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Abstract 

Network analysis has demonstrated that interconnectedness among market participants 

results in spillovers, amplifies or absorbs shocks, and creates other nonlinear effects that 

ultimately affect market health. In this paper, we propose a new directed network 

construct, the liquidity network, to capture the urgency to trade by connecting the 

initiating party in a trade to the passive party. Alongside the conventional trading 

network connecting sellers to buyers, we show both network types complement each 

other: Liquidity networks reveal valuable information, particularly when information 

asymmetry in the market is high, and provide a more comprehensive characterization of 

interconnectivity in the overnight-lending market.  

 

Keywords: banking networks, interconnectedness, liquidity 

JEL: G21, C10, G10 

◊Federal Reserve Board (celso.brunetti@frb.gov); ○American University 

(jharris@american.edu); □ Cornell University, 366 Sage Hall, Ithaca, NY 14850 

(spm263@cornell.edu) corresponding author; this material is based upon work supported 

by the National Science Foundation under Grant No. 1633158 (Mankad).  

 

Declarations of interest: none 

The views in this paper should not be interpreted as reflecting the views of the Board of Governors 

of the Federal Reserve System or of any other person associated with the Federal Reserve System. 

All errors and omissions, if any, are the authors’ sole responsibility.  

 

Electronic copy available at: https://ssrn.com/abstract=3865413



 

1 

 

1 Introduction 

Network analysis is a proven and effective tool to assess and understand financial 

markets. Babus and Hu (2017) provide a theory of trading through intermediaries in over-

the-counter (OTC) markets where traders are connected through an informational 

network and observe others’ actions. They show that trading through this informational 

network is essential to support trade when agents have limited commitment and 

infrequently meet their counterparties.1 Empirical evidence in Brunetti and others (2019) 

supports informational models where information from interbank trading networks 

forecasts market liquidity problems and is useful to regulators in better monitoring these 

important markets. 

In this paper, we expand on the notion that information is important in forming 

networks. Rather than simply constructing trading networks between buyers and sellers, 

we first define liquidity networks as directed networks that map aggressive borrowers 

(lenders) to passive lenders (borrowers) in the overnight-lending market. The liquidity 

network uses trade aggressiveness, additional information about interbank trades, to 

capture the urgency to trade. We argue that this passive/aggressive information serves to 

help overcome the trading frictions of limited commitment and limited counterparty 

information in the market.2  

We then explore differences between trading networks and liquidity networks in 

the interbank market—trading networks simply map borrowers to lenders while liquidity 

networks map aggressive traders to passive traders. We demonstrate that the structures 

 

1 Castiglionesi and Eboli (2018) model interbank interconnectedness, mapping sellers to buyers 

and comparing the efficiency of star-shaped, complete, and incomplete networks (where efficiency 

is the complete transfer of liquidity among banks to prevent costly early liquidation of long-term 

assets). Babus and Hu (2017) and Castiglionesi and Eboli (2018) show, respectively, that a star 

network with concentrated intermediation is both constrained efficient and stable with linking 

costs and less exposed to systemic risk than other complete or incomplete networks. 
2 Supporting the existence of limited commitment in interbank markets, Babus and Hu (2017) note 

that banks can delay overnight funds delivery until the afternoon in the fed funds market and can 

both fail to deliver or fail to receive in the repurchase agreement market. See also Bartolini, Hilton, 

and McAndrews (2010) and Gorton, Laarits, and Muir (2015), respectively. 
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of the two networks differ. Trading networks can be characterized by a stable core-

periphery structure, whereas liquidity networks exhibit multiple core groups of European 

banks consistently providing aggressive (or passive) liquidity to the market. To the best 

of our knowledge, the existence of multiple cores of banks is new to the financial networks 

literature and aligns with the theoretical predictions of particular network topologies 

made in several recent works (such as star-shaped networks, see Babus and Hu, 2017; 

Castiglionesi and Eboli, 2018; and Castiglionesi and Navararro, 2020). In this light, we 

show that the information gleaned from the two networks differs and changes over time, 

so that these alternative network lenses provide complementary information about the 

interbank market.  

We then explore how information from trading and liquidity networks is useful for 

forecasting economic conditions where these banks operate. This exercise follows the 

spirit of comparing various network constructs. Billio and others (2012) show correlation 

networks (among stock returns) reflect financial interconnectedness and crises, while 

Brunetti and others (2019) show interbank trading networks forecast market liquidity 

problems.3 While Babus and Hu (2017) show intermediaries can alleviate information and 

commitment frictions between banks, we posit that trade aggressiveness serves both as 

additional information and as a commitment device (because an aggressive order hits a 

standing limit order) in a market without intermediaries. Empirically, we find that the 

passive/aggressive information gleaned from liquidity networks complements the 

information from trading networks. 

We also examine the time-series changes in both trading and liquidity networks 

and conjecture that the incremental information from liquidity networks is more 

important during periods when market informational asymmetries are high. For this 

 

3 Adamic and others (2017) explore how physical trading networks can be used to forecast short-

term market conditions as well. 

Electronic copy available at: https://ssrn.com/abstract=3865413



 

3 

 

exercise, we utilize the fact that the interbank market in Europe suffered from severe 

informational asymmetries during the 2007–09 financial crisis.4   

By comparing trading networks with liquidity networks in the European sphere 

around the 2007–09 financial crisis, we focus on whether these alternative network 

characterizations reveal differential information. Importantly, the same set of overnight 

interbank transactions generates both types of networks. 5  Our work identifies the 

liquidity network as an alternative dimension for viewing financial markets: The urgency 

to trade reflected in our liquidity networks is a component of information that differs 

from, and complements, information gleaned from trading networks. 

Tracing both trading and liquidity networks over time and through the 2007–09 

financial crisis, we examine many proxies for interconnectedness among European banks, 

including degree, a clustering coefficient, reciprocity, and the largest strongly connected 

component (LSCC). 6  We find that these measures of interconnectedness all dropped 

substantially from the 2006–07 pre-crisis period to the 2009–12 weak recovery period. 

The LSCC and reciprocity are both consistently lower in the trading network than in the 

liquidity network. Banks are less likely to be interconnected with other banks for trading 

purposes but more consistently aggressive (and passive) in utilizing the interbank market 

to source or provide funds to other banks. In fact, reciprocity is systematically more than 

three times higher in the liquidity network, indicating that banks that trade with each 

other are more likely to trade both passively and aggressively when they do so. 

These findings show that liquidity networks help provide a more complete 

characterization of markets and their participants. To the extent that networks aid in 

 

4 See, for instance, Brunetti, di Filippo, and Harris (2011). 
5 Brunetti and others (2019) use these same data, building on Shin (2009, 2010) and Elliott, Golub, 

and Jackson (2014). 
6 LSCC is defined as the maximum number of traders that can be reached from any other trader 

by following directed edges (see Adamic and others, 2017, and Brunetti and others, 2019). Further 

details are available in section 3. 
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understanding and diagnosing market activity, our results show that LSCC and 

reciprocity characteristics computed from liquidity networks capture important 

dimensions of market quality distinct from those computed from trading networks.  

In subperiod analyses, we find that these statistics change over time as the crisis 

evolved. More specifically, we find that some measures of interconnectedness (degree and 

LSCC) appear to drop continuously through the 2006–12 period. However, other 

measures of connectedness (clustering and reciprocity) actually increased at the onset of 

the crisis before declining as the crisis continued and then abated. These results expose 

weakening interconnectedness in the European interbank system induced by the crisis. 

The decline in interconnectedness occurs in both trading and liquidity networks. 

However, the decline is more pronounced in the trading network: Banks were less likely 

to trade with each other but only slightly less aggressive in approaching each other to 

trade. The changes and trends in interconnectedness reflect structural changes to the 

topology of each network. At the start of the crisis, both networks feature multiple cores 

of banks that overlap, but the trading networks evolve to a single core as the crisis abated. 

We further explore the differential information from each network by examining 

whether and how the interbank network forecasts hard and soft macroeconomic 

information, euro-zone yield spreads, and country-specific yield spreads. Consistent with 

Babus and Hu (2017) where information asymmetries drive the formation of the network, 

we find that trade aggressiveness reflected in the liquidity network improves short-term 

forecasts of soft information and country-specific yield spreads, settings where 

asymmetric information is likely to be more pronounced. 

In the last part of the paper, we compare the information content of trading and 

liquidity networks with that of traditional volatility and volume measures. We find that 

in normal market conditions when interconnectedness is high, a further increase in 

connectivity of either network raises volatility. In the relatively low interconnectedness 
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crisis period, however, an increase in liquidity network connectivity reduces volatility and 

boosts traded volume. Our results reveal the dual character of interconnectedness—too 

much interconnectedness may increase systemic risk, but too little may impede market 

functioning. 

Our work contributes to a better understanding of how interbank markets operate 

and convey information about the real economy. While other papers focus on interbank 

network structures and contagion (Degryse and Nguyen, 2007, and Mistrulli, 2011), we 

focus on different network constructs and whether viewing interbank networks under 

different lenses provides important insights into the macroeconomy.  

Examining interbank networks in two dimensions—trading and liquidity 

networks—adds to the growing literature on the usefulness of network analysis in 

financial markets.7 Importantly, we create and study liquidity networks, a new type of 

physical network that more specifically focuses on liquidity dynamics in financial 

markets. We find that integrating liquidity characteristics into network analysis marks 

an important contribution that improves macroeconomic forecasts and links interbank 

liquidity to the real economy. Given the importance of liquidity and liquidity risk in 

financial markets, market regulators and participants may benefit from monitoring the 

dynamics of liquidity networks, whether during financial crises or more stable economic 

times. 

2 Data: e-MID Overnight-Lending Market 

In this section, we present a time series of network statistics for trading and 

liquidity networks constructed from the e-MID platform, the only electronic market for 

 

7  The vast literature exploring trading networks includes empirical analysis examining how 

network topology exacerbates or absorbs shocks in different environments (Allen and Gale, 2000; 

Gai, Haldane, and Kapadia, 2011; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Cont, Moussa, 

and Santos, 2013; Georg, 2013; Glasserman and Young, 2015), tracing the evolution of interbank 

networks during calm and crises subperiods (van Lelyveld, 2014; Brunetti and others, 2019), and 

establishing the forecasting power of network statistics (Adamic and others, 2017), among others. 
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interbank deposits in the euro region.8 Our detailed trading data span from January 2006 

through December 2012 and include 464,772 trades among 212 unique banks. Each e-

MID transaction includes the time (to the second), lender, borrower, interest rate, 

quantity, and an indication of which party is executing the trade.  

Given the eventful period covered by our data (and the prospect that the dynamics 

in this market change over time), we split the data into four subperiods: (1) a pre-crisis 

period from January 2, 2006, until August 7, 2007 (when the European Central Bank, 

(ECB) noted worldwide liquidity shortages); (2) the first crisis period (pre-Lehman 

Brothers) from August 8, 2007, until September 12, 2008; (3) the second crisis period 

(post-Lehman Brothers) from September 16, 2008, through April 1, 2009 (when the ECB 

announced the end of the recession); and (4) the period from April 2, 2009, through 

December 31, 2012, characterized by a weak recovery.  

Figure 1 shows several daily e-MID market statistics. We see that interest rates 

fell starting with the onset of the 2007–09 financial crisis. Rates started to recover as the 

crisis abated but fell again to crisis levels in 2012, as Europe experienced a weak recovery. 

Volatility, defined as the log-price difference, shows a similar pattern, with heightened 

levels during the 2007–09 and European crisis. Effective spreads remain relatively stable 

across our sample period, suggesting that interbank market trading costs did not suffer 

appreciably during the crisis. By contrast, a clear negative trend emerged in the number 

of active banks trading and in daily volume. Signed volume is also negative throughout 

our sample period, with a clear increasing trend toward zero.9 These patterns indicate 

 

8  E-MID trades represent interbank loans ranging from overnight (one day) to two years in 

duration, with overnight contracts representing 90 percent of total volume during our sample 

period (see Brunetti, di Filippo, and Harris, 2011). The e-MID market is open to all banks admitted 

to operate in the European interbank market, and non-European banks can obtain access to the 

market through their European branches. As of August 2011, the e-MID market had 192 members 

from European Union countries and the United States, including 29 central banks acting as 

market observers (Finger, Fricke, and Lux, 2013). Liquidity in e-MID largely dried up after 2012, 

when our data end. 
9 Signed volume is constructed as the difference between the amount aggressively bought and the 

amount aggressively sold. 
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that banks actively used the e-MID platform for selling funds, though by the end of our 

sample period, liquidity levels are poor. Trade imbalance (scaled by volume) shows a 

greater proportion of aggressive lending during the 2007–09 crisis. During the weak 

recovery in Europe, trade imbalance even became positive for a handful of days, 

indicating that more banks were aggressively borrowing through e-MID. Last, likely 

driven by the reduction in banks using the platform, the Herfindahl index rises 

consistently over our sample period, reflecting greater concentration among banks 

using e-MID. 

3 Measuring Interconnectedness  

In sections 3.1 and 3.2, we start with a background discussion on each network and 

the statistics we use to characterize interconnectedness. In section 3.3, we present the 

evolution of our network statistics to gain further insights into how the e-MID market 

evolved from 2006 through 2012. 

3.1 Representing Interbank Activity with Trading and Liquidity Networks 

Castiglionesi and Eboli (2018) and Babus and Hu (2017) model interconnectedness 

in the interbank market, mapping sellers to buyers. While Babus and Hu (2017) show 

that intermediaries can help overcome commitment and information frictions to connect 

traders (banks) in an OTC market (which exhibits limited commitment and limited 

information about agents’ past actions), we posit that trade aggressiveness may also help 

overcome these frictions.  

In our liquidity networks, aggressive (market) orders execute against standing 

limit orders posted on e-MID and thus reflect a greater commitment to trade. We surmise 

that the information impounded in these aggressive orders is complementary to the 

information about borrowing and lending that emerges from the trading network. 

Moreover, with the absence of liquidity providers on e-MID, we anticipate that 

information gleaned from the interbank liquidity network may also serve to forecast 

economic conditions and other macroeconomic variables in the euro zone. 
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To illustrate differences between interconnectedness in trading and liquidity 

networks, consider the hypothetical trading network shown in figure 2A, where banks are 

labeled A through E. In this trading network, Bank A is the dominant seller. Importantly, 

these same trades could result in many different liquidity networks. At the extremes, 

Bank A could actively or passively trade with all other firms by hitting the quotes of other 

banks or by passively providing quotes that other banks execute against through market 

orders. Figure 2B presents these extreme cases where Bank A is an active lender (left 

panel) or passive lender (right panel). Clearly, trades represented in figure 2A might 

differ dramatically when represented as a liquidity network. 

3.2 Network Statistics  

It is useful to note that several commonly used network statistics are identical in 

both trading and liquidity networks. Generally, any network statistic that ignores the 

directionality of the edges will be invariant between the two types of networks, because 

they are constructed from the same set of transactions. For example, aggregate statistics 

like the overall degree of the network (total number of connections) remain fixed between 

the two networks. Note that this invariance includes measures such as degree and 

clustering coefficient (the percentage of closed triangles), which analysts have used to 

measure interconnectivity and liquidity flows (Billio and others, 2012; Adamic and others, 

2017; Brunetti and others, 2019).  

Network statistics that account for directionality can differ between networks, 

however. For example, at the node level, a bank’s in and out degree will generally be 

different in trading and liquidity networks. More importantly, the interpretation of these 

statistics also varies. For the trading network, in degree represents borrowing on the 

interbank market, whereas for the liquidity network, in degree corresponds to trades 

executed by passively posting quotes. Likewise, out degree corresponds to lending in the 

trading network but represents aggressive market orders in the liquidity network.  
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Another important interconnectivity metric based on directionality is the LSCC, 

defined as the maximum number of banks (subnetwork) that can be reached from any 

other bank on the network by following directed edges. In addition, reciprocity measures 

the likelihood that pairs of nodes link in both directions. Both measures have been used 

previously to characterize interconnectedness and systemic risk in interbank networks of 

Mexico (Martinez-Jaramillo and others, 2014) and Germany (Roukny and others, 2014). 

These metrics will likely differ when computed through trading or liquidity networks. In 

the trading network, the LSCC and reciprocity will be closer to their maximum value of 

one when a large number of banks are buying and selling. In the liquidity network, the 

LSCC and reciprocity are larger when a larger number of banks actively and passively 

trade. 

In this light, these metrics reflect a measure of demand for funds across the 

interbank trading network: If more banks borrow (while their counterparties lend), the 

LSCC and reciprocity are high. Conversely, these same metrics reflect more of an urgency 

to borrow in the liquidity network: If more banks actively seek funds (from passive 

counterparties), the LSCC and reciprocity in the liquidity network are high. 

3.3 Interconnectedness in Trading and Liquidity Networks   

Figure 3 depicts our four interconnectedness measures over time, displayed by 

subperiod, for networks constructed using the transactions from a 30-day rolling window. 

As discussed earlier, the degree and clustering coefficient for the trading and liquidity 

networks are identical, as these metrics do not depend on directed edges. The degree of 

the interbank market falls consistently over each subsequent subperiod, as counterparty 

problems during the crisis deterred banks from using the OTC e-MID market. However, 

the onset of the crisis (our Crisis 1 period) reflected a larger clustering coefficient, so that 

active banks were more likely to be connected among a small set of other banks, even 

while the average bank was less connected.  
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Figure 3 also demonstrates differences in connectedness measures that rely on 

directed edges—the LSCC and reciprocity measures clearly differ in trading and liquidity 

networks. The LSCC and reciprocity in the trading network are consistently below the 

LSCC and reciprocity in the liquidity network, respectively. The trading network 

(connections between borrowers and lenders) appears to reveal less interconnectivity 

than does the liquidity network (linking aggressive and passive banks). That is, banks in 

the European interbank market are more likely to be transacting both aggressively and 

passively than they are to be both borrowing and lending. These differences lend credence 

to our supposition that examining interconnectivity in both trading and liquidity 

networks reveals distinct information from the interbank market. 

The LSCC and reciprocity measures also evolve differently over time. Similar to 

degree, the LSCC in both networks falls consistently over time. Figures 3 and 4 display 

the shrinking LSCC both numerically and visually. Similar to clustering, reciprocity rises 

during the Crisis 1 period and falls during the next two subperiods. Interestingly, the 

LSCC and reciprocity fall more than 46 percent in the trading network but only 

14 percent and 8 percent, respectively, in the liquidity network. Clearly, the dynamics of 

these statistics differ over time.   

We follow up on these different dynamics by tracing shorter-term (daily) changes 

in network statistics in figure 4, with some distributional statistics provided for 

perspective in table 1. As shown in table 1 and figure 4, the degree and clustering 

coefficient resemble the trend in volume in that both dropped precipitously as the 2007–

09 crisis unfolded. The average pre-crisis levels for degree and clustering coefficient were 

8,360 and 0.394, respectively, ultimately falling to 3,482 and 0.349 following the failure 

of Lehman Brothers. As the crisis abated after 2009, the clustering coefficient nearly 

recovered to pre-crisis levels, although, as Europe suffered a weaker recovery from the 

crisis, the clustering coefficient fell again in late 2011, indicating lower levels of 
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interconnectivity. Table 1 and figures 3 and 4 also confirm that the time series of degree 

and clustering coefficient are identical for trading and liquidity networks (because these 

network statistics are undirected). 

The LSCC and reciprocity generally diverge for each network, with the liquidity 

network reflecting higher average values. Although the LSCC drops for both networks 

following the failure of Lehman Brothers, the LSCC in the liquidity network recovers 

slowly to near pre-crisis levels by 2012. In contrast, the LSCC for the trading network 

continues to fall through 2012. Similarly, reciprocity decreases in both networks following 

the failure of Lehman Brothers, with reciprocity in the trading network continuing to 

decline (nearly 50 percent) through 2012. This decrease indicates that banks became less 

willing to borrow and lend funds on the e-MID, instead preferring to trade in one direction 

only as the crisis unfolded. Like the LSCC, reciprocity in the liquidity network recovers 

to a level above its pre-crisis starting point following the collapse of Lehman Brothers. In 

fact, the average reciprocity for the liquidity network from April 2009 onward is higher 

(0.419) than the average pre-crisis level (0.411). Thus, the remaining banks using the e-

MID were increasingly willing to initiate trades through market orders and post quotes 

on the platform.  

Altogether, we see consistent evidence that liquidity decreased significantly in the 

e-MID market. As the crisis unfolded, banks tended to initiate trades less often or were 

less willing to post public quotes to borrow. This trend led to a drop in overall activity and 

a decline in e-MID network interconnectivity. The trading network became less dense and 

more fragmented between 2006 and 2012. 

Despite this overall drop in activity, the liquidity networks show evidence that 

trust levels recovered following the crisis and remained high between banks that 

continued to use e-MID. Higher post-crisis reciprocity in the liquidity network indicates 

that banks continued to be both passive and aggressive in seeking liquidity, whereas 
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lower reciprocity in the trading network denotes that banks were more polarized, either 

only borrowing or only lending. These results demonstrate how trading and liquidity 

networks independently reveal differential information about the market, even though 

the same set of trading data generates both networks.  

Note also that the two results are not contradictory: Financially constrained banks 

in need of funds easily may be willing to borrow either by aggressively trading with other 

banks posting quotes on e-MID or by posting their own quotes. Likely for the same reason, 

the LSCC in the liquidity network is larger than in the trading network.  

Table 2 shows associations in and between the two network types through 

correlation analysis for each subperiod. First, we note that the correlation structure in 

trading network statistics is stable. Each pairwise correlation is positive before the crisis 

and remains so throughout each subperiod. Correlations among trading network 

variables increase in crisis periods, reflecting the reduction in traded volume and network 

connectivity throughout the crisis. In fact, these correlations remain high also in the weak 

recovery period as trading activity in e-MID never recovers to pre-crisis levels.  

Similar results apply to correlations among liquidity network variables except that 

the LSCC often negatively correlates with other liquidity network metrics. As shown in 

Figure 3, although network connectivity at the single node (average degree), two node 

(reciprocity), and three node (clustering) returns to the pre-crisis level, overall network 

connectivity measured by the LSCC never recovers. For associations between trading and 

liquidity network measures, during the post–Lehman Brothers subperiod, all pairwise 

correlations become positive as banks that remain in the e-MID become tightly 

interconnected, relying on each other for short-term funding.  
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Figure 5 depicts the generalized Impulse Response (IR) functions for one standard 

deviation innovation to each network variable for the full sample.10 IRs indicate that 

network variables react to each other’s innovations. In particular, trading network LSCC 

and reciprocity exhibit the largest responses to each other’s innovations. Moreover, the 

LSCC and reciprocity from both trading and liquidity networks are highly connected (with 

the exception that liquidity network reciprocity and trading network LSCC are 

unrelated). These results corroborate our hypothesis that the two networks, though 

related, convey different information. 

4 Characterizing Interbank Market Structure  

Having demonstrated that trading and liquidity networks reflect different 

dimensions of interconnectedness, we compare higher-order community structure within 

each network. Specifically, we evaluate evidence for core-periphery topology in the trading 

and liquidity networks in light of the large literature establishing its prevalence in 

financial markets.11 Fricke and Lux (2015) examine e-MID trading networks from 1999 

to 2010 and find strong evidence for core-periphery structure in the trading network 

composed only of Italian banks. We extend this approach and derive new insights by 

analyzing subgraphs of each network by country in addition to confirming that the core-

periphery structure extends to the entire network of all active e-MID banks.  

With a core-periphery network, nodes can be classically grouped into either core or 

periphery. The banks composing the core are densely connected to each other compared 

with connections to peripheral banks. Further, peripheral banks are minimally connected 

 

10 For brevity, we report results for the full sample. Results for the four sub-samples are largely 

consistent with the results in table 2. 
11 Soramaki and others (2007) and Bech and Atalay (2008) document that the interbank network 

of U.S. commercial banks is sparse, with a core-periphery structure. Similar structures are found 

for interbank networks in Austria, Canada, Germany, Japan, and the United Kingdom. See also 

Boss and others (2004), Inaoka and others (2004), Embree and Roberts (2009), Craig and von Peter 

(2014), and Langfield, Liu, and Ota (2014), respectively. Core-periphery structure has also been 

found in credit default swaps markets of the United States (Markose, Giansante, and Shaghaghi, 

2012) and the United Kingdom (Abel and Silvestri, 2017). 
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to each other. Different mathematical models capture these key characteristics (Borgatti 

and Everett, 2000). For example, discrete models explicitly assign banks to one of the 

groups, leading to a partitioning of the adjacency matrix (Craig and von Peter, 2014; 

Fricke and Lux, 2015). Here, we estimate the asymmetric continuous model of Boyd and 

others (2010), which allows for banks to have varying degrees of importance to the 

directed and weighted network.  

Let 𝐴௜௝ be the weighted adjacency denoting the volume-weighted edge from bank i to 

bank j. Then, the asymmetric continuous model estimates an incoming coreness for each 

bank, 𝑢௜ ൒ 0 , and an outgoing coreness for each bank, 𝑣௜ ൒ 0 , with the following 

optimization problem: 

 min௨,௩ ∑ ∑ ൫𝐴௜௝ െ 𝑢௜𝑣௝൯ଶ௝ஷ௜௜ ,   (1) 

which can be solved using Singular Value Decomposition (SVD).12 Define the percentage 

of reduced error (PRE) as  

PRE ൌ 1 െ ∑ ∑ ൫஺೔ೕି௨೔௩ೕ൯మೕಯ೔೔∑ ∑ ൫஺೔ೕି஺̅൯మೕಯ೔೔ ,     (2) 

where 𝐴̅ is the average of all elements of 𝐴 excluding the diagonal. To evaluate goodness 

of fit, we use the criteria from Boyd and others (2010), which states that the PRE should 

exceed 0.5 for evidence in favor of the core-periphery model.  

Figure 6 shows the PRE obtained from estimating the model for the liquidity and 

trading networks. Several notable patterns emerge. First, the core-periphery model fits 

the trading network better than the liquidity network. The PRE is consistently about 

10 percent higher for the trading network. Further, the liquidity network is never above 

 

12 See Boyd and others (2010) and Fricke and Lux (2015) for details. Because equation (1) searches 

for a rank 1 approximation of a non-negative matrix, two theorems from linear algebra establish 

that the optimal solution for the coreness vectors are the left and right singular vectors from SVD. 

The first is the Perron–Frobenius theorem, which guarantees that the principle singular vectors 

are non-negative when the matrix being decomposed is non-negative. Then the Eckart–Young 

theorem establishes that the SVD solution is optimal for the norm used in equation (1). 

Electronic copy available at: https://ssrn.com/abstract=3865413



 

15 

 

the 0.5 threshold, indicating that the core-periphery model does not fit the liquidity 

network well, as there appears to be no core of aggressive (or passive) liquidity providers. 

Interestingly, even for the trading network (for which a sizable literature shows a core-

periphery structure), the model provides a good fit only in the weak recovery period—the 

PRE crosses the 0.5 threshold in late 2009.  

Figure 7 shows evidence that the core-periphery structure is more prevalent 

within subgraphs composed of banks domiciled in the same country. Specifically, banks 

from Germany, Greece, France, and Italy traded with other banks of the same country 

such that a core of high centrality banks emerged.13 The within-country core-periphery 

structure is consistently present in both liquidity and trading networks before the weak 

recovery period, which explains why, when analyzed as a whole, a model that assumes a 

single core does not fit these networks well. These novel findings have important 

implications for empirical analysis given the prominence of emergent core-periphery 

structures in the theoretical financial networks literature. 

To rigorously test for multiple and overlapping core-periphery structures, we 

estimate the Cluster Affiliation Model of Yang and Leskovec (2014), a model that 

essentially expands the coreness score into a multidimensional vector (one score for each 

community) that determines connection probabilities. The model can be fit using a form 

of non-negative matrix factorization (Yang and Leskovec, 2013), which allows for 

principled selection of the number of communities via cross-validation (Owen and Perry, 

2009; Mankad and Michailidis, 2013). Figure 8 shows the optimal number of communities 

according to cross-validation is three in the pre-crisis era for both networks. The number 

of communities decreases midway through the first crisis subperiod before stabilizing at 

a single core-periphery structure for the trading network and two for the liquidity 

 

13 The core-periphery model is applied at the country level only when a sufficient number of within-

country transactions (at least 10 transactions) form a meaningful subgraph. The four countries 

presented have the highest number of days with such subgraphs.  
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network. Thus, the structure in the e-MID trading networks before 2010 and the liquidity 

networks over the entire data span resembles the stylized representation in figure 9 of 

overlapping core-periphery subgraphs. The results also provide empirical evidence 

aligned with the theoretical predictions of star-shaped networks made in Babus and Hu 

(2017), Castiglionesi and Eboli (2018), and Castiglionesi and Navararro (2020).  

5 Forecasting Macrovariables 

Having established that trading and liquidity networks reflect distinct dimensions 

of interconnectedness and structure, we further assess whether and how these differences 

might be useful in forecasting short-term macroeconomic conditions. Importantly, our 

data cover interbank trades in the euro zone surrounding the 2007–09 financial crisis so 

we explore whether a multidimensional analysis of interbank trading behavior during 

this turbulent period might prove useful for extracting information relevant to 

policymakers and others.  

As we previously show, interconnectedness computed from both trading and 

liquidity networks generally falls from 2006 through 2012, but the levels and dynamics of 

the interconnectedness metrics differ between the two network types over time. These 

forecasting exercises are intended to examine whether the liquidity networks 

incorporating the aggressiveness of trades reflect incrementally more information than 

the trading networks. To test this conjecture, we use connectedness metrics from both 

networks to forecast various macroeconomic variables.14  

These forecast exercises address the question concerning which dimension of liquidity 

more closely ties to the real economy. Along the lines of Babus and Hu (2017), who note 

that informational frictions affect how networks develop, we examine three general types 

 

14 Several works provide a theoretical basis for networks to align with economic conditions. Elliott, 

Georg, and Hazell (2018) show that interconnectedness among German banks allowed economic 

shocks to propagate during the recent financial crisis. Likewise, Safonova (2017) links shocks to 

bank networks with the real sector. Kopytov (2018) develops a dynamic general equilibrium model 

wherein financial interconnectedness endogenously changes over the business cycle. 
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of macroeconomic variables, differing by informational type: (1) hard information, such as 

industrial production and retail sales; (2) soft information, such as the purchasing 

managers index (PMI); and (3) regional and country-specific yield spreads. For the 

regional spread, we examine the spread between the euro-area interbank offered rate and 

the overnight index swap (the EURIBOR-OIS spread), a measure of health of the banking 

system. Our country-specific spreads include the spread between the 10-year Greek, 

Italian, Portuguese, and Spanish government bond yields and the German government 

bond yield.15 

In Babus and Hu (2017), soft information between counterparties plays a role in 

how networks develop. 16  In this framework, we conjecture that soft macroeconomic 

information will be more likely reflected in banks’ trading aggressiveness and, therefore, 

incrementally more important in the liquidity network. Similarly, given the likelihood of 

information asymmetries across borders, we expect that trading aggressiveness (and the 

liquidity network, more generally) will better forecast country-specific yield spreads in 

the euro zone.  

With hard information that is more publicly verifiable to all banks, the liquidity 

network may add no incremental explanatory forecasting power. Likewise, given that all 

e-MID banks operate within the same euro zone, we conjecture that information 

asymmetries (among banks) about the EURIBOR-OIS spread are minimal except 

potentially during crisis subperiods when information asymmetries are higher. Therefore, 

we expect improvement in forecasts of the EURIBOR-OIS spreads during the crisis 

subperiods and no incremental improvement during the weak recovery subperiod when 

we include trade aggressiveness via the liquidity network.  

 

15 When levels of these macrovariables are not stationary, we consider the first difference. 
16 Bańbura and Rünstler (2011) also show that soft information may be important in forecasting. 
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With these conjectures in mind, we produce one-step-ahead forecasts for 

macrovariables using the following model: 𝑧௜,௧ ൌ 𝛾଴ ൅ 𝛾ଵ𝐷𝑒𝑔𝑟𝑒𝑒௚,௧ିଵ ൅ 𝛾ଶ𝐶𝐶௚,௧ିଵ ൅ 𝛾ଷ𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦௚,௧ିଵ ൅ 𝛾ସ𝐿𝑆𝐶𝐶௚,௧ିଵ ൅ 𝛽𝑧௜,௧ିଵ ൅ 𝑢௜,௧ , (3) 

where 𝑧௜,௧ represents each macrovariable described earlier (we consider one variable at a 

time) and the subscript 𝑔 denotes the network type. Table 3 reports the out-of-sample root 

mean square forecasting error from equation (3) for each subperiod, where the model is 

estimated using an extending window from January 2006 until the end of the previous 

subperiod. 

Consistent with the conjecture that interbank liquidity can affect the real 

economy, we find strong evidence that the statistics derived from liquidity networks 

generally produce forecasts that are statistically preferred over forecasts produced from 

trading network statistics. Focusing first on the crisis subperiods, we find that liquidity 

network forecasts are statistically preferred over those generated by the trading network 

for the country-specific yield spreads and the EURIBOR-OIS spread, as assessed by 

Diebold–Mariano tests. In contrast, the liquidity network forecast does not consistently 

add incremental explanatory power over the trading network forecast for hard 

information (industrial production and retail sales).  

For the weak recovery subperiod, the liquidity network forecast adds incremental 

explanatory power over the trading network forecast for soft macroeconomic information 

(PMI), the Portuguese yield spread, and a form of hard information (industrial 

production). The trading network forecasts are statistically preferred for the EURIBOR-

OIS spread and the remaining country-specific yield spreads. 

As we conjecture, and consistent with liquidity networks capturing greater 

information asymmetries between banks, we find that the incremental information 

reflected in liquidity networks largely improves short-term forecasting only when 
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macroeconomic information is soft or may be more susceptible to asymmetric information 

(here, country-specific credit information).  

For policymakers, these results show that the interbank market provides valuable 

information about the future state of the economy, consistent with trading network 

results in Brunetti and others (2019). Importantly, however, we show that liquidity 

networks provide incrementally more valuable information in forecasting soft 

macroeconomic variables and country-specific yield spreads. In this regard, our results 

suggest that monitoring both types of interbank networks provides a more comprehensive 

view and better forecasts of the banking sector and the real economy, particularly when 

information asymmetries in the market may be large. Trading networks capture 

important borrowing/lending activity, whereas liquidity networks more specifically 

capture the urgency to borrow/lend (the dynamics of liquidity demand/supply). 

6 Networks, Volume, and Volatility  

How information percolates through financial markets has long been a central 

theme in the finance literature. Historically, the discussion anchored around the relation 

between price volatility and trading volume as the key variables capturing information.17 

The Kyle (1985) and Glosten and Milgrom (1985) models show how private information is 

embedded into prices. Our evidence presented earlier shows that trading and liquidity 

networks convey different information, despite that both are generated by the same 

trading process. Therefore, in this section, we empirically examine the linkages among 

volume, volatility and network variables.  

For each subperiod using daily data, we estimate a vector autoregression (VAR) 

with liquidity network LSCC and reciprocity, trading network LSCC and reciprocity, 

 

17  More precisely, price changes follow a mixture of distributions, and volume is the mixing 

variable. 
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trading volume, and price volatility.18 We are interested in the impulse response functions 

and, for the time being, we are agnostic about the identification strategy, so we use the 

generalized impulse responses of Pesaran and Shin (1998).  

Figure 10 depicts the IRs of volatility and volume to one standard deviation 

innovations to network variables and vice versa, for the pre-crisis period. Volatility and 

volume generally increase with interconnectedness. In these normal market conditions, 

when interconnectedness is already elevated (see figure 3), a further rise in market 

connectivity increases volatility. This result is to be expected if too much 

interconnectedness increases contagion and systemic risk in the market. In fact, 

interconnectedness is one of the five criteria used by regulators for designating global 

systemically important banks.19  

During the pre-crisis period, the LSCC of both liquidity and trading networks does 

not significantly respond to innovations in volume and volatility. Only reciprocity 

increases in response to innovations in volatility. 

In figure 11, we report the same analyses for the Crisis 2 period (September 16, 

2008, to April 1, 2009), unarguably the most critical period for Europe because it coincides 

with the beginning of the so-called sovereign debt crisis involving many peripheral 

economies. This subperiod is characterized by low interconnectedness (see figure 3), low 

trading volume, and high volatility (see figure 1). During this crisis period, innovations to 

liquidity network LSCC reduce volatility and increase volume, highlighting that in 

stressful times, interconnectedness is beneficial to the market. These results also 

underscore the dual nature of interconnectedness: Too much interconnectedness may 

increase systemic risk, but too little may impede market functioning. Interestingly, 

liquidity networks seem to capture well this characteristic of network connections. 

 

18 For volatility, we use the daily log-price range. In each subperiod, we ensure that all variables 

are stationary and select optimal lag length using the Akaike information criterion. 
19 See Bank for International Settlements, Basel Committee on Banking Supervision (2014). 
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Two more results are worth mentioning: (1) Innovations to trading network 

variables do not have any statistically significant effect on volume and volatility, and (2) 

innovations to volatility and volume do not generate any significant response from trading 

and liquidity network interconnectedness measures. 

While these results stem from the generalized VAR identification structure, 

evidence (Adamic and others, 2017) suggests that network variables are primitive to 

volatility and volume because the price process is measured with error (for example, bid-

ask bounce), whereas network variables are quantified more precisely. Based on this 

insight, we run the VAR analysis using a Cholesky decomposition where innovations to 

network variables affect volume and volatility but not vice versa. The results are very 

similar to those reported in figures 10 and 11.20 

7 Conclusions 

During the past decade, network analysis has grown as a major research thrust in 

financial economics. Researchers have aimed to better understand how 

interconnectedness between market participants results in spillovers, amplifies or 

absorbs shocks, and creates other nonlinearities that ultimately affect key markers of 

market health. In this paper, we benchmark to Babus and Hu (2017) and Castiglionesi 

and Eboli (2018) to explore the incremental informational content of different networks 

composed from the same set of interbank trades. More specifically, we propose a new 

network construct, the liquidity network (based on the aggressiveness of supplying and 

demanding liquidity), and use it to examine connectedness in the physical overnight-

lending market in Europe.  

We show how trading and liquidity networks complement each other to 

characterize interconnectivity in the interbank market. Generating liquidity and trading 

 

20 Moreover, we flip the Cholesky factorization and assume that shocks to volume and volatility 

feed into network variables but not vice versa and obtain similar results. Results for the Crisis 1 

and weak recovery periods are in line with what we presented in figures 10 and 11. 
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networks from the same set of overnight interbank transactions, we demonstrate that the 

directed edges that differ between these networks produce meaningful differences in 

network interconnectedness measures. We also establish that the interbank networks of 

Europe reflect core-periphery structures within countries but not across the continent. 

Across the euro zone, there are multiple, overlapping cores of aggressive (or passive) 

liquidity-providing banks, whereas post-crisis trading networks exhibit a classical single 

core-periphery structure. 

The fact that the liquidity network includes incremental information about trade 

aggressiveness in the market allows us to test whether and how this dimension of trade 

affects short-term market forecasts. Consistent with network models that reflect 

information asymmetries, we find that the liquidity network better forecasts soft 

macroeconomic information and country-specific yield spreads in Europe.  

These differences are important for policymakers in that statistics generated 

through the liquidity network outperform similar statistics from the trading network 

when employed in forecasting these macrovariables. In this light, liquidity networks more 

closely capture financial market liquidity dynamics that tie to the real economy, 

particularly in settings where information asymmetries are higher. These findings 

motivate future work in developing unified financial network methods that jointly model 

different network types.  

In this spirit, we also study how these two network constructs relate to volume and 

volatility. We find that in normal market conditions, a further increase in connectivity of 

either network increases volatility. In crisis periods, an increase in liquidity network 

connectivity reduces volatility and increases traded volume. Altogether, our findings 

contribute to a better understanding of how interbank markets operate, convey 

information about the real economy, and demonstrate that viewing financial networks 
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under different lenses provides important insights into market structure and the 

macroeconomy. 
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Figure 1: Financial statistics at the daily resolution from the e-MID interbank market. 

Vertical lines mark subperiods: Pre-crisis, January 2, 2006, to August 7, 2007 (when the 

European Central Bank (ECB) noted worldwide liquidity shortages); Crisis Period 1 (pre-

Lehman Brothers), August 8, 2007, to September 12, 2008; Crisis Period 2 (post-Lehman), 

September 16, 2008, to April 1, 2009 (when the ECB announced the end of the recession); weak 

recovery period, April 2, 2009, to December 31, 2012. 
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Figure 2A: A hypothetical trading network, where the banks (nodes) are labeled A 

through E. Directed edges represent loans from Bank A to other banks. 

 

  

Figure 2B: Two hypothetical liquidity networks, where the banks (nodes) are labeled A 

through E. Directed edges represent active loans from Bank A to other passive banks 

(left panel) or where Banks B, C, D, and E actively borrow from Bank A by hitting posted 

quotes (right panel). 
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Figure 3: Network statistics corresponding to 30-day rolling liquidity (solid red) and trading 

(dashed blue) networks from the e-MID interbank market. Vertical lines mark subperiods: Pre-

crisis, January 2, 2006, to August 7, 2007 (when the European Central Bank (ECB) noted 

worldwide liquidity shortages); Crisis Period 1 (pre-Lehman Brothers), August 8, 2007, to 

September 12, 2008; Crisis Period 2 (post-Lehman), September 16, 2008, to April 1, 2009 (when 

the ECB announced the end of the recession); weak recovery period, April 2, 2009, to 

December 31, 2012. 
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 Pre-Crisis Crisis 1 Crisis 2 Weak Recovery  

 

Trading 

Network 

    

Liquidity 

Network 

    
Network Statistics for Each Exemplar Network 

Degree 8,119 5,652 2,468 2,325 

Clustering Coef. 0.393 0.438 0.406 0.353 

Trading LSCC 0.726 0.683 0.522 0.389 

Liquidity LSCC 0.817 0.789 0.752 0.699 

Trading 

Reciprocity 
0.113 0.123 0.095 0.061 

Liquidity 

Reciprocity 
0.434 0.442 0.394 0.399 

Figure 4: Exemplar Networks and Statistics constructed using a 30-day rolling window from each subperiod. Nodes (banks) in the blue area compose the 

largest strongly connected component. Degree, clustering, the largest strongly connected component (LSCC), and reciprocity are computed as defined in section 3. 
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IR of Liquidity Net. LSCC to Liquidity Net. Reciprocity 

 

IR of Liquidity Net. LSCC to Trading Net. LCSS 

 

IR of Liquidity Net. LSCC to Trading Net. Reciprocity 

 
IR of Liquidity Net. Reciprocity to Liquidity Net. LSCC 

 

IR of Liquidity Net. Reciprocity to Trading Net. LSCC 

 

IR of Liquidity Net. Reciprocity to Trading Net. Reciprocity 

 
IR of Trading Net. LSCC to Liquidity Net. LCSS 

 

IR of Trading Net. LSCC to Liquidity Net. Reciprocity 

 

IR of Trading Net. LSCC to Trading Net. Reciprocity 

 
IR of Trading Net. Reciprocity to Liquidity Net. LCSS 

 

IR of Trading Net. Reciprocity to Liquidity Net. Reciprocity 

 

IR of Trading Net. Reciprocity to Trading Net. LSCC 

 
Figure 5: 10-Day Generalized Impulse Responses (IR) of network variables to one standard deviation innovations. Optimal lag length is 

2 and is selected with Akaike information criterion. Standard errors: Monte Carlo (1,000 repetitions). Full sample. 
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Figure 6: The percentage of reduced error from estimating the asymmetric continuous core-

periphery model for the liquidity (solid red) and trading (dashed blue) networks from the e-MID 

interbank market. Values above 0.5 provide evidence for the core-periphery model. Vertical 

lines mark subperiods: Pre-crisis, January 2, 2006, to August 7, 2007 (when the European 

Central Bank (ECB) noted worldwide liquidity shortages); Crisis Period 1 (pre-Lehman 

Brothers), August 8, 2007, to September 12, 2008; Crisis Period 2 (post-Lehman), 

September 16, 2008, to April 1, 2009 (when the ECB announced the end of the recession); weak 

recovery period, April 2, 2009, to December 31, 2012. 

  

Electronic copy available at: https://ssrn.com/abstract=3865413



 

33 

 

 

Figure 7: The percentage of reduced error from estimating the asymmetric continuous core-

periphery model for country subgraphs on the liquidity (solid red) and trading (dashed blue) 

networks from the e-MID interbank market. Values above 0.5 provide evidence for the core-

periphery model. Vertical lines mark subperiods: Pre-crisis, January 2, 2006, to August 7, 2007 

(when the European Central Bank (ECB) noted worldwide liquidity shortages); Crisis Period 1 

(pre-Lehman Brothers), August 8, 2007, to September 12, 2008; Crisis Period 2 (post-Lehman), 

September 16, 2008, to April 1, 2009 (when the ECB announced the end of the recession); weak 

recovery period, April 2, 2009, to December 31, 2012. 
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Figure 8: The optimal daily number of communities using the Cluster Affiliation Model on the 

liquidity (solid red) and trading (dashed blue) networks from the e-MID interbank market. A 

smoothed version by local polynomial regression is shown for readability. Vertical lines mark 

subperiods: Pre-crisis, January 2, 2006, to August 7, 2007 (when the European Central Bank 

(ECB) noted worldwide liquidity shortages); Crisis Period 1 (pre-Lehman Brothers), August 8, 

2007, to September 12, 2008; Crisis Period 2 (post-Lehman), September 16, 2008, to April 1, 

2009 (when the ECB announced the end of the recession); weak recovery period, April 2, 2009, 

to December 31, 2012. 
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Figure 9: Stylized representation of the e-MID liquidity and trading networks, where there exist multiple and 

overlapping core-periphery structures organized by country. Colors represent different communities that 

result from the overlapping subgraphs. 
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Figure 10: 10-Day Generalized Impulse Responses (IR) of volume, volatility, and network variables to one standard deviation 

innovations. Optimal lag length is 2 and is selected with AIC. Standard errors: Monte Carlo (1,000 repetitions). Pre-crisis period 

January 2, 2006, to August 7, 2007 (when the European Central Bank noted worldwide liquidity shortages). 
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Figure 11: 10-Day Generalized Impulse Responses (IR) of volume, volatility, and network variables to one standard deviation 

innovations. Optimal lag length is 2 and is selected with AIC. Standard errors: Monte Carlo (1,000 repetitions). Crisis 2 period (post-

Lehman Brothers), September 16, 2008, to April 1, 2009 (when the European Central Bank announced the end of the recession). 
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 Trading network Liquidity network 

 Pre-crisis Pre-crisis 

 2-Jan-06 to 8-Aug-07 2-Jan-06 to 8-Aug-07 

 Mean Median St. Dev. Mean Median St. Dev. 

LSCC 0.683 0.687 0.035 0.817 0.817 0.019 

Reciprocity 0.126 0.125 0.020 0.411 0.408 0.020 

Degree 8361 8254 815.8 8361 8254 815.8 

Clustering 

Coef. 
0.394 0.391 0.023 0.394 0.391 0.023 

 Crisis 1 Crisis 1 

 9-Aug-07 to 12-Sep-08 9-Aug-07 to 12-Sep-08 

LSCC 0.630 0.630 0.039 0.808 0.806 0.022 

Reciprocity 0.110 0.108 0.017 0.432 0.431 0.027 

Degree 5637 5605 744.3 5637 5605 744.3 

Clustering 

Coef. 
0.404 0.403 0.022 0.404 0.403 0.022 

 Crisis 2 Crisis 2 

 16-Sep-08 to 1-Apr-09 16-Sep-08 to 1-Apr-09 

LSCC 0.461 0.449 0.066 0.713 0.700 0.064 

Reciprocity 0.078 0.077 0.015 0.390 0.390 0.028 

Degree 3482 3572 625.2 3482 3572 625.2 

Clustering 

Coef. 
0.349 0.351 0.028 0.349 0.351 0.028 

 Weak Recovery Weak Recovery 

 2-Apr-09 to 31-Dec-12 2-Apr-09 to 31-Dec-12 

LSCC 0.434 0.438 0.058 0.732 0.723 0.038 

Reciprocity 0.074 0.073 0.020 0.419 0.418 0.039 

Degree 2351. 2382 474 2351 2382 474 

Clustering 

Coef. 
0.353 0.351 0.030 0.353 0.351 0.030 

Table 1: Summary statistics of the network metrics within each subperiod by network type. 

Note. LSCC = largest strongly connected component. 
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Note. LSCC = largest strongly connected component.

Panel A: Pre-crisis Correlations, January 2, 2006, to August 7, 2007 

 
Panel B: Crisis 1 Correlations, August 8, 2007, to September 12, 2008 

 
Panel C: Crisis 2 Correlations, September 16, 2008, to April 1, 2009 

 
Panel D: Weak Recovery Correlations, April 2, 2009, to December 31, 2012 

 
Table 2: Correlation matrix by subperiod between network statistics computed at the daily level using a 

30-day rolling window.  
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 Crisis 1 Crisis 2 Weak Recovery 

 Liquidity 

Network 

Trading 

Network 
Difference 

Liquidity 

Network 

Trading 

Network 
Difference 

Liquidity 

Network 

Trading 

Network 
Difference 

Hard information 

Δ(IP) 3.853 3.914 -0.060 12.526 12.053 0.473 3.809 4.132 -0.323** 

Δ(RS) 1.941 2.055 -0.114 1.099 1.268 0.169* 2.323 2.286 0.037** 

Soft information 

Δ(PMI) 2.728 1.827 0.901 6.906 6.433 0.473 6.167 7.309 -1.142** 

Banking system health 

EURIBOR-OIS 

Spread 
0.072 0.073 -0.001** 0.080 0.082 -0.002* 0.044 0.042 0.002** 

Country-specific spreads 

ITSP 1.377 1.923 -0.546** 7.923 7.660 0.263** 1.364 1.131 0.233** 

PTSP 3.012 2.279 0.733** 1.035 1.064 -0.029** 5.848 5.939 -0.091** 

GRSP 2.279 2.540 -0.261** 5.045 5.126 -0.081** 4.931 3.623 1.308** 

SPSP 5.358 6.669 -1.311** 6.317 6.653 -0.336** 1.916 1.310 0.606** 

Table 3: Forecasting performance of each network by subperiod, where root mean square forecasting error is computed for 1-step ahead forecasts using the model 

in equation (3) trained on data from January 2006 to the end of the previous subperiod. At the monthly level is industrial production (IP), retail sales (RS), and the 

purchasing managers index (PMI). At the daily level is the spread between the euro-area interbank offered rate and the overnight index swap Rate (EURIBOR-OIS 

spread) and spreads between the 10-year Italian, Portuguese, Greek, and Spanish government bond yields and the 10-year German government bond yields (ITSP, 

PTSP, GRSP, and SPSP, respectively). Asterisks denote significance at the 5 percent and 1 percent levels from the Diebold–Mariano test. 

 

E
le

c
tro

n
ic

 c
o
p
y
 a

v
a
ila

b
le

 a
t: h

ttp
s
://s

s
rn

.c
o
m

/a
b
s
tra

c
t=

3
8
6
5
4
1
3


