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Abstract

The recent financial crisis has focused attention on identifying and measuring systemic
risk. In this paper, we propose a novel approach to estimate the portfolio composition of
banks as function of daily interbank trades and stock returns. While banks’ assets are
reported to regulators and/or the public at relatively low frequencies (e.g. quarterly or
annually), our approach estimates bank asset holdings at higher frequencies allowing us
to derive precise estimates of (i) portfolio concentration within each bank (a measure of
diversification) and (i1) common holdings across banks (a measure of market
susceptibility to propagating shocks). We find evidence that systemic risk measures
derived from our approach lead, in a forecasting sense, several commonly used systemic

risk indicators.
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1 Introduction

The 2007-09 financial crisis accentuated the need for effective monitoring,
oversight and regulation of complex financial institutions which trade thousands
of financial products in markets around the world. This paper presents a method
for estimating individual bank holdings and systemic risk in the banking system
in between periodic financial reports, providing a more timely and on-going
assessment of individual bank diversification and systemic risk. Our practical
method draws upon two informationally-linked data sources available at the daily
frequency: (i) stock returns and (ii) interbank lending activity. Stock returns are
of course widely and publicly available, while interbank lending data is accessible
to central banks.

We build on the accounting framework of Shin (2009, 2010) starting with
annual reports, and use stock returns and interbank lending data to extract daily
estimates of the assets held by individual banks.! We then estimate the
composition of each individual bank’s underlying (unobserved) portfolio each
month and show that our methods provide meaningful and timely information
about both individual bank holdings and systemic risk in the banking system.

Our methods involve solving a matrix factorization problem within a novel
Bayesian estimation framework (details in Section 2 below). First, we estimate

each individual bank’s underlying asset portfolio which we then use to

1 See also Elliott et al. (2014) and Brunetti et al. (forthcoming). We partition yearly balance sheets
of the banking sector to isolate the underlying (and unobserved) portfolios held by banks. This
partitioning, when combined with balance sheet identities, implies a variant of the non-negative
matrix factorization problem (extensively studied in other domains, e.g. Lee and Seung, 1999). In
particular, our matrix factorization problem requires solving for one factor that is subject to
probability constraints.
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characterize risk within and among banks. Intuitively, we derive an index of
portfolio concentration (bank-specific risk) for each individual bank and an index
of portfolio similarity across banks (systemic risk) which captures market
susceptibility to propagating shocks to any asset class.

The concentration of assets in an individual bank’s portfolio has well-known
risk implications (Klein and Bawa, 1977; Santis and Gerard, 1997; Gale and
Gottardi, 2017; Pastor, Stambaugh and Taylor, 2017). By estimating the monthly
asset holdings, our methods allow regulators to better assess, in a timely manner,
concentrated risk within a bank without having to directly examine bank balance
sheets. Moreover, the similarity of bank portfolios indicates interconnectedness,
an important measure for the propagation of shocks (see e.g. Greenwood et al.,
2015, Caccioli et al., 2014, 2015).

While our methods indirectly estimate bank holdings, we demonstrate that
these estimates closely approximate real balance sheet data. We validate our
estimates rigorously in two ways. First, since the statistical model and estimation
framework are novel, we produce Monte Carlo simulations to demonstrate that
our estimation approach produces reliable results. With these simulations we
compare different estimation techniques to demonstrate that our Bayesian
approach is the most reliable. Second, we validate the model from an accounting
point of view by showing that our progressive monthly estimates closely match
real accounting data year over year.

Once we estimate the asset composition of each bank portfolio, we derive
bank sector indices of concentration across individual portfolios and common

holdings across different banks. Both indices convey important information in a



forecasting sense—a more concentrated and similar banking sector is a leading
factor and harbinger of market stress at monthly horizons. In this respect, our
paper contributes to a growing literature on measures of systemic risk, where
scholars have created various other risk indices.2

Our measures differ from what the literature has proposed thus far.
Alternative risk measures primarily relate to capital adequacy and hence are
more concerned with the liability side of bank balance sheets, while our measures
focus on the asset side of the balance sheet. Our concentration measure captures
bank portfolio concentration specific to a bank risk profile, and our measure of
common holdings links the riskiness of each bank to other banks in the system. A
shock to an undiversified bank could have a larger impact on the bank’s balance
sheet and can more readily propagate to other banks which hold similar portfolios.

With these differences in mind, we also examine our systemic risk
indicators relative to alternative risk measures including three measures of
systemic risk published by the ECB, several macro indicators, Acharya et al.’s
(2017) MES and Brownlees and Engle’s (2017) SRISK. Our concentration index
(one-way) Granger-causes MES and SRISK, suggesting that information from
stock returns and interbank trading feeding into the asset side of bank balance

sheets emerges prior to information from the liability side.

2 Various other systemic risk measures have been proposed (see Biasis, Flood, Lo and Valavanis
(2012) for a survey). Acharya, Pedersen, Philippon and Richardson (2017) estimate MES based on
the (expected) amount a bank is undercapitalized in a crisis event. Brownlees and Engle (2017)
measure SRISK as the contribution of each firm in terms of capital shortfall in severe market
movements. Adrian and Brunnermeier (2016) compute CoVaR, the value at risk (VaR) for the
financial sector conditional on a bank having had a VaR loss. Huang, Zhou and Zhu (2009) combine
CDS default probabilities of individual banks and forecasted asset return correlations. Giudici,
Sarlin and Spelta (forthcoming), combine direct exposures with common exposures—i.e. what
Brunetti et al. (forthcoming) refer to as correlation and physical networks. See also Segoviano and
Goodhart (2009), de Jonghe (2010) and Tarashev, Borio and Tsasaronis (2010).
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Additionally, we show that the higher moments of our measures (standard
deviation, skewness and kurtosis) also convey information. The standard
deviation and skewness of our measures generally lead (one-way Granger-cause)
measures of systemic risk published by the ECB—the Composite Systemic Risk
Index, the Simultaneous Default Probability, and the Sovereign Composite
Systemic Risk Index—as well as EU macroeconomic indicators such as the
Consumer Confidence Index (CCI), the Purchasing Managers' Index (PMI) and
Retail Sales.

Our approach provides a novel method for regulators to monitor the
banking sector. Using daily interbank lending and stock market returns
aggregated each month,3 our method provides insight into the balance sheets of
banks at a higher frequency than the more cumbersome and less timely quarterly
or annual disclosures or audits allow. Moreover, our methods complement other
approaches to assess and monitor systemic risk that build on network science
techniques (Billio et al., 2012; Diebold and Yilmaz, 2014; Brunetti et al.,
forthcoming; Giudici et al., forthcoming). Our derivations and methodology also
provide a blueprint for how entity-level information from multiple markets can be
combined in a principled manner using matrix factorization and balance sheet
models to improve the quality of subsequent risk and interconnectedness

measures.

3 Our procedure is flexible. While we employ daily data on stocks and interbank activity to derive
monthly measures of bank holdings, bank holdings can be computed at any frequency beyond one
day. More generally, our procedure estimates bank holdings at any frequency lower than the input
data, so for example, intraday data allows for daily bank holding estimates.
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Our method is also practical, drawing on the vast and increasing amounts
of data generated by new regulatory frameworks—e.g. the Dodd-Frank Wall
Street Reform and Consumer Protection Act (Dodd-Frank), European Banking
Authority, European Securities and Markets Authority, and the Financial
Stability Board. Dodd-Frank, for instance, requires exchanges and market
participants to record and report data to regulators. Despite these increased
reporting requirements, most regulators can only access data directly related to
their legal purview, so that integrating data from myriad products across various
regulated and unregulated markets remains a significant challenge. Our method
provides practical means for assessing complex financial institutions which trade
hundreds of financial products in markets around the world. Of course, other
applications remain beyond the scope of this current work and we leave the

process of combining data across markets to further research efforts.

2 An Accounting Framework

As a starting point for building our systemic risk measures, we first employ the
accounting framework as in Shin (2009, 2010), Elliott et al. (2014) and Brunetti
et al. (forthcoming) wherein individual bank balance sheets are connected via
interbank lending and common holdings, and then aggregated to the industry
level. Let there be n banks under consideration and Xbe the vector of interbank
debt (the total value of liabilities held by other banks). II;; is the share of bank i’s
liabilities held by bank j, W;;, is the weight invested in each of the K assets by bank
i Wiy = 1), Y, denotes the market value of bank i’s assets, e; indicates bank
i’s equity (which we proxy for with the market value of equity), and d; is the total

value of liabilities of bank i held by non-banks.



Consider a financial system in which banks connect lenders to borrowers as
intermediaries, collecting deposits from households and firms and investing the
deposits in a portfolio of assets, including loans to the household sector (via
mortgages and consumer debt) and firms. The balance sheet for any individual

bank i can be partitioned as follows.

Assets Liabilities

D Wl ©
k

Z x]HU di
J

We obtain the balance sheet identity as

Z WikYik-i_z XjHij:€i+xi+di
k J

or, using matrix notation, as

X+ WoeY)u=E+X+D
where u 1s a vector of ones of length K; ® denotes the Schur product (element wise
multiplication), so that C = (A®B) and C;; = A;;B;;. We can therefore express the
portfolio of assets held by each bank as follows

WOY)u=E+ (I -DX+D
where [ is the n X n identity matrix.

Recall that D represents debt claims on the banking sector by households,

mutual and pension funds and other non-bank institutions. Following Shin (2009),
we assume that the debt liabilities to non-banks evolve slowly. We also assume

that W, the weight invested in each of the K assets, evolves slowly, whereas the
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value of the corresponding asset holdings fluctuates more rapidly over time (e.g.
from day to day, or week to week). Thus, over appropriately short intervals,
changes to D and to W are negligible; then changes in the balance sheet from
period -1 to ¢t can be written as

(WG(Yt - Yt—l))u =E +D+ U -T)X;—(E;oy + D+ (I — o1 X 1)

(WO, Y, ))u=E —Ey + U =TDX, = (I = Te_)Xi g (1)

Unobserved Observed

We assume that changes to the equity account (E; — E._;) can be readily measured
for public banks from public stock prices, wherein the market incorporates
important information about the bank into daily stock prices. In this light, stock
returns reflect information about the assets and liabilities on the bank’s balance
sheet.

Additionally, daily transaction-level interbank lending data can be used to
construct a daily estimate of I1;, the adjacency matrix of interbank transactions,
and X;, the vector of debt held by other banks. Note that X, can only be partially
observed—banks can lend each other money through other (often unobservable)
mechanisms. For instance, the European banks which we study can trade across
the e-MID electronic system (which we observe and utilize), bilaterally in the over-
the-counter (OTC) market, or with the ECB directly. Despite this fact, our
factorization method is able to produce robust estimates of W, the vector of weights

each bank invests in each asset, which we utilize to construct our systemic indices.



3 Balance Sheet Driven Bayesian Factorization
Given the accounting identity that links banks together through interbank
lending arrangements and common asset holdings, we aim to quantify the
portfolio composition of each bank. Using our notation from above, let

Zy =E —E 1+ —T)X, — (I — M) Xy
and

Ve=Y =Y.

Written in element form, Equation (1) implies that the i-th bank’s balance sheet

satisfies

Zo)i = 2kW) i (V) ki-

Assuming that the investment opportunity set is the same for all banks, we can
express the same equation in matrix form
Z=Wv (2)

subject to X5_; Wy = 1 for all i and W;; = 0 for all i,j, where Z = [Z,Z,, ..., Z¢] is
an n X Tmatrix, Wis an n x Kmatrix with non-negativity constraints on the rows,
and V = [V}, V,,...,V;] is an KX Tmatrix.4

Equation (2) can be readily seen as a variant of the non-negative matrix
factorization (NMF) problem, where Zis given and the objective is to estimate W
and V. Most works in NMF do not include the sum to one constraint for
computational reasons, which results in an identifiability problem. Specifically,
the estimates in NMF are always re-scalable (so-called scale invariance), where

W can be multiplied by a positive constant ¢ and V by 1/c to obtain different W, V

4 Non-negativity implies no short selling, which we believe is reasonable, given regulatory
restrictions on bank portfolios and the intermediary role that banks play in the economy.
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without changing their product. In other words, under conventional NMF
formulations, it is not possible to differentiate between a change in the percentage
asset class holding and the change in value of the given asset class. We note that
in our case this identifiability issue is resolved, since we require that the rows of
W to sum to one.? However, due to the sum-to-one constraint in addition to the
non-negativity on W, the resultant problem is challenging to solve.6

In this light, we develop a novel Bayesian estimation framework, capturing
the non-negativity and probability constraints using appropriate distributional
assumptions.’ Specifically, we assume that each row of W, denoted by w;, is
distributed according to a Dirichlet distribution with common concentration
parameter a.

p(w;) = Dirichlet(a) 3)
The Dirichlet distribution, whose range is all discrete probability distributions of
length K, is commonly utilized in nonparametric Bayesian statistics to model
unknown probability distributions (Antoniak, 1974, Sethuraman, 1994).8 a is the

common parameter, which can take any value greater than zero. As a gets larger,

5 We note that our proposed factorization model is not fully identifiable, as the columns of W (and
correspondingly in V) are subject to permutation and can thus be arbitrarily ordered. This is a
common property of most factorization models other than the Singular Value Decomposition.

6 The main contributions in non-negative matrix factorization typically pose an optimization
problem based on minimizing the Frobenius norm of the difference between Z and the estimated
factors to obtain an estimate of W and V in (2) (Lee and Seung, 1999, Lin, 2007, Mankad et al.,
forthcoming). When faced with sum-to-one constraints, the usual approach is to find approximate
solutions (i.e., continuous relaxation of constraint via a LaGrangian penalty) or to ignore the
constraint in the estimation and normalize the factors ex-post in a second stage (see, e.g., Huck et
al. (2010) and Heinz et al. (2001)). Both have computational advantages, but do not guarantee
robust solutions. Indeed, we find that conventional optimization methods can provide qualitatively
different solutions depending on the random seed, reducing the practical application of these
methods.

7 This contrasts with previous Bayesian factorization models that have a similar framework but
solve for non-negativity without the probability constraint (Schmidt et al., 2009, Psorakis et al.,
2011).

8 More recently, it has been popularized in the Latent Dirichlet Allocation model of Blei et al. (2003)
and applied extensively for summarizing unstructured text data with so-called topic modeling
analysis. We use this distribution for the rows of W to capture the probability constraint.
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the probabilities are closer to uniform, meaning that the assets held within each
bank portfolio and across banks are approximately equal. As a approaches zero,
the distribution is sparser (more weights are zero, though the zero components
can vary among banks).

Since V represents changes in asset values at the daily level, over long
enough intervals we expect its distribution be unimodal and centered on a small
constant capturing market trends. We also expect the true distribution of V to
have heavier tails as has been established for stock returns (Upton and Shannon,
1979), but we show the Gaussian distribution offers a suitable approximation with
computational advantages. As such, elements of V are assumed to be
independently normally distributed with mean u and variance o

p(V) = Hk,j N, 0'13)- (4)
Note that, while the prior distribution assumes that the daily returns between
asset classes are independent, the posterior distribution of V will in general
exhibit correlations between asset classes.® Thus, in effect, the correlation
structure between asset returns is learned implicitly through the estimation we
describe in this section below.

We introduce one last random variable, 02, that controls the variance of
additive Gaussian noise on each element of the matrix Z and is modeled with an

inverse gamma density with shape n and scale .10

p(c?) =1G(n,0) (®)

9 See the last sub-section of Appendix 1 for mathematical details.

10 The inverse gamma density as a prior distribution for the noise variance o2 is a natural choice
and extensively utilized by Brav (2000), Cremers (2002), Jones (2003), and Korteweg and Sorensen
(2010).
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To complete the Bayesian specification, we assume that Z has the following
conditional likelihood
p(ZIW,V,0%) = 1;; N(WV)y, 02). ®)

Equations (2) and (6) can be viewed as mixture models, where Gaussian
means encoded within the columns of V are added together using weights in W .11
The number of components in the mixture are determined by the rank of the
factors W and V, which is set by the analyst. With such mixture models, others
have shown that with enough components the resultant mixture distribution
given by WV has sufficient flexibility to approximate any continuous distribution
for Z (subject to regularity conditions) to an arbitrary degree of accuracy (see
Norets and Pelenis, (2012) and Rossi (2014)).12 This also provides intuition for
when our model will not work well. We expect our Bayesian specification to
struggle if the true distribution of Z is discontinuous, truncated, or having other
boundary effects. In our data, we see no evidence for this concern.

We briefly discuss estimation of the Bayesian model next, with full
derivations provided in the Appendix. By Bayes rule, the joint posterior is
proportional to

p(W,V,0?|Z) < p(Z|W,V,a)p(W)p(V)p(c?), (7
where we utilize the fact that W,V, and o2 are assumed to be independently

distributed as in Equations (3)-(6).

11 We use the normal distribution again for tractability and ease of computation, though this does
not necessarily sacrifice the overall accuracy of the factorization even when Z follows a non-
Gaussian distribution.

12 The intuition for this result is that any density can be well approximated using multiple small
variance normal components with different means to position the components appropriately.
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Computing the posteriors densities p(W|Z) and p(V|Z) requires solving an
intractable integral of the joint posterior distribution in Equation (7). To overcome
this challenge, we utilize a combination of standard Markov Chain Monte Carlo
(MCMC) methods. The basic idea behind MCMC is to construct a Markov chain
that has the desired distribution as its limiting distribution. Thus, once the
Markov chain has converged to its equilibrium, repeatedly sampling states of the
chain provides an empirical estimate of the desired distribution that is accurate
to an arbitrarily high degree. From this empirical distribution, the expectation can
be readily calculated.13

Since we can apply conjugate distributional properties!4 to derive explicit,
closed forms of the posterior distributions for Vand ¢ conditional on the data (Z)
and the current state of each of the parameters (W,V,0?), we use Gibbs sampling
to estimate the marginal distributions p(V|Z) and p(c|Z). In other words, the
Markov chain is defined by the conditional posterior distributions and iterated
until convergence as in any MCMC method, after which samples are drawn and
averaged to derive point estimates.

We use a more general version of Gibbs Sampling, the Metropolis Hastings
algorithm, to estimate p(W|Z2), because the conditional posterior distribution of W
1s not composed of conjugate distributions and thus cannot be characterized

analytically. The estimation procedure exploits the fact that we are still able to

13 See Casella and George (1992) and Chib and Greenberg (1995) for further information on MCMC
methods, including best practices and how to determine whether the Markov chain has converged
to its limiting distribution.

14 In Bayesian probability theory, if the posterior distributions (e.g., p(V | 7)) are in the same family
as the prior probability distribution (e.g., p(V)), the prior and posterior are conjugate distributions
which have a closed-form expression for the posterior distribution.
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compute the value of a function (shown explicitly in the Appendix) that is
proportional to the desired distribution. This proportion is used to generate
Markovian samples iteratively that converge to the desired distribution as the

number of samples grows.

4 Validating the Model

In this section, we validate our model and Bayesian estimation framework from
both a statistical perspective through a simulation exercise, and from an
accounting perspective by comparing the estimates of W (the vector of weights
invested in each asset class) against actual balance sheet data reported annually
by each bank. In both tasks, we first utilize non-parametric hypothesis tests to
compare the distribution of the true W with its estimate. Specifically, we utilize
four well known non-parametric tests. The Brown-Mood median test (Brown et
al., 1951) and the Fisher-Pitman permutation test (Boik, 1987) assess whether
two samples have identical medians and means, respectively. The third test is the
more general Mann-Whitney U test (Mann and Whitney, 1947) which compares
the full distributions of the estimated and true W to assess whether our estimate
1s stochastically smaller (or larger) than its true value. 1> And lastly we utilize the
Two Sample Anderson Darling Test (Scholz and Stephens, 1987 following
Anderson and Darling, 1954) to assess whether there are differences between the

two samples with particular sensitivity at the tails of the distributions.6

15 To understand the precise hypothesis tested by the Mann-Whitney U test, let x and y be two
random variables with cumulative distribution functions f and g respectively. The hypotheses for
the test Hy: f(+) = g(*) versus H;: f(a) < g(a) or f(a)> g(a),Vva.

16 This is comparable to the Kolmogorov-Smirnov test, which is not as appropriate in our setting
since the real balance sheet data has multiple zero values. Moreover, the Anderson Darling test
has been shown in Monte-Carlo studies to have comparatively greater statistical power (Razali et
al., 2011).
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Note that element-wise accuracy comparisons for W (like mean squared
errors) are not possible given the large number of asset classes and that the
columns of the estimated W can be ordered arbitrarily, a common property of such
factorization models. As such, in addition to the four distributional tests, we also
report the Rand Index, a classic accuracy measure for this setting (Rand 1971).
The Rand Index varies from zero to one, with larger values indicating more
accurate estimates. Lastly, to understand the accuracy of the overall factorization
we report a Pseudo R2 which is analogous to the R2 in linear regression.l?

Additionally, we compare the accuracy of our proposed model relative to
competing optimizing techniques (from the matrix factorization and machine
learning literature) that can be used to solve Equation (2). The methods we
compare against are as follows:

1. The Semi Non-Negative Matrix Factorization model of Ding et al. (2010)
with probability constraints enforced ex-post, which is state of the art in
the matrix factorization field;

2. Fuzzy K-means, a classic machine learning algorithm, that produces

estimates of W based on a Gaussian mixture model (Bezdek et al., 1984).

4.1 Simulation

We test the accuracy and validity of the proposed model under different simulation
settings. The first simulation establishes self-consistency of the proposed
factorization, that is, we generate the matrix Z from the model implied by the

factorization. Then we perform the estimation with perfect knowledge of the true

17 The PseudoR2 =1 — ”Z a WV”i'/ .
Iz - ZII7
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underlying parameterizations. In practice, this information would not be known
at the start of the estimation, but we need to establish the validity of the
estimation procedure. The second simulation misspecifies the hyper-parameters
and initial values to help us gain insight into the sensitivity and validity of our
estimation under the more realistic condition that the underlying
parameterizations are unknown.

First, we generate W, V, and o according to their distributions, where the
concentration value and initializations are set to be equal to the values used in
our real data—i.e. balance sheet data from annual reports. We use a = 0.2, u = 0,
oy, = 045, k =100, and 6 = 0.5 with W and V of dimension 49 x 8 and 8 X 23,
respectively, also chosen to match the real data.!8 Second, under the hyper-
parameter misspecification scenario, we perform the estimation with the value of
the prior parameter « ranging from 0.15 to 0.35 (the true value always remains
0.20). Studying the performance of the estimation for varying levels of «a
misspecification is particularly important, as ais also the main parameter for the
distribution of W. For completeness we also incorrectly initialize pin;e = 1, 0y jnie =
1 and g;,;; = 1, so that every hyper-parameter is misspecified.

Panel A in Table 1 presents the results of the self-consistency scenario.
Each of our four non-parametric statistical tests indicate that the model and
estimation is self-consistent. Note that the average p-values shown in parentheses

in Table 1 are above 5% for all tests, so in this setting, we fail to reject the null

18 The number of banks in our sample is not fixed since during our sample period there have been
mergers, acquisitions and bankruptcies. The choice of 49 banks in the simulation is only indicative
of the number of banks in our sample. Bank identities in the interbank market are confidential.
The number of investment assets, 8, is the result of the banks’ balance sheet analysis. Details are
discussed in the data section.
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hypotheses from each of the four tests. The pseudo R2 and Rand Index also provide
evidence that the estimation overall and of W specifically are high quality, with
values close to one. Thus, our estimates of W, which are particularly important
within the systemic risk context, match well the true distribution when using the
ex-post correct parameterization.

Panel B in Table 1 presents results for values of aranging from 0.15 to 0.35
(straddling the actual 0.2 value) in various hyper-parameter misspecification
scenarios. The pseudo R2 values show that the overall quality of the estimation
remains high and is essentially unaffected by misspecified hyper-parameters,
which 1s perhaps expected given that in Bayesian analysis the posterior
distribution uses the observed data to recalibrate prior assumptions. Focusing on
W, for all a, our tests largely show that the estimated and true distributions are
statistically identical (except under the most conservative Anderson-Darling test).
We regard this as evidence that our estimation procedure is robust to mild
misspecification. In fact, while the Rand Index decreases when the hyper-
parameters are misspecified, the performance under misspecification is still
superior to competing methods (as shown in Panel C). Given the numerical
evidence that the estimation is statistically valid and performs favorably with
alternative techniques, we now turn our attention to whether the model can be

validated in terms of actual balance sheet data.

4.2 Validation with Balance Sheet Data

To estimate Wat the monthly frequency, we aggregate daily interbank trading

data coupled with aggregated daily stock returns of publicly-traded European
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banks spanning January 2006 through December 2012.19 We obtain interbank
trading data from e-MID,20 the only electronic market for interbank deposits in
the Euro region, which offers interbank loans ranging from overnight (one day) to
two years in duration, with overnight contracts representing 90% of total volume
during our sample period (see Brunetti et al. (2011)). Our e-MID trading data
includes a large number of banks, but we analyze only those which are publicly-
traded. We integrate the e-MID data through the balance sheet, coupling assets
traded overnight with the corresponding daily stock returns which proxy for
equity changes. The number of publicly-traded banks in our data ranges between
45 and 60 and span several European countries. Our sample includes large,
medium and small size banks, but for confidentiality reasons we do not identify
specific banks. Summary statistics for the publicly-traded banks in our sample are
shown in Table 2, where we see that their average daily interest rate in the e-MID
dropped post-Lehman (starting September 12, 2008), while daily volume started
to decline much earlier when the ECB noted worldwide liquidity shortages
(August 7, 2007). Daily volume for the publicly-traded banks declined from over 1
billion euros prior to the start of the financial crisis to 100 million euros post-
Lehman. As the crises unfolded, the banks experienced negative stock returns
with increasing volatility.

We assume that banks rebalance their overall portfolios monthly, so we

estimate W each month using the Bayesian framework.2! Recall, however, that

19 We stop in December 2012 because liquidity in the e-MID market largely dried up as shown in
Brunetti et al. (forthcoming).

20 E-MID data can be purchased at: https:/www.e-mid.it/en/e-services/data-service/

21 When beginning the MCMC estimation each month, W, V, and o2 are initialized to their
estimates from the previous month. 20,000 samples are drawn using a burn-in of 10,000 iterations.
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Z = [Zy,...Z7] is constructed with daily stock returns and daily e-MID activity as
proxies for equity changes and interbank activity, respectively.

Using public data from annual reports, we construct the true vector of
weights held across eight investment types, W, by first partitioning the balance
sheets of each bank on December 31 each year into eight categories: Cash,
Commercial Loans, Intangible Assets, Interbank Assets, Residential Loans,
Investments, Other Holdings, and Remainder (total assets minus all other
categories).?2 Then we arrange the balance sheet into a matrix, with each row as
a bank, i.e., Wis a N X 8 matrix, where N is the number of banks in our sample.
Lastly, we normalize W, by dividing each entry by its row sum (each bank’s total
assets). Importantly, in the validation exercise as well as in our estimates, the
number of asset categories we consider varies from 4 to 8. Our results are robust
to the choice of the number of asset categories.23

We compare the density of our estimated W as of December 31 of each year
in our sample to the observed W constructed using real balance sheet data,2¢ see
Figure 1. Note that our estimates closely approximate actual values except for the
tails of the distribution—in the actual data approximately 44 percent of values
are less than 1% (i.e. an individual bank holds a very small amount of a particular
asset), while in our estimated W, 44 percent of values are less than 4%. We show

in the next section that this difference is not practically meaningful, but it does

22 To further improve the results, asset categories can be made to be more granular. There is a
trade-off however, since as the number of asset categories increases, the estimation procedure
becomes more cumbersome because the number of parameters increases dramatically.

23 Additional results available upon request.

24 We performed a grid search to find the best @ value according to the log-likelihood of the final
factorization on the observed data. This was done both every month and once simultaneously for
all time points. Results were qualitatively similar between both approaches.
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affect the non-parametric statistical tests as reported in Table 3. We consistently
fail to reject the null hypothesis for the permutation test (same mean) and median
test (same median). Interestingly, the Mann-Whitney U test, which compares the
full distributions of the estimated and true W, indicates that at the onset of the
crisis, 2006-2008, the estimates of W are statistically different from the true data
but during and after the crisis, 2009-2012, our procedure produces significantly
more accurate estimates of the distribution of W. This is confirmed by the pseudo
R? which indicates that our factorization explains more variation in Z during and
after the crisis.

The Anderson-Darling test rejects the null due to the differences on the
lower tail highlighted above. Consistent with these hypothesis tests, the pseudo
R? and Rand Index show that the estimation quality is generally good, with values
clearly bounded away from zero.25> More generally, these results resemble the
misspecification scenario in the simulation study, where the Anderson-Darling
test is rejected but all other metrics indicate accurate estimates. Overall, we
believe that the bulk of this evidence supports that our estimates of Ware accurate

and drawn from nearly identical distributions to the true W.

4.3 The Source of Information: Stock Returns versus
Interbank Trades

In this sub-section we examine the importance of each information source (daily
stock returns versus interbank lending activity) on the final estimate of W. We

repeat the validation procedure above by estimating W using only daily stock

25 Tables Al and A2 in the Appendix show results for estimation under competing methods. The
competing approaches tend to achieve slightly higher Rand Index values, but massively
underperform with the hypothesis testing compared to our proposed approach.
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returns (omitting interbank lending information) and separately by using only
daily e-MID interbank lending activity (omitting stock returns).

Tables 4 and 5 show the results of the non-parametric statistical tests that
compare the two sets of estimates to the true balance sheet weights held by banks
in our sample across the eight investment types. We highlight two main patterns
in the results. First, the pseudo R? values show that the factorization model
explains much less variation when using only stock return data (Table 4), whereas
the quality of the estimates is generally better when considering the e-MID data
only (Table 5). Second, while the two estimates of W do share distributional
similarities with the true balance sheet data, we see that for several sample years
we reject the null hypothesis for the Median test and Mann-Whitney U tests and
both sets of estimates continue to fail the Anderson-Darling test, due to differences
in the tails of the distributions.

Not surprisingly, we find that the results from estimating W using both
data sources (Table 3) are stronger compared to estimation results using
individual data sources. Moreover, while both the interbank market and the stock
market convey information (albeit differently), the interbank market data maps
more directly to bank assets. Importantly however, these sources can be combined
with our methods to obtain more precise estimates of bank holdings and therefore

more precise estimates of bank-specific and systemic risk.
5. Compiling Systemic Risk Measures
Having established the validity of our approach in estimating portfolio weights

across the spectrum of the banks in our sample, we now turn our attention to two

key questions: 1) Are bank portfolios well-diversified? 1) How similar are portfolio
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holdings across banks? To answer the first question we develop a concentration
index which captures the degree of diversification of each bank’s portfolio. To
answer the second question, we develop a similarity index which captures how
similar portfolio holdings are across banks. We view these two metrics as
indicators of systemic risk within the banking system. First, concentrated
holdings on a small number of assets within an individual bank exposes the bank
to asset-specific risk. Ceteris paribus, should a bank with a portfolio concentrated
only in one or two assets be forced to sell those assets—the price impact of these
actions could be higher when compared to a bank liquidating a more diversified
portfolio. This measure of risk is specific to the bank.

Second, the similarity of asset holdings across banks suggests that shocks
to any particular asset class will be borne across the entire banking system. The
similarity of portfolio holdings is the theoretical justification of network analysis
such as Diebold and Yilmaz (2014) and Billio et al. (2012), and is based on a simple
consideration: if two banks, A and B, hold the same asset, and an exogenous shock
forces A to liquidate the asset, the price of the asset will decline and therefore
change the value of B’s portfolio potentially leading to B also selling the asset at
an unfavorable price. Braverman and Minca (2014) adopt this argument to
describe how common asset holdings can transmit financial distress among
banks.26 OQur similarity measure captures the network effect in that is describing

a propagation mechanism. In case of a shock to a bank, the concentration measure

26 Others have obtained similar theoretical findings establishing that overlapping portfolios and
common assets holdings can serve to amplify economic shocks, thus raising the chances of
simultaneous failures (Wagner, 2010; Beale et al., 2011; Haldane and May, 2011; Raestin, 2014;
Caccioli et al., 2014, 2015; Greenwood et al., 2015).
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tells us how risky a bank’s portfolio is while the similarity measure assesses the
likelihood that the shock will propagate. Note that an advantage of our approach
is to allow estimation of portfolio weights at a higher frequency than typically
reported in official bank filings.

After obtaining an estimate for W in a given month, we calculate a
Herfindahl index (Rhoades, 1993) of diversification/concentration across our eight

asset categories. Specifically, let the superscript (t) index time in months, then
2
HE = 5wl ®

To measure the similarity in assets held across banks, we define the pairwise

portfolio similarity between bank i and bank j as

Simg.) =YK, min(M/i,Et),Mﬂ.,({t)) ) 9)

The similarity2?? index is bounded between 0 and 1, with zero values indicating
each pair of banks hold different assets while values equal to one indicating both
banks hold identical asset portfolios. For example, assume two banks and three

assets and the following holdings:

Bank A | Bank B | Similarity Index
Component
Investment 1 50% 30% 30%
Investment 2 10% 60% 10%
Investment 3 40% 10% 10%

27 In unreported results, we measure similarity using the Euclidean distance, KL. divergence,
correlation, and cosine similarity (as in Getmansky et al. (2017) for the insurance industry) and
several other criteria. Results are consistent across these different similarity measures.
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The example shows that the index has the desirable property of been bounded
between zero (no common holdings) and 1 (same holdings and same and weights),
and captures portfolio similarities adequately. However, it may underestimate
contagion since, if Bank A is hit by a shock and liquidates most if its assets, the
value of the entire B’s portfolio will be affected.28

Within the banking system, asset concentration and portfolio similarity are
related. If an individual bank holds a concentration of assets that perform poorly
ex-post, the poor performance might stress other institutions. Likewise, if each
bank in the system is fully diversified across asset classes, then, by definition, all
bank balance sheets will be similar and highly interconnected. In this regard, we
posit that the interdependence between asset concentration and bank similarity
reflects systemic risk.

Figure 2 displays the first four cross-sectional moments of the Herfindahl
distribution of bank asset concentration/diversification over time. As the figure
shows, European banks grew more concentrated (on average) from 2006 through
September 2008 when Lehman Brothers failed. During the following year,
however, the average concentration fell dramatically before gradually rising again
to near pre-Lehman levels through 2012. The standard deviation of asset
concentration has risen alongside the rise in concentration since mid-2009.
Notably, the skewness and kurtosis of asset concentration was falling pre-
Lehman, but rose dramatically in the subsequent four months, suggesting that

individual bank holdings were less concentrated and banks were investing in

28 The similarity index could be modified to account for regulatory standards. For example, we
could give more weight to asset classes based on liquidity characteristics.
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different portfolios. Both skewness and kurtosis of asset concentration remained
high through mid-2011 before falling dramatically through 2012.

Figure 3 displays the first four moments of pairwise portfolio similarity over
time. The average similarity among European banks generally rose from 2008
through mid-2010 before falling through 2012. Overall, the standard deviation of
similarity increased from 2006-2008 and remained relatively high through 2012.
The skewness of similarity is negative and, after becoming more negative from
2008-2010, has reverted toward zero through 2012. The kurtosis of similarity
appears to follow the opposite pattern from skewness. While the patterns in
moments of asset concentration and portfolio similarity suggest that these metrics
may reflect real economic conditions, we aim to test whether these metrics are

useful for forecasting purposes.

5.1 Comparison with ECB risk and macro indicators

Recall that our monthly metrics are constructed using daily interbank trades and
daily equity price changes, so that we impound both expected future performance
as well as current liquidity demands for each bank. As a benchmark test for the
usefulness of these metrics in forecasting, we relate moments of concentration and
similarity to three measures of systemic risk published by the ECB—the
Composite Systemic Risk Index, the Simultaneous Default Probability, and the
Sovereign Composite Systemic Risk Index. The Composite Systemic Risk
Indicator is a weighted average of several measures of financial stress that focus
on different aspects of the financial system including money, bond, equity and

forex markets as well as financial intermediaries. The Simultaneous Default
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Probability, and the Sovereign Composite Systemic Risk Index are essentially
CDS implied probabilities.29

Figure 4 displays these three ECB metrics from 2006 through 2012.3° Note
that the ECB metrics all rise from early 2007 through early 2009 before abating
slightly until early 2010. All three metrics then rise through late 2011 before
generally falling off through 2012. These metrics have been extensively used—e.g.
Hollo et al (2012).

Table 6 reports the contemporaneous correlation between the moments of
our concentration and similarity indices and the three measures of systemic risk
published by the ECB—these measures are in first difference to guarantee
stationarity.3!

Interestingly, the higher is the concentration in the banking sector (mean),
the higher is the Composite Systemic Risk Index (SRI), which captures stress
conditions in European markets. Similarly, higher levels of variation (standard
deviation) in concentration and similarities across bank portfolios are associated
to higher levels of stress conditions. The systemic risk indicator is also linked to
higher moments of the similarity index. The Probability of Simultaneous Default
1s positively correlated to the similarity index indicating that when the similarity
index is high, the probability of default is increasing (recall that the ECB systemic

indicators are in first difference and hence they indicate a change). Overall, we

29 ECB Financial Stability Review, June 2012, p.99 available at:
https://www.ecb.europa.eu/pub/pdf/other/financialstabilityreview201206en.pdf?6b3b7eb08f53f6a
d069f5b6dd15275¢8

30 The Simultaneous Default Probability metric is only available since 2007.

31 We perform two stationarity tests, the generalized least squares Dickey—Fuller (DF) test
proposed by Elliott, Rothenberg, and Stock (1996) and the Augmented Dickey-Fuller (ADF) test.
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find strong contemporaneous linkages between the ECB systemic risk measures
and our indices.

The second part of Table 6 reports contemporaneous correlations between
major EU macroeconomic indicators—the Consumer Confidence Index (CCI),
Industrial Production (IP), the Purchasing Managers' Index (PMI) and Retail
Sales—and the moments of the concentration and the similarity indices (also in
this case, all variables have been differenced to accommodate for non-
stationarity). Table 6 indicates strong contemporaneous linkages between macro
variables and our indices. Recall that our indices are computed using data on the
interbank market, e-MID, which is capturing interbank activities only in part, and
stock market returns of a relatively small number of publicly traded banks.
Nevertheless, the correlation between our indices and macro variables 1is
statistically significant.

We further investigate the lead-lag relations among the moments of our
indices and the ECB systemic risk and macro indicators by estimating bivariate
VARSs and testing for Granger-non-causality.32 Figure 5 presents the results of our
analysis. A —» B indicates that 4 Granger-causes B at the 10 percent significance
level, while A & B indicates feedback effect, i.e. 4 Granger-causes B and B
Granger-causes A4 at the 10 percent significance level. Figure 5 shows that, with
only a few exceptions of feedback effects, our indices are able to cause, in a
forecasting sense, most of the ECB systemic risk and macro indicators.
Interestingly, the first three moments of the concentration index seem to contain

valuable information for forecasting.

32 VARs optimal lag specification is based on AIC. Standard errors are bootstrapped.
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5.2 Comparison with MES and SRISK

Acharya et al (2017) develops a model of systemic risk in which the level of
capitalization of the financial sector has implication on the real economy. In the
model, the contribution of each financial institution to systemic risk is measured
by the systemic expected shortfall, a function of how much the institution is
undercapitalized conditional on the entire financial system being
undercapitalized. The systemic expected shortfall depends on the institution’s
leverage and on the institution’s marginal expected shortfall (MES). Acharya et
al (2017) show that MES is able to predict systemic risk in the recent financial
crisis.

Brownlees and Engle (2017) introduce a conditional capital shortfall
measure of systemic risk, named SRISK. This measure captures the contribution
of a financial institution to systemic risk and, similar to Acharya et al (2017), is
based on the capital shortfall of the institution conditional on a severe market
downturn. SRISK is able to capture the riskiness of US financial institutions
leading to the 2007-2009 crisis. Aggregating SRISK across institutions, the
authors also propose an early warning index of distress.

Both MES and SRISK combine balance sheet information and asset price
information for publicly traded financial institutions. We took both measures and
compared them to our indices.33 The measures were provided to us on a company-

by-company basis. We selected all European companies in the countries where the

33 We are thankful to Rob Capellini, director of the V-Lab at NYU, for sharing the data.
Source: The Volatility Laboratory of the NYU Stern Volatility Institute (https://vlab.stern.nyu.edu)
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e-MID banks are based.34 In total we construct MES and SRISK measure using
313 financial institutions including banks, insurance companies, broker/dealers.
To aggregate MES and SRISK measures across institutions, we normalize these
measures by market capitalization. Note that our concentration and similarity
indices are computed by examining 45-60 banks while MES and SRISK have been
computed over a much larger set of institutions.

Figure 6 depicts MES and SRISK together with the concentration index and
the similarity index over time. MES, SRISK and our concentration index exhibit
similar patterns after the crisis. In fact, the correlation coefficients between the
concentration index and MES and SRISK are 43% and 39%, respectively.
However, our similarity index evolves much differently than MES, SRISK and
concentration, suggesting that our method uncovers two distinct sources of
systemic risk—individual bank concentration and common holdings across banks.

We further investigate the lead-lag relationships among MES, SRISK,
concentration and similarity through the lens of bivariate VARs and Granger-
causality tests. We find that the concentration index leads, in a forecasting sense,
both the MES (p-value = 0.073) and SRISK (p-value = 0.076). The reverse is not
true—i.e. SRISK and MES do not Granger-cause the concentration index. As
suggested by patterns in Figure 6, we do not find any Granger-causality between
the similarity index and either MES or SRISK. These results suggest that

information about bank assets (via interbank loans and equity returns) emerges

34 For confidentiality reasons we cannot match the two datasets exactly — i.e., we cannot select
the companies in V-Lab with the banks in our e-MID dataset.
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prior to information from bank liabilities (which largely underlie MES and

SRISK), a finding relevant to regulators charged with bank oversight.

6 Conclusion

In this paper, we propose a novel approach to estimate the monthly portfolio
composition of banks as a function of daily interbank trades and stock returns. We
start our estimation with the balance sheets (reported annually) for 50-60
publicly-traded European banks at the beginning of January 2006, compiling
precise estimates of portfolio concentration within each bank and common
holdings across banks. We consider portfolio concentration as a measure of bank
diversification and common holdings as a measure of market susceptibility to
propagating shocks.

From this starting point, we estimate the evolution of monthly bank asset
holdings using daily interbank trades and equity price changes in a stylized
representation of aggregate industry balance sheets. We validate our findings
using simulation methods and benchmarking our estimates from year to year
(when new balance sheet data becomes available). Our tests demonstrate that
information from daily interbank and equity markets are useful for tracking the
evolution of bank asset holdings over time.

We use these more frequent and timely holdings estimates to construct two
systemic risk measures--individual bank portfolio concentration and common
holdings across banks. We find evidence that these systemic risk measures lead,
in a forecasting sense, several other commonly used systemic risk indicators,
suggesting that our method provides a robust forecasting tool for market

regulators to assess systemic risk in a timely manner. Moreover, while our model
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estimates bank asset holdings at higher frequencies than available from annual
or quarterly reports, our method can be readily applied to other situations where
higher frequency market data might provide valuable information to regulators

between formal audits or other regulatory reports.
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Panel A: Self-Consistency Scenario

a Pseudo R2 RI Permutation Test Median Test MW Test AD Test

0.20 0.936 0.824 0.000 (1.000) -1.147 (0.369)  0.323 (0.682)  2.249 (0.091)

Panel B: Hyper-Parameter Misspecification Scenario

a Pseudo R2 RI Permutation Test = Median Test MW Test AD Test
0.10 0.929 0.757 0.000 (1.000) 0.247 (0.610) 0.862 (0.425)  4.698 (0.009)
0.15 0.938 0.762 0.000 (1.000) 0.428 (0.587) 1.049 (0.352)  4.362 (0.041)
0.20 0.938 0.776  0.000 (1.000) 0.566 (0.595)  1.272 (0.256)  3.332 (0.045)
0.25 0.936 0.775  0.000 (1.000) 0.761 (0.518)  1.576 (0.148)  6.939 (0.005)
0.30 0.941 0.782 0.000 (1.000) 0.609 (0.521) 1.711 (0.119)  9.212 (0.001)
Panel C: Competing Methods
Method Pseudo R2 RI Permutation Test  Median Test MW Test AD Test
Semi-NMF 0.800 0.740  0.000 (1.000) 0.623 (0.587)  -0.135(0.779) 4.248 (0.015)

Fuzzy K-Means NA 0.633  0.000 (1.000) 4112 (0.004)  3.078(0.010)  106.406 (0.000)

Table 1: Simulation results averaged over 100 iterations. Pseudo R2 is defined analogously to the linear regression
setting; RI is the Rand Index of W (values closer to 1 indicate more accurate estimates). The permutation test refers to
the Fisher-Pitman test (Boik, 1987) while the median test refers to the Brown-Mood test (Brown et al., 1951) and assess
whether two samples have identical means and medians, respectively. MW test refers to the Mann-Whitney U test (Mann
and Whitney, 1947) which compares the full distributions of the estimated and true W. The AD test refers to the Two
Sample Anderson Darling Test (Scholz and Stephens, 1987) to assess whether there are differences between the two
samples. The statistical tests compare the estimated and true distribution of W; average test statistics are reported with
p-value in parentheses. Failing to reject the null hypothesis provides evidence in support of the estimation for all
statistical tests. Note that Pseudo R2is not reported for the Fuzzy K-Means algorithm, because it only estimates W and
an estimate of both W and V is required.
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Pre-Crisis
Jan 1 2006 — Aug 7 2007

Crisis 1
Aug 8 2007 — Sept 12 2008

Stock Returns
Volume (e-MID)

Rate (e-MID)

Mean St. Dev. Skew Kurt. Mean  St. Dev. Skew Kurt.
0.001 0.141 1.070 507.643 -0.001 0.155 0.904 506.349

1637.923  1204.923  1.039 0.541 | 553.403 562.621 2.054 5.243

3.185 0.566 -0.039 -1.325 4.026 0.191 -0.597 1.719

Crisis 2
Sept 16 — Apr 1 2009

Crisis 3
Apr 2 2009 — Dec 31 2012

Stock Returns
Volume (e-MID)

Rate (e-MID)

Mean St. Dev. Skew Kurt. Mean  St. Dev. Skew Kurt.

-0.005 0.194 1.932 431.219 -0.002 0.200 0.211 560.613
158.231 103.638  1.152 0.658 | 158.333  158.640 1.232 -0.299
2.837 1.313 -0.190 -1.488 0.783 0.286 0.219 -1.913

Table 2: Summary statistics at the daily level for log stock returns, e-MID trading volume (millions of
Euros), and e-MID interest rate. All e-MID statistics are computed using transactions that include at least
one of the banks in our sample as a counter-party in the overnight loan.
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Year

2006
2007
2008
2009
2010
2011

2012

Pseudo R2

0.698
0.882
0.864
0.910
0.930
0.916
0.940

RI

0.698
0.598
0.594
0.595
0.575
0.584
0.521

Permutation
Test

0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)

Median Test

1.458 (0.174)
0.583 (0.612)

-0.729 (0.515)
-1.442 (0.170)
-1.010 (0.344)

0.433 (0.719)
0.433 (0.720)

MW Test

3.316 (0.001)
3.326 (0.001)
1.249 (0.217)
1.202 (0.229)
0.979 (0.330)
1.163 (0.245)
0.922 (0.359)

AD Test

22.771 (0.000)
47.608 (0.000)
48.401 (0.000)
38.931 (0.000)
39.619 (0.000)
39.511 (0.000)
35.221 (0.000)

Table 3: Validation results for estimation with the proposed method using daily stock returns and e-MID interbank
activity compared to actual European bank balance sheet data disclosed in annual reports. Pseudo R2? is defined
analogously to the linear regression setting; RI is the Rand Index of W (values closer to 1 indicate more accurate
estimates). The permutation test refers to the Fisher-Pitman test (Boik, 1987) while the median test refers to the
Brown-Mood test (Brown et al.,, 1951) and assess whether two samples have identical means and medians,
respectively. MW test refers to the Mann-Whitney U test (Mann and Whitney, 1947) which compares the full
distributions of the estimated and true W. The AD test refers to the Two Sample Anderson Darling Test (Scholz and
Stephens, 1987) to assess whether there are differences between the two samples. The statistical tests compare the
estimated and true distribution of W; average test statistics are reported with p-value in parentheses. Failing to

reject the null hypothesis provides evidence in support of the estimation for all statistical tests.
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Year

2006
2007
2008
2009
2010
2011

2012

Pseudo R2

0.027
0.061
0.012
0.009
0.047
0.001
0.001

RI

0.603
0.563
0.514
0.733
0.505
0.583
0.568

Permutation
Test

0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)

Median Test

2.663 (0.011)
2.364 (0.022)
1.440 (0.175)

-4.873 (0.000)
-7.987 (0.000)

0.000 (1.000)

-1.717 (0.101)

MW Test

1.356 (0.177)
1.634 (0.103)
0.847 (0.401)

-3.202 (0.001)
-4.675 (0.000)
-0.730 (0.467)
-1.968 (0.049)

AD Test

1.498 (0.077)
3.376 (0.014)
1.506 (0.086)
8.956 (0.000)
22.46 (0.000)
0.314 (0.256)
4.356 (0.006)

Table 4: Validation results for estimation using the proposed model estimated using only daily stock returns data
compared to actual European bank balance sheet data disclosed in annual reports. Pseudo R2 is defined
analogously to the linear regression setting; RI is the Rand Index of W (values closer to 1 indicate more accurate
estimates). The statistical tests compare the estimated and true distribution of W; test statistics are reported with
the p-value in parentheses. Failing to reject the null hypothesis provides evidence in support of the estimation for

all statistical tests.
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Year

2006
2007
2008
2009
2010
2011

2012

Pseudo R2

0.878
0.841
0.787
0.893
0.886
0.911
0.897

RI

0.518
0.498
0.439
0.418
0.401
0.467
0.480

Permutation
Test

0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)
0.000 (1.000)

Median Test

2.291 (0.028)
3.644 (0.000)
2.332 (0.023)
1.010 (0.346)
1.587 (0.130)
1.442 (0.168)
1.010 (0.348)

MW Test

1.000 (0.317)
1.795 (0.073)
1.178 (0.237)
0.621 (0.533)
0.777 (0.436)
0.707 (0.478)
0.776 (0.438)

AD Test

2.793 (0.024)
7.613 (0.000)
4.349 (0.000)
5.473 (0.002)
6.264 (0.001)
7.701 (0.000)
3.373 (0.010)

Table 5: Validation results for estimation using the proposed model estimated using only daily e-MID data
compared to actual European bank balance sheet data disclosed in annual reports. Pseudo R2 is defined
analogously to the linear regression setting; RI is the Rand Index of W (values closer to 1 indicate more accurate
estimates). The statistical tests compare the estimated and true distribution of W; test statistics are reported with
the p-value in parentheses. Failing to reject the null hypothesis provides evidence in support of the estimation for

all statistical tests.
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Concentration Index Similarity Index

Mean St.Dev. Skew  Kurt. Mean St. Dev. Skew Kurt.
SRI 0.206*  0.351* -0.014 -0.082 | 0.146 0.501*  -0.338*  0.209*
SDP -0.146  -0.232*  0.185* 0.193* | 0.175* 0.077 -0.130 0.102
SSRI -0.141  -0.389*  0.049 0.092 | -0.021 -0.133 0.151 -0.150
CCI -0.525*  -0.382*  0.465% 0.484* | 0.209*  -0.182% -0.034 0.129
1P -0.057  -0.384*  0.004 0.122 | -0.198* -0.224*  0.347*  -0.246*
PMI -0.598*  -0.228* 0.513* 0.481* | 0.319* -0.145 -0.178%*  0.254*
Retail Sales -0.109 0.037 0.134  0.141 0.035 0.047 -0.141 0.124

Table 6: SRI, the Systemic Risk Indicator, is in first difference (levels are non-stationary). SDP refers
to the Probability of Simultaneous Default and is in first difference (levels are non-stationary). SSRI
refers to the Sovereign Systemic Risk Index and is in first difference (levels are non-stationary). CCI
refers to the Consumer Confidence Index and is in first difference (levels are non-stationary). IP refers
to Industrial Production and is in first difference (levels are non-stationary). PMI refers to the
Purchasing Managers' Index and is in first difference (levels are non-stationary). Retail Sales is
differenced twice to achieve stationarity.

* Indicates significance at 5 percent level.
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Figure 1: Distribution of the observed elements in W aggregated from all available
years compared to the estimated W aggregated over the same times.
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Figure 2: Concentration index summary statistics over time. The vertical lines
denote three events: 1) August 7, 2007 when the ECB noted worldwide liquidity
shortages; 2) September 12, 2008 (Lehman default); 3) April 1, 2009 when the
ECB announced the end of the recession.
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Figure 3: Similarity index summary statistics over time. The vertical lines denote
three events: 1) August 7, 2007 when the ECB noted worldwide liquidity
shortages; 2) September 12, 2008 (Lehman default); 3) April 1, 2009 when the
ECB announced the end of the recession.
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Figure 4: Time series of systemic risk measures published by the ECB (Systemic
Risk Indicator, Simultaneous Default Probability, and Sovereign Systemic Risk
Indicator — source ECB). The vertical lines denote three events: 1) August 7, 2007
when the ECB noted worldwide liquidity shortages; 2) September 12, 2008
(Lehman default); 3) April 1, 2009 when the ECB announced the end of the

recession.
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Figure 5: Granger Causality relations at the 10% significance level among the
derived variables, systemic risk measures, and macro-economic variables.

41



0.20
027 4 toas 97 500
- Il -
=] =]
B, : r010 - B, [0
I . = 250 &
o m g i o
e 005 @ 2 ’ ~
| oy - | o
S 031 O 031 &
0.00 L. 0
0.2 0.05 0.2
2006 2008 2010 2012 2006 2008 2010 2012
Date Date
Concentration - MES Concentration - SRISK
0704 0.701 rB00
0.20
0.65 0.65
é‘ 0.15 = é‘ w
= m = A
£ o E %
@ 4 60- L f 0.10 D 560
o \ i
0.05 0
055, ! ] ] 0554 ! ! !
2006 2008 2010 2012 2006 2008 2090 2012
Date Date
Similarity - MES Similarity - SRISK

Figure 6: MES and SRISK indices and Concentration and Similarity indices. The
vertical lines denote three events: 1) August 7, 2007 when the ECB noted
worldwide liquidity shortages; 2) September 12, 2008 (Lehman default); 3) April
1, 2009 when the ECB announced the end of the recession.

MES and SRISK, Source: The Volatility Laboratory of the NYU Stern Volatility
Institute (https://vlab.stern.nyu.edu).
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Appendix 1: Derivation of MCMC Algorithm

Detailed derivations are given below, followed by a summary of the main steps of the
estimation. We will denote the rows of a matrix X as x; or x; and columns as x ;. Also Xy,
denotes the matrix X excluding the i-th row.
Posterior of W
Since p(W) = [IX; p(w;) (rows are i.i.d.) and w; only affects z;, it is easy to see that the
posterior of W is a product of Gaussian likelihood and a Dirichlet prior:
pWilZ, Wy, V,0%) p(wi)p(zi|W/Wi,V,02). (A1)

These are not conjugate distributions, which means that we can only compute the
posterior distribution’s value without characterizing the distribution analytically in
closed form.

As such, we use the Metropolis Hastings algorithms with a uniform proposal
distribution, so that a candidate row w; is generated by moving on the probability simplex

randomly around the current state of w;. Then the candidate row is accepted with

PWWIZW 1y, 3V a?)

probability min(1,

p(Wi|Z,W/{Wi},V, 0—2) .

Posterior of V
We start by decomposing the posterior probability
p (viklz, w, V), 0%) < p(Vp(ZIW,V,52) (A2)

o« p(vj )p(ZIW,V,02). (A3)

Recall that vy, is i.i.d N(u, o). Therefore, the posterior of V is a product of a Gaussian
prior and Gaussian distribution. By conjugacy, we have the posterior of vj, to be

p (vjk|Z, W,V 02) = N(up, 075), (A4)
where
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Therefore we can sample directly in the Gibbs sampler from the posterior conditional
distribution.
Posterior of >
We follow standard arguments to exploit conjugacy properties of the inverse gamma and
normal distributions.
p(a?|W,V,Z) < p(c®)p(W,V,Z|o?)  (AD)
x p(a®)p(ZIW,V,c*)p(W,V|Z,5?)
< p(a®)p(Z|W,V,c2)P(W,V)
« p(c®)p(ZIW,V,0?)
xIG(m ,0 YN(Z|W,V,c?).
Then by conjugacy, the posterior is
p(a?|W,V,Z2) =1G(n',6") (A6)

where

l 1 2
L

Therefore we can sample directly in the Gibbs sampler from the posterior conditional

distribution IG(n’, 6").
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Estimation Algorithm Summary

Let superscript (t) denotes the iteration number. Then using the definitions above, the

following steps can be used to produce point estimate of W,V, and 2.

1. Define the Dirichlet concentration parameter @« and mean and variance of V
(4, o). Randomly initialize W®,V®, g®,

2. Foralli

a) Using a uniform proposal distribution, form a candidate w;, i.e.,
wi~Uw = 0.01,w +0.01) with Wy = 1 - K w,;.
b) Accept the candidate w"™*" = w; with probability min(1,

G)
pwilzw,,, VO, o®)

. t+1

0 ). Otherwise wED =, ©

p(w; |Z.W/W,,V(f), a(®) i i
L

3. Forall jk
a) Sample v].(,§+1)~N(up, o).
Sample ¢tV ~1G (1, 0").

Repeat steps 2 through 4 until convergence.

SIS

Generate samples t =T,T + 1, ...,T + N using steps 2 through 4.

7. Calculate point estimates W = %Z{Iﬁ’ w®,y = %ZZ;’%V v, 6= %Z{Iﬁ’ a®,

Correlation of Asset Returns in the Posterior of V
To show that two variables are conditionally independent, by definition we should show
that

p(X,Y1Z) o uy (X|Z)u,(Y]2),
i.e., we want to show that the posterior distribution (conditioning on data Z) can be
factorized into a product of two appropriate functions. With our model, the condition above

with respect to V is
p (vjk' Vik |Z’ W' V/vik,v]-k' 02) XUy (vjk)uz (vl:k)y

where vj;, represents the change in returns for asset class j on day k.
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We will show this condition cannot be satisfied, i.e., that vy and vy, are dependent. We
start by decomposing the posterior probability

p (ij, ViklZ, W, Vyy 010 02) « p(vy )P (V)P (ZIW,V,0?),
which is obtained through standard application of Bayes rule. Then it’s easy to see that
the independence condition above is satisfied only when p(Z|W,V,c?) can itself be
factorized into a product of two appropriate functions, like u; and u, above.
By Equation (6),

pZIW,V,0%) = [Ty N(WV)y, o).

Then expanding the matrix product
(WV)ik = Z WicVUck
c

and plugging this into the Normal likelihood yields

1 ex (Zik - ZC Wicvck)2
V2mo? P —20? '

Without loss of generality, assume 2 asset classes so that ). w;.ve = Wi vgp +

Wiy Vak. Then note that
2
exp (Zik - Z Wic”ck) = exp((zik — WirVix — Wizvzk)z)
c

= exp(zf + whivie +whvd — 225 Wigviy — 223WiaVai — 2Wia VigWizVax)
Since it is impossible to write exp(2w;; V1, Wia V4 ) as a product of two functions with
arguments vy, and v, respectively, the overall posterior likelihood for vy, and v,
also cannot be decomposed as such. Thus, we have established that in general the
posterior estimates for v;, and vj will be correlated conditional on Z, i.e., the
estimated returns for different asset classes contained in V are not conditionally

independent.
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Appendix 2: Validation with Balance Sheet Data:

Competing Methods
Year Pseudo R2 RI Permutation Median Test MW Test AD Test
Test

2006 0.850 0.696 0.000 (1.000) 6.663 (0.000) 3.483 (0.000)  14.986 (0.000)
2007 0.920 0.660 0.000 (1.000) 10.204 (0.000) 6.642 (0.000) 49.034 (0.000)
2008 0.907 0.655 0.000 (1.000) 10.204 (0.000) 7.013 (0.000) 51.946 (0.000)
2009 0.868 0.613 0.000 (1.000) 10.530 (0.000) 6.605 (0.000) 47.491 (0.000)
2010 0.903 0.654 0.000 (1.000) 10.241 (0.000) 6.362 (0.000)  45.888 (0.000)
2011 0.862 0.693 0.000 (1.000) 10.530 (0.000) 6.871 (0.000)  50.088 (0.000)
2012 0.424 0.650 0.000 (1.000) 10.386 (0.000) 6.637 (0.000) 49.440 (0.000)

Table Al: Validation results for estimation using the Semi-NMF model of Ding et al. (2010) with probability
constraints enforced ex-post compared to actual European bank balance sheet data disclosed in annual reports.
Pseudo R? is defined analogously to the linear regression setting; RI is the Rand Index of W (values closer to 1
indicate more accurate estimates). The statistical tests compare the estimated and true distribution of W; test
statistics are reported with the p-value in parentheses. Failing to reject the null hypothesis provides evidence in

support of the estimation for all statistical tests.

Year Pseudo R2 RI Permutation Median Test MW Test AD Test
Test

2006 NA 0.652  0.000 (1.000) 3.540 (0.001) 3.704 (0.000) 22.176 (0.000)
2007 NA 0.601  0.000 (1.000) 3.498 (0.001) 4.655 (0.000) 37.496 (0.000)
2008 NA 0.518  0.000 (1.000) 6.851 (0.000) 6.230 (0.000) 59.457 (0.000)
2009 NA 0.538  0.000 (1.000) 1.731 (0.096) 3.021 (0.002) 30.826 (0.000)
2010 NA 0.632  0.000 (1.000) 0.577 (0.612) 2.189 (0.027) 25.552 (0.000)
2011 NA 0.665  0.000 (1.000) 4.183 (0.000) 4.394 (0.000) 32.243 (0.000)
2012 NA 0.572  0.000 (1.000) 2.019 (0.052) 3.269 (0.001) 28.306 (0.000)

Table A2: Validation results for estimation using Fuzzy K-means (Bezdek et al., 1984) compared to actual European
bank balance sheet data disclosed in annual reports. Pseudo R2 is defined analogously to the linear regression setting;
RI is the Rand Index of W (values closer to 1 indicate more accurate estimates). The statistical tests compare the
estimated and true distribution of W; test statistics are reported with the p-value in parentheses. Failing to reject
the null hypothesis provides evidence in support of the estimation for all statistical tests.

Note that Pseudo R2is not reported for the Fuzzy K-Means algorithm, because it only estimates W, whereas other
methods estimate both W and V.
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