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DRL-Based Channel and Latency Aware Radio

Resource Allocation for 5G Service-Oriented

RoF-MmWave RAN
Shuyi Shen , Ticao Zhang , Shiwen Mao , Fellow, IEEE, and Gee-Kung Chang , Fellow, IEEE

Abstract—A channel and latency aware radio resource allocation
algorithm based on deep reinforcement learning (DRL) is pro-
posed and evaluated. The proposed scheme aims to optimize the
uplink scheduling for service-oriented multi-user millimeter wave
(mmWave) radio access networks (RAN) in the 5G era. In the DRL
system, multiple application flows are implemented with various
statistical models and the key function modules of the system
are designed to reflect the operation and requirements of service-
oriented RANs. In particular, the mmWave channel characteristics
utilized in the system are collected experimentally and verified via
a radio-over-fiber (RoF)-mmWave testbed with dynamic channel
variations. Results show that the proposed DRL algorithm can
operate adaptively to channel variations and achieve at least 12%
average reward improvement compared to conventional single-rule
schemes, providing joint improvement of bit error rate and latency
performance.

Index Terms—Deep reinforcement learning, radio resource
allocation, scheduling, millimeterwave.

I. INTRODUCTION

R
ADIO access networks (RAN) in the 5G New Radio and

beyond are envisioned to be service-oriented, supporting

multiple users and various applications with different quality-

of-service (QoS) requirements [1]. In addition to capacity and

speed requirements, latency becomes an important performance

benchmark, especially for time-sensitive data traffic. Applica-

tions such as video streaming, low-latency gaming, and real-time

services including robotic control, intelligent factories, tele-

health will have different delay and reliability requirements [2].

As a result, for simple pre-scheduling or fixed radio resource

allocation schemes used in legacy wireless communication net-

works, it will be challenging to manage the increased QoS com-

plexity while providing operational flexibility and efficiency.
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Currently, millimeter wave (mmWave) links are implemented

for 5G RANs, which can result in dynamic channel condi-

tions that add to the complexity of radio resource management

(RRM) [3]. Although mmWave can provide wide bandwidth and

high capacity, it is subject to less diffraction in beam propagation,

high Friss path propagation loss and atmospheric absorption

loss. For example, mmWave operating in the frequency range

of 24.25 to 52.6 GHz is standardized as Frequency Range 2

(FR2) by 3GPP Release 15 [4]. In outdoor environments, such

mmWave links can experience abrupt signal strength variations

due to raindrops, moving pedestrians, or vehicles [5]. Whereas

inside a smart factory, mmWave links are susceptible to line-of-

sight (LoS) blockages caused by moving robots or stock boxes.

Considering both complex QoS objectives and dynamic chan-

nel conditions, the needs of agile and adaptive radio resource

scheduling and allocation are urgently anticipated in 5G and

beyond RANs.

To tackle the challenges, research works have been reported

to develop intelligent radio resource allocation and scheduling.

In [6], deep reinforcement learning (DRL) is utilized to optimize

resource block (RB) allocation in a mmWave mobile backhaul.

In the work, capacity is the optimization objective and the DRL

action is the direct RB allocation and user mapping, which can be

extremely complicated if the RB space scales up. In [7], Markov

decision process (MDP) is used to model the operations of a mo-

bile edge computing (MEC) system. Considering random task

arrivals and channel state variations, the method can optimize

power consumption while meeting the latency requirements.

However, only a single user is considered in the work, which

is not sufficient because multi-user contention and management

are required to solve the scheduling problem. In [8], the authors

implement deep deterministic policy gradient (DDPG) for radio

resource scheduling in a 5G RAN, taking multiple users, varied

channel conditions, and random traffic arrivals into account. Bit

error rate (BER) and delay are jointly considered. The limitation

of the work is that only Poisson distribution is used to model

the arrival patterns of user equipment (UE), despite the diverse

application arrival patterns in reality.

In this paper, we utilize DRL to achieve both delay and

channel condition aware packet scheduling and radio re-

source allocation in the uplinks of a service-oriented mmWave

RAN. In DRL, an agent interacts with the environment and

aims to optimize the decision-making process. This fits well

with the requirements of a scheduling process, which makes
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Fig. 1. System architecture design in 5G environment. (Rqst: Request; Ch:
Channel.).

prioritization and resource allocation decisions based on the re-

quest patterns and channel conditions. The schematic diagram of

the system is depicted in Fig. 1. The system will consider multi-

user multi-service scenarios with different QoS requirements, to

jointly optimize BER and latency. Furthermore, the system takes

channel variations into account by varying mmWave link condi-

tions including LoS and none-LoS (NLoS) blockages. Channel

characteristics in this work are experimentally collected via a

radio-over-fiber (RoF)-mmWave testbed and then implemented

in the DRL system. Based on the provided state information

which includes service queue status, application request patterns

and priority levels, as well as channel quality indicators, the

DRL-based scheduler will take the decision action to choose the

optimal scheduling and resource allocation rule.

The main contributions of the paper are summarized as

follows:

1) We establish a DRL framework for joint BER and latency

optimization for time-sensitive traffic in a service-oriented

5G system subject to mmWave channel variations. Differ-

ent statistical models are implemented for the arrival inter-

vals and packet sizes of diverse applications. Conventional

request-grant cycles of the uplink scheduling process are

implemented, taking into account possible congestion and

queuing delay under heavy traffic load. In addition, we

design and formulate the state and reward of the DRL

scheduler such that it will reflect queue status, channel

variations, and service-customized latency performance

based on QoS requirements.

2) In our previous work [9], direct RB allocation mapping to

UE is implemented as DRL actions. Through our investi-

gation, we find that such straightforward action design can

cause extreme complexity and require huge computational

resources if used in a multi-user wide-band mmWave

RAN. Therefore, re-design of the action is required to

improve the convergence efficiency. The action of the

proposed DRL-based scheduler is to select the optimal

resource allocation rule regarding the current transmission

time interval (TTI). A similar scheme is also adopted in [8].

3) In contrast to most of the previous DRL-related works

with only simulation results, the mmWave channel char-

acteristics utilized in the proposed system are experimen-

tally collected and verified via a mmWave testbed with

RoF-enabled mobile fronthaul. In this work, photonic-

assisted mmWave generation is implemented to achieve

wide-bandwidth transmission and experimentally verified

channel variations. To realize the channel conditions of

Fig. 2. Uplink scheduling: the request-grant cycle.

mmWave links such as reflection, blockage, and reduced

transmission power, channel variation is introduced in the

scheduling process.

The paper is an extension of our recent work published in [10],

with expanded research results validated by comprehensive

system design, theoretical analysis, and experimental demon-

stration. The remainder of this paper is organized as follows.

Section II introduces the framework and design of the DRL algo-

rithm with the illustration of the scheduling process. The system

architecture is illustrated in Section III, with implementation

details of the component modules. In particular, the mmWave

channel demonstration is presented. The evaluation of the DRL

system and results are analyzed and discussed in Section IV,

which covers the DRL training process and the performance

comparison with conventional schemes. Finally, the conclusions

are summarized in Section V.

II. SCHEDULING PROCESS AND DRL SYSTEM DESIGN

We consider the uplink transmission of a mmWave remote

radio unit (RRU) supported by RoF mobile fronthaul as shown

in Fig. 1. The system is flow-oriented and involves multiple

UEs that are using applications with different QoS requirements

and experiencing different channel conditions. One UE can have

multiple active services/flows simultaneously.

The scheduling process follows the request-grant cycles that

are widely implemented in mobile communication networks,

which is depicted in Fig. 2. During the scheduling process, at

each TTI, UEs will firstly request transmission opportunities

before actual data transmission. The scheduler located in the

central unit (CU) or distributed unit (DU) will process the

requests and then distribute the uplink (UL) grants. Not all

requests can be satisfied especially when the traffic load is heavy,

which may cost additional queuing delay, as indicated by Fig. 2

at point f. The UEs will then prepare and send the data packets

using the allocated RBs. In our system, upon receiving the uplink

data the scheduler will check the pre-forward-error-correction

(pre-FEC) BER of the received data which determines whether

re-transmission (Re-Tran) is required as illustrated in Fig. 2. In

a real system, the scheduler may send hybrid automatic repeat

request (HARQ) or NACK accordingly. For simplicity, the queu-

ing delay is considered only for the original data transmission,

while not for the re-transmission, i.e., guaranteed resources for

re-transmissions are assumed in the system.
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Let U = {1, 2, . . . , U} denote the set of UEs and F =
{1, 2, . . . , F} denote the set of flows. F is the total number

of flows and U is the total number of UEs. One UE can have

multiple active flows. If a flow f ∈ F belongs to an UE u ∈ U ,

then v(f) = u, indicating the corresponding UE u of flow f .

B = {1, 2, . . . , B} is the set of resource groups (RG) for allo-

cation. RG is grouped RBs sharing the same modulation order,

the design of which will be explained in Section IV. The total

number of RGs is B. At TTI t, the capacity of the RG b ∈ B
corresponding to flow f is Cf,b(t), as different UEs can have

different channel conditions. Actually, Cf,b(t) is determined

by Cu,b(t) given the flow to UE mapping. Similarly, Ef,b(t)
denotes the BER of the RG b corresponding to f , which will

be calculated from the experimentally measured error vector

magnitude (EVM).

In the flow-oriented system, different flows will have different

packet sizes and arrival intervals. At TTI t, the requested data

size of flow f is Yf (t). The requested packets will be stored in

the corresponding queue. At TTI t, the queue length of flow f is

Qf (t), which is determined by the queue length of the last TTI

(t− 1), the new arrival of requests Yf (t), and the granted data

size Gf (t) at this TTI:

Qf (t) = Qf (t− 1) + Yf (t)−Gf (t) (1)

in which Gf (t) ≤ (Qf (t− 1) + Yf (t)). The granted data size

of each flow is determined by the resource allocation scheme,

which can be calculated by:

Gf (t) =

B
∑

b=1

xf,b(t) · Cf,b(t) (2)

where xf,b(t) is the allocation indicator. xf,b(t) = 1 if flow f is

assigned with RG b at TTI t, otherwise xf,b(t) = 0. The unit of

Cf,b(t), Qf (t), Yf (t), and Gf (t) is the unit RG capacity.

Let Nf (t) denote the number of packets of flow f that have

been requested from t = 1 to t. Nf denotes the total number

of requested packets of flow f . Ef (j) denotes the received

pre-FEC BER of packet j from flow f . The pre-FEC BER

threshold of flow f is ETf . Packets with Ef (j) > ETf will

be re-transmitted, which will cause extra delay. mf (t) is the

number of latency-satisfied packets from flow f at TTI t, which

are scheduled packets with the overall latency satisfying the

delay budget requirement Df . Therefore, the total number of

latency-satisfied packets of flow f will be Mf =
∑T

t=1 mf (t).

A. Problem Formulation

The objective of the system is to optimize the mmWave

resource allocation and scheduling so that the average ratio of

latency-satisfied packets (
Mf

Nf
) will be maximized. To facilitate

the DRL reward design which will be discussed in Section II-C,

here the harmonic mean H(
Mf

Nf
) is considered. Different from

the arithmetic mean widely used, the harmonic mean tends to

emphasize the impact of small outliers [11], which is desired in

a scheduling problem as we want to avoid flows with a very low

ratio of latency-satisfied packets. The ratios of latency-satisfied

packets are utilized so that the flow-specific latency thresholds

are used as benchmarks only within one flow, other than shared

across all the flows, to avoid unfairness in resource allocation.

We formulate the problem as follows:

max
xf,b(t)

H

(

Mf

Nf

)

=

⎛

⎝

1

F

F
∑

f=1

(

Mf

Nf

)−1
⎞

⎠

−1

(3)

s.t. xf,b(t) ∈ {0, 1}, ∀f, b, t (4)

F
∑

f=1

xf,b(t) ≤ 1, ∀b, t (5)

where (4) shows that RG assignment variables are binary, and

(5) suggests that each RG can only be assigned to one flow.

The solution of (3) aims to find the best resource allocation

at each TTI for all flows and RGs. This problem is difficult

for the following reasons: i) constraints (4) and (5) makes the

problem combinatorial; ii) the number of RGs and the number of

flows can be very large, which makes the optimization problem

more challenging; iii) the objective does not have closed form

expressions in terms of xf,b(t). A direct optimization is difficult.

To solve ii) and iii), instead of directly deciding xf,b(t), the

action of the proposed DRL-based scheduler is modified to select

the optimal scheduling and resource allocation rule for each

TTI, which will determinexf,b(t) following different scheduling

objectives. LetP = {p1, p2, . . . , py} denote the set of candidate

rules. At TTI t, the selected rule is P (t) ∈ P . The problem

becomes:

max
P (t)

⎛

⎝

1

F

F
∑

f=1

(

Mf

Nf

)−1
⎞

⎠

−1

(6)

with P (t) satisfying constraints (4) and (5).

B. DRL Framework

In (1), the queue length of flow f at TTI t is determined by

the queue length of the last TTI Qf (t− 1), the requested data

Yf (t), and the granted data size Gf (t). The scheduler will make

the decision based on the observation of channel conditions,

queue status, and request patterns. The decision-making is partly

random due to the arrival request patterns and partly depen-

dent on the available resource allocation rules in the scheduler.

Therefore, the queue state (1) can be modeled as a Markov

decision process (MDP) [9]. We use Q-learning algorithm, the

most widely used reinforcement learning method, to solve the

MDP problem. Considering a large number of RGs and flows,

dynamic optimization environment and targets, a deep neural

network (DNN) is used in the proposed system instead of a

conventional Q-table. The deep Q network (DQN) will be trained

to reflect the mapping between the state and action spaces during

the DRL process.

In the proposed DRL-based scheduling algorithm, we define

the period of time in which the interaction between the agent

and the environment takes place as an episode, and each TTI t

corresponds to a step of an episode. The state space of flow f at

TTI t includes the head-of-line (HoL) latency of the top packet in
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Algorithm 1: BER and Delay Aware Scheduling Algorithm

Based on DRL.

1: if training then

2: Initialize environment and generate traffic patterns

3: Initialize the time, states, action and replay buffer K
4: for each episode do

5: for each TTI t do

6: Load the status of the RGs

7: Observe state s(t) as shown in (7)

8: ε = max(ε · d, εmin)
9: Sample r ∼ U(0, 1)

10: if r ≤ ε then

11: select an action a(t) ∈ A randomly

12: else

13: Select an action a(t) using (11)

14: end if

15: Compute the reward r(t)
16: Observe the next state s

′

17: Store the experience (s(t), a(t), r(t), s′) in K
18: From K, sample a random minibatch of K

experiences: {ek ≡ (sk, ak, rk, s
′
k)}.

19: Set yk = rk + γmaxa′Q(sk,
′ a′ | θQ), ∀k

20: Perform the gradient optimization on loss

L = 1
K

∑K
k=1(yk −Q(sk, ak | θQ))

2 to get the

optimal θ∗
Q

21: Update θQ from θ
∗
Q, with the target method

22: t = t+ 1
23: s(t) = s

′

24: end for

25: end for

26: save θQ and the agent

27: else

28: Load the agent

29: Observe the state and output the action using (11)

30: end if

the queue, denoted by sf,1(t); the requested data size sf,2(t) =
Yf (t); the flow priority indicator sf,3; and the capacity (spectral

efficiency) of all RGs sf,4(t) = {Cf,b(t), ∀b}. The state at t can

be expressed as:

s(t) = {s1(t), s2(t), . . . , sF (t)} (7)

where sf (t) is the observed state of flow f :

sf (t) = {sf,1(t), sf,2(t), sf,3, sf,4(t)} (8)

From (7) and (8), the size of s(t)will be 3F +BF , or 3F +BU

if we consider one UE may have multiple flows. The state size

is dependent on the number of RGs and UEs, from which it can

be seen the computational complexity increases with available

bandwidth resources and the number of users.

In our previous work of DRL scheduler which aims to op-

timize delay with a small RB space [9], the action is defined

as the choice of xf,b(t). In this case, the size of action space

will be |A| = FB which will be extremely large in a multi-flow

wideband system. As analyzed in Section II-A, to cope with the

Fig. 3. Illustration of packet and queue status.

large RG space and the service-oriented QoS requirements, the

action space A in the proposed scheduler consists of resource

allocation rules that have been widely investigated and imple-

mented by network operators with different scheduling targets,

i.e., A = P . The size of the action space reduces to |A| = |P|,
which are independent of B and F , therefore improving the

convergence efficiency.

In the learning process, the DQN agent will maintain a critic

Q(s, a), which takes observation of state s(t) and action a(t) as

inputs and returns the expectation of the long-term reward:

Q(s(t), a(t) | θQ) = E

[

∞
∑

i=0

γir(t+ i) | s(t), a(t)

]

(9)

where r(t+ i) is the instantaneous reward, γ is the discount

factor, and θQ represents the parameter values of the DQN. The

long-term reward is:

R(t) =

∞
∑

i=0

γi · r(t+ i) (10)

The training and testing algorithm is illustrated in algorithm 1.

Q(s, a) is initialized with random parameters θQ and will peri-

odically update over the training process as it interacts with the

environment. At each step or TTI t, with probability ε which

updates with decay rate d, the system will randomly generate an

action, otherwise, it will observe the current state and select the

action with the greatest Q-value:

a(t) = argmax
a(t)∈A

Q (s(t), a(t) | θQ) (11)

After taking a certain action, the system calculates the instanta-

neous reward r(t) and observes the next state s
′. The transition

experience (s(t), a(t), r(t), s′) is stored in a replay memory K.

After that, a random minibatch ofK experiences will be selected

for the optimization and update of θQ.

C. Reward Design

One key step of DRL design is to customize the reward

function for the desired target. In this work, the problem is to

optimize (6) with restrictions (4) and (5). The reward of the DRL

system is designed as follows. At each TTI t for each flow f , all

packets that have been requested will be categorized into four

types as depicted in Fig. 3. For flow f at TTI t, the total number

of requested packets is Nf (t); for those packets that have been
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Fig. 4. The architecture and modules of the mmWave-RoF testbed with DRL-based scheduler.

scheduled, the total number of scheduled packets whose latency

satisfy the service latency requirement Df is Mf (t), the total

number of packets whose latency exceed Df is Lf (t); for the

packets in the queue waiting to be scheduled, the total number

of packets whose queuing time already exceed delay budget Df

is Wf (t). The reward of flow f at TTI t is defined as:

rf (t) = 1−
Lf (t)

Mf (t)
−

2Wf (t)

Mf (t)
(12)

In (12), the second term −
Lf (t)
Mf (t)

reflects negative feedback

if the current scheduling method has resulted in too much

latency, whereas the third term −
2Wf (t)
Mf (t)

with the weight fac-

tor 2 indicates more significant negative feedback to prevent

latency-failure packets from queuing up and leading to large

queuing delay. In (12), Mf (t) rather than Nf (t) is used for the

denominator to reduce the influence of random packet arrival,

therefore the reward can better reflect the scheduling efficiency.

Channel conditions can influence the reward as poor BER will

lead to re-transmissions which cause extra latency. The overall

reward of TTI t is the weighted sum of rf :

r(t) =
1

F

F
∑

f=1

rf (t) (13)

If there are no new requests, at the end of the scheduling process,

the third term in (12) will vanish as all packets have been

processed (Wf = 0):

r =
1

F

F
∑

f=1

rf =
1

F

F
∑

f=1

(

1−
Lf

Mf

)

(14)

With all packets scheduled, we have Lf = Nf −Mf , then (14)

is equal to:

r =
1

F

F
∑

f=1

(

1−
Nf −Mf

Mf

)

=
1

F

F
∑

f=1

(

2−
Nf

Mf

)

= 2−
1

F

F
∑

f=1

(

Mf

Nf

)−1

(15)

TABLE I
DELAY COMPONENTS

When (15) is maximized, (6) is maximized accordingly, which

complies with the optimization objective.

III. OPERATION IMPLEMENTATION

The mmWave radio access testbed with DRL-based scheduler

consists of several key function modules as shown in Fig. 4. The

directions of arrows in Fig. 4 indicate the processing flow in

an episode that follows the request-grant cycle. The delays of

different stages in the scheduling process indicated in Fig. 2

are summarized in Table I. The delay parameters are based

on [12], in which 2km standard single-mode fiber (SMF) and

50m wireless distance is assumed.

In the system, the flow generation module will generate

packets based on different application types. The DRL agent

will take the decision action provided with the state information

from the flow generation module and the mmWave channel

module. In this work, mmWave channel information is obtained

through experimental measurement of multi-user RoF-mmWave

testbed instead of channel simulation. The mmWave channel

module consists of physical layer (PHY) orthogonal-frequency-

division-multiplexing (OFDM) processing module in the trans-

mitter and receiver side (Tx and Rx). An arbitrary wave gen-

erator (AWG) and a digital oscilloscope (OSC) are used in the

experiment to generate analog OFDM waveforms and to capture

the received waveforms for channel information extraction. The

detailed implementation of each module will be illustrated in

the following subsections.

A. Flow Generation Module

The DRL system involves multiple users that are using ap-

plications with different QoS requirements. One UE can have

multiple active flows simultaneously. For the flows implemented

in the system, the packet arrival pattern, QoS priority, delay
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TABLE II
FLOW PARAMETERS

budget, and other key flow-specific parameters are summarized

in Table II. There are four types of flows in the system. The

priority indicators listed in Table II are based on 3GPP QoS spec-

ification [13]. Service with a smaller priority value has higher

priority in the scheduling process. The priority value is a compo-

nent (sf,3) of the DRL state input. Among the applications, the

flow for robotics control (f1) has critical latency requirement

(1 ms) and high data rate [2]; the flow for conventional video

streaming or Web file transfer protocol (FTP) transmission (f2)

can tolerate more latency; the flow for serious gaming or smart

factory application (f3) also has critical latency requirement but

can be supported with moderate data rate; the flow for telehealth

(f4) such as telediagnosis and surgery may require latency on

the order of 1-10 ms with data rate around 100Mbps [2].

Different statistical models are employed for packet sizes

and arrival intervals to mimic flow behaviors in reality. For

time-sensitive traffic such as robotic control, the packet arrival

processes follow Bernoulli processes [14]. In the DRL system,

the probability of packet arrival is 0.8 for each TTI at the data rate

of randomly generated 300-350 Mbps to simulate control signal-

ing. The video streaming is abstracted from FTP models with the

file size using Log-normal variable (µ = 11, σ = 0.1, leading to

an average file size of 0.1Mb) [15]. The FTP file arrival interval

follows Poisson distribution with λ = 100 and packets are gener-

ated from each file accordingly. Flows following live streaming

video model can cause a significant queuing delay in upstream

transmissions due to the influx of FTP file packets. For real-time

gaming flows or smart factory signaling, normally distributed

packet arrival intervals (µ = 320µs , σ = 65µs) and normally

distributed sizes (µ = 110b, σ = 40b) are implemented [15].

The packets of real-time gaming usually have small packet

sizes and sparse arrival intervals. To model telehealth traffic, the

packet size follows Poisson distribution at the rate of 300Mpbs

and packets will occur at every TTI.

B. Scheduling and Resource Allocation Rules

The action of the DRL-based scheduler is to select the optimal

resource allocation rule for the current TTI. The candidate

rules are summarized in Table III. Different rules have different

scheduling objectives [16], [17]. In Table III, the first rule targets

to maximize the signal to interference and noise ratio (SINR)

based on UE channel conditions. The proportional fair (PF) rule

considers the trade-off between fairness and spectral efficiency,

and it is aware of the channel condition and transmission history

of UEs. The exponential (EXP) rule uses an exponential function

TABLE III
RESOURCE ALLOCATION RULES (ACTION SPACE)

TABLE IV
OFDM AND RG NUMEROLOGIES

to take into account channel condition, spectral efficiency, HoL

latency, and QoS requirements. Similarly, the LOG rule utilizes

a logarithmic function to evaluate these factors. In both EXP

and LOG rules, flows are prioritized when their HoL delays are

approaching the delay deadline. The implementation details can

be found in [17]. In the proposed DRL algorithm, the action at

each TTI is optimized with respect to different traffic and channel

conditions. For example, max-SINR rule may be favored over

LOG rule when the channel condition suddenly deteriorates.

C. Experimentally Collected Mmwave Channels

The experimental testbed setup to obtain the mmWave chan-

nel information is depicted in Fig. 5, in which two UEs are

accessing one RRU through RoF-mmWave uplinks consisting

of 1m wireless link and 15km SMF. Due to the devices available

in the lab, there are two UEs and four flows tested in the

system without loss of generality. In reality, more UEs can be

implemented when needed. The UE-flow mapping is indicated

in Table II. For each UE, the EVM of each RB will be measured

and converted to SINR as a channel quality parameter for the

scheduling processing. For more efficient processing, RBs are

grouped to a RG when being allocated. Subcarriers and sym-

bols in one RG have the same QAM modulation. The OFDM

numerology and frame design are based on 3GPP 5G specifica-

tion [18]. The OFDM and RG numerology are summarized in

Table IV.

In the experiment, the operating mmWave frequency is

54GHz , generated by quadrupled 13.65GHz RF sources.

OFDM waveforms synthesized by the AWG will be modulated

to the mmWave carriers through electrical mixers. The mmWave

signals are then amplified and radiated by horn antennas. At the

receiver side, a horn antenna will capture the signals, followed

by an envelope detector that down-converts the signal to the
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Fig. 5. Experimental testbed for mmWave channel measurement.

Fig. 6. BER performance versus ROP in back-to-back (B2B) and fiber trans-
mission scenarios.

baseband. For RoF mobile fronthaul transmission, the signal is

converted to the optical domain through a directly modulated

laser (DML) and converted back to the electrical domain by a

photodetector (PD) after fiber transmission. Finally, the received

signal will be collected by an OSC for digital signal processing.

The BER versus received optical power (ROP) performance

of the testbed is shown in Fig. 6. For the channel measurement,

the testbed is set at the optimal operating condition (ROP=−1.5
dBm). To realize the dynamic channel conditions of mmWave

links such as reflection, blockage, and reduced transmission

power, channel variation is introduced for UE2. The channel

of UE2 is measured with three conditions: i) LoS link; ii) the

link is 1/4 blocked (slightly blocked); iii) the link is 1/2 blocked

(severely blocked), while UE1 always has an LoS link. The

channel SINR is shown in Fig. 7, which is calculated from

experimentally obtained EVM [19]. In the scheduling process,

each channel condition will last for 50 TTIs and randomly

switch to the next condition. Different channel conditions and

rule selection will lead to different BER performance. Upon

decoding the received signals, the scheduler will check the

packet BER per flow. If the BER exceeds the pre-set threshold

Fig. 7. SINR per subcarrier of both UEs using 16QAM in different scenarios.

TABLE V
DRL HYPER-PARAMETERS

ETf (we use ETf = 6.9× 10−4, ∀f , considering forward error

correction [20]), re-transmission will be triggered and the overall

packet latency will hence become longer.

IV. EVALUATION AND DISCUSSION

We create a DQN agent with recurrent neural network (RNN).

There are three hidden layers between the input layer and the

output layer: two dense layers and one long short-term memory

(LSTM) layer, which have 30, 20, 16 neurons, respectively.

The hyper-parameters of the DQN are summarized in Table V.

The convergence plot of the training process is presented in

Fig. 8(a). It can be seen that after around 600-episode training,

the reward starts to converge. Considering the episode duration,
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Fig. 8. (a) Reward convergence of the training process. (b) The average reward of different rules for 100 test runs. (c) The number of runs with maximum reward

achieved per rule. (d) The overall BER per rule. (e)
Mf

Nf
per flow for different rules. (f) UE2 SINR variation and the corresponding rule selection per TTI.

the convergence time will be approximately 21 s if the compu-

tational resources are sufficient such that the processing time

is less than the designed value. In a real-world application, the

convergence time will depend on the hardware capability. The

episode duration is dependent on the design of the system and

can be modified as required by the traffic and channels, and

the computational power at the CU/DU processing units. Also

note that once the agent is trained, the computation time for

inference is negligible. The model is also adaptive to moderate

channel or traffic variations, which will be introduced later in the

section. With such a level of variations, the agent does not require

additional time for re-training. The fluctuation of the converged

reward is caused by the randomness of the traffic patterns as indi-

cated in Table II. Generally, the maximum average reward (1000)

per episode can be achieved if the traffic load is light. However,

in that case, the DRL agent can randomly choose any action to

fulfill the latency requirements. Therefore, the traffic load in the

paper is set to a heavier case to exploit the advantages of DRL.

We define a test run as the scheduling over 1000 TTIs with

randomly generated request patterns based on Table II. The DRL

agent is tested for 100 test runs, and the performance is evaluated

and compared to the four single-target resource allocation rules

listed in Table III. The case of randomly selecting rules TTI-by-

TTI is also presented as a reference (’Rand’). A higher reward

value indicates lower percentages of latency-failure packets, as

indicated in (14). Fig. 8(b) presents the average reward of 100 test

runs using different scheduling and resource allocation schemes.

It can be seen that the proposed DRL algorithm can achieve

an average reward of r = 0.91. If we assume all the packets

as from an effective ‘flow,’ the effective number of packets M̄

and L̄ can be used to calculate reward as r ≡ 1− L̄
M̄

, and the

effective ratio of latency-satisfied packets will be M̄
N̄

= M̄
L̄+M̄

=
1

L̄
M̄

+1
= 1

(1−0.91)+1 = 92%. However, among single-rule cases,

LOG rule can achieve the best reward of 0.81. The proposed DRL

algorithm can achieve 12% average reward improvement in com-

parison. Fig. 8(c) shows the number of times for each scheme

to achieve the highest reward. Compared to other single-target

schemes, the proposed DRL algorithm predominantly achieves

the highest reward for 93 times out of 100 test runs.

We also investigate the BER and latency performance of the

DRL-based scheduling. We select one test from the 100 test runs

for result visualization. Fig. 8(d) shows the average BER of all

packets for each resource allocation scheme, the proposed DRL

scheme can achieve the second-best BER performance, only

worse than the max-SINR scheme whose target is to minimize

BER. Fig. 8(e) shows the ratio of QoS latency-satisfied packets

per flow (
Mf

Nf
) for all schemes. Compared to latency-aware LOG

and EXP rules, the DRL algorithm is able to improve
Mf

Nf
of f3

and f4 (from UE2 with channel variation, for UE-flow mapping,

see Table II), without sacrificing the performance of f1 and

f2 (from UE1 with stable LoS links). Regarding the issue of

allocation fairness, it can be seen that there are small ratio value

differences within one UE, (between f1 and f2, between f3
and f4), indicating flows are assigned with similar portions

of RGs based on the requested amount using the proposed

algorithm. The differences in ratios are ultimately influenced

by the channel quality but not the inter-flow latency threshold

differences. Overall, the proposed DRL algorithm can jointly

optimize BER and latency performance.

Fig. 8(f) presents the rule selection per TTI with respect to

the channel variation of UE2. The blue curve indicates the SINR

fluctuation of UE2, from which it is shown that each channel

state lasts for 50 TTIs. As the rule selection can be jointly

affected by the channel variations and flow request patterns,

it can be seen that the pattern of rule selection synchronizes

well with the channel SINR variation. The results show that

the DRL system can react adaptively to channel condition

variations.
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V. CONCLUSIONS

A DRL-based scheduler operating with both latency and chan-

nel condition awareness is proposed and verified for service-

oriented multi-user mmWave RANs. The operation of the DRL

scheduler is verified with experimental validation of RoF-

mmWave channel conditions and variations, as well as various

service flows with different QoS requirements. Among all the

test runs, the DRL algorithm predominantly achieves the highest

reward, providing at least 12% average reward improvement

compared to other single-target schemes. Results also show that

the proposed DRL system can operate adaptively with channel

variations and jointly optimize BER and latency performance

simultaneously. The proposed DRL system has been demon-

strated as a promising AI/ML-based technique that is applicable

to the post-5G RAN systems.
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