
Improving Reproducibility of Distributed Computational
Experiments

Quan Pham∗

Department of Computer Science,
The University of Chicago

Chicago, IL
quanpt@cs.uchicago.edu

Tanu Malik, Dai Hai Ton That, Andrew
Youngdahl

School of Computing, DePaul University, Chicago, IL,
60604, USA

{tmalik1,dtonthat,ayoungdah}@depaul.edu

ABSTRACT
Conference and journal publications increasingly require experi-
ments associated with a submitted article to be repeatable. Authors
comply to this requirement by sharing all associated digital artifacts,
i.e., code, data, and environment configuration scripts. To ease ag-
gregation of the digital artifacts, several tools have recently emerged
that automate the aggregation of digital artifacts by auditing an
experiment execution and building a portable container of code,
data, and environment. However, current tools only package non-
distributed computational experiments. Distributed computational
experiments must either be packaged manually or supplemented
with sufficient documentation.

In this paper, we outline the reproducibility requirements of
distributed experiments using a distributed computational science
experiment involving use of message-passing interface (MPI), and
propose a general method for auditing and repeating distributed
experiments. Using Sciunit we show how this method can be imple-
mented. We validate our method with initial experiments showing
application re-execution runtime can be improved by 63% with a
trade-off of longer run-time on initial audit execution.

KEYWORDS
Network provenance, Record and replay, Sciunit, reproducibility of
distributed objects,
ACM Reference Format:
Quan Pham and Tanu Malik, Dai Hai Ton That, Andrew Youngdahl. 2018.
Improving Reproducibility of Distributed Computational Experiments. In
Proceedings of Submitted to First International Workshop on Practical Repro-
ducible Evaluation of Computer Systems. (P-RECS’18). ACM, New York, NY,
USA, Article X, 6 pages. https://doi.org/XX.XXX/XXX_X

1 INTRODUCTION
The scientific publication has been central to the practice of science
since the 17th Century. It provides a means to describe the scientific
method, make scientific claims, and present new results to validate
the claims. Over the centuries the form of publication has remained
largely stagnant while the methods used in science have changed
∗Work done when the author was a Ph.D. student at The University of Chicago

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
P-RECS’18, June 11, 2018, City, State Country
© 2018 Copyright held by the owner/author(s).
ACM ISBN XXX-XXXX-XX-XXX/XX/XX. . . $15.00
https://doi.org/XX.XXX/XXX_X

dramatically. Almost all scientific experiments now involve at least
some amount, if not a large amount of computation, to run simula-
tions and/or to extract, analyze, and to store information. The static
text-based form of publication is seriously insufficient for the cur-
rent scientific method, be it helping the reader to grasp descriptions,
follow logic, or interpret the results.

Recently several tools and standards have emerged which guide
authors to aggregate digital artifacts associated with a computa-
tional experiment (e.g., Popper [11]) or automate the aggregation
process (e.g., ReproZip [6], Sciunit [14]). When automating, the
tools primarily use application virtualization (AV) [10]. In AV, oper-
ating system calls are interrupted to copy binaries, data, external
user input, software dependencies, and associated provenance into
a container. For instance, in Sciunit, when the container is re-run
in a different environment, references to binaries and files are redi-
rected to archived locations within the container thereby isolating
it from the new host environment. Provenance associated with
the experiment helps to verify if the new execution is an exact
repetition of the previous execution [2, 18].

These tools make computations portable and verifiable across
environments and are increasingly used to automate sharing and
reproducing of computational experiments. The automation, how-
ever, is currently limited to containerizing and repeating local or
non-distributed experiments. Distributed experiments such as sim-
ulations conducted by executing parallel programs or experiments
involving client-server interaction cannot be currently reproduced
using these tools, limiting usability.

A simple way to extend the tools to distributed experiments is
by auditing network system calls during application virtualization.
AV methods such as ptrace can be used to package associated net-
work communication to be replayed later. While simply packaging
network communication is sufficient for replay on the same num-
ber of resources, for computational reproducibility the packaged
network communication must be replay-able on a variable number
of available resources. Consider a user who has recently published
an improved distributed k-means algorithm, and has published a
paper claiming horizontal scalability of the distributed algorithm as
the number of resources are increased and linear scalability as the
size of dataset increases. While a reviewer would like to verify the
scalability claims of the author, it is quite likely that the reviewer
does not have the same environment setup or even the number of
resources available to test the experiment as the author.

Toward this goal, in this paper we present a network-enabled Sci-
unit that allows researchers to capture and then replay distributed
computational experiments.We use ptrace to audit network systems
calls such that audited network communication can be replayed

https://doi.org/XX.XXX/XXX_X
https://doi.org/XX.XXX/XXX_X

P-RECS’18, June 11, 2018, City, State Country Quan Pham and Tanu Malik, Dai Hai Ton That, Andrew Youngdahl

without the need of other network-connected processes. All net-
work communication from this subsequent execution is emulated
via the data captured from a previous execution. Hence, we can
re-execute all computation in a single node without the need of
other computing or storage nodes from the original experiment
setup. Such a mode of re-execution is crucial if distributed exper-
iments need to reviewed without access to large-scale network
infrastructure. However, arbitrary scaling during replay is still part
of our ongoing work. We show how a network-enabled ptrace can
be used to audit a distributed experiment with minimal setup, with-
out the need for system level privileges, and without changes to
the original experiment’s binaries or runtime environment. Finally,
we show how provenance is recorded during distributed execution
and merged back into a single database to allow for offline replay
and subsequent verification. Our current network-enabled Sciunit
can also be downloaded [8].

The remainder of the paper is structured as follows. We provide
a description of the local application virtualization used by current
reproducible tools in Section 2. We describe audit and replay of a
distributed experiment in Sections 3 and 4 respectively. in Section 5
we describe the process of capturing the network provenance of
a computational experiment and how the distributed provenance
records are merged. We describe our evaluation in Section 6. Sec-
tion 7 provides an overview of the related work in this area. Finally,
the conclusion and future work are presented in Section 8.

2 LOCAL APPLICATION VIRTUALIZATION
Local application virtualization is described in detail in [14]. We
describe it briefly again for review. The local application virtualiza-
tion consists of two modes: an audit mode to create a container, and
an execution mode to re-run a container [13]. In AV audit mode,
a container of a user application is created as the user executes
the application (in the context of auditing, such an execution is
termed a reference execution). During execution, the Linux strace
utility is used to monitor the running application process. Strace
internally attaches itself to the process using the ptrace system call
to monitor all the system calls of the running process. It intercepts
non-network based POSIX system calls to determine the running
process’ state and the arguments to the system call. For example,
when a process accesses a file or a library using the system call
fopen(), the fopen() call is intercepted. The intercepted system call is
“paused” to examine input arguments and the process control block.
For instance, in fopen(), the file path parameter is extracted. By
intercepting all calls, AV auditing determines all program binaries,
libraries, scripts, and environment variables that a user program is
dependent on.

The system call pause time is brief, requiring only two light-
weight context switches added to the normal system call flow;
experiments show that the overhead of intercepting system calls is
minimal. During the pause, the identified dependencies are used
in two ways: first, to create a “sandbox” application container that
includes all identified dependencies, and second, to create an in-
teraction log of the reference execution. The sandbox container
is named with a package hash and placed in a special “root path”,
and contains all the dependencies that were identified during the
reference execution audit. The dependencies are placed at the same

path within the special root path as they were identified in the
original system.

In AV execution mode, the application is executed from the con-
tainer itself by monitoring its processes with strace, interrupting
application system calls and extracting their path arguments, and
redirecting all system call paths to paths within the special root
path of the sandboxed container. By redirecting all application file
requests into the container, the AV execution method fools the ap-
plication program into believing that it is executing on the original
audit-time machine with original file paths [13]. A provenance log
generated during the AV audit phase contains interactions between
processes when they are forked or execed, or between processes
and files when files are opened or closed.

The ptrace mechanism, while sufficient for containerizing an
application locally, cannot monitor a remote-spawned process. As
an example, if a process uses SSH to create a new process on a
remote machine, the new remote process is forked by SSH daemon
on the remote machine. This breaks the ability of ptrace to audit
that remote process.

3 DISTRIBUTED APPLICATION
VIRTUALIZATION: AUDIT

Distributed application virtualization also works in audit and execu-
tion mode, but uses a network-enabled ptrace to monitor a remote
spawned process. In particular, all remote processes are run within
the context of this network enabled ptrace. To ensure that all re-
mote processes are runwithin the context of network enabled ptrace
we copy the network-enabled ptrace before the remote process is
spawned and enforce that any remote process initiated during ap-
plication virtualization is run within the network-enabled ptrace.
Among different common process launchers, we select SCP and SSH
to provide network-enabled ptrace copies on remote machines. In
particular, when a program spawns a process on a remote machine,
it invokes execve(path-to-ssh, remote-machine, path-to-new-process,
other-paramters, ...). ptrace intercepts this execve() system call and
performs four steps:

(1) Extract remote host parameters from execve() system calls.
This involves going through execve() parameters and look-
ing for the first parameter that is not an SSH option or an
argument of an SSH option.

(2) Copy network enabled ptrace to remote host. To do this effi-
ciently we first check if the network enabled ptrace binary
is available on the remote host. If it is not, network-enabled
ptrace is injected into the remote host.

(3) Inject network enabled ptrace into execve() so that it executes
before the remote process The new parameters of execve()
are execve(path-to-ssh, remote-machine, path-to-PTU, path-to-
new-process, other-paramters, ...). Then let the execve() system
call execute (Figure 1).

(4) Retrieve provenance records from the remotemachine. Recorded
provenance from all remote processes involved in the exper-
iment are merged back to the root machine once the remote
execution completes. This operation is further discussed in
detail in Section 5.

Alternatively if the environment is more managed, the network-
enabled ptrace can be made available within a common shared

Improving Reproducibility of Distributed Computational Experiments P-RECS’18, June 11, 2018, City, State Country

Figure 1: SSH injection

directory among all machines, e.g. network-shared users’ home
directory $HOME.

As part of distributed application virtualization, network com-
munication between a local and a remote process is captured. We
define network communication as data transmission from one pro-
cess to another using a socket interface and without involving
permanent files in a local file system, network file system, or shared
memory. Network communication starts by having two or more
processes use sockets for data transfer. On one machine a process
listens on an agreed port number. Another process connects to
that port number to initialize a network connection channel. These
processes then exchange data by reading and writing to this socket.

There are two parts of this network audit:meta audit, in which
connection metadata is audited, and content audit, in which actual
data transferred in network connections is audited.
Meta Audit In meta audit, we monitor four system calls: bind(),
listen(), accept(), and connect(). However, returned results from these
system calls do not contain enough information about the source
and destination network endpoints. To address this we record addi-
tional meta data from the /proc/net/ system directory. Since we use
ptrace to interrupt network system calls we can delay the close of a
socket until we finish recording the wanted network meta data.
Content Audit To support network replay, we intercept all the
network calls and capture network data transferred in each socket
connection. Parameters and memory buffers from network system
calls are recorded in a provenance database as specified in Table 1.

To facilitate searching for recorded network system calls, net-
work content audit implements a numbering scheme based on a
time order of the system calls. We use a per-component number-
ing scheme in addition to recorded time to identify corresponding
connections for later re-execution. Due to the nature of UNIX net-
work system call API, data sending and receiving system calls are
enumerated per sockets; connection initialization system calls are
enumerated per processes.

The distributed application virtualization creates a container
per machine which is copied on the master as network connec-
tions close. Thus the entire distributed container is available on the
master machine after the experiment finishes.

4 DISTRIBUTED APPLICATION
VIRTUALIZATION: REPLAY

In this section we discuss both re-execution and replay of an ex-
periment. We use the term "re-execution" to mean the repeat of a

System Calls Recorded/Injected Values
listen, connect

returned valuewrite, send
sendto, sendmsg

accept value = int accept(int sockfd, struct sock-
addr *addr, socklen_t *addrlen);

read value = ssize_t read(int fd, void *buf, size_t
count);

recv value = ssize_t recv(int sockfd, void *buf,
size_t len, int flags);

recvfrom value = ssize_t recvfrom(int sockfd, void
*buf, size_t len, int flags, struct sockaddr
*src_addr, socklen_t *addrlen);

recvmsg value = ssize_t recvmsg(int sockfd, struct
msghdr *msg, int flags);

Table 1: Network system call audit and replay: bold parame-
ters and bold returned values are recorded during audit and
injected back for replay

distributed computation with each remote process executed again
in its entirety. We use the term "replay" to mean a repeat of all
computation at the original root node, but with the responses of the
original remote nodes supplied through the content data captured
during the original audit of the experiment. The former can be
provided either on the original compute cluster, or on a different
cluster with an identical number of nodes by supplying the new
hostnames or IP addresses. The latter is provided if a repeat of
the local processing is desired, but no suitable remote nodes are
available.

To perform a repeat, ptrace is again employed to intercept net-
work system calls and then to locate which audited values to replace
into the intercepted calls using both the numbering scheme men-
tioned in Section 3 and the three following steps:

• Match a current executing process to an audited process
from the database;

• Match a socket to an audited socket of that audited process;
and

• Match a current network system call to an audited system
call of that audited socket.

Once an audited system call is located, Sciunit retrieves the
corresponding content data from its database and replays the au-
dited values in lieu of the network request. Audited parameters
and data are inserted into the result buffers of the corresponding
system call without actually invoking that call (Table 1).

Network repeat and replay limitations. While many test cases
show the success or our network replay functionality, there are
still some limitations. Even though the contents of network com-
munication can be exactly repeated, in some cases replaying the
same response data to a network call will not guarantee process
behavior identical to the original execution. We describe as follows
some information that cannot be replayed or re-executed in our
framework.

P-RECS’18, June 11, 2018, City, State Country Quan Pham and Tanu Malik, Dai Hai Ton That, Andrew Youngdahl

Figure 2: Socket Node stores meta information and trans-
ferred data

(1) Cryptography, especially secure communication in the pres-
ence of third parties, breaks network replayability of appli-
cations. In particular, in SSH [17], the cryptography authen-
tication protocol using a couple of public-private key cannot
be replayed.

(2) Data communications that use certain types of replay-attack
countermeasures: session tokens, one-time passwords, and
time stamping, are not replayable. Another observation is
that DNS lookup queries and answers may be different for
subsequent runs of the same process; hence DNS lookup is
not network replayable.

(3) Network communications that send and receive control data
instead of actual data content are not replayable. MPICH [9]
passes file descriptors between processes via UNIX socket.
While Sciunit can replay the communication, the passed
file descriptors are only valid in the referenced execution
and not valid in the re-execution.

5 PROVENANCE COLLECTION DURING
DISTRIBUTED APPLICATION
VIRTUALIZATION

In addition to labeling activities and entities as processes and files
respectively, a network-data-to-process dependency is added to the
provenance graph using a network vertex . We use a socket node as
a specific data artifact that stores meta data about a network TCP/IP
socket (i.e. source, destination IP address and port, connected time,
etc.). However, to support network replay in later execution, actual
data transferred by a socket also needs to be captured. Hence we
define Socket Node to include actual data content of a network
socket (see Figure 2). In this setup, the socket node contains both
meta information and its content.

We also introduce a transparent network-process-to-process de-
pendency. Distributed experiments are composed ofmany processes
or tasks. Each process or task can be launched in an individual pro-
cessing unit (or node) within the distributed platform. In UNIX
environments, SSH [17] and MPICH [9] can be used to deliver the
tasks to remote processing nodes. While dependencies between
distributed processes are not as easily captured as dependencies
between local resources, they are important nonetheless. The W3C
PROV [16] has specifications for general process-to-process de-
pendencies, but is not clear on how to represent that a process
"wasTriggeredBy" a remote machine through an SSH connection.
In our approach, we clarify that dependency by connecting the
remote process directly to SSH with a "wasTriggeredBy" edge.

Figure 3: Merge local provenance databases

We describe the distributed databases used to keep provenance
records when auditing, and how these distributed databases are
merged back to the root machine.

We make the following assumptions:
(A1) Provenance audit should have minimal interference to ap-

plication processes. Minimal network overhead should be
incurred.

(A2) Computing nodes and their local disks may not be available
for the entire experiment duration. Users may manually or
automatically add or remove computing nodes based on com-
puting demand. Once a computing node is idle, it might be
taken offline to free allocated resources or to save budget. We
will assume the node that starts the experiment is available
for permanent storage.

(A3) No connectivity should be assumed among computing ma-
chines unless actual SSH connections exist. A simple scenario
is that a user uses machine A to create computing jobs on
machine B via SSH. Machine B is a login node of a sepa-
rated cluster and jobs on B create tasks on machine C of that
cluster via SSH. It is common for machine C to be behind a
firewall that prevents machines from outside of the cluster
to connect to it. Hence A cannot connect to C directly.

To satisfy requirement A1, provenance records are stored locally
on each executing node during the auditing phase. A LevelDB
database will be created on each node once an SSH connection is
established to that node. If an experiment consists of multiple tasks
across multiple nodes, each task’s provenance will be recorded by
a LevelDB on the task’s node. A spanning tree is formed which
connects the root node and all other nodes in the experiment.

Considering assumption A2, remote node LevelDB databases are
moved to more permanent storage as soon as the remote process
finishes. By the end of the experiment these distributed databases
will be merged back to one single LevelDB database on the exper-
iment’s root node. Due to constraint A3 we merge each remote
database to their spanning tree parent node, and repeat as each
remote child process completes, until all processes have completed
and all local databases are merged to the LevelDB database in the
root node (Figure 3).

6 EXPERIMENT
We have implemented the distributed application virtualization
within Sciunit [2]. In this section, we present our preliminary

Improving Reproducibility of Distributed Computational Experiments P-RECS’18, June 11, 2018, City, State Country

Figure 4: Provenance graph with Socket node and transpar-
ent SSH process dependency

experiment in using this distributed Sciunit to capture and replay
an MPI experiment.

6.1 MPICH NASA Parallel Benchmark (NPB)
Figure 4 shows our evaluation of some test cases of The NAS Paral-
lel Benchmarks (NPB) [4]. NPB is a set of programs designed for
evaluating the performance of parallel systems. This benchmark
contains five kernels (e.g., integer sort, random memory access;
embarrassingly parallel; conjugate gradient and etc.) and three
pseudo-applications BT-MZ, LU-MZ, SP-MZ. We selected NPB 3 and
compiled this benchmark with three different applications BT-MZ,
LU-MZ, SP-MZ and as parameter classes A and B (i.e, standard
sizes), for 2 processors, and run on three Ubuntu workstations (64-
bit, Intel Corei7 3.4Ghz, 8 GiB RAM). An instance with IP address
10.164.1.135 started MPI framework and spawned jobs to two slave
instances with IP addresses 10.11.150.45 and 10.185.248.3. In this
benchmark,MPICH used SSH to launch processes in other instances.
In each of the two slave instances, SSH started hydra_pmi_proxy,
which in turn started the benchmark binaries. The benchmark bi-
naries communicated with others via network connections shown
as socket nodes in the provenance graph Figure 4.

Table 2 shows overhead of using network-enabled ptrace for
auditing provenance and network content. In both classes A and B
benchmarks, there are 190 network system calls for each test case
and the overall overhead is not significant with meta audit intro-
duces 1-2% increase in runtime. Content audit shows slightly higher
overhead than meta edit at 3-5% increase. This can be explained
as more data were audited (i.e., ∼524KB and ∼268KB of data were
captured for classes A and B respectively) and not only the meta
data of network connections but also their actual transferring data
was recorded.

6.2 RDCEP experiment
We also evaluated our system with another use case from the RD-
CEP paper [5]. In this test, its first step is to retrieve data from
external websites. Sciunit has successfully re-executed the exper-
iment offline without any access to those external websites. As
shown in table 3, in the data retrieval step, meta audit introduces

Normal #Calls Meta Content
Audit Audit

NPB BT-MZ.A.2 20.30
190 ∼ 2.1%↑ ∼ 5.3%↑NPB LU-MZ.A.2 15.74

NPB SP-MZ.A.2 14.84
NPB BT-MZ.B.2 83.95

190 ∼ 0.8%↑ ∼ 3.2%↑NPB LU-MZ.B.2 71.02
NPB SP-MZ.B.2 59.12

Table 2: NASA Parallel Benchmark runtime (seconds) and
overhead of Sciunitmeta auditedmode (for query) and con-
tent audited mode (for replay) compared to normal NPB ex-
ecution (no Sciunit)

Normal Meta
Audit

Content
Audit

Replay

Data retrieval 146.5±1.8 0.2%↑ 134.5%↑ 53.0±3.0
Other steps varies 2% - 30% ↑ overhead

Table 3: Sciunit performance (seconds) on network related
and non-network related tasks from multi step experiment
[5] shows 3-fold reduction in re-execution time with net-
work replay.

almost no overhead, while content audit overhead is 134.5% due to
extra time Sciunit spent for recording actual network data. Replay
time for this experiment step is only 36% of the original execu-
tion duration. This 3-fold speedup is due to the data retrieval step
loading data from the the local content-audited database instead of
from remote servers. Overall, depending on users’ requirements,
using Sciunit meta audit or content audit will provide reasonable
performance compared to normal execution.

7 RELATEDWORK
TCPDUMP [1] is a tool to collect and replay network packets at
the software level. TCPDUMP uses ptrace to capture system socket
creation calls from applications and can retrieve information from
the /proc directory as well as the traffic across the socket. Tcpre-
play [15] is a suite which gives the ability to use previously captured
traffic from TCPDUMP. It allows a user to classify traffic as client
or server, rewrite different layer headers, and also to replay the
traffic. These tools provide support for network replay, but require
applications to be implemented using their specific libraries.

Tools for building containers such as ReproZip [6] and Sciu-
nit [14] do not address distributed computational experiments. Stan-
dards such as Popper [11] do not build containers but do provide
guidance using several Unix utilities. CommonWorkflow Language
(CWL) [3] descriptions are often run in a distributed manner where
in the details of this distribution is up to the workflow executor and
is not part of the CWL specification. CWL descriptions can also
reference Docker software containers [7]. In this paper, we have
focused how to automatically build a container from distributed
computation experiments. Our technique is general, i.e, it enhances

P-RECS’18, June 11, 2018, City, State Country Quan Pham and Tanu Malik, Dai Hai Ton That, Andrew Youngdahl

ptrace and thus can be used by both Reprozip and Sciunit. Currently,
it is far from a standard to be advocated; Further work is also needed
to determine how automated containers (network-enabled or not)
built either from Reprozip or Sciunit can be interfaced with CWL,
which is increasingly being adopted as a descriptive standard.

Distributed provenance tracking is also described in SPADE [12].
However, in SPADE the focus is only of auditing provenance meta-
data and not content-audit. It also differs in terms of capturing
network communication. In particular, SPADE employs polling
operations on the results of lsof which can miss some short-lived
connections. We have used strace to stop sockets from being closed
until provenance is captured thereby eliminating the possibility of
missing short lived sockets. Also, by capturing socket content we
go further by allowing for replay of distributed experiments when
the remote nodes are no longer available.

8 CONCLUSIONS AND DISCUSSION
In this paper we have described the limitations of current tools
to enable reproducible analyses of distributed computational ex-
periments. We have described how local application virtualization
used in the current tools can be transparently extended to audit
distributed experiments, and then replayed on a single node. Our
method is independent of any workflow system, works at the user
level of UNIX operating systems, and thus can be adopted by most
researchers. Experiments show that the tool is efficient with only a
low level of overhead introduced and works effectively with indi-
vidual applications and computation frameworks.

Our goal is to address the problem of reproducibility across
totally different distributed platforms. This implies repeating ex-
periments across heterogenous nodes without any installation, but
also take advantage of increased capacity or scale down to lesser
endowed environments. This will require an extra-step to examine
every single sub-process within the audited experiment and modify
invocation of running these sub-processes while guaranteeing the
correctness of the outputs. This is part of our ongoing work.

REFERENCES
[1] TCPDUMP/LIBPCAP public repository. URL http://www.tcpdump.org/.
[2] The Sciunit. https://sciunit.run/, 2017. [Online; accessed 10-Sep-2017].
[3] Peter Amstutz, Michael R. Crusoe, Nebojĺa Tijanic, Brad Chapman, John

Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya
Nedeljkovich, Matt Scales, Stian Soiland-Reyes, and Luka Stojanovic. Common
Workflow Language, v1.0. 7 2016. doi: 10.6084/m9.figshare.3115156.v2.

[4] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. The NAS parallel benchmarks. International Journal of High
Performance Computing Applications, 5(3):63–73, 1991.

[5] N. Best, J. Elliott, and I. Foster. Synthesis of a complete land Use/Land cover
dataset for the conterminous united states. SSRN eLibrary, 2012.

[6] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. ReproZip:
Computational reproducibility with ease. In SIGMOD’16, pages 2085–2088, 2016.

[7] CWL. Common Workflow Language Documentation, 2018. URL https://www.
commonwl.org/draft-3/UserGuide.html.

[8] DePaulDBGroup. Network-enabled Sciunit, 2018. URL https://bitbucket.org/
depauldbgroup/provenance-to-use/branch/network.

[9] William Gropp. MPICH2: a new start for MPI implementations. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, pages 7–7.
Springer, 2002.

[10] Philip J. Guo and Dawson Engler. CDE: Using system call interposition to
automatically create portable software packages. In USENIX, 2011.

[11] Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead,
Kathryn Mohror, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. The
Popper convention: Making reproducible systems evaluation practical. In Parallel

and Distributed Processing Symposium Workshops (IPDPSW), pages 1561–1570.
IEEE, 2017.

[12] Tanu Malik, Ashish Gehani, Dawood Tariq, and Fareed Zaffar. Sketching dis-
tributed data provenance. Data Provenance and Data Management in eScience,
426:85–107, 2013.

[13] Quan Pham, Tanu Malik, and Ian Foster. Using provenance for repeatability. In
TaPP, 2013.

[14] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Malik. Sciunits: Reusable
research objects. In IEEE eScience, Auckland, New Zealand, 2017.

[15] Aaron Turner and Fred Klassen. TCPreplay - PCAP editing and replaying utilities.
URL http://tcpreplay.appneta.com/.

[16] W3C. PROV-DM: The PROV data model, 2013. URL https://www.w3.org/TR/
prov-dm/.

[17] Tatu Ylonen and Chris Lonvick. The secure shell (SSH) protocol architecture.
2006.

[18] Zhihao Yuan, Dai Hai Ton That, Siddhant Kothari, Gabriel Fils, and Tanu Malik.
Utilizing provenance in reusable research objects. Informatics, 5(1), 2018. doi:
10.3390/informatics5010014.

http://www.tcpdump.org/
https://sciunit.run/
https://www.commonwl.org/draft-3/UserGuide.html
https://www.commonwl.org/draft-3/UserGuide.html
https://bitbucket.org/depauldbgroup/provenance-to-use/branch/network
https://bitbucket.org/depauldbgroup/provenance-to-use/branch/network
http://tcpreplay.appneta.com/
https://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/prov-dm/

	Abstract
	1 Introduction
	2 Local Application Virtualization
	3 Distributed Application Virtualization: Audit
	4 Distributed Application Virtualization: Replay
	5 Provenance Collection During Distributed Application Virtualization
	6 Experiment
	6.1 MPICH NASA Parallel Benchmark (NPB)
	6.2 RDCEP experiment

	7 Related Work
	8 Conclusions and Discussion
	References

