect queue status, channel
variations, and service-customized latency performance
based on QoS requirements.

2) In our previous work [9], direct RB allocation mapping to
UE is implemented as DRL actions. Through our investi-
gation, we find that such straightforward action design can
cause extreme complexity and require huge computational
resources if used in a multi-user wide-band mmWave
RAN. Therefore, re-design of the action is required to
improve the convergence efficiency. The action of the
proposed DRL-based scheduler is to select the optimal
resource allocation rule regarding the current transmission
time interval (TTI). A similar scheme is also adopted in [8].

3) In contrast to most of the previous DRL-related works
with only simulation results, the mmWave channel char-
acteristics utilized in the proposed system are experimen-
tally collected and verified via a mmWave testbed with
RoF-enabled mobile fronthaul. In this work, photonic-
assisted mmWave generation is implemented to achieve
wide-bandwidth transmission and experimentally verified
channel variations. To realize the channel conditions of
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Fig. 2. Uplink scheduling: the request-grant cycle.

mmWave links such as reflection, blockage, and reduced
transmission power, channel variation is introduced in the
scheduling process.

The paper is an extension of our recent work published in [10],
with expanded research results validated by comprehensive
system design, theoretical analysis, and experimental demon-
stration. The remainder of this paper is organized as follows.
Section II introduces the framework and design of the DRL algo-
rithm with the illustration of the scheduling process. The system
architecture is illustrated in Section III, with implementation
details of the component modules. In particular, the mmWave
channel demonstration is presented. The evaluation of the DRL
system and results are analyzed and discussed in Section IV,
which covers the DRL training process and the performance
comparison with conventional schemes. Finally, the conclusions
are summarized in Section V.

II. SCHEDULING PROCESS AND DRL SYSTEM DESIGN

We consider the uplink transmission of a mmWave remote
radio unit (RRU) supported by RoF mobile fronthaul as shown
in Fig. 1. The system is flow-oriented and involves multiple
UE:s that are using applications with different QoS requirements
and experiencing different channel conditions. One UE can have
multiple active services/flows simultaneously.

The scheduling process follows the request-grant cycles that
are widely implemented in mobile communication networks,
which is depicted in Fig. 2. During the scheduling process, at
each TTI, UEs will firstly request transmission opportunities
before actual data transmission. The scheduler located in the
central unit (CU) or distributed unit (DU) will process the
requests and then distribute the uplink (UL) grants. Not all
requests can be satisfied especially when the traffic load is heavy,
which may cost additional queuing delay, as indicated by Fig. 2
at point f. The UEs will then prepare and send the data packets
using the allocated RBs. In our system, upon receiving the uplink
data the scheduler will check the pre-forward-error-correction
(pre-FEC) BER of the received data which determines whether
re-transmission (Re-Tran) is required as illustrated in Fig. 2. In
a real system, the scheduler may send hybrid automatic repeat
request (HARQ) or NACK accordingly. For simplicity, the queu-
ing delay is considered only for the original data transmission,
while not for the re-transmission, i.e., guaranteed resources for
re-transmissions are assumed in the system.
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Let 4 ={1,2,...,U} denote the set of UEs and F =
{1,2,..., F} denote the set of flows. F is the total number
of flows and U is the total number of UEs. One UE can have
multiple active flows. If a flow f € F belongs to an UE v € U,
then v(f) = u, indicating the corresponding UE u of flow f.
B =1{1,2,...,B} is the set of resource groups (RG) for allo-
cation. RG is grouped RBs sharing the same modulation order,
the design of which will be explained in Section IV. The total
number of RGs is B. At TTI ¢, the capacity of the RG b € B
corresponding to flow f is C;(t), as different UEs can have
different channel conditions. Actually, C ;(t) is determined
by C,(t) given the flow to UE mapping. Similarly, Ey(¢)
denotes the BER of the RG b corresponding to f, which will
be calculated from the experimentally measured error vector
magnitude (EVM).

In the flow-oriented system, different flows will have different
packet sizes and arrival intervals. At TTI ¢, the requested data
size of flow f is Y (t). The requested packets will be stored in
the corresponding queue. At TTI ¢, the queue length of flow f is
Qy(t), which is determined by the queue length of the last TTI
(t — 1), the new arrival of requests Y (¢), and the granted data
size G¢(t) at this TTL:

Qs(t) = Qp(t = 1) + Yy(t) — Gy(t) (1)

in which G¢(t) < (Q¢(t — 1) 4+ Y#(t)). The granted data size
of each flow is determined by the resource allocation scheme,
which can be calculated by:

B
Gp(t)=> wpp(t) - Cru(t) )
b=1

where x ¢, () is the allocation indicator. 7, (t) = 1 if flow f is
assigned with RG b at TTI ¢, otherwise x 7 ;(¢) = 0. The unit of
Cyp(t), Qr(t), Yr(t), and G¢(¢) is the unit RG capacity.

Let N¢(t) denote the number of packets of flow f that have
been requested from ¢ =1 to t. Ny denotes the total number
of requested packets of flow f. Ef(j) denotes the received
pre-FEC BER of packet j from flow f. The pre-FEC BER
threshold of flow f is ETY. Packets with Ef(j) > ETy will
be re-transmitted, which will cause extra delay. my(t) is the
number of latency-satisfied packets from flow f at TTI ¢, which
are scheduled packets with the overall latency satisfying the
delay budget requirement D . Therefore, the total number of

latency-satisfied packets of flow f will be My = Zthl my(t).

A. Problem Formulation

The objective of the system is to optimize the mmWave
resource allocation and scheduling so that the average ratio of
latency-satisfied packets ( %—'ff) will be maximized. To facilitate
the DRL reward design which will be discussed in Section II-C,
here the harmonic mean ’H(%) is considered. Different from
the arithmetic mean widely used, the harmonic mean tends to
emphasize the impact of small outliers [11], which is desired in
a scheduling problem as we want to avoid flows with a very low
ratio of latency-satisfied packets. The ratios of latency-satisfied
packets are utilized so that the flow-specific latency thresholds
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are used as benchmarks only within one flow, other than shared
across all the flows, to avoid unfairness in resource allocation.
We formulate the problem as follows:

-1

F -1
w) = (F2(5)
max H _— — — _J 3
x5 p(t) (Nf FJ; Nf ( )
st wpp(t) €{0,1},Vf, b, €]

F
> wpa(t) < 1,9t (5)
f=1

where (4) shows that RG assignment variables are binary, and
(5) suggests that each RG can only be assigned to one flow.
The solution of (3) aims to find the best resource allocation
at each TTI for all flows and RGs. This problem is difficult
for the following reasons: i) constraints (4) and (5) makes the
problem combinatorial; ii) the number of RGs and the number of
flows can be very large, which makes the optimization problem
more challenging; iii) the objective does not have closed form
expressions in terms of x s ,(¢). A direct optimization is difficult.
To solve ii) and iii), instead of directly deciding xf;(t), the
action of the proposed DRL-based scheduler is modified to select
the optimal scheduling and resource allocation rule for each
TTI, which will determine x ¢ ; (¢) following different scheduling
objectives. Let P = {p1, p2, . . ., py } denote the set of candidate
rules. At TTI ¢, the selected rule is P(t) € P. The problem

becomes:
()
F Ny
f=1

-1

(6)

max
P(t)
with P(t) satisfying constraints (4) and (5).

B. DRL Framework

In (1), the queue length of flow f at TTI ¢ is determined by
the queue length of the last TTI Q /(¢ — 1), the requested data
Y (t), and the granted data size G ¢ (t). The scheduler will make
the decision based on the observation of channel conditions,
queue status, and request patterns. The decision-making is partly
random due to the arrival request patterns and partly depen-
dent on the available resource allocation rules in the scheduler.
Therefore, the queue state (1) can be modeled as a Markov
decision process (MDP) [9]. We use Q-learning algorithm, the
most widely used reinforcement learning method, to solve the
MDP problem. Considering a large number of RGs and flows,
dynamic optimization environment and targets, a deep neural
network (DNN) is used in the proposed system instead of a
conventional Q-table. The deep Q network (DQN) will be trained
to reflect the mapping between the state and action spaces during
the DRL process.

In the proposed DRL-based scheduling algorithm, we define
the period of time in which the interaction between the agent
and the environment takes place as an episode, and each TTI ¢
corresponds to a step of an episode. The state space of flow f at
TTI ¢ includes the head-of-line (HoL) latency of the top packet in
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Algorithm 1: BER and Delay Aware Scheduling Algorithm
Based on DRL.
1: if training then
2 Initialize environment and generate traffic patterns
3 Initialize the time, states, action and replay buffer /C
4 for each episode do
5: for each TTI ¢ do
6.
7
8

Load the status of the RGs
Observe state s(t) as shown in (7)

: e = max(e - d, €min)
9: Sample r ~ U(0, 1)
10: if » < e then
11: select an action a(t) € A randomly
12: else
13: Select an action a(t) using (11)
14: end if
15: Compute the reward r(t)
16: Observe the next state s’
17: Store the experience (s(), a(t), r(¢),s’) in K
18: From /C, sample a random minibatch of K
experiences: {e, = (sg, ak, 7k, S})}
19: Set yp, = 1 +ymaxyQ(sk, ' | 0g), Yk
20: Perform the gradient optimization on loss

L=z% S (yk — Q(sk, ar, | 0g))? to get the

optimal 6,

21: Update 6 from 6, with the target method
22: t=t+1

23: s(t)=¢s

24: end for

25: end for

26:  save B¢ and the agent

27: else

28: Load the agent
29: Observe the state and output the action using (11)
30:  end if

the queue, denoted by s 1 (¢); the requested data size sy 2(t) =
Y7 (t); the flow priority indicator s 3; and the capacity (spectral
efficiency) of all RGs sy 4(t) = {C(t), Vb}. The state at ¢ can
be expressed as:

s(t) = {s1(t),s2(t),....sp(t)} ()

where s (t) is the observed state of flow f:

sp(t) = {sr1(t),s72(t),s13,874()} (8)

From (7) and (8), the size of s(t) willbe 3F + BF,or3F + BU
if we consider one UE may have multiple flows. The state size
is dependent on the number of RGs and UEs, from which it can
be seen the computational complexity increases with available
bandwidth resources and the number of users.

In our previous work of DRL scheduler which aims to op-
timize delay with a small RB space [9], the action is defined
as the choice of x;(t). In this case, the size of action space
will be |A| = FP which will be extremely large in a multi-flow
wideband system. As analyzed in Section II-A, to cope with the
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large RG space and the service-oriented QoS requirements, the
action space A in the proposed scheduler consists of resource
allocation rules that have been widely investigated and imple-
mented by network operators with different scheduling targets,
i.e., A = P. The size of the action space reduces to |A| =
which are independent of B and F', therefore improving the
convergence efficiency.

In the learning process, the DQN agent will maintain a critic
Q(s, a), which takes observation of state s(¢) and action a(t) as
inputs and returns the expectation of the long-term reward:

o0

=E Y Art+i)[s(t)al)| )

i=0

Q(s(t), a(t) | be)

where 7(t + i) is the instantaneous reward, -y is the discount
factor, and ¢ represents the parameter values of the DQN. The
long-term reward is:

oo
R(t) =Y 7" r(t+i) (10)
i=0
The training and testing algorithm is illustrated in algorithm 1.
Q(s, a) is initialized with random parameters 6 and will peri-
odically update over the training process as it interacts with the
environment. At each step or TTI ¢, with probability e which
updates with decay rate d, the system will randomly generate an
action, otherwise, it will observe the current state and select the
action with the greatest Q-value:

a(t) = argmax @ (s(1),
a(t)eA

a(t) | 6q) (11)
After taking a certain action, the system calculates the instanta-
neous reward 7(t) and observes the next state s’. The transition
experience (s(t),a(t), r(t),s’) is stored in a replay memory K.
After that, arandom minibatch of K experiences will be selected
for the optimization and update of 0.

C. Reward Design

One key step of DRL design is to customize the reward
function for the desired target. In this work, the problem is to
optimize (6) with restrictions (4) and (5). The reward of the DRL
system is designed as follows. At each TTI ¢ for each flow f, all
packets that have been requested will be categorized into four
types as depicted in Fig. 3. For flow f at TTI ¢, the total number
of requested packets is N¢(t); for those packets that have been
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scheduled, the total number of scheduled packets whose latency
satisfy the service latency requirement Dy is M¢(t), the total
number of packets whose latency exceed Dy is Ly (t); for the
packets in the queue waiting to be scheduled, the total number
of packets whose queuing time already exceed delay budget D
is W (t). The reward of flow f at TTI ¢ is defined as:

CLg(t)  2Wi(D)
My(t)  Mg(t)

In (12), the second term —AL4’; ((tt)) reflects negative feedback

if the current scheduling method has resulted in too much
latency, whereas the third term — 213? f((tt)) with the weight fac-
tor 2 indicates more significant negative feedback to prevent
latency-failure packets from queuing up and leading to large
queuing delay. In (12), M (t) rather than N () is used for the
denominator to reduce the influence of random packet arrival,
therefore the reward can better reflect the scheduling efficiency.
Channel conditions can influence the reward as poor BER will
lead to re-transmissions which cause extra latency. The overall
reward of TTI ¢ is the weighted sum of r:

1 F
H(t) = 3 Y rslt)
f=1

If there are no new requests, at the end of the scheduling process,
the third term in (12) will vanish as all packets have been
processed (W = 0):

F F
1 1 Ly
SEINES NG
=1 f=1

With all packets scheduled, we have Ly = Ny — My, then (14)
is equal to:

T(t) = (12)

13)

(14)

1 < Ny
-+ (- 72)
f=1
LM\
-2- 52 (5) 19

mmWave Channel Measurement Receiver (Rx)

The architecture and modules of the mmWave-RoF testbed with DRL-based scheduler.

TABLE I
DELAY COMPONENTS

Propagation Delay 70.8645 b, d, g i,k
UE Processing 0.32ms a, e,j
Scheduler Processing 62.9811s (14 symbols) c
Re-transmission Processing 0.21ms h
Queuing Delay Traffic-based f

When (15) is maximized, (6) is maximized accordingly, which
complies with the optimization objective.

III. OPERATION IMPLEMENTATION

The mmWave radio access testbed with DRL-based scheduler
consists of several key function modules as shown in Fig. 4. The
directions of arrows in Fig. 4 indicate the processing flow in
an episode that follows the request-grant cycle. The delays of
different stages in the scheduling process indicated in Fig. 2
are summarized in Table I. The delay parameters are based
on [12], in which 2km standard single-mode fiber (SMF) and
50m wireless distance is assumed.

In the system, the flow generation module will generate
packets based on different application types. The DRL agent
will take the decision action provided with the state information
from the flow generation module and the mmWave channel
module. In this work, mmWave channel information is obtained
through experimental measurement of multi-user RoF-mmWave
testbed instead of channel simulation. The mmWave channel
module consists of physical layer (PHY) orthogonal-frequency-
division-multiplexing (OFDM) processing module in the trans-
mitter and receiver side (Tx and Rx). An arbitrary wave gen-
erator (AWG) and a digital oscilloscope (OSC) are used in the
experiment to generate analog OFDM waveforms and to capture
the received waveforms for channel information extraction. The
detailed implementation of each module will be illustrated in
the following subsections.

A. Flow Generation Module

The DRL system involves multiple users that are using ap-
plications with different QoS requirements. One UE can have
multiple active flows simultaneously. For the flows implemented
in the system, the packet arrival pattern, QoS priority, delay
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TABLE II
FLOW PARAMETERS
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TABLE III
RESOURCE ALLOCATION RULES (ACTION SPACE)

Service Robotics | Video Streaming | Gaming/Factory | Telehealth Rule Feature Objective
Priority 30 56 30 56 Max-SINR Channel Best BER
Speed (Mbps) | 300-350 10 3 300 PF Channel & Speed Aware Fairness & Throughput
Delay Bdgt. Ims Sms Ims 2ms EXP Channel-Speed-Delay Aware | Fairness & Bounded Delay
Pkt. Size Rand Log Norm. Gaussian Poisson LOG Channel-Speed-Delay Aware | Fairness & Bounded Delay
Pkt. Interval | Bernoulli Poisson Fixed Cont.
UE 1 (f1) 1 (f2) 2 (f3) 2 (f4) TABLE IV

budget, and other key flow-specific parameters are summarized
in Table II. There are four types of flows in the system. The
priority indicators listed in Table IT are based on 3GPP QoS spec-
ification [13]. Service with a smaller priority value has higher
priority in the scheduling process. The priority value is a compo-
nent (s 3) of the DRL state input. Among the applications, the
flow for robotics control (f1) has critical latency requirement
(1 ms) and high data rate [2]; the flow for conventional video
streaming or Web file transfer protocol (FTP) transmission (f2)
can tolerate more latency; the flow for serious gaming or smart
factory application (f3) also has critical latency requirement but
can be supported with moderate data rate; the flow for telehealth
(f4) such as telediagnosis and surgery may require latency on
the order of 1-10 ms with data rate around 100Mbps [2].

Different statistical models are employed for packet sizes
and arrival intervals to mimic flow behaviors in reality. For
time-sensitive traffic such as robotic control, the packet arrival
processes follow Bernoulli processes [14]. In the DRL system,
the probability of packet arrival is 0.8 for each TTI at the datarate
of randomly generated 300-350 Mbps to simulate control signal-
ing. The video streaming is abstracted from FTP models with the
file size using Log-normal variable (11 = 11, 0 = 0.1, leading to
an average file size of 0.1Mb) [15]. The FTP file arrival interval
follows Poisson distribution with A = 100 and packets are gener-
ated from each file accordingly. Flows following live streaming
video model can cause a significant queuing delay in upstream
transmissions due to the influx of FTP file packets. For real-time
gaming flows or smart factory signaling, normally distributed
packet arrival intervals (u = 320us, 0 = 65us) and normally
distributed sizes (u = 1100, 0 = 40b) are implemented [15].
The packets of real-time gaming usually have small packet
sizes and sparse arrival intervals. To model telehealth traffic, the
packet size follows Poisson distribution at the rate of 300Mpbs
and packets will occur at every TTI.

B. Scheduling and Resource Allocation Rules

The action of the DRL-based scheduler is to select the optimal
resource allocation rule for the current TTI. The candidate
rules are summarized in Table III. Different rules have different
scheduling objectives [16], [17]. In Table I1I, the first rule targets
to maximize the signal to interference and noise ratio (SINR)
based on UE channel conditions. The proportional fair (PF) rule
considers the trade-off between fairness and spectral efficiency,
and it is aware of the channel condition and transmission history
of UEs. The exponential (EXP) rule uses an exponential function

OFDM AND RG NUMEROLOGIES

Numerology, u 4
Subcarrier spacing 240kHz
Effective subcarrier number 840/2048
Effective bandwidth 201.6MHz
Number of symbols per TTI 8
TTI duration 35.4us
RB size 12 subcarriers

SRB/60 subcarries
RG size in time 2 symbol duration
Number of RGs per TTI 56
Modulation QPSK/16QAM

RG size in frequency

to take into account channel condition, spectral efficiency, HoL
latency, and QoS requirements. Similarly, the LOG rule utilizes
a logarithmic function to evaluate these factors. In both EXP
and LOG rules, flows are prioritized when their HoL delays are
approaching the delay deadline. The implementation details can
be found in [17]. In the proposed DRL algorithm, the action at
each TTTis optimized with respect to different traffic and channel
conditions. For example, max-SINR rule may be favored over
LOG rule when the channel condition suddenly deteriorates.

C. Experimentally Collected Mmwave Channels

The experimental testbed setup to obtain the mmWave chan-
nel information is depicted in Fig. 5, in which two UEs are
accessing one RRU through RoF-mmWave uplinks consisting
of 1m wireless link and 15km SMF. Due to the devices available
in the lab, there are two UEs and four flows tested in the
system without loss of generality. In reality, more UEs can be
implemented when needed. The UE-flow mapping is indicated
in Table II. For each UE, the EVM of each RB will be measured
and converted to SINR as a channel quality parameter for the
scheduling processing. For more efficient processing, RBs are
grouped to a RG when being allocated. Subcarriers and sym-
bols in one RG have the same QAM modulation. The OFDM
numerology and frame design are based on 3GPP 5G specifica-
tion [18]. The OFDM and RG numerology are summarized in
Table IV.

In the experiment, the operating mmWave frequency is
54GHz, generated by quadrupled 13.65GHz RF sources.
OFDM waveforms synthesized by the AWG will be modulated
to the mmWave carriers through electrical mixers. The mmWave
signals are then amplified and radiated by horn antennas. At the
receiver side, a horn antenna will capture the signals, followed
by an envelope detector that down-converts the signal to the
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Fig. 5. Experimental testbed for mmWave channel measurement.
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Fig. 6. BER performance versus ROP in back-to-back (B2B) and fiber trans-

mission scenarios.

baseband. For RoF mobile fronthaul transmission, the signal is
converted to the optical domain through a directly modulated
laser (DML) and converted back to the electrical domain by a
photodetector (PD) after fiber transmission. Finally, the received
signal will be collected by an OSC for digital signal processing.

The BER versus received optical power (ROP) performance
of the testbed is shown in Fig. 6. For the channel measurement,
the testbed is set at the optimal operating condition (ROP = —1.5
dBm). To realize the dynamic channel conditions of mmWave
links such as reflection, blockage, and reduced transmission
power, channel variation is introduced for UE2. The channel
of UE2 is measured with three conditions: i) LoS link; ii) the
link is 1/4 blocked (slightly blocked); iii) the link is 1/2 blocked
(severely blocked), while UE1 always has an LoS link. The
channel SINR is shown in Fig. 7, which is calculated from
experimentally obtained EVM [19]. In the scheduling process,
each channel condition will last for 50 TTIs and randomly
switch to the next condition. Different channel conditions and
rule selection will lead to different BER performance. Upon
decoding the received signals, the scheduler will check the
packet BER per flow. If the BER exceeds the pre-set threshold

O UE1 <1 UE2-1/4
UE2-LoS O UE2-1/2
12 : : . .
0 200 400 600 800

Subcarrier Index

Fig.7. SINR per subcarrier of both UEs using 16QAM in different scenarios.

TABLE V
DRL HYPER-PARAMETERS

Number of episodes 1000 || Experience replay length | 106
Number of steps per episode | 1000 Discount factor 0.99
Batch size 64 € decay d 10—4
Sequence length 20 Learning rate 104

ETy (weuse ETy = 6.9 x 1074,V f, considering forward error
correction [20]), re-transmission will be triggered and the overall
packet latency will hence become longer.

IV. EVALUATION AND DISCUSSION

We create a DQN agent with recurrent neural network (RNN).
There are three hidden layers between the input layer and the
output layer: two dense layers and one long short-term memory
(LSTM) layer, which have 30, 20, 16 neurons, respectively.
The hyper-parameters of the DQN are summarized in Table V.
The convergence plot of the training process is presented in
Fig. 8(a). It can be seen that after around 600-episode training,
the reward starts to converge. Considering the episode duration,
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the convergence time will be approximately 21 s if the compu-
tational resources are sufficient such that the processing time
is less than the designed value. In a real-world application, the
convergence time will depend on the hardware capability. The
episode duration is dependent on the design of the system and
can be modified as required by the traffic and channels, and
the computational power at the CU/DU processing units. Also
note that once the agent is trained, the computation time for
inference is negligible. The model is also adaptive to moderate
channel or traffic variations, which will be introduced later in the
section. With such alevel of variations, the agent does not require
additional time for re-training. The fluctuation of the converged
reward is caused by the randomness of the traffic patterns as indi-
cated in Table II. Generally, the maximum average reward (1000)
per episode can be achieved if the traffic load is light. However,
in that case, the DRL agent can randomly choose any action to
fulfill the latency requirements. Therefore, the traffic load in the
paper is set to a heavier case to exploit the advantages of DRL.

We define a test run as the scheduling over 1000 TTIs with
randomly generated request patterns based on Table II. The DRL
agent is tested for 100 test runs, and the performance is evaluated
and compared to the four single-target resource allocation rules
listed in Table III. The case of randomly selecting rules TTI-by-
TTI is also presented as a reference ('Rand’). A higher reward
value indicates lower percentages of latency-failure packets, as
indicated in (14). Fig. 8(b) presents the average reward of 100 test
runs using different scheduling and resource allocation schemes.
It can be seen that the proposed DRL algorithm can achieve
an average reward of » = 0.91. If we assume all the packets
as from an effective ‘flow,” the effective number of packets M

and L can be used to calculate reward as r = 1 — %, and the
effective ratio of latency-satisfied packets will be 5+ = 757 i

1 1
L - —
L1~ d-09n+1

LOG rule can achieve the best reward of 0.8 1. The proposed DRL

= 92%. However, among single-rule cases,

algorithm can achieve 12% average reward improvement in com-
parison. Fig. 8(c) shows the number of times for each scheme
to achieve the highest reward. Compared to other single-target
schemes, the proposed DRL algorithm predominantly achieves
the highest reward for 93 times out of 100 test runs.

We also investigate the BER and latency performance of the
DRL-based scheduling. We select one test from the 100 test runs
for result visualization. Fig. 8(d) shows the average BER of all
packets for each resource allocation scheme, the proposed DRL
scheme can achieve the second-best BER performance, only
worse than the max-SINR scheme whose target is to minimize
BER. Fig. 8(e) shows the ratio of QoS latency-satisfied packets
per flow (%—;) for all schemes. Compared to latency-aware LOG

and EXP rules, the DRL algorithm is able to improve %{ of f3
and f4 (from UE2 with channel variation, for UE-flow mapping,
see Table II), without sacrificing the performance of f1 and
f2 (from UE1 with stable LoS links). Regarding the issue of
allocation fairness, it can be seen that there are small ratio value
differences within one UE, (between f1 and f2, between f3
and f4), indicating flows are assigned with similar portions
of RGs based on the requested amount using the proposed
algorithm. The differences in ratios are ultimately influenced
by the channel quality but not the inter-flow latency threshold
differences. Overall, the proposed DRL algorithm can jointly
optimize BER and latency performance.

Fig. 8(f) presents the rule selection per TTI with respect to
the channel variation of UE2. The blue curve indicates the SINR
fluctuation of UE2, from which it is shown that each channel
state lasts for 50 TTIs. As the rule selection can be jointly
affected by the channel variations and flow request patterns,
it can be seen that the pattern of rule selection synchronizes
well with the channel SINR variation. The results show that
the DRL system can react adaptively to channel condition
variations.
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V. CONCLUSIONS

A DRL-based scheduler operating with both latency and chan-
nel condition awareness is proposed and verified for service-
oriented multi-user mmWave RANSs. The operation of the DRL
scheduler is verified with experimental validation of RoF-
mmWave channel conditions and variations, as well as various
service flows with different QoS requirements. Among all the
test runs, the DRL algorithm predominantly achieves the highest
reward, providing at least 12% average reward improvement
compared to other single-target schemes. Results also show that
the proposed DRL system can operate adaptively with channel
variations and jointly optimize BER and latency performance
simultaneously. The proposed DRL system has been demon-
strated as a promising AI/ML-based technique that is applicable
to the post-5G RAN systems.
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