
Sciunits: Reusable Research Objects
Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, Tanu Malik

School of Computing, DePaul University, Chicago, IL, USA
Email: dtonthat,gfils1,zhihao.yuan,tmalik1@depaul.edu

Abstract—Scientists often need to share their work. Typically,
their data is shared in the form of Uniform Resource Identifiers
(URIs) or Digital Object Identifiers (DOIs). Scientists’ work,
however, may not be limited to data, but can also include code,
provenance, documents, etc. The Research Object has recently
emerged as a method for the identification, aggregation, and
exchange of this scholarly information on the Web. Several
science communities now engage in a formal process to create
research objects and share them on scholarly exchange websites
such as Figshare or Hydroshare, but often sharing is not sufficient
for scientists. They need to compute further on the shared
information. In this paper, we present the sciunit, a reusable
research object whose contents can be re-computed, and thus
measured. We describe how to efficiently create, store, and
repeat computational work with sciunits. We show through
experiments that sciunits can replicate and re-run computational
applications with minimal storage and processing overhead.
Finally, we provide an overview of sharing and reproducible
cyberinfrastructure based on sciunits, increasingly being used in
the domain of geosciences.

I. INTRODUCTION

Recent requirements of scholarly communication increas-
ingly emphasize the reproducibility of scientific claims. Given
the computational nature of science, text-based research papers
are considered poor mediums to establish reproducibility. Pa-
pers must be accompanied by “research objects”— aggregation
of digital artifacts such as code, data, scripts, and temporary
experiment results — that together with the paper provide
an authoritative and far more complete record of a piece of
research.

Toward the goal of reproducibility, several tools have been
proposed to help researchers create research objects from a
variety of digital artifacts. [1] provides a comprehensive list
of these tools. Created research objects can be easily shared
on websites that disseminate scholarly information, such as
Figshare [2]. Once shared, however, the extent of reuse is
often subject to the amount of accompanying documentation.
If scanty, research objects may go unused. Research objects
themselves, once created, provide little computational guid-
ance to users as to how they should be reused, beyond simply
downloading them and browsing their contents.

In order for a research object to include computational
guidance for reuse, it must be created and maintained quite
differently than a research object created merely for sharing.
We provide two such distinctions using an example. Consider a
typical research paper with an analysis based on large amounts
of code and data, and assume that the researcher authoring
the paper has used the code and data to conduct a number of
experiments that produce the paper’s target figures and results.

The example paper’s digital artifacts relating to its exper-
iments may be bundled together in a medium such as a file
archive (.tar), compressed file format (.gz), virtual image, or
container. A shared research object is free to use any of these
mediums. A reusable research object, however, must use a
virtual image or container, since it must produce a “compu-
tational research object” that, when downloaded and shared,
will guarantee an instantly-executable unit of computation.

Metadata interspersed throughout the example project’s
written analysis and its code and data can take many forms,
including annotations, version information, and provenance.
A shared research object’s metadata usually serves a purely
informational purpose, and is seldom used literally in the
paper’s experiments. A reusable research object, however,
utilizes literal metadata by directly linking it to the code
and data of the experiments. In particular, provenance, if
collected in standard form, can guide different forms of
reusable analysis—exact, partial, or modified reuse. Keywords
and annotations can provide reference to additional datasets
for modified reuse. In other words, a reusable research object
can execute conditionally based on its embedded metadata,
instead of simply including it as a stand-alone digital artifact
that requires more interpretive labor to reason about and reuse.

In this paper, we describe the sciunit, a reusable research
object that has a lifetime beyond sharing. The sciunit does
not simply bundle digital artifacts, but includes computational
guidance that allows users to distinguish purely informational
digital artifacts from reusable digital artifacts. The reusable
artifacts are stored in containers. Similar to shared research
objects, users can attach additional annotations to describe
containers. Each container also incorporates associated prove-
nance, and users can use the included provenance to create
smaller containers or repurposed containers (i.e. they can
create arbitrarily new containers). These containers enable
exact or partial repeatability of the sciunit.

We use application virtualization (AV) methods to auto-
matically create a container of an executable application. In
AV, operating system calls during application execution are
traced to automatically copy all binaries, data, and software
dependencies into a container. The resulting container is
portable and instantly reusable in that it can be run on any
compatible machine1 without installation, configuration, or
root permissions.

While application virtualization facilitates more widely-
reusable research objects, one implication of using this method

1our method, like most other AV methods, is OS-specific



is that as multiple containers are bundled together into a
single sciunit, space consumption grows substantially due to
the duplication of digital artifacts, such as system dependen-
cies, common binaries, or even common data files in other
containers. A large digital artifact within two containers, but
that changes only slightly in content, will still consume its
full amount of space in each container. Additionally, two
slight variations of the same container will bundle copies of
common dependencies into each container. This growing space
is particularly of issue when a user shares different versions
of an analysis or pipeline. We show how multiple containers
can be stored efficiently in one sciunit using a common block-
based storage based on content deduplication techniques [3].

When a sciunit embedded with several instantly-reusable
containers is shared, guidance for using the containers must
also be provided. Included provenance information can help:
it can provide an overview of the overall workflow of the
container. However, if AV techniques are used to create the
container, the associated provenance information is usually at
the file and process level, making it difficult to quickly absorb.
We describe a technique that composes a graph temporally
and presents an intuitive spatial summary of a container’s
provenance information. The user can use parts of this graph
to create smaller containers that can be independently reused
and repurposed.

This paper makes the following contributions:
• We propose the sciunit, a reusable research object that

improves the conduct of scholarly communication. We
present a Python/C-based tool for creating, sharing, and
reusing sciunits.

• We describe application virtualization method to build a
container and show how it can be associated with a sciunit
for sharing and reuse.

• We show how content deduplication methods can be used
to efficiently store multiple containers in a single sciunit.

• We create an interactive provenance visualization that
allows the user to understand how containers within a
sciunit were built, and use the visualization for repeating
the container partially or modifying it.

The rest of the paper is organized as follows:
• Section II: evolution of research objects, and their cre-

ation and use in related applications.
• Section III: overall architecture of our work.
• Section IV: creating a container with embedded prove-

nance using application virtualization.
• Section V: storing multiple containers in a single sciunit
• Section VI: utilizing provenance within sciunits to repeat

and reproduce analysis.
• Section VII: optimizing the provenance graph.
• Section VIII: detailed experimental analysis.
• Section IX: conclusions.

II. EVOLUTION OF RESEARCH OBJECTS

Research objects are increasingly seen as the new social
object for advancing science [4]; research papers are mostly

used only for the dissemination of scholarly work, measuring
research impact, and assessing credit and attribution [5]. The
Research Object Model [6] is the most comprehensive standard
defining the concept of a research object as a bundle of
artifacts that provides the digital record of a piece of research.
The research object, when shared, serves as the proof of a
research outcome by supplying a more complete record of
the scientific claims made in the research paper. [7]. Due
to its academic origin, implementations of the standard have
primarily focused on structured workflow objects [8], [9],
[10], and have not yet encompassed general applications, i.e.,
application executed without a formal workflow system. In
this paper, we describe the sciunit client, a tool for creating
a research object that includes containers created during run-
time execution of an application.

To create a research object, digital artifacts must be placed
within it either manually with explicit commands such as those
used in RO-Manager [11] (a tool that uses the RO-Bundle
specification),[12] or automatically by using an application
virtualization tool such as Code, Data, and Environment (CDE)
([13], [14]) that containerizes an application as it executes. In
this paper, we have chosen the application virtualization tool
Provenance-To-Use (PTU) [15], [16], which is built on top
of CDE, to automatically capture provenance while creating
containers. We exclude more recent methods such as [17] that
necessitate a user to learn a new language, and instead focus
on the integration of devops tools in research objects.

Toward this we enhance PTU in two specific ways. First,
we extend it to include other research object digital artifacts
such as authoring information (files, annotations, PDFs) and
versioning information, conforming it the notion of a research
object that can be defined with more emerging standards such
as PAV [18] or OntoSoft [19] . Second, we give PTU the ability
to store multiple containers efficiently in the same research
object. While we haven’t described sciunits in terms of the
PAV or OntoSoft standard, the objective of this paper is to
determine how such a research object can be computationally
created, maintained, and reused for scientific experiments.

Recorded provenance can be made more conducive to new
analyses by summarizing it using statistical [20] and non-
statistical methods [21], [22]. Our sciunit client uses non-
statistical methods [23] to summarize a research object’s
provenance and extends the methods to visualize the sum-
marized provenance both spatially and temporally. We show
how our sciunit uses summarized provenance to build modified
containers that can be re-executed and analyzed.

Other methods to build and reuse containers such as Topol-
ogy and Orchestration Specification for Cloud Applications
[24] still rely on user creating the topology, relationship,
and node specifications, which are eventually translated to
Dockerfiles [25]. In our case, Docker is merely a wrapper for
standardization since application virtualization creates a self-
contained container and the translation to Dockerfiles from the
collected provenance is fairly straightforward.



Fig. 1. A conceptual view of the steps required to run the Food Inspection
Evaluation [26] predictive model.

III. ARCHITECTURE AND USE OF SCIUNITS

Our reference implementation is a client program that cre-
ates, stores, and executes reusable research objects. The client
and accompanying server-side infrastructure that stores and
manages sciunits forms a reproducible infrastructure, currently
in use within the geosciences domain in the United States
(http://geotrusthub.org). We use a real-world example from
this hub to highlight the architecture and design of the sciunit
client. We have intentionally kept the example small to be
presentable in the given amount of space.

Figure 1 shows a real-world example of a predictive model
used for forecasting critical violations during sanitation inspec-
tion [26]. The software consists of scripts written in different
languages (R, Python, and Shell) that operate on input datasets
acquired from the City of Chicago Socrata data portal [27].
The output of the predictive model is continually tested using
a double-blind retrodiction; The Department of Public Health
conducts inspections via its normal operational procedure,
which are compared with the output of the model. The analysis
is published here [28], the pre-processing code is shared on
GitHub [29], and the data is available on public repositories
[27]. Bundling these artifacts into a shared research object
would simply aggregate them into one package, and would
likely be inefficient given data from nine different sources,
which changes periodically, making analysis conducted within
a certain time range obsolete. A reusable research object,
alternatively, would only consist of the identifiers of one or
more re-executable containers, along with other listed digital
artifacts. Given a container, the user would be able to exactly
repeat the analysis for the given time frame as done by a data
scientist originally, and verify with the inspection data.

Our Python/C command-line interface (CLI) client is used
to build sciunits. Figure 2 shows a sample user interaction with
this client. The user instantiates a namespaced sciunit titled

Fig. 2. User interaction with sciunit client

myro, and can associate files and annotations with the sciunit
using CLI commands (in italics). To create a container within
the sciunit, bundling an application’s digital artifacts, the user
runs the application with the package command. The user
application can be written in any combination of programming
languages e.g. C, C++, Fortran, Shell, Java, R, Python, Julia,
etc. In our example, the application consists of the data pre-
processing scripts written in R and Python. Packaging an
application also incorporates provenance information. Many
such containers can be created within the same sciunit. We
describe the container creation process in detail in Section IV,
and discuss the content-based deduplication storage method
used for storing multiple containers in the same sciunit in
Section V.

The client works in a Git-like fashion in that the myro
sciunit is stored only locally unless it is explicitly shared with a
remote repository. This method of operation allows distributed
collaborators to work offline on the same sciunit. When a user
is ready to share, she can publish a container to a remote sci-
unit using the publish command, which instructs the client to
upload the container to a Web-based repository. The repository
reads the container’s contents, stores the container’s digital
artifacts in the appropriate remote sciunit, and associates the
container with an appropriate cloud execution server on which
it can potentially re-execute.

A container within the sciunit can be re-run directly from
the client, either locally on the local machine with the repeat
command, or remotely on a remote execution server with the
repeat remote command, as shown in Figure 2 (lines 6 and
7). In the remote case, the target container is downloaded
from a Web-based repository to a remote execution server,
and, if the container is compatible with the execution server’s
architecture, the execution server runs it and sends the results
back to the user. Both local and remote executions may
optionally be repeated as partial executions. This option will
be described in detail in Section VI. Finally, the user can
modify a container by downloading it, modifying its code or
data and running it locally, and then uploading the modified
container, at which point a new version of the container will
be stored in the Web-based repository.



IV. CREATING SCIUNITS

Application virtualization tools typically run in two modes:
an audit mode to create a container, and an execution mode
to re-run a container. In AV audit mode, a container of a
user application is created as the user executes the application
(in the context of auditing, such an execution is termed a
reference execution). We describe the audit process assuming
that the application is running on a Linux machine. During
execution, the Linux strace utility is used to monitor the
running application process. Strace internally attaches itself
to the process using the ptrace system call to monitor all the
system calls of the running process. It intercepts each system
call2 to determine the running process’ state and the arguments
to the system call. For example, when a process accesses a
file or a library using the system call fopen(), the fopen()
call is intercepted. The intercepted system call is “paused”
to examine input arguments and the process control block.
For instance, in fopen(), the file path parameter is extracted.
By intercepting all calls, AV auditing determines all3 program
binaries, libraries, scripts, data files, and environment variables
that a user program is dependent on. The audit process is
similar for Windows and macOS, except that different OS-
specific debugging utilities are used.

The system call pause time is brief, requiring only two
lightweight context switches added to the normal system call
flow; experiments show that the overhead of intercepting
system calls is minimal. During the pause, the identified
dependencies are used in two ways: first, to create a “sandbox”
application container that includes all identified dependencies,
and second, to create an interaction log of the reference exe-
cution. The sandbox container is named with a package hash
and placed in a special “root path” (as described in SectionV),
and contains all the dependencies that were identified during
the reference execution audit. The dependencies are placed
at the same path within the special root path as they were
identified in the original system. Figure 3 shows the contents
of a container. This path-mirroring has the side effect of
exposing user directories and file system layout when the
resulting container is reused. Thus, as a practice, creation of a
reusable research object is best done within a shared or public
namespace.

The interaction log generated during the AV audit phase
contains interactions between processes, or between processes
and files. Figure 4 shows part of an example interaction
log file. Since the log also stores the precise time of each
interaction, when evaluated cumulatively it therefore stores the
range of times that processes interacted with other processes or
with files. These times are available as user-revealable details
in the provenance graph, which is constructed by toplogically
sorting the interaction log.

2There are approximately 50 of such calls defined in the POSIX standard
3Not all program dependencies can be detected through this method. But

a program’s static dependencies are much simpler to gather using programs
such as file, ldd, strings, and objdump. Our client provides commands for
users to find additional dependencies and include them, if necessary.

Fig. 3. An example sciunit container

Fig. 4. An example interaction log file

In AV execution mode, the application is executed from
the container itself by monitoring its processes with strace,
interrupting application system calls and extracting their path
arguments, and redirecting all system call paths to paths within
the special root path of the sandboxed container. By redirecting
all application file requests into the container, the AV execution
method fools the application program into believing that it is
executing on the original audit-time machine with original file
paths [15].

The advantages of using the AV method are the ease
with which a reusable research object can be created, and
the machine-agnostic reuse that such an object affords. The
disadvantages of the method are that the generated provenance
is too fine-grained (at the file and process level) for ready
analysis, and that repeated containerization can lead to many
redundant files in the same research object. We address these
two concerns in the next two sections.

V. STORING SCIUNITS

A reusable research object may include many containers.
If the AV audit method is used on an application to create
a container for a sciunit, each time that same application is
audited all the same file dependencies of the application will



be copied into a new container. This copying takes place even
if the same dependencies were present in other previously-
created containers based on the same audited application.

One way to eliminate such dependencies is to check for
duplicate dependencies during the AV audit phase (i.e. when
the user uses the package command). However, this tactic
significantly slows the phase down. Our technique is to reduce
redundant storage deduplicates containers into a single storage
unit when each is published with the publish command. In this
section, we describe how such redundancies are detected, and
how the sciunit, when shared, makes use of this optimized
storage.

In content-based de-duplication [3], unique chunks of data,
or byte patterns, are identified and stored. New chunks are
compared to stored chunks, and whenever matches occur,
redundant chunks are replaced with small references that point
to stored chunks. To identify chunks in a file, data is usually
split into lines or into fixed-size blocks. These are useful ways
to split if the majority of files are text-based, and they are
commonly used in UNIX utilities such as diff and patch.
However, in our case, containers have many binary files,
and thus line-based or fixed-size chunking is very slow in
identifying duplication.

We use content-defined chunking that marks chunk
boundary points based on patterns in the data. Rabin
fingerprinting [30] detects patterns in data and determines
block boundaries using a sliding window that scans over the
data bytes and provides a hash value at each byte point, using
a recurrence relation defined as:

H(X(i,n))← (H(X(i−1,n)) +Xi −X(i−n)) mod M ,

in which n is the window size, X(i,n) represents the
window bytes at byte position ‘i’, and M is the total length
of the file. Using the recurrence relation, the hash value at
any position i can be cheaply computed from the hash at
position i − 1. There are two different ways of using this
algorithm to deduplicate data: find duplicate hashes simply
by iterating over all calculated hashes, or use a combination
of fixed-size and rolling hashes as used in rsync. We use the
former technique, since we expect each research object to
be fairly modest in size, unlike most storage systems where
rsync is commonly used.

Once rolling hashes have been computed from a file, and
a different block is detected, the difference itself can be be
stored either as a delta or as a distinct block. The delta
method is typically used when the predominant use case is to
efficiently obtain a specific version of a file. In our case, we
need to strike a balance between storing multiple overlapping
containers and storing versions of a single container. Thus we
choose the distinct block method, as shown in Figure 5, in
which all unique blocks across all containers, versioned or
not, are stored.

Given this optimization, a container then is just a sym-
bolic view over deduplicated storage, as shown in Figure 5.
However, for the user this optimized storage is opaque. The

Fig. 5. Block-based deduplication of containers

user still simply runs a specific container, and given multiple
containers, can use an included manifest to select a container
to run. Internally, the system first materializes the selected
container using the enumeration of blocks corresponding to
a container, and then executes the assembled container. We
would like to emphasize that the materialization is simply a
concatenation of blocks and requires no further processing.
This procedure is fundamentally different from a delta-based
mechanism that checks out each version iteratively.

VI. REUSING SCIUNITS

When a sciunit is published, the server distinguishes be-
tween the computational part (i.e. the application container)
and the non-computational part (i.e. the informational digital
artifacts) of the sciunit. The computational part is associated
with a cloud instance that can remotely execute the container
on user request. A new user can reuse a published sciunit in
one of three ways: (i) exact repeat-execution, (ii) partial repeat
execution, or (iii) modified repeat execution. To exactly repeat,
a container is simply downloaded and then run locally with
the repeat command, or run remotely with the repeat remote
command: the container will execute exactly as it did when it
was created with the package command. To partially repeat or
run a modified repeat, a container is downloaded, processed
for partial or modified execution, and then either run locally
or published to run remotely. We now describe the processing
required for partial and modified repeat executions in detail.

A. Partial Repeat Execution

To partially repeat, a user selects one or multiple processes
within a container. These processes are identified by their short
pathname or PID, and the user can also use the provenance
graph to aid in identification. While the provenance graph can
be quite detailed for a user to choose specific processes, in
Section VII we describe how a user can see a summarized
application workflow akin to the workflow presented in Figure
1 from the provenance graph. Thus, for example, using the
container from Figure 1, a user selects the processes “Calculate
violation” and “Generate model data” as the group of pro-
cesses to be partially repeated (starred in Figure 1). Since this
user-selected group of processes may not include all related



Algorithm 1: Build sub-container for partial execution

1 BuildSubContainer(selectedProcs, container):
2 subContainer = initialize(container)
3 allProcs = getAllProcs(container)
4 requiredProcs = getProcs(selectedProcs,

allProcs)
5 reqProcDeps = getDeps(requiredProcs)
6 foreach dep in {reqProcDeps} do
7 /*add dep to correct location in subContainer*/
8 add(dep, container, subContainer)

9 return subContainer

10 getProcs(selectedProcs, allProcs):
11 result = {selectedProcs}
12 foreach proc in {allProcs} do
13 foreach selProc in {selectedProcs} do
14 if isDescendant(proc, selProc) then
15 result = result ∪ proc
16 break

17 return result

18 getDeps(requiredProcs):
19 result = ∅
20 foreach reqProc in {requiredProcs} do
21 /*retrieve all related files and dependencies*/
22 deps = relevantResources(reqProc)
23 result = result ∪ deps

24 return result

processes needed for re-execution, we must calculate these
related processes, along with the data files they reference. The
calculated processes and files will constitute the new “partial
repeat” container or “sub-container.” Algorithm 1 shows the
procedure for building the sub-container. It starts with the
list of user-selected processes (selectedProcs), and progresses
to include all relevant processes and files by traversing the
lineage of the graph (Lines 10-16). The getDeps function
assumes that any intermediate data files, if included as de-
pendencies, still exist as generated from previous execution
runs. The execution of this algorithm ensures that the data
file “Heat map data,” generated from the previous run of the
process “Calculate heat map,” is included in the sub-container,
even though in the new partial repeat execution the process
“Calculate heat map” will not be re-executed.

B. Modified Repeat Execution

To run a modified repeat of a sciunit container, a user ex-
amines a downloaded container and determines how particular
computations within it should be modified (e.g. by modifying
certain sections of code or input data). The sciunit’s included
provenance graph aids this modification task greatly. Next the
user runs the modified container. To share the modification, the
user would simply run it with the package command, and then
publish it with the publish command. Enabling modification

through a visualization mode, in which users can specify
alternate processes or input data files assisted by a GUI, is
part of future work.

VII. PROVENANCE GRAPH VISUALIZATION

Provenance information generated by AV audit methods is
very fine-grained. A graph created from a complete set of
generated provenance, using normal visualization structures
such as tree or list representations, would be far too replete to
be of real practical value. When viewed, this graph would
present significant system-level detail that would inhibit a
basic comprehension of the overall application workflow. For
example, the intuitive workflow of Figure 1, consisting of 12
nodes and 13 edges, would be represented fully as a dense
graph of 146 nodes and 321 edges (Figure 6(a) shows a part
of this replete graph). Thus, to create a more intuitive graph,
we use a graph summarization method that condenses the low-
level details of the full generated provenance information. The
graph summarization method is explained in detail in [23],
and is briefly described in this section. We further describe
how we extend the summarization method to create a graph
that presents dynamic workflow cross-sections in a responsive
visual interface.

Given a directed graph G = (V,E), where V is the set of
vertices4 and E is the set of edges, we denote Input(u) and
Output(u) as the sets of input and output edges of vertex u.
Respectively, Input(u) = {e| ∃v ∈ V, e = (v, u) ∈ E}, and
Output(u) = {e| ∃v ∈ V, e = (u, v) ∈ E}. The direction
of an edge characterizes the dependency of its vertices. For
example, a process u spawned by process v is represented by
the edge (u, v), and a file u read by process v is represented
by the edge (v, u). The graph G is summarized based on the
following two rules:

Definition 1 (Similarity): Two vertices u and v are called
similar if and only if they share the same type and have the
same input and output connection sets: Type(u) = Type(v),
input(u) = input(v) and output(u) = output(v).

The similarity rule groups multiple vertices into a single
vertex if the vertices have same type and are connected by
the same number and type of edges. Additionally, edges of
similar vertices will be grouped into a single corresponding
edge. When applied to our provenance graph, this rule groups
different files in the same directory.

Definition 2 (Packability): A vertex u belongs to v’s
generalization set if and only if vertex u connects to v and
satisfies one of following conditions:

• Vertex u is a file that has only one connection to process
v: Type(u) = file and {∃!e | e ∈ E ∧ (e = (u, v)∨ e =
(v, u))}.

• Vertex u is a process that has only one output connection
to process v: Type(u) = process and {∃!e | e ∈ E∧e =
(u, v)}.

• Vertex u is a file that has only two connections – an out-
put connection to process v and an input connection an-

4in our graph, a vertex is of type ”file” or of type ”process”



Fig. 6. Graph summarization of a replete graph

other process x: Type(u) = file and {∃!(e1, e2) | (∃x ∈
V, v 6= x) ∧ (e1 = (u, v) ∈ E, e2 = (x, u) ∈ E)}.

The packability rule identifies hubs in the provenance graph
by packing files or processes that are connected by single
edges into their parent nodes. It also packs files that are
generated by a single process and consumed by a single
process into their parent processes by producing a process-
to-process edge.

Fig. 7. Expanded view of concealing node ”P R 27070.”

When applied in sequence, the similarity and packability
rules condense the detail-level of a graph while preserving
its core workflow elements. Figure 6 illustrates how apply-
ing these two rules to a replete graph produces a graph
summary that shows the primary processes in a workflow.
Figure 6(a) presents original provenance graph of a subset
of FIE workflow of Figure 1 consisting of the data processing
steps: “Calculate Viotation” and “Calculate Heat Map”. When
the rules are applied, it leads to the final graph in Figure
reffig:Graph Optimization(d), which is similar to the original
graph, except due to the nature of provenance data flow, is
presented upside-down.

To lay out the summarized graph, we adopt two visual-
ization techniques: scoping and annotation. In scoping, nodes
similar to each other or packed together are represented as sin-
gle nodes, which can be expanded on user action to reveal the
details they conceal. For example, in Figure 7, similarity and
packability rules group the nodes within the box into the single
node “P R 27070” (process 27070 runs a subprocess using
file “21 calulate violation matrix.R” and writes data to file
”violation data.Rds”). The expanded view within the box was
obtained by clicking on the concealing node “P R 27070”.
Here “Process G 5” is another concealing node hiding all the
dependencies of the R process calculating the violation matrix.

To further improve the layout of the graph, we use an
annotation method that assigns higher visualization precedence
to process nodes, but annotates them with corresponding file
nodes. Figure 6(d) shows how the annotation ‘File G 2’,
which is a library dependency used both by “P R 27070”
and “P R 27091” is attached to the two process nodes that
generated it. Thus, given a file with n edges (n ≥ 2), we
replace this file with n annotations. A user can always toggle
the expanded view to see how the file and process nodes were
originally connected. We choose to annotate files – instead of
processes – since an application workflow is typically defined
by the primary processes that it runs.

VIII. EXPERIMENTS

The true usefulness of sciunits can only measured by their
adoption. Efficiency of creating sciunits can be a driving force
in adopting the use of sciunits over traditional shared research
objects. When an efficiently-versioned, easily-created sciunit
is shared, along with an embedded, self-describing application
workflow, we believe the probability for resuse will greatly
increase. In this section, through two real-world complex
workflows, we show the time and space overhead of creating,
storing, and reusing sciunits.



Fig. 8. A conceptual view of the VIC workflow [31]

A. Use cases

We consider two real-world use cases for experimental
evaluation: (i) The Food Inspection Evaluation (FIE) [26]
Workflow, a computationally-intensive use case which has
been the running example in our paper, and (ii) the Vari-
able Infiltration Capacity Model, an I/O intensive data pre-
processing pipeline for a hydrology model (VIC) [31] taken
from GeoTrustHub.org. The two examples are interesting use
cases for reusable analyses. The first due to transparency in
inspection audits owing to open data movement within the
City of Chicago, and the second due to the popularity of
the VIC model in the Hydrology community with its data
preprocessing pipeline relying on heavily on legacy code and
begin notoriously difficult to reassemble.

Table I describes the details of the two use cases in terms
of programming languages uses, number of application source
code files, data and non-data dependencies, and the total size
of the application. From a conceptual view, Figure 1 shows
the application workflow for FIE and 8 shows the application
workflow for VIC.

With each use case, we assume a shareable model in that
some steps are assumed to be conducted independently by a
user, and subsequently shared with another user who builds
upon or forks the shared workflow and adds further to the
workflow. Thus the FIE workflow is broken into the following
sub-tasks: (i) FIE 0 Calculate only heat map on downloaded
data; (ii) FIE I Share heat map, re-run heat map and also
calculate violation to generate model data; (iii) FIE II Share
processed model data with analyst to apply specific model and
run cross-validation; (iv) FIE III Share the entire pipeline with
another user to repeat, who downloads data and reruns it. The
download is often the most time-consuming step.

All sciunit package and repeat experiments, along their
baselines of normal application runs, were conducted on a
laptop with an Intel Core i7-4750HQ 2.0 GHz CPU, 16 GB of
main memory, and a 1 TB SATA SSD, running the Arch Linux
operating system (current to the rolling release date of 20
June 2017). To more closely examine the purely disk-centric
performance of versioning and storing sciunit containers, on a
workstation with an Intel Core i7-3770 3.4GHz CPU, 8GB of
main memory, and a 1TB SATA HDD, running the Ubuntu

16.04 64bit operating system. The main sciunit client was
implemented in Python and C. Sciunit’s versioning tool was
written in C++, using the block-based deduplication tech-
niques proposed in [3] and [30]. Sciunit’s provenance graph
visualization was written in Python, using libraries from the
TensorBoard [32].

TABLE I
THE FOOD INSPECTION EVALUATION APPLICATION

FIE 0 FIE I FIE II FIE III
Language R R R R

# of Source files 19 20 24 29

# of Data files 2 8 14 14

# of Dependencies 255 255 411 659

Total size 133.2MB 178.4MB 289.7MB 306.6MB

Time for Execution 52.046s 238.833s 295.785s 7200s

TABLE II
THE VARIABLE INFILTRATION CAPACITY APPLICATION

VIC 0 VIC I VIC II VIC III
Language C, C++, Python, C shell, Fortran

# of Source files 35 61 77 97

# of Data files 3689 6313 11460 11481

# of Dependencies 247 260 314 357

Total size 1.2GB 1.3GB 2.2GB 2.3GB

Time for Execution 158.734s 306.069s 363.147s 377.29s

B. Overhead of Creating Sciunits

Table I and Table II present the normal execution times
of the two application tasks. Each application is divided into
several tasks (e.g. FIE 0, FIE I, FIE II, FIE III), or parts,
that must be run independently to produce the target compu-
tational results. We note that each application encompasses
substantial resources (in the form of code and data), has many
external dependencies, and is also characterized by lengthy
CPU-and-memory-intensive tasks. Additionally, the nature of
FIE’s processing tasks differ significantly from those of VIC.
FIE front-loads its input data sets into memory, and then
utilizes machine-learning logic to process its data. VIC also
runs many intricate calculations, but differs from FIE in that it
interlaces file input and output operations regularly throughout
its code. This difference will be key in understanding that
sciunits have minimal performance impact on most – but not
all – types of applications.

Figure 9 shows the total run times of auditing each ap-
plication component using the sciunit package command and
repeating it with the sciunit repeat command, in comparison
with the original execution times of running the applications
normally (i.e. without using sciunit). We note that the perfor-
mance impact of auditing and repeating on FIE’s run times is
negligible: auditing FIE with package results in only a 3.6%
time increase, and executing FIE with repeat adds only a 1.3%
increase to run time. Conversely, both packaging and repeating
VIC with sciunit each nearly doubles the original application
run times: as noted in the preceding paragraph, one can see that



using sciunit with certain kinds of IO-intensive applications
can affect application performance significantly.

We obtain one further observation from these experiments
by comparing each application package time with its cor-
responding repeat time. Clearly, compared to re-execution
increases, auditing increases are slightly higher. which is
expected since in the audit mode all the files are monitored
and copied into the container. This difference can be under-
stood by considering sciunit’s behavior during AV audit-time:
auditing entails copying an application’s code and data into a
sciunit container, but running the sciunit container with repeat,
however, only redirects to these copied files, and therefore
precludes the file copy time.

Fig. 9. Application run times for normal run, package, and repeat

C. Storing sciunits

Figure 10 the space saved due to storing multiple containers
of a sciunit in a deduplicated storage. The total space con-
sumed by FIE versions 0-III is 907MB, while when storing
our system only takes 333MB. Similarly, VIC versions 0-III
take 7GB in total but storing them in our storage takes 3GB.
In FIE and VIC the versions have a difference of up to 50%
with its prior version and the difference is in both execution
files and input/output data.

We also measure the computational complexity of commit-
ting and reconstructing a version. Our library to commit a
package is implemented to take as input a container, construct
an archive so as to have all data blocks in a single file for
generating rolling hashes, and then perform deduplication with
the storage blocks. Consequently, commit times are a function
of the size of the container. The reconstruction process is
extracting the relevant blocks from the storage, and creating
a package. Even though reconstruction is merely a block
concatenation process, it also involves recreating the original
file entries from the block and so can take some more time.
Irrespective, both commit and reconstruction times are far less
than the normal execution time of an application and so are
imperceptible to the user. Figure 11 shows the time in seconds

Fig. 10. The saved space with content deduplication

Fig. 11. The execution time for committing and reconstructing a version

for different versions of the use case. As shown commit
time is always greater than reconstruction due to computation
of rolling hashes, but reconstruction time is somewhat non-
negligible due to unarchiving individual files. But the time are
less than 10% of the execution time of the application. We
do not include an accuracy results of deduplication as the in-
accuracy of detecting a duplicate is extremely low since we
use cryptographically-safe hash functions.

D. Provenance Graph Summarization

Since application virtualization leads to fine-grained prove-
nance graphs, in this sub-section we determine if our sum-
marization rules provide a prospective provenance graph that
is relative close to the user application workflow. For lack of
space, we only show the results for the FIE workflow.

To evaluate the effectiveness of summarization, we first
calculate the number of nodes (process and files/resources)
and edges in four different containers (i.e., FIE I, FIE II,
FIE III) in the provenance graph obtained from auditing
the application, and then by summarizing the graph with
the similarity and packability rules. Figure 12 presents the
the number of processes (top), resources (middle) and edges
(bottom) using the original graph and using a summary.

As expected, the number connections and resources are
significantly reduced: 90% and 86% respectively in average.
Meanwhile the number of processes drops by 46%. In fact,
the annotation technique only applies on the resources and
their connections, thus the decrease in the number of resources
and connections is larger than that of processes. Further, the
reduction only applies to FIE III and not to FIE 0 since we
only benefit from the graph summarization or generalization
if the graphs are large and complex. Results for the VIC
workflow are similar.

We also measure the number of clicks needed to expand
to a full graph. For FIE III, which has the largest graph,
expanding a summary node may at most require 4 levels to



Fig. 12. The number of processes, resources and connections in original
technique and Sciunit

its full view. Expanding all the nodes in total can take almost
45 clicks, showing that the graph is summarized very well
spatially.

IX. CONCLUSION

In this paper, we presented the sciunit, our reference imple-
mentation of a reusable research object. We demonstrated how
a sciunit can store multiple versioned computational research
objects, or executable containers, with a relatively low storage
cost. We showed the ease with which sciunit containers can
be repeated for exact computational reproducibility, partially
repeated for correct execution of a subset of the original
computation, or modified and shared for the purpose of
allowing others to build on existing scientific work. We also
described how a provenance graph, when integrated into a
sciunit container and generated with specific methods, makes
a shared sciunit self-documenting, and provides a new sciunit
user with a dynamic, interactive means of understanding and
developing derivative research.
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