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Bank Holdings and Systemic Risk 

Celso Brunetti◊, Jeffrey H. Harris○ and Shawn Mankad□ 

Abstract 

The recent financial crisis has focused attention on identifying and measuring systemic 

risk. In this paper, we propose a novel approach to estimate the portfolio composition of 

banks as function of daily interbank trades and stock returns. While banks’ assets are 

reported to regulators and/or the public at relatively low frequencies (e.g. quarterly or 

annually), our approach estimates bank asset holdings at higher frequencies allowing us 

to derive precise estimates of (i) portfolio concentration within each bank (a measure of 

diversification) and (ii) common holdings across banks (a measure of market 

susceptibility to propagating shocks). We find evidence that systemic risk measures 

derived from our approach lead, in a forecasting sense, several commonly used systemic 

risk indicators.  
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1	 	Introduction	

The 2007-09 financial crisis accentuated the need for effective monitoring, 

oversight and regulation of complex financial institutions which trade thousands 

of financial products in markets around the world. This paper presents a method 

for estimating individual bank holdings and systemic risk in the banking system 

in between periodic financial reports, providing a more timely and on-going 

assessment of individual bank diversification and systemic risk. Our practical 

method draws upon two informationally-linked data sources available at the daily 

frequency: (i) stock returns and (ii) interbank lending activity. Stock returns are 

of course widely and publicly available, while interbank lending data is accessible 

to central banks.  

We build on the accounting framework of Shin (2009, 2010) starting with 

annual reports, and use stock returns and interbank lending data to extract daily 

estimates of the assets held by individual banks. 1  We then estimate the 

composition of each individual bank’s underlying (unobserved) portfolio each 

month and show that our methods provide meaningful and timely information 

about both individual bank holdings and systemic risk in the banking system. 

Our methods involve solving a matrix factorization problem within a novel 

Bayesian estimation framework (details in Section 2 below). First, we estimate 

each individual bank’s underlying asset portfolio which we then use to 

																																																													
1 See also Elliott et al. (2014) and Brunetti et al. (forthcoming). We partition yearly balance sheets 

of the banking sector to isolate the underlying (and unobserved) portfolios held by banks. This 

partitioning, when combined with balance sheet identities, implies a variant of the non-negative 

matrix factorization problem (extensively studied in other domains, e.g. Lee and Seung, 1999). In 

particular, our matrix factorization problem requires solving for one factor that is subject to 

probability constraints. 
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characterize risk within and among banks. Intuitively, we derive an index of 

portfolio concentration (bank-specific risk) for each individual bank and an index 

of portfolio similarity across banks (systemic risk) which captures market 

susceptibility to propagating shocks to any asset class.  

The concentration of assets in an individual bank’s portfolio has well-known 

risk implications (Klein and Bawa, 1977; Santis and Gerard, 1997; Gale and 

Gottardi, 2017; Pastor, Stambaugh and Taylor, 2017). By estimating the monthly 

asset holdings, our methods allow regulators to better assess, in a timely manner, 

concentrated risk within a bank without having to directly examine bank balance 

sheets. Moreover, the similarity of bank portfolios indicates interconnectedness, 

an important measure for the propagation of shocks (see e.g. Greenwood et al., 

2015, Caccioli et al., 2014, 2015). 

While our methods indirectly estimate bank holdings, we demonstrate that 

these estimates closely approximate real balance sheet data. We validate our 

estimates rigorously in two ways. First, since the statistical model and estimation 

framework are novel, we produce Monte Carlo simulations to demonstrate that 

our estimation approach produces reliable results. With these simulations we 

compare different estimation techniques to demonstrate that our Bayesian 

approach is the most reliable. Second, we validate the model from an accounting 

point of view by showing that our progressive monthly estimates closely match 

real accounting data year over year.  

Once we estimate the asset composition of each bank portfolio, we derive 

bank sector indices of concentration across individual portfolios and common 

holdings across different banks. Both indices convey important information in a 
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forecasting sense—a more concentrated and similar banking sector is a leading 

factor and harbinger of market stress at monthly horizons. In this respect, our 

paper contributes to a growing literature on measures of systemic risk, where 

scholars have created various other risk indices.2  

Our measures differ from what the literature has proposed thus far. 

Alternative risk measures primarily relate to capital adequacy and hence are 

more concerned with the liability side of bank balance sheets, while our measures 

focus on the asset side of the balance sheet. Our concentration measure captures 

bank portfolio concentration specific to a bank risk profile, and our measure of 

common holdings links the riskiness of each bank to other banks in the system. A 

shock to an undiversified bank could have a larger impact on the bank’s balance 

sheet and can more readily propagate to other banks which hold similar portfolios.  

With these differences in mind, we also examine our systemic risk 

indicators relative to alternative risk measures including three measures of 

systemic risk published by the ECB, several macro indicators, Acharya et al.’s 

(2017) MES and Brownlees and Engle’s (2017) SRISK. Our concentration index 

(one-way) Granger-causes MES and SRISK, suggesting that information from 

stock returns and interbank trading feeding into the asset side of bank balance 

sheets emerges prior to information from the liability side.  

																																																													
2 Various other systemic risk measures have been proposed (see Biasis, Flood, Lo and Valavanis 

(2012) for a survey). Acharya, Pedersen, Philippon and Richardson (2017) estimate MES based on 

the (expected) amount a bank is undercapitalized in a crisis event. Brownlees and Engle (2017) 

measure SRISK as the contribution of each firm in terms of capital shortfall in severe market 

movements. Adrian and Brunnermeier (2016) compute CoVaR, the value at risk (VaR) for the 

financial sector conditional on a bank having had a VaR loss. Huang, Zhou and Zhu (2009) combine 

CDS default probabilities of individual banks and forecasted asset return correlations. Giudici, 

Sarlin and Spelta (forthcoming), combine direct exposures with common exposures—i.e. what 

Brunetti et al. (forthcoming) refer to as correlation and physical networks. See also Segoviano and 

Goodhart (2009), de Jonghe (2010) and Tarashev, Borio and Tsasaronis (2010). 
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Additionally, we show that the higher moments of our measures (standard 

deviation, skewness and kurtosis) also convey information. The standard 

deviation and skewness of our measures generally lead (one-way Granger-cause) 

measures of systemic risk published by the ECB—the Composite Systemic Risk 

Index, the Simultaneous Default Probability, and the Sovereign Composite 

Systemic Risk Index—as well as EU macroeconomic indicators such as the 

Consumer Confidence Index (CCI), the Purchasing Managers' Index (PMI) and 

Retail Sales.  

Our approach provides a novel method for regulators to monitor the 

banking sector. Using daily interbank lending and stock market returns 

aggregated each month,3 our method provides insight into the balance sheets of 

banks at a higher frequency than the more cumbersome and less timely quarterly 

or annual disclosures or audits allow. Moreover, our methods complement other 

approaches to assess and monitor systemic risk that build on network science 

techniques (Billio et al., 2012; Diebold and Yılmaz, 2014; Brunetti et al., 

forthcoming; Giudici et al., forthcoming). Our derivations and methodology also 

provide a blueprint for how entity-level information from multiple markets can be 

combined in a principled manner using matrix factorization and balance sheet 

models to improve the quality of subsequent risk and interconnectedness 

measures. 

																																																													
3	Our procedure is flexible. While we employ daily data on stocks and interbank activity to derive 

monthly measures of bank holdings, bank holdings can be computed at any frequency beyond one 

day. More generally, our procedure estimates bank holdings at any frequency lower than the input 

data, so for example, intraday data allows for daily bank holding estimates. 
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Our method is also practical, drawing on the vast and increasing amounts 

of data generated by new regulatory frameworks—e.g. the Dodd-Frank Wall 

Street Reform and Consumer Protection Act (Dodd-Frank), European Banking 

Authority, European Securities and Markets Authority, and the Financial 

Stability Board. Dodd-Frank, for instance, requires exchanges and market 

participants to record and report data to regulators. Despite these increased 

reporting requirements, most regulators can only access data directly related to 

their legal purview, so that integrating data from myriad products across various 

regulated and unregulated markets remains a significant challenge. Our method 

provides practical means for assessing complex financial institutions which trade 

hundreds of financial products in markets around the world. Of course, other 

applications remain beyond the scope of this current work and we leave the 

process of combining data across markets to further research efforts.  

2 An Accounting Framework 

As a starting point for building our systemic risk measures, we first employ the 

accounting framework as in Shin (2009, 2010), Elliott et al. (2014) and Brunetti 

et al. (forthcoming) wherein individual bank balance sheets are connected via 

interbank lending and common holdings, and then aggregated to the industry 

level.  Let there be n banks under consideration and X be the vector of interbank 

debt (the total value of liabilities held by other banks). Π௜௝ is the share of bank i’s 

liabilities held by bank j, W௜௞ is the weight invested in each of the K assets by bank 

i ሺ∑ ௜ܹ௞ ൌ 1௞ ሻ, Y௜௞  denotes the market value of bank i’s assets, e௜  indicates bank 

i’s equity (which we proxy for with the market value of equity), and d௜  is the total 

value of liabilities of bank i held by non-banks.  
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Consider a financial system in which banks connect lenders to borrowers as 

intermediaries, collecting deposits from households and firms and investing the 

deposits in a portfolio of assets, including loans to the household sector (via 

mortgages and consumer debt) and firms. The balance sheet for any individual 

bank i can be partitioned as follows. 

Assets Liabilities 

෍ ௜ܹ௞௞ ௜ܻ௞ ei 

 xi 

෍ ௝Π௜௝௝ݔ  di 

 

We obtain the balance sheet identity as 

෍ ௜ܹ௞௞ ௜ܻ௞ ൅෍ ௝Π௜௝௝ݔ ൌ ݁௜ ൅ ௜ݔ ൅ ݀௜ 
or, using matrix notation, as ΠΧ ൅ ሺܹ⨀ܻሻݑ ൌ ܧ ൅ ܺ ൅ 	ܦ
where u is a vector of ones of length K; ⨀ denotes the Schur product (element wise 

multiplication), so that ܥ ൌ ሺܤ⨀ܣሻ and ܥ௜௝ ൌ  ௜௝. We can therefore express theܤ௜௝ܣ

portfolio of assets held by each bank as follows ሺܹ⨀ܻሻݑ ൌ ܧ ൅ ሺܫ െ Πሻܺ ൅ 	ܦ
where I is the n × n identity matrix. 

Recall that D represents debt claims on the banking sector by households, 

mutual and pension funds and other non-bank institutions. Following Shin (2009), 

we assume that the debt liabilities to non-banks evolve slowly. We also assume 

that W, the weight invested in each of the K assets, evolves slowly, whereas the 
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value of the corresponding asset holdings fluctuates more rapidly over time (e.g. 

from day to day, or week to week). Thus, over appropriately short intervals, 

changes to D and to W are negligible; then changes in the balance sheet from 

period t-1 to t can be written as  ൫ܹ⨀ሺ ௧ܻ െ ௧ܻିଵሻ൯ݑ ൌ ௧ܧ ൅ ܦ ൅ ሺܫ െ Π௧ሻܺ௧ െ ሺܧ௧ିଵ ൅ ܦ ൅ ሺܫ െ Π௧ିଵሻܺ௧ିଵሻ ൫ܹ⨀ሺ ௧ܻ െ ௧ܻିଵሻ൯ݑᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௎௡௢௕௦௘௥௩௘ௗ ൌ ௧ܧ െ ௧ିଵܧ ൅ ሺܫ െ Π௧ሻܺ௧ െ ሺܫ െ Π௧ିଵሻܺ௧ିଵᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥை௕௦௘௥௩௘ௗ .  (1) 

We assume that changes to the equity account ሺܧ௧ െ  ௧ିଵሻ can be readily measuredܧ

for public banks from public stock prices, wherein the market incorporates 

important information about the bank into daily stock prices. In this light, stock 

returns reflect information about the assets and liabilities on the bank’s balance 

sheet.  

Additionally, daily transaction-level interbank lending data can be used to 

construct a daily estimate of Π௧, the adjacency matrix of interbank transactions, 

and X௧, the vector of debt held by other banks. Note that X௧  can only be partially 

observed—banks can lend each other money through other (often unobservable) 

mechanisms. For instance, the European banks which we study can trade across 

the e-MID electronic system (which we observe and utilize), bilaterally in the over-

the-counter (OTC) market, or with the ECB directly. Despite this fact, our 

factorization method is able to produce robust estimates of W, the vector of weights 

each bank invests in each asset, which we utilize to construct our systemic indices. 
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3 Balance Sheet Driven Bayesian Factorization 

Given the accounting identity that links banks together through interbank 

lending arrangements and common asset holdings, we aim to quantify the 

portfolio composition of each bank. Using our notation from above, let  ܼ௧ ൌ ௧ܧ െ ௧ିଵܧ ൅ ሺܫ െ Π௧ሻܺ௧ െ ሺܫ െ Π௧ିଵሻܺ௧ିଵ 

and  

௧ܸ ൌ ௧ܻ െ ௧ܻିଵ. 

Written in element form, Equation (1) implies that the i-th bank’s balance sheet 

satisfies ሺܼ௧ሻ௜ ൌ ∑ ሺܹሻ௜௞ሺ ௧ܸሻ௞௜௞ .	
Assuming that the investment opportunity set is the same for all banks, we can 

express the same equation in matrix form  ܼ ൌ ܹܸ   (2) 

subject to ∑ ௜ܹ௞௄௞ୀଵ ൌ 1 for all ݅ and ௜ܹ௝ ൒ 0 for all ݅, ݆, where ܼ ൌ ሾܼଵ, ܼଶ, … , ்ܼሿ is 

an n	ൈ	T matrix, W is an n	ൈ	K matrix with non-negativity constraints on the rows, 

and ܸ ൌ ሾ ଵܸ, ଶܸ, … , ்ܸ ሿ is an K	ൈ	T matrix.4 

Equation (2) can be readily seen as a variant of the non-negative matrix 

factorization (NMF) problem, where Z is given and the objective is to estimate W 

and V. Most works in NMF do not include the sum to one constraint for 

computational reasons, which results in an identifiability problem. Specifically, 

the estimates in NMF are always re-scalable (so-called scale invariance), where 

W can be multiplied by a positive constant c and V by 1/c to obtain different W, V 

																																																													
4 Non-negativity implies no short selling, which we believe is reasonable, given regulatory 

restrictions on bank portfolios and the intermediary role that banks play in the economy.  
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without changing their product. In other words, under conventional NMF 

formulations, it is not possible to differentiate between a change in the percentage 

asset class holding and the change in value of the given asset class. We note that 

in our case this identifiability issue is resolved, since we require that the rows of 

W to sum to one.5 However, due to the sum-to-one constraint in addition to the 

non-negativity on W, the resultant problem is challenging to solve.6 

In this light, we develop a novel Bayesian estimation framework, capturing 

the non-negativity and probability constraints using appropriate distributional 

assumptions.7  Specifically, we assume that each row of W, denoted by ݓ௜ , is 

distributed according to a Dirichlet distribution with common concentration 

parameter α.		 ௜ሻݓሺ݌ ൌ Dirichletሺߙሻ    (3) 

The Dirichlet distribution, whose range is all discrete probability distributions of 

length K, is commonly utilized in nonparametric Bayesian statistics to model 

unknown probability distributions (Antoniak, 1974, Sethuraman, 1994).8 ߙ is the 

common parameter, which can take any value greater than zero. As ߙ gets larger, 

																																																													
5	We note that our proposed factorization model is not fully identifiable, as the columns of W (and 

correspondingly in V) are subject to permutation and can thus be arbitrarily ordered. This is a 

common property of most factorization models other than the Singular Value Decomposition.	
6  The main contributions in non-negative matrix factorization typically pose an optimization 

problem based on minimizing the Frobenius norm of the difference between Z and the estimated 

factors to obtain an estimate of W and V in (2) (Lee and Seung, 1999, Lin, 2007, Mankad et al., 

forthcoming). When faced with sum-to-one constraints, the usual approach is to find approximate 

solutions (i.e., continuous relaxation of constraint via a LaGrangian penalty) or to ignore the 

constraint in the estimation and normalize the factors ex-post in a second stage (see, e.g., Huck et 

al. (2010) and Heinz et al. (2001)). Both have computational advantages, but do not guarantee 

robust solutions. Indeed, we find that conventional optimization methods can provide qualitatively 

different solutions depending on the random seed, reducing the practical application of these 

methods. 
7 This contrasts with previous Bayesian factorization models that have a similar framework but 

solve for non-negativity without the probability constraint (Schmidt et al., 2009, Psorakis et al., 

2011). 
8 More recently, it has been popularized in the Latent Dirichlet Allocation model of Blei et al. (2003) 

and applied extensively for summarizing unstructured text data with so-called topic modeling 

analysis. We use this distribution for the rows of W to capture the probability constraint. 
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the probabilities are closer to uniform, meaning that the assets held within each 

bank portfolio and across banks are approximately equal. As ߙ approaches zero, 

the distribution is sparser (more weights are zero, though the zero components 

can vary among banks). 

Since ܸ  represents changes in asset values at the daily level, over long 

enough intervals we expect its distribution be unimodal and centered on a small 

constant capturing market trends. We also expect the true distribution of ܸ to 

have heavier tails as has been established for stock returns (Upton and Shannon, 

1979), but we show the Gaussian distribution offers a suitable approximation with 

computational advantages. As such, elements of V are assumed to be 

independently normally distributed with mean µ and variance ߪ௏ଶ ݌ሺܸሻ ൌ ∏ Գሺߤ, ௏ଶሻ௞,௝ߪ  .  (4) 

Note that, while the prior distribution assumes that the daily returns between 

asset classes are independent, the posterior distribution of V will in general 

exhibit correlations between asset classes. 9  Thus, in effect, the correlation 

structure between asset returns is learned implicitly through the estimation we 

describe in this section below.  

We introduce one last random variable, ߪଶ, that controls the variance of 

additive Gaussian noise on each element of the matrix Z and is modeled with an 

inverse gamma density with shape ߟ and scale θ.10  ݌ሺߪଶሻ ൌ ,ߟሺܩܫ  ሻ   (5)ߠ

																																																													
9 See the last sub-section of Appendix 1 for mathematical details.  
10 The inverse gamma density as a prior distribution for the noise variance σ2 is a natural choice 

and extensively utilized by Brav (2000), Cremers (2002), Jones (2003), and Korteweg and Sorensen 

(2010). 
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To complete the Bayesian specification, we assume that Z has the following 

conditional likelihood ݌ሺܼ|ܹ, ܸ, ଶሻߪ ൌ ∏ Գ൫ሺܹܸሻ௜௝ , ଶ൯௜௝ߪ . (6) 

Equations (2) and (6) can be viewed as mixture models, where Gaussian 

means encoded within the columns of ܸ are added together using weights in ܹ.11 

The number of components in the mixture are determined by the rank of the 

factors ܹ and ܸ, which is set by the analyst. With such mixture models, others 

have shown that with enough components the resultant mixture distribution 

given by ܹܸ has sufficient flexibility to approximate any continuous distribution 

for ܼ  (subject to regularity conditions) to an arbitrary degree of accuracy (see 

Norets and Pelenis, (2012) and Rossi (2014)).12 This also provides intuition for 

when our model will not work well. We expect our Bayesian specification to 

struggle if the true distribution of ܼ is discontinuous, truncated, or having other 

boundary effects. In our data, we see no evidence for this concern. 

We briefly discuss estimation of the Bayesian model next, with full 

derivations provided in the Appendix. By Bayes rule, the joint posterior is 

proportional to   pሺW, V, σଶ|Zሻ ∝ pሺZ|W, V,  ଶሻ,  (7)ߪଶሻpሺWሻpሺVሻpሺߪ

where we utilize the fact that ܹ,ܸ , and ߪଶ  are assumed to be independently 

distributed as in Equations (3)-(6).  

																																																													
11 We use the normal distribution again for tractability and ease of computation, though this does 

not necessarily sacrifice the overall accuracy of the factorization even when Z follows a non-

Gaussian distribution. 
12 The intuition for this result is that any density can be well approximated using multiple small 

variance normal components with different means to position the components appropriately. 
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Computing the posteriors densities pሺW|Zሻ and pሺV|Zሻ requires solving an 

intractable integral of the joint posterior distribution in Equation (7). To overcome 

this challenge, we utilize a combination of standard Markov Chain Monte Carlo 

(MCMC) methods. The basic idea behind MCMC is to construct a Markov chain 

that has the desired distribution as its limiting distribution. Thus, once the 

Markov chain has converged to its equilibrium, repeatedly sampling states of the 

chain provides an empirical estimate of the desired distribution that is accurate 

to an arbitrarily high degree. From this empirical distribution, the expectation can 

be readily calculated.13  

Since we can apply conjugate distributional properties14 to derive explicit, 

closed forms of the posterior distributions for ܸand ߪ conditional on the data (ܼ) 

and the current state of each of the parameters (ܹ,ܸ,  ଶ), we use Gibbs samplingߪ

to estimate the marginal distributions ݌ሺܸ|ܼሻ  and ݌ሺߪ|ܼሻ . In other words, the 

Markov chain is defined by the conditional posterior distributions and iterated 

until convergence as in any MCMC method, after which samples are drawn and 

averaged to derive point estimates.  

We use a more general version of Gibbs Sampling, the Metropolis Hastings 

algorithm, to estimate ݌ሺܹ|ܼሻ, because the conditional posterior distribution of ܹ 

is not composed of conjugate distributions and thus cannot be characterized 

analytically. The estimation procedure exploits the fact that we are still able to 

																																																													
13 See Casella and George (1992) and Chib and Greenberg (1995) for further information on MCMC 

methods, including best practices and how to determine whether the Markov chain has converged 

to its limiting distribution. 
14 In Bayesian probability theory, if the posterior distributions (e.g., pሺV│Zሻ) are in the same family 

as the prior probability distribution (e.g., p(V)), the prior and posterior are conjugate distributions 

which have a closed-form expression for the posterior distribution. 
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compute the value of a function (shown explicitly in the Appendix) that is 

proportional to the desired distribution. This proportion is used to generate 

Markovian samples iteratively that converge to the desired distribution as the 

number of samples grows. 

4 Validating the Model 

In this section, we validate our model and Bayesian estimation framework from 

both a statistical perspective through a simulation exercise, and from an 

accounting perspective by comparing the estimates of W (the vector of weights 

invested in each asset class) against actual balance sheet data reported annually 

by each bank. In both tasks, we first utilize non-parametric hypothesis tests to 

compare the distribution of the true W with its estimate. Specifically, we utilize 

four well known non-parametric tests. The Brown-Mood median test (Brown et 

al., 1951) and the Fisher-Pitman permutation test (Boik, 1987) assess whether 

two samples have identical medians and means, respectively. The third test is the 

more general Mann-Whitney U test (Mann and Whitney, 1947) which compares 

the full distributions of the estimated and true W to assess whether our estimate 

is stochastically smaller (or larger) than its true value. 15 And lastly we utilize the 

Two Sample Anderson Darling Test (Scholz and Stephens, 1987 following 

Anderson and Darling, 1954) to assess whether there are differences between the 

two samples with particular sensitivity at the tails of the distributions.16  

																																																													
15 To understand the precise hypothesis tested by the Mann-Whitney U test, let x and y be two 

random variables with cumulative distribution functions f and g respectively. The hypotheses for 

the test ܪ଴: ݂ሺ∙ሻ ൌ ݃ሺ∙ሻ versus ܪଵ: ݂ሺܽሻ ൏ ݃ሺܽሻ			ݎ݋			݂ሺܽሻ ൐ ݃ሺܽሻ, ∀ܽ. 
16 This is comparable to the Kolmogorov-Smirnov test, which is not as appropriate in our setting 

since the real balance sheet data has multiple zero values. Moreover, the Anderson Darling test 

has been shown in Monte-Carlo studies to have comparatively greater statistical power (Razali et 

al., 2011). 
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Note that element-wise accuracy comparisons for ܹ  (like mean squared 

errors) are not possible given the large number of asset classes and that the 

columns of the estimated ܹ can be ordered arbitrarily, a common property of such 

factorization models. As such, in addition to the four distributional tests, we also 

report the Rand Index, a classic accuracy measure for this setting (Rand 1971). 

The Rand Index varies from zero to one, with larger values indicating more 

accurate estimates. Lastly, to understand the accuracy of the overall factorization 

we report a Pseudo R2, which is analogous to the R2 in linear regression.17 

Additionally, we compare the accuracy of our proposed model relative to 

competing optimizing techniques (from the matrix factorization and machine 

learning literature) that can be used to solve Equation (2). The methods we 

compare against are as follows: 

1. The Semi Non-Negative Matrix Factorization model of Ding et al. (2010) 

with probability constraints enforced ex-post, which is state of the art in 

the matrix factorization field; 

2. Fuzzy K-means, a classic machine learning algorithm, that produces 

estimates of ܹ based on a Gaussian mixture model (Bezdek et al., 1984). 

4.1 Simulation 

We test the accuracy and validity of the proposed model under different simulation 

settings. The first simulation establishes self-consistency of the proposed 

factorization, that is, we generate the matrix Z from the model implied by the 

factorization. Then we perform the estimation with perfect knowledge of the true 

																																																													
17 The Pseudo	R2 ൌ 1 െ ฮܼ െ ෡ܹ ෠ܸฮிଶ ‖ܼ െ ܼ̅‖ிଶ൘ . 
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underlying parameterizations. In practice, this information would not be known 

at the start of the estimation, but we need to establish the validity of the 

estimation procedure. The second simulation misspecifies the hyper-parameters 

and initial values to help us gain insight into the sensitivity and validity of our 

estimation under the more realistic condition that the underlying 

parameterizations are unknown. 

First, we generate W, V, and σ according to their distributions, where the 

concentration value and initializations are set to be equal to the values used in 

our real data—i.e. balance sheet data from annual reports. We use ߙ ൌ ߤ ,0.2 ൌ ௏ߪ ,0 ൌ 0.45, ݇ ൌ 100, and ߠ ൌ 0.5 with W and V of dimension 49 × 8 and 8 × 23, 

respectively, also chosen to match the real data. 18  Second, under the hyper-

parameter misspecification scenario, we perform the estimation with the value of 

the prior parameter α ranging from 0.15 to 0.35 (the true value always remains 

0.20). Studying the performance of the estimation for varying levels of α 

misspecification is particularly important, as α is also the main parameter for the 

distribution of ܹ. For completeness we also incorrectly initialize ߤ௜௡௜௧ ൌ ௏,௜௡௜௧ߪ ,1 ൌ1 and ߪ௜௡௜௧ ൌ 1, so that every hyper-parameter is misspecified.  

Panel A in Table 1 presents the results of the self-consistency scenario. 

Each of our four non-parametric statistical tests indicate that the model and 

estimation is self-consistent. Note that the average p-values shown in parentheses 

in Table 1 are above 5% for all tests, so in this setting, we fail to reject the null 

																																																													
18 The number of banks in our sample is not fixed since during our sample period there have been 

mergers, acquisitions and bankruptcies. The choice of 49 banks in the simulation is only indicative 

of the number of banks in our sample. Bank identities in the interbank market are confidential. 

The number of investment assets, 8, is the result of the banks’ balance sheet analysis. Details are 

discussed in the data section. 
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hypotheses from each of the four tests. The pseudo R2 and Rand Index also provide 

evidence that the estimation overall and of ܹ specifically are high quality, with 

values close to one. Thus, our estimates of W, which are particularly important 

within the systemic risk context, match well the true distribution when using the 

ex-post correct parameterization.  

Panel B in Table 1 presents results for values of α ranging from 0.15 to 0.35 

(straddling the actual 0.2 value) in various hyper-parameter misspecification 

scenarios. The pseudo R2 values show that the overall quality of the estimation 

remains high and is essentially unaffected by misspecified hyper-parameters, 

which is perhaps expected given that in Bayesian analysis the posterior 

distribution uses the observed data to recalibrate prior assumptions. Focusing on ܹ, for all α, our tests largely show that the estimated and true distributions are 

statistically identical (except under the most conservative Anderson-Darling test). 

We regard this as evidence that our estimation procedure is robust to mild 

misspecification. In fact, while the Rand Index decreases when the hyper-

parameters are misspecified, the performance under misspecification is still 

superior to competing methods (as shown in Panel C). Given the numerical 

evidence that the estimation is statistically valid and performs favorably with 

alternative techniques, we now turn our attention to whether the model can be 

validated in terms of actual balance sheet data. 

4.2 Validation with Balance Sheet Data 

To estimate W	at the monthly frequency, we aggregate daily interbank trading 

data coupled with aggregated daily stock returns of publicly-traded European 
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banks spanning January 2006 through December 2012.19 We obtain interbank 

trading data from e-MID,20 the only electronic market for interbank deposits in 

the Euro region, which offers interbank loans ranging from overnight (one day) to 

two years in duration, with overnight contracts representing 90% of total volume 

during our sample period (see Brunetti et al. (2011)). Our e-MID trading data 

includes a large number of banks, but we analyze only those which are publicly-

traded. We integrate the e-MID data through the balance sheet, coupling assets 

traded overnight with the corresponding daily stock returns which proxy for 

equity changes. The number of publicly-traded banks in our data ranges between 

45 and 60 and span several European countries. Our sample includes large, 

medium and small size banks, but for confidentiality reasons we do not identify 

specific banks. Summary statistics for the publicly-traded banks in our sample are 

shown in Table 2, where we see that their average daily interest rate in the e-MID 

dropped post-Lehman (starting September 12, 2008), while daily volume started 

to decline much earlier when the ECB noted worldwide liquidity shortages 

(August 7, 2007). Daily volume for the publicly-traded banks declined from over 1 

billion euros prior to the start of the financial crisis to 100 million euros post-

Lehman. As the crises unfolded, the banks experienced negative stock returns 

with increasing volatility. 

We assume that banks rebalance their overall portfolios monthly, so we 

estimate W each month using the Bayesian framework.21 Recall, however, that 

																																																													
19 We stop in December 2012 because liquidity in the e-MID market largely dried up as shown in 

Brunetti et al. (forthcoming). 
20 E-MID data can be purchased at: https://www.e-mid.it/en/e-services/data-service/ 
21  When beginning the MCMC estimation each month, W, V, and ߪଶ  are initialized to their 

estimates from the previous month. 20,000 samples are drawn using a burn-in of 10,000 iterations. 
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ܼ ൌ ሾܼଵ, … ்ܼሿ is constructed with daily stock returns and daily e-MID activity as 

proxies for equity changes and interbank activity, respectively.  

Using public data from annual reports, we construct the true vector of 

weights held across eight investment types, W, by first partitioning the balance 

sheets of each bank on December 31 each year into eight categories: Cash, 

Commercial Loans, Intangible Assets, Interbank Assets, Residential Loans, 

Investments, Other Holdings, and Remainder (total assets minus all other 

categories).22 Then we arrange the balance sheet into a matrix, with each row as 

a bank, i.e., W is a N × 8 matrix, where N is the number of banks in our sample. 

Lastly, we normalize W, by dividing each entry by its row sum (each bank’s total 

assets). Importantly, in the validation exercise as well as in our estimates, the 

number of asset categories we consider varies from 4 to 8. Our results are robust 

to the choice of the number of asset categories.23 

We compare the density of our estimated ܹ as of December 31 of each year 

in our sample to the observed W constructed using real balance sheet data,24  see 

Figure 1. Note that our estimates closely approximate actual values except for the 

tails of the distribution—in the actual data approximately 44 percent of values 

are less than 1% (i.e. an individual bank holds a very small amount of a particular 

asset), while in our estimated ܹ, 44 percent of values are less than 4%. We show 

in the next section that this difference is not practically meaningful, but it does 

																																																													
22	To further improve the results, asset categories can be made to be more granular. There is a 

trade-off however, since as the number of asset categories increases, the estimation procedure 

becomes more cumbersome because the number of parameters increases dramatically. 
23 Additional results available upon request.  
24 We performed a grid search to find the best ߙ value according to the log-likelihood of the final 

factorization on the observed data. This was done both every month and once simultaneously for 

all time points. Results were qualitatively similar between both approaches. 
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affect the non-parametric statistical tests as reported in Table 3. We consistently 

fail to reject the null hypothesis for the permutation test (same mean) and median 

test (same median). Interestingly, the Mann-Whitney U test, which compares the 

full distributions of the estimated and true W, indicates that at the onset of the 

crisis, 2006-2008, the estimates of W are statistically different from the true data 

but during and after the crisis, 2009-2012, our procedure produces significantly 

more accurate estimates of the distribution of W. This is confirmed by the pseudo 

R2 which indicates that our factorization explains more variation in Z during and 

after the crisis.  

The Anderson-Darling test rejects the null due to the differences on the 

lower tail highlighted above. Consistent with these hypothesis tests, the pseudo 

R2 and Rand Index show that the estimation quality is generally good, with values 

clearly bounded away from zero.25 More generally, these results resemble the 

misspecification scenario in the simulation study, where the Anderson-Darling 

test is rejected but all other metrics indicate accurate estimates. Overall, we 

believe that the bulk of this evidence supports that our estimates of W are accurate 

and drawn from nearly identical distributions to the true W.  

4.3 The Source of Information: Stock Returns versus 

Interbank Trades  

In this sub-section we examine the importance of each information source (daily 

stock returns versus interbank lending activity) on the final estimate of W. We 

repeat the validation procedure above by estimating W using only daily stock 

																																																													
25 Tables A1 and A2 in the Appendix show results for estimation under competing methods. The 

competing approaches tend to achieve slightly higher Rand Index values, but massively 

underperform with the hypothesis testing compared to our proposed approach.  
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returns (omitting interbank lending information) and separately by using only 

daily e-MID interbank lending activity (omitting stock returns).  

Tables 4 and 5 show the results of the non-parametric statistical tests that 

compare the two sets of estimates to the true balance sheet weights held by banks 

in our sample across the eight investment types. We highlight two main patterns 

in the results. First, the pseudo R2 values show that the factorization model 

explains much less variation when using only stock return data (Table 4), whereas 

the quality of the estimates is generally better when considering the e-MID data 

only (Table 5). Second, while the two estimates of W do share distributional 

similarities with the true balance sheet data, we see that for several sample years 

we reject the null hypothesis for the Median test and Mann-Whitney U tests and 

both sets of estimates continue to fail the Anderson-Darling test, due to differences 

in the tails of the distributions.  

Not surprisingly, we find that the results from estimating W using both 

data sources (Table 3) are stronger compared to estimation results using 

individual data sources. Moreover, while both the interbank market and the stock 

market convey information (albeit differently), the interbank market data maps 

more directly to bank assets. Importantly however, these sources can be combined 

with our methods to obtain more precise estimates of bank holdings and therefore 

more precise estimates of bank-specific and systemic risk. 

5. Compiling Systemic Risk Measures 

Having established the validity of our approach in estimating portfolio weights 

across the spectrum of the banks in our sample, we now turn our attention to two 

key questions: i) Are bank portfolios well-diversified? ii) How similar are portfolio 
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holdings across banks? To answer the first question we develop a concentration 

index which captures the degree of diversification of each bank’s portfolio. To 

answer the second question, we develop a similarity index which captures how 

similar portfolio holdings are across banks. We view these two metrics as 

indicators of systemic risk within the banking system. First, concentrated 

holdings on a small number of assets within an individual bank exposes the bank 

to asset-specific risk. Ceteris paribus, should a bank with a portfolio concentrated 

only in one or two assets be forced to sell those assets—the price impact of these 

actions could be higher when compared to a bank liquidating a more diversified 

portfolio. This measure of risk is specific to the bank.  

Second, the similarity of asset holdings across banks suggests that shocks 

to any particular asset class will be borne across the entire banking system. The 

similarity of portfolio holdings is the theoretical justification of network analysis 

such as Diebold and Yilmaz (2014) and Billio et al. (2012), and is based on a simple 

consideration: if two banks, A and B, hold the same asset, and an exogenous shock 

forces A to liquidate the asset, the price of the asset will decline and therefore 

change the value of B’s portfolio potentially leading to B also selling the asset at 

an unfavorable price. Braverman and Minca (2014) adopt this argument to 

describe how common asset holdings can transmit financial distress among 

banks.26 Our similarity measure captures the network effect in that is describing 

a propagation mechanism. In case of a shock to a bank, the concentration measure 

																																																													
26 Others have obtained similar theoretical findings establishing that overlapping portfolios and 

common assets holdings can serve to amplify economic shocks, thus raising the chances of 

simultaneous failures (Wagner, 2010; Beale et al., 2011; Haldane and May, 2011; Raestin, 2014; 

Caccioli et al., 2014, 2015; Greenwood et al., 2015). 
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tells us how risky a bank’s portfolio is while the similarity measure assesses the 

likelihood that the shock will propagate. Note that an advantage of our approach 

is to allow estimation of portfolio weights at a higher frequency than typically 

reported in official bank filings.  

After obtaining an estimate for W in a given month, we calculate a 

Herfindahl index (Rhoades, 1993) of diversification/concentration across our eight 

asset categories. Specifically, let the superscript (t) index time in months, then  

௜ሺ௧ሻܪ ൌ ∑ ቂ ௜ܹ௞ሺ௧ሻቃଶ௞ .   (8) 

To measure the similarity in assets held across banks, we define the pairwise 

portfolio similarity between bank i and bank j as ܵ݅݉௜௝ሺ௧ሻ ൌ ∑ ݉݅݊ቀ ௜ܹ௞ሺ௧ሻ, ௝ܹ௞ሺ௧ሻቁ௄௞ୀଵ  .    (9) 

The similarity27 index is bounded between 0 and 1, with zero values indicating 

each pair of banks hold different assets while values equal to one indicating both 

banks hold identical asset portfolios. For example, assume two banks and three 

assets and the following holdings: 

 Bank A Bank B Similarity Index 

Component 

Investment 1 50% 30% 30% 

Investment 2 10% 60% 10% 

Investment 3 40% 10% 10% 

 

																																																													
27 In unreported results, we measure similarity using the Euclidean distance, KL divergence, 

correlation, and cosine similarity (as in Getmansky et al. (2017) for the insurance industry) and 

several other criteria. Results are consistent across these different similarity measures. 
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The example shows that the index has the desirable property of been bounded 

between zero (no common holdings) and 1 (same holdings and same and weights), 

and captures portfolio similarities adequately. However, it may underestimate 

contagion since, if Bank A is hit by a shock and liquidates most if its assets, the 

value of the entire B’s portfolio will be affected.28  

Within the banking system, asset concentration and portfolio similarity are 

related. If an individual bank holds a concentration of assets that perform poorly 

ex-post, the poor performance might stress other institutions. Likewise, if each 

bank in the system is fully diversified across asset classes, then, by definition, all 

bank balance sheets will be similar and highly interconnected. In this regard, we 

posit that the interdependence between asset concentration and bank similarity 

reflects systemic risk. 

Figure 2 displays the first four cross-sectional moments of the Herfindahl 

distribution of bank asset concentration/diversification over time. As the figure 

shows, European banks grew more concentrated (on average) from 2006 through 

September 2008 when Lehman Brothers failed. During the following year, 

however, the average concentration fell dramatically before gradually rising again 

to near pre-Lehman levels through 2012. The standard deviation of asset 

concentration has risen alongside the rise in concentration since mid-2009. 

Notably, the skewness and kurtosis of asset concentration was falling pre-

Lehman, but rose dramatically in the subsequent four months, suggesting that 

individual bank holdings were less concentrated and banks were investing in 

																																																													
28 The similarity index could be modified to account for regulatory standards. For example, we 

could give more weight to asset classes based on liquidity characteristics. 
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different portfolios. Both skewness and kurtosis of asset concentration remained 

high through mid-2011 before falling dramatically through 2012. 

Figure 3 displays the first four moments of pairwise portfolio similarity over 

time. The average similarity among European banks generally rose from 2008 

through mid-2010 before falling through 2012. Overall, the standard deviation of 

similarity increased from 2006-2008 and remained relatively high through 2012. 

The skewness of similarity is negative and, after becoming more negative from 

2008-2010, has reverted toward zero through 2012. The kurtosis of similarity 

appears to follow the opposite pattern from skewness. While the patterns in 

moments of asset concentration and portfolio similarity suggest that these metrics 

may reflect real economic conditions, we aim to test whether these metrics are 

useful for forecasting purposes.  

5.1 Comparison with ECB risk and macro indicators 

Recall that our monthly metrics are constructed using daily interbank trades and 

daily equity price changes, so that we impound both expected future performance 

as well as current liquidity demands for each bank. As a benchmark test for the 

usefulness of these metrics in forecasting, we relate moments of concentration and 

similarity to three measures of systemic risk published by the ECB—the 

Composite Systemic Risk Index, the Simultaneous Default Probability, and the 

Sovereign Composite Systemic Risk Index. The Composite Systemic Risk 

Indicator is a weighted average of several measures of financial stress that focus 

on different aspects of the financial system including money, bond, equity and 

forex markets as well as financial intermediaries. The Simultaneous Default 
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Probability, and the Sovereign Composite Systemic Risk Index are essentially 

CDS implied probabilities.29 

Figure 4 displays these three ECB metrics from 2006 through 2012.30 Note 

that the ECB metrics all rise from early 2007 through early 2009 before abating 

slightly until early 2010. All three metrics then rise through late 2011 before 

generally falling off through 2012. These metrics have been extensively used—e.g. 	
Hollo et al (2012). 

Table 6 reports the contemporaneous correlation between the moments of 

our concentration and similarity indices and the three measures of systemic risk 

published by the ECB—these measures are in first difference to guarantee 

stationarity.31 

Interestingly, the higher is the concentration in the banking sector (mean), 

the higher is the Composite Systemic Risk Index (SRI), which captures stress 

conditions in European markets. Similarly, higher levels of variation (standard 

deviation) in concentration and similarities across bank portfolios are associated 

to higher levels of stress conditions. The systemic risk indicator is also linked to 

higher moments of the similarity index. The Probability of Simultaneous Default 

is positively correlated to the similarity index indicating that when the similarity 

index is high, the probability of default is increasing (recall that the ECB systemic 

indicators are in first difference and hence they indicate a change). Overall, we 

																																																													
29 ECB Financial Stability Review, June 2012, p.99 available at: 

https://www.ecb.europa.eu/pub/pdf/other/financialstabilityreview201206en.pdf?6b3b7eb08f53f6a

d069f5b6dd15275c8 
30 The Simultaneous Default Probability metric is only available since 2007. 
31  We perform two stationarity tests, the generalized least squares Dickey–Fuller (DF) test 

proposed by Elliott, Rothenberg, and Stock (1996) and the Augmented Dickey-Fuller (ADF) test. 
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find strong contemporaneous linkages between the ECB systemic risk measures 

and our indices.  

The second part of Table 6 reports contemporaneous correlations between 

major EU macroeconomic indicators—the Consumer Confidence Index (CCI), 

Industrial Production (IP), the Purchasing Managers' Index (PMI) and Retail 

Sales—and the moments of the concentration and the similarity indices (also in 

this case, all variables have been differenced to accommodate for non-

stationarity). Table 6 indicates strong contemporaneous linkages between macro 

variables and our indices. Recall that our indices are computed using data on the 

interbank market, e-MID, which is capturing interbank activities only in part, and 

stock market returns of a relatively small number of publicly traded banks. 

Nevertheless, the correlation between our indices and macro variables is 

statistically significant.  

We further investigate the lead-lag relations among the moments of our 

indices and the ECB systemic risk and macro indicators by estimating bivariate 

VARs and testing for Granger-non-causality.32 Figure 5 presents the results of our 

analysis. ܣ →  indicates that A Granger-causes B at the 10 percent significance ܤ

level, while ܣ ↔ ܤ  indicates feedback effect, i.e. A Granger-causes B and B 

Granger-causes A	at the 10 percent significance level. Figure 5 shows that, with 

only a few exceptions of feedback effects, our indices are able to cause, in a 

forecasting sense, most of the ECB systemic risk and macro indicators. 

Interestingly, the first three moments of the concentration index seem to contain 

valuable information for forecasting. 																																																													
32 VARs optimal lag specification is based on AIC. Standard errors are bootstrapped. 
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5.2 Comparison with MES and SRISK 

Acharya et al (2017) develops a model of systemic risk in which the level of 

capitalization of the financial sector has implication on the real economy. In the 

model, the contribution of each financial institution to systemic risk is measured 

by the systemic expected shortfall, a function of how much the institution is 

undercapitalized conditional on the entire financial system being 

undercapitalized. The systemic expected shortfall depends on the institution’s 

leverage and on the institution’s marginal expected shortfall (MES). Acharya et 

al (2017) show that MES is able to predict systemic risk in the recent financial 

crisis.  

Brownlees and Engle (2017) introduce a conditional capital shortfall 

measure of systemic risk, named SRISK. This measure captures the contribution 

of a financial institution to systemic risk and, similar to Acharya et al (2017), is 

based on the capital shortfall of the institution conditional on a severe market 

downturn. SRISK is able to capture the riskiness of US financial institutions 

leading to the 2007-2009 crisis. Aggregating SRISK across institutions, the 

authors also propose an early warning index of distress. 

Both MES and SRISK combine balance sheet information and asset price 

information for publicly traded financial institutions. We took both measures and 

compared them to our indices.33 The measures were provided to us on a company-

by-company basis. We selected all European companies in the countries where the 

																																																													
33 We are thankful to Rob Capellini, director of the V-Lab at NYU, for sharing the data. 

Source: The Volatility Laboratory of the NYU Stern Volatility Institute (https://vlab.stern.nyu.edu) 
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e-MID banks are based.34 In total we construct MES and SRISK measure using 

313 financial institutions including banks, insurance companies, broker/dealers. 

To aggregate MES and SRISK measures across institutions, we normalize these 

measures by market capitalization. Note that our concentration and similarity 

indices are computed by examining 45-60 banks while MES and SRISK have been 

computed over a much larger set of institutions. 

Figure 6 depicts MES and SRISK together with the concentration index and 

the similarity index over time. MES, SRISK and our concentration index exhibit 

similar patterns after the crisis. In fact, the correlation coefficients between the 

concentration index and MES and SRISK are 43% and 39%, respectively. 

However, our similarity index evolves much differently than MES, SRISK and 

concentration, suggesting that our method uncovers two distinct sources of 

systemic risk—individual bank concentration and common holdings across banks. 

We further investigate the lead-lag relationships among MES, SRISK, 

concentration and similarity through the lens of bivariate VARs and Granger-

causality tests. We find that the concentration index leads, in a forecasting sense, 

both the MES (p-value = 0.073) and SRISK (p-value = 0.076). The reverse is not 

true—i.e. SRISK and MES do not Granger-cause the concentration index. As 

suggested by patterns in Figure 6, we do not find any Granger-causality between 

the similarity index and either MES or SRISK. These results suggest that 

information about bank assets (via interbank loans and equity returns) emerges 

																																																													
34 For confidentiality reasons we cannot match the two datasets exactly — i.e., we cannot select 

the companies in V-Lab with the banks in our e-MID dataset. 
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prior to information from bank liabilities (which largely underlie MES and 

SRISK), a finding relevant to regulators charged with bank oversight.  

6 Conclusion 

In this paper, we propose a novel approach to estimate the monthly portfolio 

composition of banks as a function of daily interbank trades and stock returns. We 

start our estimation with the balance sheets (reported annually) for 50-60 

publicly-traded European banks at the beginning of January 2006, compiling 

precise estimates of portfolio concentration within each bank and common 

holdings across banks. We consider portfolio concentration as a measure of bank 

diversification and common holdings as a measure of market susceptibility to 

propagating shocks. 

From this starting point, we estimate the evolution of monthly bank asset 

holdings using daily interbank trades and equity price changes in a stylized 

representation of aggregate industry balance sheets. We validate our findings 

using simulation methods and benchmarking our estimates from year to year 

(when new balance sheet data becomes available). Our tests demonstrate that 

information from daily interbank and equity markets are useful for tracking the 

evolution of bank asset holdings over time.  

We use these more frequent and timely holdings estimates to construct two 

systemic risk measures--individual bank portfolio concentration and common 

holdings across banks. We find evidence that these systemic risk measures lead, 

in a forecasting sense, several other commonly used systemic risk indicators, 

suggesting that our method provides a robust forecasting tool for market 

regulators to assess systemic risk in a timely manner. Moreover, while our model 
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estimates bank asset holdings at higher frequencies than available from annual 

or quarterly reports, our method can be readily applied to other situations where 

higher frequency market data might provide valuable information to regulators 

between formal audits or other regulatory reports. 
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 Panel A: Self-Consistency Scenario ߙො Pseudo R2 RI Permutation Test Median Test MW Test AD Test 

0.20 0.936 0.824 0.000 (1.000) -1.147 (0.369) 0.323 (0.682) 2.249 (0.091)  

 Panel B: Hyper-Parameter Misspecification Scenario ߙො Pseudo R2 RI Permutation Test Median Test MW Test AD Test 

0.10 0.929 0.757 0.000 (1.000) 0.247 (0.610) 0.862 (0.425) 4.698 (0.009)  

0.15 0.938 0.762 0.000 (1.000) 0.428 (0.587) 1.049 (0.352) 4.362 (0.041)  

0.20 0.938 0.776 0.000 (1.000) 0.566 (0.595) 1.272 (0.256) 3.332 (0.045)  

0.25 0.936 0.775 0.000 (1.000) 0.761 (0.518) 1.576 (0.148) 6.939 (0.005)  

0.30 0.941 0.782 0.000 (1.000) 0.609 (0.521) 1.711 (0.119) 9.212 (0.001)  

 Panel C: Competing Methods 

Method Pseudo R2 RI Permutation Test Median Test MW Test AD Test 

Semi-NMF 0.800 0.740 0.000 (1.000) 0.623 (0.587) -0.135 (0.779) 4.248 (0.015)  

Fuzzy K-Means NA 0.633 0.000 (1.000) 4.112 (0.004) 3.078 (0.010) 106.406 (0.000) 

 Table 1: Simulation results averaged over 100 iterations. Pseudo R2 is defined analogously to the linear regression 

setting; RI is the Rand Index of ܹ (values closer to 1 indicate more accurate estimates). The permutation test refers to 

the Fisher-Pitman test (Boik, 1987) while the median test refers to the Brown-Mood test (Brown et al., 1951) and assess 

whether two samples have identical means and medians, respectively. MW test refers to the Mann-Whitney U test (Mann 

and Whitney, 1947) which compares the full distributions of the estimated and true W. The AD test refers to the Two 

Sample Anderson Darling Test (Scholz and Stephens, 1987) to assess whether there are differences between the two 

samples. The statistical tests compare the estimated and true distribution of ܹ; average test statistics are reported with 

p-value in parentheses. Failing to reject the null hypothesis provides evidence in support of the estimation for all 

statistical tests. Note that Pseudo R2 is not reported for the Fuzzy K-Means algorithm, because it only estimates ܹ and 

an estimate of both ܹ and ܸ is required. 	 	
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 Pre-Crisis 

Jan 1 2006 – Aug 7 2007 

Crisis 1 

Aug 8 2007 – Sept 12 2008 

 Mean St. Dev. Skew Kurt. Mean St. Dev. Skew Kurt. 

Stock Returns 0.001 0.141 1.070 507.643 -0.001 0.155 0.904 506.349 

         

Volume (e-MID) 1637.923 1204.923 1.039 0.541 553.403 562.621 2.054 5.243 

         

Rate (e-MID) 3.185 0.566 -0.039 -1.325 4.026 0.191 -0.597 1.719 

         

 Crisis 2 

Sept 16 – Apr 1 2009 

Crisis 3 

Apr 2 2009 – Dec 31 2012 

 Mean St. Dev. Skew Kurt. Mean St. Dev. Skew Kurt. 

Stock Returns -0.005 0.194 1.932 431.219 -0.002 0.200 0.211 560.613 

         

Volume (e-MID) 158.231 103.638 1.152 0.658 158.333 158.640 1.232 -0.299 

         

Rate (e-MID) 2.837 1.313 -0.190 -1.488 0.783 0.286 0.219 -1.913 

         

Table 2: Summary statistics at the daily level for log stock returns, e-MID trading volume (millions of 

Euros), and e-MID interest rate. All e-MID statistics are computed using transactions that include at least 

one of the banks in our sample as a counter-party in the overnight loan. 		 	
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Year Pseudo R2 RI Permutation 

Test 

        Median Test MW Test AD Test 

2006 0.698 0.698 0.000 (1.000) 1.458 (0.174) 3.316 (0.001) 22.771 (0.000)  

2007 0.882 0.598 0.000 (1.000) 0.583 (0.612) 3.326 (0.001) 47.608 (0.000)  

2008 0.864 0.594 0.000 (1.000) -0.729 (0.515) 1.249 (0.217) 48.401 (0.000)  

2009 0.910 0.595 0.000 (1.000) -1.442 (0.170) 1.202 (0.229) 38.931 (0.000)  

2010 0.930 0.575 0.000 (1.000) -1.010 (0.344) 0.979 (0.330) 39.619 (0.000)  

2011 0.916 0.584 0.000 (1.000) 0.433 (0.719) 1.163 (0.245) 39.511 (0.000)  

2012 0.940 0.521 0.000 (1.000) 0.433 (0.720) 0.922 (0.359) 35.221 (0.000)  

 Table 3: Validation results for estimation with the proposed method using daily stock returns and e-MID interbank 

activity compared to actual European bank balance sheet data disclosed in annual reports. Pseudo R2 is defined 

analogously to the linear regression setting; RI is the Rand Index of ܹ (values closer to 1 indicate more accurate 

estimates). The permutation test refers to the Fisher-Pitman test (Boik, 1987) while the median test refers to the 

Brown-Mood test (Brown et al., 1951) and assess whether two samples have identical means and medians, 

respectively. MW test refers to the Mann-Whitney U test (Mann and Whitney, 1947) which compares the full 

distributions of the estimated and true W. The AD test refers to the Two Sample Anderson Darling Test (Scholz and 

Stephens, 1987) to assess whether there are differences between the two samples. The statistical tests compare the 

estimated and true distribution of ܹ; average test statistics are reported with p-value in parentheses. Failing to 

reject the null hypothesis provides evidence in support of the estimation for all statistical tests. 
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Year Pseudo R2 RI Permutation 

Test 

        Median Test MW Test AD Test 

2006 0.027 0.603 0.000 (1.000) 2.663 (0.011) 1.356 (0.177) 1.498 (0.077) 

3.376 (0.014) 

1.506 (0.086) 

8.956 (0.000) 

22.46 (0.000) 

0.314 (0.256) 

4.356 (0.006) 

2007 0.061 0.563 0.000 (1.000) 2.364 (0.022) 1.634 (0.103) 

2008 0.012 0.514 0.000 (1.000) 1.440 (0.175) 0.847 (0.401) 

2009 0.009 0.733 0.000 (1.000) -4.873 (0.000) -3.202 (0.001) 

2010 0.047 0.505 0.000 (1.000) -7.987 (0.000) -4.675 (0.000) 

2011 0.001 0.583 0.000 (1.000) 0.000 (1.000) -0.730 (0.467) 

2012 0.001 0.568 0.000 (1.000) -1.717 (0.101) -1.968 (0.049) 

 Table 4: Validation results for estimation using the proposed model estimated using only daily stock returns data 

compared to actual European bank balance sheet data disclosed in annual reports. Pseudo R2 is defined 

analogously to the linear regression setting; RI is the Rand Index of ܹ (values closer to 1 indicate more accurate 

estimates). The statistical tests compare the estimated and true distribution of ܹ; test statistics are reported with 

the p-value in parentheses. Failing to reject the null hypothesis provides evidence in support of the estimation for 

all statistical tests. 
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Year Pseudo R2 RI Permutation 

Test 

        Median Test MW Test AD Test 

2006 0.878 0.518 0.000 (1.000) 2.291 (0.028) 1.000 (0.317) 2.793 (0.024) 

7.613 (0.000) 

4.349 (0.000) 

5.473 (0.002) 

6.264 (0.001) 

7.701 (0.000) 

3.373 (0.010) 

2007 0.841 0.498 0.000 (1.000) 3.644 (0.000) 1.795 (0.073) 

2008 0.787 0.439 0.000 (1.000) 2.332 (0.023)  1.178 (0.237) 

2009 0.893 0.418 0.000 (1.000) 1.010 (0.346) 0.621 (0.533) 

2010 0.886  0.401 0.000 (1.000) 1.587 (0.130) 0.777 (0.436) 

2011 0.911 0.467 0.000 (1.000) 1.442 (0.168) 0.707 (0.478) 

2012 0.897 0.480 0.000 (1.000) 1.010 (0.348) 0.776 (0.438) 

 Table 5: Validation results for estimation using the proposed model estimated using only daily e-MID data 

compared to actual European bank balance sheet data disclosed in annual reports. Pseudo R2 is defined 

analogously to the linear regression setting; RI is the Rand Index of ܹ (values closer to 1 indicate more accurate 

estimates). The statistical tests compare the estimated and true distribution of ܹ; test statistics are reported with 

the p-value in parentheses. Failing to reject the null hypothesis provides evidence in support of the estimation for 

all statistical tests. 
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	 Concentration Index Similarity Index 

 Mean St. Dev. Skew Kurt. Mean St. Dev. Skew Kurt. 

SRI 0.206* 0.351* -0.014 -0.082 0.146 0.501* -0.338* 0.209* 

         

SDP -0.146 -0.232* 0.185* 0.193* 0.175* 0.077 -0.130 0.102 

         

SSRI -0.141 -0.389* 0.049 0.092 -0.021 -0.133 0.151 -0.150 

         

CCI -0.525* -0.382* 0.465* 0.484* 0.209* -0.182* -0.034 0.129 

         

IP -0.057 -0.384* 0.004 0.122 -0.198* -0.224* 0.347* -0.246* 

         

PMI -0.598* -0.228* 0.513* 0.481* 0.319* -0.145 -0.178* 0.254* 

         

Retail Sales -0.109 0.037 0.134 0.141 0.035 0.047 -0.141 0.124 

         

 

Table 6: SRI, the Systemic Risk Indicator, is in first difference (levels are non-stationary). SDP refers 

to the Probability of Simultaneous Default and is in first difference (levels are non-stationary). SSRI 

refers to the Sovereign Systemic Risk Index and is in first difference (levels are non-stationary). CCI 

refers to the Consumer Confidence Index and is in first difference (levels are non-stationary). IP refers 

to Industrial Production and is in first difference (levels are non-stationary). PMI refers to the 

Purchasing Managers' Index and is in first difference (levels are non-stationary). Retail Sales is 

differenced twice to achieve stationarity.  

 

* Indicates significance at 5 percent level.  
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Figure 1: Distribution of the observed elements in ܹ aggregated from all available 

years compared to the estimated W aggregated over the same times. 
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Figure 2: Concentration index summary statistics over time. The vertical lines 

denote three events: 1) August 7, 2007 when the ECB noted worldwide liquidity 

shortages; 2) September 12, 2008 (Lehman default); 3) April 1, 2009 when the 

ECB announced the end of the recession. 
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Figure 3: Similarity index summary statistics over time. The vertical lines denote 

three events: 1) August 7, 2007 when the ECB noted worldwide liquidity 

shortages; 2) September 12, 2008 (Lehman default); 3) April 1, 2009 when the 

ECB announced the end of the recession. 
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Figure 4: Time series of systemic risk measures published by the ECB (Systemic 

Risk Indicator, Simultaneous Default Probability, and Sovereign Systemic Risk 

Indicator – source ECB). The vertical lines denote three events: 1) August 7, 2007 

when the ECB noted worldwide liquidity shortages; 2) September 12, 2008 

(Lehman default); 3) April 1, 2009 when the ECB announced the end of the 

recession.  
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Figure 5: Granger Causality relations at the 10% significance level among the 

derived variables, systemic risk measures, and macro-economic variables. 
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Figure 6: MES and SRISK indices and Concentration and Similarity indices. The 

vertical lines denote three events: 1) August 7, 2007 when the ECB noted 

worldwide liquidity shortages; 2) September 12, 2008 (Lehman default); 3) April 

1, 2009 when the ECB announced the end of the recession. 

MES and SRISK, Source: The Volatility Laboratory of the NYU Stern Volatility 

Institute (https://vlab.stern.nyu.edu). 
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Appendix 1: Derivation of MCMC Algorithm 

Detailed derivations are given below, followed by a summary of the main steps of the 

estimation.  We will denote the rows of a matrix ܺ as ݔ௜ or ݔ௜. and columns as ݔ.௝. Also ܺ/௫೔ 
denotes the matrix ܺ excluding the i-th row. 

Posterior of ࢃ 

Since ݌ሺܹሻ ൌ ∏ ௜ሻ௡௜ୀଵݓሺ݌  (rows are i.i.d.) and ݓ௜ only affects ݖ௜, it is easy to see that the 

posterior of ܹ is a product of Gaussian likelihood and a Dirichlet prior: ݌ሺݓ௜|ܼ, /ܹ௪೔ , ܸ, ଶሻߪ ∝ ௜หݖ൫݌௜ሻݓሺ݌ /ܹ௪೔ , ܸ,  ଶ൯.         (A1)ߪ

These are not conjugate distributions, which means that we can only compute the 

posterior distribution’s value without characterizing the distribution analytically in 

closed form. 

As such, we use the Metropolis Hastings algorithms with a uniform proposal 

distribution, so that a candidate row ݓ෕௜ is generated by moving on the probability simplex 

randomly around the current state of ݓ௜ . Then the candidate row is accepted with 

probability min(1, 
௣ሺ௪෭ ೔|௓,ௐ/൛ೢ೔ൟ,௏,	ఙమሻ௣ሺ௪೔|௓,ௐ/൛ೢ೔ൟ,௏,	ఙమሻ). 

Posterior of ࢂ 

We start by decomposing the posterior probability  ݌ ቀݒ௝௞|ݖ, ,ݓ /ܸ௩ೕೖ , ଶቁߪ ∝ ,ܹ|ሺܼ݌ሺܸሻ݌ ܸ,  ଶሻ                       (A2)ߪ

   ∝ ,ܹ|ሺܼ݌௝௞൯ݒ൫݌ ܸ,  ଶሻ.                    (A3)ߪ

 

Recall that ݒ௝௞ is i.i.d ܰሺߤ,  ௏ଶሻ. Therefore, the posterior of ܸ is a product of a Gaussianߪ

prior and Gaussian distribution. By conjugacy, we have the posterior of ݒ௝௞ to be  

݌ ቀݒ௝௞ቚܼ,ܹ, /ܸ௩ೕೖ , ଶቁߪ ൌ ܰሺߤ௣,  ௣ଶሻ,                          (A4)ߪ

where 
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௣ଶߪ ൌ ቌฮݓ.௝ฮଶଶߪଶ ൅ ௩ଶቍߪ1
ିଵ, 

௣ߤ ൌ ௣ଶߪ ቌߤ௟௜௞ฮݓ.௝ฮଶଶߪଶ ൅  ,௏ଶቍߪߤ
௟௜௞ߤ ൌ ௝.ݓ௞்.ݖ െ ሺܹܸሻ.௞்ݓ.௝ ൅ ฮݓ.௝ฮଶଶݒ௝௞ฮݓ.௝ฮଶଶ .	 

 

Therefore we can sample directly in the Gibbs sampler from the posterior conditional 

distribution.  

Posterior of ࣌૛ 

We follow standard arguments to exploit conjugacy properties of the inverse gamma and 

normal distributions. ݌ሺߪଶ|ܹ, ܸ, ܼሻ ∝ ,ሺܹ݌ଶሻߪሺ݌ ܸ,  ଶሻ        (A5)ߪ|ܼ

            ∝ ,ܹ|ሺܼ݌ଶሻߪሺ݌ ܸ, ,ሺܹ݌ଶሻߪ ܸ|ܼ,  	ଶሻߪ
                        ∝ ,ܹ|ሺܼ݌ଶሻߪሺ݌ ܸ, ,ଶሻܲሺܹߪ ܸሻ 

        ∝ ,ܹ|ሺܼ݌ଶሻߪሺ݌ ܸ,  ଶሻߪ
       ∝ ߟሺܩܫ , ߠ ሻܰሺܼ|ܹ, ܸ,  .ଶሻߪ
Then by conjugacy, the posterior is  ݌ሺߪଶ|ܹ, ܸ, ܼሻ ൌ ,ᇱߟሺܩܫ  ᇱሻ                     (A6)ߠ

where  

ᇱߟ ൌ ߟ ൅ ܰ2ܶ ൅ 1 

ᇱߠ ൌ 12෍ሺܼ െܹܸሻ௜௝ଶ ൅ ௜,௝ߠ . 
Therefore we can sample directly in the Gibbs sampler from the posterior conditional 

distribution ܩܫሺߟᇱ,  .ᇱሻߠ
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Estimation Algorithm Summary 

Let superscript ሺݐሻ denotes the iteration number. Then using the definitions above, the 

following steps can be used to produce point estimate of ܹ,ܸ,	and ߪଶ. 

 

1. Define the Dirichlet concentration parameter ߙ and mean and variance of ܸ 

,ߤ) ,௏). Randomly initialize ܹሺ௧ሻߪ ܸሺ௧ሻ,  .ሺ௧ሻߪ
2. For all ݅ 

a) Using a uniform proposal distribution, form a candidate ݓ෭௜, i.e., ݓ෭௜~ܷሺݓ௜௝ሺ௧ሻ െ 0.01, ௜௝ሺ௧ሻݓ ൅ 0.01ሻ with ݓ෭௜௄ ൌ 1 െ ∑ ෭௜௝௄ିଵ௝ୀଵݓ . 

b) Accept the candidate ݓ௜ሺ௧ାଵሻ ൌ ෭௜ with probability min(1, ௣ሺ௪෭ݓ ೔|௓,ௐ/ೢ೔ሺ೟ሻ ,௏ሺ೟ሻ,	ఙሺ೟ሻሻ௣ሺ௪೔ሺ೟ሻ|௓,ௐ/ೢ೔ሺ೟ሻ ,௏ሺ೟ሻ,	ఙሺ೟ሻሻ). Otherwise ݓ௜ሺ௧ାଵሻ ൌ  .௜ሺ௧ሻݓ
3. For all ݆, ݇ 

a) Sample ݒ௝௞ሺ௧ାଵሻ~ܰሺߤ௣,  .௣ଶሻߪ
4. Sample ߪሺ௧ାଵሻ	~ܩܫሺߟ′,  .ᇱሻߠ
5. Repeat steps 2 through 4 until convergence.  

6. Generate samples ݐ ൌ ܶ, ܶ ൅ 1,… , ܶ ൅ ܰ using steps 2 through 4. 

7. Calculate point estimates ෡ܹ ൌ ଵே∑ ܹሺ௧ሻ்ାே௧ୀ் , ෠ܸ ൌ ଵே∑ ܸሺ௧ሻ்ାே௧ୀ் , ොߪ ൌ ଵே∑ ሺ௧ሻ்ାே௧ୀ்ߪ . 

 

Correlation of Asset Returns in the Posterior of ࢂ 

To show that two variables are conditionally independent, by definition we should show 

that ݌ሺܺ, ܻ|ܼሻ ∝  ,ଶሺܻ|ܼሻݑଵሺܺ|ܼሻݑ
i.e., we want to show that the posterior distribution (conditioning on data ܼ ) can be 

factorized into a product of two appropriate functions. With our model, the condition above 

with respect to ܸ is ݌ ቀݒ௝௞, ,ܹ,ܼ|௜௞ݒ /ܸ௩೔ೖ,௩ೕೖ , ଶቁߪ ∝  ,௜௞ሻݒଶሺݑ௝௞൯ݒଵ൫ݑ
where ݒ௝௞ represents the change in returns for asset class ݆ on day ݇.   
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We will show this condition cannot be satisfied, i.e., that ݒ௝௞ and ݒ௜௞ are dependent. We 

start by decomposing the posterior probability  ݌ ቀݒ௝௞, ,ܹ,ܼ|௜௞ݒ /ܸ௩೔ೖ,௩ೕೖ , ଶቁߪ ∝ ,ܹ|ሺܼ݌௝௞ሻݒሺ݌௜௞ሻݒሺ݌ ܸ,  ,ଶሻߪ
which is obtained through standard application of Bayes rule. Then it’s easy to see that 

the independence condition above is satisfied only when ݌ሺܼ|ܹ, ܸ, ଶሻߪ  can itself be 

factorized into a product of two appropriate functions, like ݑଵ and ݑଶ above.   

By Equation (6),  ݌ሺܼ|ܹ, ܸ, ଶሻߪ ൌ ∏ Գሺሺܹܸሻ௜௞ , ଶሻ௜௞ߪ . 

Then expanding the matrix product 	ሺܹܸሻ௜௞ ൌ ෍ݓ௜௖ݒ௖௞௖  

and plugging this into the Normal likelihood yields 1√2ߪߨଶ expቆሺݖ௜௞ െ	∑ ௖௞௖ݒ௜௖ݓ ሻଶെ2ߪଶ ቇ. 
Without loss of generality, assume 2 asset classes so that ∑ ௖௞௖ݒ௜௖ݓ ൌ ଵ௞ݒ௜ଵݓ ൅	ݓ௜ଶݒଶ௞. Then note that  

expቌ൭ݖ௜௞ െ	෍ݓ௜௖ݒ௖௞௖ ൱ଶቍ ൌ expሺሺݖ௜௞ െ	ݓ௜ଵݒଵ௞ െ	ݓ௜ଶݒଶ௞ሻଶሻ	
ൌ exp൫ݖ௜௞ଶ ൅ݓ௜ଵଶ ଵ௞ଶݒ 	൅ ௜ଶଶݓ ଶ௞ଶݒ െ ଵ௞ݒ௜ଵݓ௜௞ݖ2 െ ଶ௞ݒ௜ଶݓ௜௞ݖ2 െ 	ଶ௞൯ݒ௜ଶݓଵ௞ݒ௜ଵݓ2

Since it is impossible to write exp	ሺ2ݓ௜ଵݒଵ௞ݓ௜ଶݒଶ௞ሻ as a product of two functions with 

arguments ݒଵ௞	and ݒଶ௞ respectively, the overall posterior likelihood for ݒଵ௞ and ݒଶ௞ 

also cannot be decomposed as such. Thus, we have established that in general the 

posterior estimates for ݒ௜௞  and ݒ௝௞  will be correlated conditional on Z, i.e., the 

estimated returns for different asset classes contained in ܸ are not conditionally 

independent. 
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Appendix 2: Validation with Balance Sheet Data: 

Competing Methods 

Year Pseudo R2 RI Permutation 

Test 

        Median Test MW Test AD Test 

2006 0.850 0.696 0.000 (1.000) 6.663 (0.000) 3.483 (0.000) 14.986 (0.000) 

49.034 (0.000) 

51.946 (0.000) 

47.491 (0.000) 

45.888 (0.000) 

50.088 (0.000) 

49.440 (0.000) 

2007 0.920 0.660 0.000 (1.000) 10.204 (0.000) 6.642 (0.000) 

2008 0.907 0.655 0.000 (1.000) 10.204 (0.000) 7.013 (0.000) 

2009 0.868 0.613 0.000 (1.000) 10.530 (0.000) 6.605 (0.000) 

2010 0.903  0.654 0.000 (1.000) 10.241 (0.000) 6.362 (0.000) 

2011 0.862 0.693 0.000 (1.000) 10.530 (0.000) 6.871 (0.000) 

2012 0.424 0.650 0.000 (1.000) 10.386 (0.000) 6.637 (0.000) 

 Table A1: Validation results for estimation using the Semi-NMF model of Ding et al. (2010) with probability 

constraints enforced ex-post compared to actual European bank balance sheet data disclosed in annual reports. 

Pseudo R2 is defined analogously to the linear regression setting; RI is the Rand Index of ܹ (values closer to 1 

indicate more accurate estimates). The statistical tests compare the estimated and true distribution of ܹ ; test 

statistics are reported with the p-value in parentheses. Failing to reject the null hypothesis provides evidence in 

support of the estimation for all statistical tests. 	
Year Pseudo R2 RI Permutation 

Test 

        Median Test MW Test AD Test 

2006 NA 0.652 0.000 (1.000) 3.540 (0.001) 3.704 (0.000) 22.176 (0.000) 

37.496 (0.000) 

59.457 (0.000) 

30.826 (0.000) 

25.552 (0.000) 

32.243 (0.000) 

28.306 (0.000) 

2007 NA 0.601 0.000 (1.000) 3.498 (0.001) 4.655 (0.000) 

2008 NA 0.518 0.000 (1.000) 6.851 (0.000) 6.230 (0.000) 

2009 NA 0.538 0.000 (1.000) 1.731 (0.096) 3.021 (0.002) 

2010 NA 0.632 0.000 (1.000) 0.577 (0.612) 2.189 (0.027) 

2011 NA 0.665 0.000 (1.000) 4.183 (0.000) 4.394 (0.000) 

2012 NA 0.572 0.000 (1.000) 2.019 (0.052) 3.269 (0.001) 

 Table A2: Validation results for estimation using Fuzzy K-means (Bezdek et al., 1984) compared to actual European 

bank balance sheet data disclosed in annual reports. Pseudo R2 is defined analogously to the linear regression setting; 

RI is the Rand Index of ܹ (values closer to 1 indicate more accurate estimates). The statistical tests compare the 

estimated and true distribution of ܹ; test statistics are reported with the p-value in parentheses. Failing to reject 

the null hypothesis provides evidence in support of the estimation for all statistical tests. 

 

Note that Pseudo R2 is not reported for the Fuzzy K-Means algorithm, because it only estimates ܹ, whereas other 

methods estimate both ܹ and ܸ. 	


