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ABSTRACT

In this article we create a novel monitoring system to detect changes within a sequence of net-
works. Specifically, we consider sparse, weighted, directed, and attributed networks. Our approach
uses the Hurdle model to capture sparsity and explain the weights of the edges as a function of
the node and edge attributes. Here, the weight of an edge represents the number of interactions
between two nodes. We then integrate the Hurdle model with a state-space model to capture
temporal dynamics of the edge formation process. Estimation is performed using an extended
Kalman Filter. Statistical process control charts are used to monitor the network sequence in real
time in order to identify changes in connectivity patterns that are caused by regime shifts. We
show that the proposed methodology outperforms alternative approaches on both synthetic and
real data. We also perform a detailed case study on the 2007-2009 financial crisis. Demonstrating
the promise of the proposed approach as an early warning system, we show that our method
applied to financial interbank lending networks would have raised alarms to the public prior to
key events and announcements by the European Central Bank.
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1. Introduction

Due to advances in information technology and data collec-
tion systems, it is becoming increasingly common to collect
node or entity-level data over time. When such data
includes interactions between nodes, a natural representation
that is often utilized is networks (graphs). For instance,
social networks composed of individual accounts and their
connections are ubiquitous (Goel and Goldstein, 2013), as
are supply chain networks (Osadchiy et al., 2016), commu-
nication networks (Trier, 2008), financial networks (Brunetti
et al., 2019), among others (Fienberg, 2012). Recent schol-
arly attention has been given to modeling and analysis of a
sequence of networks (see Reisi Gahrooei and Paynabar
(2018) and references therein). In this setting, detecting
changes in the underlying network stream can be extremely
important, as it facilitates better management of the overall
system being modeled (Woodall et al., 2017). Policy inter-
ventions, such as preventive maintenance in mechanical sys-
tems or liquidity injections in financial systems, can be
taken in an informed and timely manner to mitigate poten-
tially negative outcomes.

Attributed (labeled) binary networks have been widely
used for modeling cases in which the connectivity of two
nodes is a function of node attributes. For example, in a
social network the likelihood of friendship between two peo-
ple is a function of their age, sex, education, etc. Azarnoush
et al. (2016) integrated logistic regression with Statistical
Process Control (SPC) methods to detect changes in

attributed network streams. One major drawback of their
method is that it does not properly model the dynamic evo-
lution of network streams. In order to address this issue,
Reisi Gahrooei and Paynabar (2018) proposed a method
that integrates Generalized Linear Models (GLMs) with
State-Space Models (SSMs). GLMs can help to model the
attributed network structure and SSMs are used to capture
the temporal dynamic of the network stream. In addition,
Xu and Hero (2014) and Zou and Li (2017) employed state-
space  modeling capture the
work dynamics.

In practice, the nodes in attributed networks are often
sparsely connected. For example, in financial networks,
interactions are rarely seen between banks (nodes), especially
in crisis environments, which leads to a sparse attributed
network. As an example, consider the e-MID trading plat-
form, the only electronic regulated interbank market in the
world, from January 2006 to December 2012. Edges are
defined by the number of overnight loans between European
banks on this platform, that is, if Bank A lends to Bank B,
then an edge is drawn from Bank A to Bank B and weighted
by the number of directed loans in the given week. There is
around 74% sparsity among all possible bank interactions.
This value increases to 84% during a crisis. As GLMs are
not capable of modeling zero-inflated distributions, the
modeling method by Reisi Gahrooei and Paynabar (2018)
would fall short of the required outcome.

framework to net-
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Figure 1. Overview of the proposed network monitoring methodology.

In this article we are primarily concerned with proposing
a new modeling and change detection methodology for
sparse, weighted, attributed network streams. Here, the
weight of an edge represents the number of interactions
between two nodes. A novel aspect of our setting is that of
sparsely connected networks. Sparsity, a lack of edge con-
nections, is present in a variety of contexts where highly
granular data is available, including our case study applica-
tion of financial networks. Beyond sparsity, edges in net-
works can in general be weighted and additional covariates
(attributes) may be available over time about the nodes or
edges. It is in this context that we propose a new modeling,
monitoring and change detection methodology.

The main idea behind our approach is to use the Hurdle
model (Mullahy, 1986) to understand the edge formation
process as a function of the node and edge attributes. The
parameters of the Hurdle model evolve based on a state-
space model to capture the temporal dynamics in the data.
An Extended Kalman Filter is used as an online, recursive
inference procedure to estimate and update the parameters
over time. Finally, we generate a one-step-ahead prediction
of the network and compare it to the realized network to
decide whether the observed evolution was smooth or
abrupt using an Exponentially Weighted Moving Average
(EWMA) control chart. A novel methodological contribu-
tion is the combination of these methods: the Hurdle model
plus state-space evolution, Extended Kalman Filter estima-
tion and statistical process control charts to monitor sequen-
ces of sparse, attributed, and weighted networks. The
method is discussed in detail in Section 2.

We validate the proposed approach in two ways. First, in
Section 3, we use simulation to establish self-consistency
and functional performance of the proposed modeling and
estimation framework. We show that the proposed method
outperforms several alternative techniques, and that sparsity
of the networks is a key data characteristic driving our mod-
el’s favorable results. This important insight provides guid-
ance into when the proposed model should be strongly
considered over alternative methods. Our second validation
is done through a detailed case study in Section 4, where we
demonstrate how the methodology can be applied for moni-
toring interbank lending networks during the 2007-2009

financial crises. The application addresses the important
societal problem of assessing financial stability. In fact, we
find several promising and novel results showing that the
proposed model would have raised alarms to the public
before official announcements by the European Central
Bank. The identified change point dates are also highly
interpretable, matching closely with several key real-world
events. Overall, our consistently favorable and positive
results demonstrate that the proposed approach could be a
valuable tool for regulators and financial institutions to util-
ize when monitoring the banking system as well as in other
settings where dynamic networks are encountered.

2. The proposed methodology
2.1. Overview

We propose a new monitoring methodology for sparse
attributed network streams with dynamic structures. The
methodology is comprised of modeling the network struc-
ture and providing a change detection methodology. In our
modeling framework, it is assumed that the edge probabil-
ities are functions of the node and edge attributes. For
example, in the context of financial networks, the probability
of a transaction (or the number of transactions) between
two banks could be a function of their country of origins,
prevailing interest rates, and so on. Although GLMs have
been successfully used to model attributed networks
(Azarnoush et al, 2016; Reisi Gahrooei and Paynabar,
2018), network sparsity (extreme lack of node connections)
violates the assumption to GLMs that the underlying prob-
ability distribution should belong to the exponential family
of distributions. To address this issue, we use the Hurdle
model, which is capable of handling zero-inflated distribu-
tions (Mullahy, 1986).

The Hurdle model has been used previously to account
for network sparsity (Heard et al., 2010); however, previous
approaches did not utilize edge and node attributes, instead
modeling edge probabilities as a function of time. To take
the network dynamics coupled with edges and nodes’ attrib-
utes into account, we integrate the state-space model with
the Hurdle model, where it is assumed that the parameters
of the Hurdle regression follow a Markovian process, and



develop a sequential estimation scheme using an Extended
Kalman Filter (EKF) to update the state space parameters
and predict the value of upcoming networks. The overall
framework is illustrated in Figure 1. As shown in the figure,
in the offline phase, using a stream of in-control (i.e., train-
ing) networks, we build a Hurdle model using nodes and
edges attributes, and estimate the initial state-space parame-
ters. In the online (i.e., deployment) phase, as new network
observations arrive, the estimated Hurdle model is used to
predict the edge values for the incoming network snapshot.
Additionally, with the upcoming network observations, the
parameters of the state-space Hurdle model are updated
using EKF. As time progresses, residuals that compare the
newly realized network with the predicted one are used to
detect a sudden, structural change in the network through
EWMA control charts.

2.2. Hurdle models

As mentioned earlier, in attributed networks, the edge prob-
abilities can be defined as functions of nodes and/or edge
attributes and often modeled by using GLMs. However, in
practice, networks are often sparse (Faloutsos et al., 2004;
Akoglu et al, 2015), where typically each node interacts
with only a few other nodes with which it shares some com-
mon attributes and characteristics. The sparsity of a network
in a sequence of dynamic networks depends on the reso-
lution of the temporal sampling (i.e., the window size). That
is the shorter the sampling interval is, the sparser the corre-
sponding network would be. For example, banking networks
constructed on the basis of daily interactions would be
sparser than the networks constructed based upon weekly
data. As a result the number of zeros within the network
could be inflated or deflated depend on the sampling reso-
lution. Regular Poisson models are ineffective in modeling
these situations, as they cannot capture zero inflation or
deflation. A zero-inflated Poisson model is also not appro-
priate, as it can only capture the inflation in the number of
zeros. In addition, We assume that all nodes can have inter-
actions with one another. This assumption aligns with our
case study, in which all European banks are in-theory
allowed to interact with each other without any restrictions.
Therefore, we assume only one type of zero (related to sam-
pling) exits in our model. Therefore, an alternative modeling
approach that treats zeros separately from other interaction
counts in the network is required. In this article, we con-
sider a Hurdle model and extend it to dynamic settings.

The fundamental idea behind the Hurdle model is to
generate count variables (edge weights) in a two-stage pro-
cess. In the first stage, a binary process specifies whether the
edge weight is zero or positive. Given the first stage indicat-
ing a non-zero edge weight (i.e., if the hurdle is crossed),
another stochastic process generates a positive edge weight.
In the first stage of the Hurdle model, we assume that the
weight of an edge between nodes i and j at time ¢ is equal
to zero with probability of 7;;; and is a positive value with
probability 1 — m;;;. Our proposed framework can in fact
handle both dense and sparse networks. For the dense
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networks the proposed framework will estimate a small
value for 7; j and for sparse networks it estimates larger 7; -
Given that the edge weight is positive, we assume that its
value k follows a probability distribution function
fi" (k; Ay j,¢) with parameters A, ;. The associated truncated
probability is  then fir (ks Aije) /(1 —
fi"(0;Aij¢)), which ensures that a zero count does not
occur in this case. Note that the positive probability needs
to be multiplied by (I —m;;,) to ensure that probabilities
sum to one (Cameron and Trivedi, 2013). Different Hurdle
models can be introduced based on the choice of f;". For
our Hurdle model, we focus on the “Poisson-logit” specifica-
tion, where f," is a Poisson distribution. The probabilities
for our hurdle model are shown in Equation (1):

calculated as

Tt k=0
P(wij=k) = exp (~Auj) 4 k>
(1- ﬁi,j,t) k!(l — exp (—;bi)j,t)) = b
(1)

where w; ;; is a random variable for the weight of the edge
between node i and j at time t, 7;j; is the probability of
having no edge between nodes i and j, and

exp (_ii,j, t))nlf

i,j,t

k(1 — exp (—4ij¢))

is the probability distribution function of a truncated
Poisson process at zero (also known as Positive Poisson;
Grogger and Carson (1991)). Equation (1) can clearly be
decomposed as the mixture of a Bernoulli distribution with
parameter 7;;; and a Positive Poisson distribution with par-
ameter /; ;.

To extend this model to a regression setting, we assume
that model parameters (4;;; and m;;;) are functions of
covariates (node and edge attributes). To write our model,
we first define a Bernoulli random variable d; ; ; as the indi-
cator of positive occurrence (if d;j; =1 then w;;, >0) ,

and W;D,t as a random variable for positive value of an edge
weight. For simplicity, we denote fy(m; ;) and fi"(4;;) as
distributions of zero and positive counts, respectively. The
Hurdle regression, using logit and exponential link functions
(Nelder and Baker, 1972) can be written as:

dij.i ~ fo(l —mijy)
it (Bo, i3 2ij,e) = 1 — logit™" (zi ;¢ y,,)
and
wiie ~f (Aije)
ijt(By i Xije) = exp (XijeBy, o),

where fy = nf}j;d"’]")
covariates (attributes corresponding to the starting node i,
ending node j, and edge ij) used in Bernoulli and Positive
Poisson count models, respectively. In general, x;;; (z;; )
differs from x;;; (z;;), and so a directed relationship can
be explained. Note that in this work, we have two types of

varjables: One that mainly explains the presence of an edge

d. .
(1- n,-,j,,)( »1) and X; ¢+ and z; ; ; are the
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denoted by z;, and one that explains the strength of the
relationship represented by x; ;. For this reason, we sepa-
rated their corresponding parameters denoted by f,, and
B, ;- Note that it is assumed that given attributes the inter-
actions between nodes are independent. The set of covariates
used in each model can be the same or different.

To estimate the model parameters, fi, ; and f, ;, the fol-
lowing likelihood should be maximized

(1_di, ,t) dx j»t
1(Bo» B1) = f(wi) = H Tiji (1 =)™
iy JEN, i#j
q Wijt d‘Jf
y exp (_/Li,jﬁ))”i,j,t
Wil (1 — exp (—4ij1)

Therefore the log likelihood can be written as:

ZL(Bo> By) = Z Z { iivt) log( ﬂi,j,r(/go)zzi,j,t))}
{i,jeN " ,j#i}
+ (1 —dije) x [log (mij(Bo,2ij,0))] + (dije)

% log exp (—Zij e (B, Xijie)) 2 e (B, i)™
wijel(1— exp (= Zije(By, Xije))

)
where /" is the set of total nodes in the network. Assuming
independence among fy(By,.z) and f;"(B;,x), the log-likeli-
hood function in Equation (2) can be written as a sum of
two separate components, namely, > ;i (> i n{(dije) X
log (1 —7i;,1(Bo, i3 2i5,0))] + (1 = dij.1) X [log (i 5,0 (Bo,32i,1))]
and 70 i 20 inddije X log (T (W) 2 (Br s Xije)) )
Hence, each component can be maximized individually
resulting in the following estimates:

Tije=1— logitfl(li,j, tBO,t) 3)

j-i,j,t = €Xp (Xi,j,tﬁl,t)> (4)

where ﬁo,z and B 1+ are the estimated regression coefficients
at time t. Next we discuss how to incorporate network struc-
tural dynamics through a state-space model on the parame-
ters of the Hurdle model, and use the EKF to estimate and
update model parameters over time.

Note that, in this article the equations are presented for
directed networks; however, this methodology can be applied
for estimating the edge values of undirected networks, using
symmetric mappings from attributes to edge values. This is
because undirected networks are a special case of directed net-
works when edges take same value in both directions.

2.3. State-space models and the EKF

State-space models provide a flexible framework for model-
ing dynamic systems. In this approach, although the actual
state of the system is unknown, it can be inferred over time
using noisy observations. In the context of attributed net-
work streams, we assume that the coefficients of the
Bernoulli and truncated Poisson regression (ff, and ;) are
the state variables, which are driven by a stochastic process.

The observed edge values, w;j; for t=1,2,..., are noisy
observations. Therefore, the state-space Hurdle model is
defined by the following equations:
=Fp,_, +e€
ﬁt ﬁt 1 t (5)

Wije = h(Xij 0> Zij o> Br)s

where B, = [P, > B1,;| is the state vector and F is the state
transition matrix, and €, ~ N(0, Q) is the process noise with
mean 0 and covariance matrix Q. And & is the nonlinear
link function generating a realization of w; j; given the state
of the system B, and the vector of covariates (x;;; and
z;j¢). In the case of the Hurdle model, we showed that the
likelihood function can be separated into two components
and optimized by maximizing each component, separately.
This will lead to two decoupled models given in Equations
(3) and (4).
1 — logit™'(z;,By,;) for modeling the zero counts (logistic

Therefore, we can take h(x;j2;j 1 B;:) =

regression) and h(xX;; 2 j B;) = exp (X;j B, ;) for model-
ing positive Poisson counts.

In the case of linear state-space models, the Kalman Filter
(KF) procedure achieves the optimal estimate of the states
(Kalman, 1960). However, as the observation model in
Equation (5) is nonlinear, we employ the EKF, which is shown
to be effective in incorporating nonlinearity in parameter esti-
mation (Fahrmeir and Kaufmann, 1991; Brown and Hwang,
1997). EKF is mainly designed for normally distributed obser-
vations. However, Fahrmeir and Kaufmann (1991) showed that
EKF can also be used for the exponential family of distribu-
tions. As our proposed Hurdle model is decomposed into
Bernoulli and Poisson distributions that are both from the
exponential family, we will employ EKF for parameter estima-
tion. Similar to KF, EKF provides a recursive estimation pro-
cedure that only uses the current network snapshot (at time f)
and the previous parameter estimates (at time ¢ — 1) to update
the parameter estimates. EKF uses the Taylor expansion to lin-
earize the nonlinear observation function, h(xX;j >z B;),
and then applies the KF estimation equations. Specifically,
given F and Q, the EKF for the state-space Hurdle regression
can be summarized as follows. Note that the detailed deriva-
tions of the prediction and update equations for EKF can be
found in Brown and Hwang (1997).

2.3.1. Prediction step

Let By, and Py, denote the Kalman predictions of the state
B, and its covariance matrix given observation until time t - 1
(w;; I=1,..,t—1,), and let ﬁt‘t and Py, denote the estima-
tion of the state and its covariance matrix, given observations
until time ¢ (w;; I=1,...,t). Now using the previous esti-
mates, the prediction equations at time t are given by

ﬁt\tfl = Fﬁtfl\tfl
P, =FP_,,  FT +Qt=12,..

where the initial estimates. By, and Py can be obtained

from fitting a Hurdle model to the first network snap-
shot data.



2.3.2. Update step

Let w, = vec[w; ;] to be the vectorized adjacency matrix
containing the noisy trades between pairs of nodes. Also let
x; and z; to be covariate matrices whose rows are x;j, and
z;j respectively. At time ¢, the incoming network data
(w;) are used to update the predicted parameters using the
set of equations:

-1
K= Pt\t—lHtT(HtPt\t—lHtT + Rt)

pt\z = ﬁt|271 +K; (Wt - h(XpZnﬂ,‘,,l))
Pt|t = (I - Kth)Pt\t—la

where

H — [dh]
f= |
dl; ﬁ:ﬂt\r

is the measurement Jacobian matrix used for linearization of
the observation function h(Xij,, i B;), K is known as the
Kalman gain, and R, is a covariance matrix of observations at
time #, which depends on the distribution of observations.
Specifically, for Bernoulli observations Rij,r = (1 — i j) i
and for Positive Poisson

Ai,jt

1— exp (—Z,»,j,t)

. i
Lt i+ —————

”
Ri,j,t — J N .
1 — exp (—)Li,j,t)

2.3.3. Initializing F and Q

In practice, the state transition matrix F and the state covari-
ance matrix Q are unknown, and thus must be estimated
based on an in-control sequence of networks wi,ws, - - -, Wr;
we do so using the following heuristic algorithm. First, for
each in-control network observation w;, we estimate the
Hurdle model coefficients by fitting a static logistic regression
on edge occurrence and a static positive Poisson regression
model on positive edge weights to obtain initial vector parame-
ters By, By, ..., Br. This sequence of estimated coefficients can
be seen as a multi-dimensional time-series. Using the multi-
dimensional time-series representation, a Vector Auto-
Regression (VAR) model is fitted to yield initial values Fy and
Q, for the Bernoulli model and F; and Q,; for the Positive
Poisson model. The VAR model is a common approach for
analysis of multivariate time series, which is an extension of
the univariate autoregressive model to multivariate time series
(Sims, 1980). We fit the VAR on coefficients for each model
using R (Pfaff 2008). The overall estimation uses these initiali-
zations as inputs to the following procedure, which is repeated
until convergence. First, we fit the state-space Hurdle model to
the in-control data using the initializations (Fy,Q,) and
(F1,Q,). The estimated state-space Hurdle model yields new
coefficient estimates for each network observation, ie.,
BBy, ..., Br. Once again, the estimated coefficients for each
stage of the Hurdle model can be organized into a multidi-
mensional time-series. Another VAR model is fitted on the
estimated coefficients to update (Fy,Q,) and (F;, Q). This
procedure is continued until convergence. In summary, the
estimation process for each model is is as follows:
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Step 0 Initialize the Hurdle model coefficients B, B, ..., By
by fitting a static logistic regression on edge occur-
rence and a static positive Poisson regression model
on positive edge weights for each in-control network
observations w;.

Step 1 Estimate F and Q using a first-order VAR model to
solve Equation (5). Here, for F, we have B, =
FoPy ;1 + €. Similarly, for F, we have f,,=
FB, ;| + €. After fitting the VAR model, F, (and
F;) will be the model coefficients matrix, and Q,
(and Q;) will be estimated as the covariance matrix
of the model’s error.

Step 2 Using estimated F and Q from the step above, use
the EKF prediction and update steps explained in
Sections 2.3.1 and 2.3.2 to estimate the updated set
of coefficients [B;, B, ... Br].

Step 3 Return to Step 1 and repeat Step 1 and 2 until con-
vergence or until the maximum number of iterations
is reached.

2.4. Monitoring of dynamic and sparse network stream

In this section, we propose a monitoring procedure to detect
structural changes in sparse attributed networks.

Recall that we fit the data incrementally as it arrives by
combining the steps previously outlined. Specifically, the
Hurdle model is estimated with its parameters updated at
each time point via the EKF. The vector of updated parame-
ters By, are used to predict the upcoming adjacency
matrix, i.e, Wije=h(%ij 1,21, By—1) using Equation
(5). Once the network at time ¢t is realized, we compute
residuals, defined as €;; = w;;; — W for every possible
edge. The residuals reflect network connectivity that cannot
be explained by the independent variables in the
Hurdle model.

To ensure the residuals have approximately constant unit
variance, we use the Pearson residual, denoted by r;j,
which is computed as,

Tijjt = S - >
var (Wi 1)

where var(w; ;) is the estimated variance of the observa-
tion, which can be calculated using the predicted observa-
tion and its probability distribution (Positive Poisson
or Bernoulli).

If the process is in-control, Pearson residuals asymptotic-
ally follow an independent, standard normal distribution.
Hence, we can use SPC charts to monitor the residuals and
detect change points. We choose the EWMA control chart
for monitoring, which is a control chart used to monitor
small shifts in a process by incorporating memories of the
previous observations in calculating the monitoring statistic.
The EWMA weights observations in a geometrically declin-
ing order, such that the newest observations have higher
weights while the oldest ones have much smaller weights. At
each time, we have a total of m residuals calculated where m
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is the total number of edges in a network. To calculate one

i Tisjs . —
collective statistic, we define 7, :% and monitor 7,
over time.

The EWMA statistic corresponding to 7, is denoted by w;,

and calculated as
Wy = }v?t + (1 - i)(l)tflt 2 1

wy =0,

(6)

where A€ [0,1] is a constant that specifies the depth of
memory. A higher lambda gives more weight to the current
observation, and smaller A gives more weight to previous
observations. The control limits are defined as

[ A
UCL = k —
ﬂo"‘ 00 2_/1

A
LCL = —k y
Fo = R0\ 57

where p, and o, are the mean and standard deviation of off-
line (training) Pearson errors, and k is a parameter that con-
trols the width the control limits. If w; > UCL or
o < LCL, we reject the null hypothesis of a stable network
process, indicating a change has occurred in the net-
work stream.

Note that the values of k and A effectively set the (false)
alarm rate and are adjustable. In our analysis, we set these
parameter values by estimating the false alarm rate for given
values of k and A in an in-control state. Specifically, an in-
control stream of networks is simulated to match the
observed data as closely as possible, and then monitored
until an out-of-control alarm is falsely raised. The time until
the false alarm is raised is called the run-length. The simula-
tion procedure is repeated several times to compute the
average of the run-lengths (ARL), which indicates the aver-
age number of observations until a false alarm is raised. In
our analysis, we set the values of k and 4 so that the control
limits for the in-control ARL is equal to 200 (x ~ 0.005).
Upon the detection of a change based on an aggregated sta-
tistics obtained from the prediction errors, one can identify
the edges with the highest prediction errors (say top r) and
consider those as the root-cause.

3. Performance evaluation using simulation

In this section, we evaluate the performance of our monitor-
ing methodology against benchmark methods through simu-
lation. We start by describing the simulation setup,
evaluation criteria, and alternative methods, followed by
the results.

3.1. Simulation setup

To closely match our real data setting in terms of size of
networks and number of explanatory covariates, each simu-
lated network is composed of 50 nodes, hence there are
50 x (50 — 1) = 2450 potential directed edges in each net-
work. We assume that the number of interactions between
nodes i and j is a function of five attributes in the model

denoted as x;j; = z;;; = [xflj)txfzj>t xl(sj)t]T The attribute

values vary for each edge and time, and are generated using
normal distribution with mean x = [0.5,0.5,0.5,0.5,0.5]" and
variance X = 0.25 X Isxs. The relationship between the
attributes and the response value follows a dynamic Hurdle
model. Therefore, we assume that the binary outcomes
(whether there is a connection between two nodes) have a
Bernoulli  distribution, ~ with  probability —7;;, =1—
logit ™' (x;,¢B,,), and the positive edge weight outcomes fol-
low a Positive Poisson distribution with

0 pl p2 5 1T
exp (x;j,:By,,). Here, By, = (B, Bo.rPop-Pg. are the
coefficients of the binary model at time t, where ﬁg,t is the

),i,j, t —

coefficient corresponding to the intercept. Similarly, B, , =

(B2 . BL Bt B )" are the coefficients of the Positive
Poisson model at time t.

To simulate a dynamic stream of networks, we assume
the underlying state transition model with B, , = FB,,_ ; +
€, and B, , =Fp,, | + €, Here, we set €~ N(0,Q)
and €, ~N(0,Q). In the simulations, we use B,,=
0.01,0.01,0.01,0.01,0.01,0.01] and f, , = [0.2,0.2,0.2,0.2,
0.2,0.2],F = 0.8I¢y, and Q = 0.25I5xs. We use in-control
simulated snapshots of networks to estimate the control
chart and calculate the EWMA control limits based on
methods described in Section 2.

We investigate three scenarios, each of which induces
changes to specific coefficients underlying the network pro-
cess to create out-of-control situations. Specifically, for each
selected coefficient f5;, the shift is do;, where 0 is a constant
representing the magnitude of the shift and o; is the stand-
ard deviation of the ith coefficient for the in-control situ-
ation, which is equal to

g; = Lz =2.5.
(1 —Fy)
Therefore, for the Bernoulli model the changed coefficient
will be [36,T = Fiiﬁé),[71 + €, . + d0; and for Positive for the
Poisson model the changed -coefficient will be /3’11 =
Fify ., +€ . +30; at time 7, ie, the coefficients are
shifted by do; at time 7. The three scenarios are as follows:

1. Scenario I represents a case where the change point is
affecting the underlying dynamics in two ways. First, it
affects the decision of whether two nodes are interact-
ing. Second, it affects the level of interaction (weights)
after the first decision is made. In other words, we
assume the change has affected both the Bernoulli and
Positive Poisson models. In each model, we apply the
change in three out of six coefficients so that coeffi-
cients B ., By .» Bg. of the Bernoulli model, and i ,
ﬂivﬁiz of the Positive Poisson model change at
time 7.

2. Scenario II represents a case where the change only
affects the decision of whether two nodes interact.
However, after this decision is made, the coefficients of
the Positive Poisson model remain unchanged.
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Figure 2. ARL comparison of methods based on simulated data for different magnitude of shifts (6). Smaller ARL indicates better performance.

Therefore, we suppose that the change has only affected
the coefficients of the Bernoulli model. Accordingly, we
assume that the change has affected ﬁﬁ,f, ﬁé’r, ﬂg’r from
the Bernoulli model.

3. Scenario III represents a case where the change only
affects the amount of interaction (edge weight) between
two nodes. The coefficients determining whether two
nodes interact remains unchanged, but ﬁir’ o BL.
from the Positive Poisson model have changed at
time 7.

Performance of a method is evaluated with the ARL, which
measures how quickly the method detects the change
induced in each scenario for different values of o.
Specifically, we simulate networks for an out-of-control
scenario until an out-of-control alarm is raised. Each time
the alarm is raised, we record the run length, which is the
number of simulated time points until the change is
detected. We iterate this procedure 1000 times and record
the ARL over all iterations. A method with the smallest ARL
for an out-of-control situation represents superior ability in
detecting the change.

We compare the proposed approach against four bench-
mark methods. The first two benchmark methods monitor
network connectivity measures using EWMA control charts;
the particular network statistics that we consider, degree and
betweenness, have been utilized previously for change point
network analysis in financial economics (Adamic et al,
2017) and related areas, such as social networks (McCulloh
and Carley, 2011; Hassanzadeh et al., 2012). Specifically, we
compute the average of each network statistic among all in-
control network observations. Then, we use the average sta-
tistics to build the EWMA statistics as explained in
Equation (6). The third benchmark treats the weights w; ;,
as a vector and calculates the mean over the last [, observed
networks as the prediction of the upcoming network (here,
we used I/, = 10). Afterwards, for each time step ¢, we calcu-
late errors as the difference between the current w;; and the
predicted values. Finally, we monitor the mean of the errors
using an EWMA control chart similar to our proposed
method. For simplicity, we denote this benchmark by
dynamic average weight monitoring. The fourth benchmark
utilizes the closest extant Statistical method to our know-
ledge, the “Dynamic GLM” approach proposed by Reisi
Gahrooei and Paynabar (2018), which utilizes a Poisson

distribution to model the count data without accounting
explicitly for extreme sparsity. Edge weights are assumed to
have a Poisson Distribution where the mean of the distribu-
tion is a function of network attributes x; j ;. The rest of the
Dynamic GLM (using EKF, EWMA, etc.) are similar to our
proposed approach.

Finally, note that to ensure that all methods can be com-
pared fairly using the out-of-control scenarios, we specify
control limits such that the in-control ARL for all methods
is equal to 200 (¢ = 0.005) and subsequently use these tuned
control limits for detection in the out-of-control scenarios.

3.2. Simulation results

The ARL results are shown in Figure 2 for all scenarios. As
can be readily observed, for all scenarios, monitoring net-
work connectivity measures (degree and betweenness) has
the highest ARL (worst performance), showing that static
methods should not be preferred for the explicit purpose of
detecting changes in networks. We also see from the figure
that all methods perform better in the first scenario, where
the coefficients are shifted in both the Bernoulli and Positive
Poisson models. Yet, in this scenario, we can see that for a
change as small as 6 =0.75 our method has ARL ~ 2,
whereas the Dynamic GLM method has ARL =~ 35, and
EWMA monitoring of network statistics and dynamic aver-
age weight monitoring have ARL ~ 200. Hence, for this
small shift, our method almost instantly detects the change
whereas it takes on average 35 runs for the Dynamic GLM
method to detect this shift; the other methods are not cap-
able of detecting this small shift.

For Scenario II, all methods have higher ARL values in
comparison with other scenarios, which is due to the shift
being solely imposed on the existence of an edge while the
edge weights remained intact, hence detecting such a shift
more challenging. In this case, approaches based on moni-
toring network connectivity measures are not able to detect
changes with even large ¢ shifts. Furthermore, we again see
that the dynamic GLM method has a significantly higher
ARL in comparison with our proposed method. For
example, for a shift with 6 = 3.5, our method has ARL ~
1.5, whereas the Dynamic GLM method has ARL = 148,
Dynamic average weight monitoring has ARL =~ 189, and
EWMA monitoring of network statistics has ARL =2 200.
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Figure 3. Weekly interest rate and volume in the e-MID interbank market.
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For Scenario III, all methods have slightly higher ARL
values in comparison with the first scenario, which is
because the shift is imposed only on the Positive Poisson
model (the edge weights) while the Bernoulli model (deci-
sion to connect) remains intact. We can again observe that
for a change as small as 6 =1 our method almost instantly
detect the change (ARL ~ 1), whereas the Dynamic GLM
method has ARL ~ 22 and EWMA monitoring of network
statistic and dynamic average weight monitoring
have ARL =~ 200.

Thus, by comparing our proposed method with other
methods in all three scenarios, we observe that our proposed
method has the lowest ARL for different magnitudes of
shifts in all the scenarios. Hence, we see evidence that moni-
toring network statistics or using dynamic average weight
for prediction are not well suited for an abrupt change point
detection. We also see that our proposed approach outper-
forms the dynamic GLM model proposed by Reisi Gahrooei
and Paynabar (2018) in all cases. The gap between our pro-
posed method and the benchmark methods is particularly
pronounced in Scenario II, emphasizing the importance of
appropriately modeling the sparse nature of the data.

4, Case study: Monitoring the interbank market
during the 2007 financial crisis

As a consequence of the 2007-2009 financial crisis, accord-
ing to the U.S. Financial Crisis Inquiry Commission’s final
report in January 2011, 8 500 000 families lost their homes
in foreclosure or were seriously behind on their mortgage
payments (Financial Crisis Inquiry Commission, 2011). The
unemployment rate peaked at about 10% in October 2009
(U.S. Government Accountability Office, 2013), and the
stock market suffered record losses, with the S&P 500 Index
losing half of its value between October 2007 and March
2009. Nearly half a trillion dollars of taxpayer money was
spent in the United States to stabilize the financial economic
system (U.S. Department of the Treasury, 2016). Indeed, the
financial crisis induced large societal costs in the form of
slower economic growth and direct bailouts, and has thus
clearly accentuated the need for more effective monitoring
and oversight of financial markets and institutions.
Researchers have responded to this call by analyzing
financial networks to capture the interconnectedness among
financial institutions. A financial network describes a collec-
tion of financial institutions (nodes) and the links between
them. Edges in financial networks reveal information about
the underlying balance sheets of the connected firms. Thus,

30000
@ 20000
€
3
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= 10000+
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a central idea in financial network analysis is to draw
insights about the level of systemic risk from connectivity
patterns, e.g., a sparsely connected interbank lending net-
work can indicate that banks have stopped participating in
the interbank market due to higher perceived counter-party
risk, which has systemic risk implications. Supporting the
notion of monitoring financial networks over time for risk
management, multiple works have shown empirically that
network statistics, such as the average of the network degree
distribution, can shift depending on stable or crisis market
conditions (Finger et al, 2013; Squartini et al, 2013;
Brunetti et al., 2019).

Although the literature has established the importance of
characterizing network topology for early warning systems,
to our knowledge explicit methodology to systematically
identify in real-time whether the network has entered a new
state has not yet been developed. We address this gap in the
literature by demonstrating our methodology on the e-MID
trading platform, the only electronic regulated interbank
market in the world, from January 2006 to December 2012.
Edges are defined by the number of overnight loans between
European banks on this platform, that is, if Bank A lends to
Bank B, then an edge is drawn from Bank A to Bank B and
is weighted by the number of directed loans in the
given week.

4.1. Data

The e-MID market is open to all banks allowed to operate
in the European interbank market. As of August 2011,
e-MID had 192 members from European Union countries
and the U.S,, including 29 central banks acting as market
observers (Finger et al., 2013). Our data contains all e-MID
transactions from January 2006 through December 2012.
Each transaction includes the date, lender, and borrower
(with their real names anonymized), country of origin for
lender and borrower, interest rate, quantity, and an indica-
tion of which party initiated the trade. The data includes
40-60 banks that are publicly-traded. Please note that bank
identities in the interbank market are confidential and there-
fore the exact number is not given to protect confidentiality.
For these banks, we also observe their weekly returns in the
stock market.

Figure 3 shows weekly volume and interest rates in the
e-MID market. As the financial crisis progressed, interest
rates dropped to near zero and activity in the market
decreased markedly. In fact, the changes in these financial
variables reflect major real-world events. For example, using



Table 1. Independent variables used in the Hurdle mode for predicting week t.
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Node attributes

Variable Description

Lender’s return
Borrower’s return

The average stock market return of the lending bank in week t — 1
The average stock market return of the borrowing bank in week t - 1

Edge attributes

Variable Description

Return Correlation
Number of Trades
Rate

Country Difference

The correlation between the two banks’ returns from the start of the data up to week t - 1

The average number of transactions between two banks in week t — 1 (if any transaction occurred)
The average interest rate of each loan between two banks in week t — 1 (if any transaction occurred)
An indicator variable that is one if two banks are from different countries

the same data, Brunetti et al. (2019) analyze four sub-peri-
ods: (i) a pre-crisis period from January 2, 2006, until
August 7, 2007, when the European Central Bank (ECB)
noted worldwide liquidity shortages; (ii) the first crisis
period from August 8, 2007 until September 12, 2008, when
Lehman Brother’s collapsed; (iii) the second crisis period
from September 16, 2008, through April 1, 2009 when the
ECB announced the end of the recession; and (iv) post-
recession period, from April 2, 2009 onwards. Note that as
opposed to monitoring in real time, previous works per-
formed historical analyses that utilized ex-post information
about when critical events occurred. We utilize these four
sub-period definitions to validate our monitoring results.

Several works have focused on characterizing the general
network structure within the e-MID interbank lending mar-
ket. For instance, Fricke and Lux (2015a) summarize the
degree distribution as heavy-tailed (negative Binomial), but
not power-law or scale-free. Fricke and Lux (2015b) find
that networks from the e-MID consistently exhibit so-called
core-periphery structure, where a temporally stable core of
banks that comprise 20-30% of the market is actively
engaged in both lending and borrowing. During the finan-
cial crisis, the authors find that the reduction of e-MID
activity was mainly due to these core banks reducing their
trading. Finger et al. (2013) find that the level of temporal
aggregation is an essential methodological choice, where
daily-level network analysis of e-MID interbank lending data
looks almost random and uninformative, but meaningful
and significant non-random structures appear for longer
aggregation periods. As such, in this article, we present a
weekly analysis to improve both interpretability and prac-
tical utility for regulators and market participants. The net-
works are created by connecting lender to borrowers, that is,
if Bank A lends to Bank B, then an edge is drawn from
Bank A to Bank B and weighted by the number of
directed loans.

4.2. Model specification

Motivating our use of the Hurdle model, we observe a high
level of sparsity (lack of node connections) in the e-MID
market networks. During the pre-crisis era, there is 73.68%
sparsity among all possible bank interactions. This value
increases to 77.12% and 83.78% during Crisis 1 and Crisis 2
sub-periods, respectively. In the post-crisis era, the level of
sparsity is 76.87%, nearly returning to pre-crisis levels. Note
also that the two-stage process underlying the Hurdle model

mimics the actual decision that a bank would make about
whether to participate in the e-MID market with another
bank in addition to modeling the number of interactions
between banks in a second stage.

We use a number of nodes (bank) and edge attributes
listed in Table 1 as independent variables in the Hurdle
model, including whether the two banks are originating
from different countries, the interest rate in the e-MID mar-
ket, returns correlation, and so on. Country Difference is
motivated by Finger et al. (2013), who found that Italian
banks tended to trade with other Italian banks a vast major-
ity of the time. Thus, we expect this variable to be signifi-
cant, especially for modeling whether two banks have any
trades with each other. Most of the other variables are based
fundamentally on stock market returns. Bank activity in the
interbank market can be influenced by stock market per-
formance, especially when the impact on the bank’s balance
sheet is large (Brunetti et al, 2019). As such, we expect
returns-based variables to be important, particularly when
the stock market is volatile, i.e., in crisis sub-periods. Note
that we are not including Number of Trades and Rate in the
logistic regression model, as this information is generated
only after a transaction occurs.

4.3. Monitoring results: Uncovering the epochs of the
financial crisis

We use a hierarchical analysis approach to simulate how the
methodology would have performed if implemented in real
time. Specifically, the first 20 weeks of pre-crisis data are
used as in-control observations to obtain appropriate values
of F and Q as well as initial estimates of the regression coef-
ficients. Also based on the Pearson residual errors from the
in-control data, we determine the control limits for the in-
control ARL to be equal to 200 (x ~ 0.005). Starting with
week 21, we enter the online monitoring phase (see Figure 1
to review the methodology). Whenever a change point is
detected, the entire methodology is restarted, with retraining
of all model parameters using the next 20 weeks as in-con-
trol data before entering another online monitoring phase.
Figure 4 shows the EWMA control charts for Logistic
and Positive Poisson regressions, where we can see that both
aspects of the Hurdle model “raise the alarm” before the
official announcement that marks the beginning of the first
crisis sub-period. Specifically, the Positive Poisson model
would have alerted regulators and financial institutions the
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week starting on May 28, 2007, and the Bernoulli model
would have raised an alarm the week of June 18, 2007.

To compare the performance of our method with net-
work statistics commonly used in financial economics
(Finger et al, 2013; Adamic et al, 2017 Basu et al, 2017;
Brunetti et al., 2019), we provide the EWMA control charts
for monitoring network’s average degree and betweenness in
Figure 5. Network degree centrality is defined by the num-
ber of connections attached to each node. We can calculate
the degree centrality of node i by the sum of the weights of

edges starting from node i. Hence d =3, w; . The net-

work overall degree at time ¢ is the average of degrees over
—t

all nodes, hence d' =d; . Betweenness centrality quantifies

the number of times a node acts as a bridge along the short-

est path between two other nodes. For a node i the between-

. Oy
ness centrality is calculated as ¢} = Zj,k%i)
J!

number of shortest paths from node j to k and oj;) is the

where oy is the

number of those paths that pass through node i. Similarly,
the network overall betweenness is the average of between-
nesses over all nodes, hence ¢! = ¢;".

As the results show, these control charts fail to raise the
alarm before an official announcement of the first crisis sub-
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Figure 4. EWMA charts for Pearson Residuals from the proposed model to
detect the onset of Crisis 1.
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period, providing evidence that network statistics may serve
as a weak foundation for an early-warning system.

When monitoring using our approach, since the EWMA
statistic is representing the difference between the actual and
estimated value, observing its trend during the first crisis
can help us interpret the changes in comparison with the
Pre-Crisis era. For the Bernoulli model, the EWMA statistic
is sharply negative at the onset of the first crisis sub-period,
which means that the model over-estimates the existence of
edges (loans between banks). In other words, for two banks,
the probability that they have any transactions sharply
decreases at the start of the crisis. Adding evidence that
activity in the interbank market dropped precipitously, as
shown in Figure 6, the regression coefficient for Country
Difference is consistently negative, indicating that banks
generally prefer to trade with other banks based in the same
country. The U shape shows that as the crisis unfolded,
banks became even less willing to have transactions with
banks from other countries, but as the crisis concluded and
in the Post-Recession sub-period trading activity (specifically
counter-party trust) was returning to normal. Similarly, for
the Positive Poisson model, we can see, in contrast with
activity during the crisis, an apparent increasing trend
within the Post-Recession sub-period with coefficients end-
ing close to zero. Thus, by the end of 2012, the number of
transactions among two connected banks is not affected by
country differences. The estimated coefficients for the
Number of Trades and Rate variables in Figure 7 also show
meaningful patterns. There is a clear increasing trend in the
coefficient for Number of Trades, denoting that post-reces-
sion, banks were able to obtain more funding in comparison
with before this era. The coefficient for Rate was positive
during the crisis, but negative in the post-recessionary
period. One potential explanation is that banks that wanted
funding had to pay higher rates during the crisis (i.e., it was
a lender’s market), but after the crisis, interbank funding
was more readily available. Estimated coefficients for other
independent variables are not shown, since they were cen-
tered on zero without meaningful trends. Overall, in add-
ition to detecting the onset of the crisis in real-time, the
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Figure 5. EWMA charts for networks statistic (degree, and betweenness) to detect the onset of Crisis 1.
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Figure 7. Estimated coefficients for Number of Trades and Rate in the Positive Poisson model starting from Pre-Crisis data.

detailed results are consistent with accepted narratives about
the crisis (Finger et al., 2013; Brunetti et al., 2019;) , where
trust in the interbank market dropped markedly causing
banks to stop participating entirely in the e-MID market,
followed by a return to pre-crisis conditions.

In practice, it can be important to identify possible root
causes for the alarms, which can be accomplished by esti-
mating the actual date of the change point. Doing so
through network analysis is an important novelty and
innovation of this work to the financial network analysis lit-
erature. Nishina (1992) proposed a method to estimate the
EWMA change point after receiving an out-of-control signal
at time T. In this method, if the out-of-control signal is
raised when the monitoring statistic is above the Upper
Control Limit (UCL), the estimated change point is T =
max[i : z; < p,i < TJ, ie., the estimated change point 7 is
the first point before the alarm time when the EWMA stat-
istic is below the center line p,. Similarly, if the out-of-con-
trol signal is raised when the monitoring statistic is below
the Lower Control Limit (LCL), the estimated change point
is T =max[i:z > py,i <T], ie, the estimated change
point 7 is the first point before the alarm time when the

EWMA statistic is above the center line . Using this heur-
istic, we find a change to crisis conditions in the Bernoulli
model dated to the week of May 28, 2007, and for the
Positive Poisson model dated to the week of March 12-
16, 2007.

Moving to the detection of the onset of Crisis 2 and the
Post-Crisis eras, we use the first 20 weeks of Crisis 1 era for
offline training. The EWMA control charts for Bernoulli
and Positive Poisson regression are shown in Figure 8,
where we see that both parts of the Hurdle model do not
detect any change in the interbank market around the fail-
ure of Lehman Brothers (the onset of Crisis 2). Both models
do successfully capture the change before the onset of Post
of the Recession announcement. The Bernoulli model raises
the alarm the week of January 5, 2009, with the change
point dated to October 6-10, 2008. The Positive Poisson
model raises the alarm the week of December 15, 2008, with
its change point dated back on November 3, 2008.

Inspecting the trend in the EWMA statistics, we see
increases for the Bernoulli and Positive Poisson models
before the onset of the Post-Recession period that continue
to the end of the data, demonstrating that banks returned to
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Figure 8. EWMA charts for Pearson Residuals from the proposed model to detect the end of the financial crisis and start of the post-recessionary period.
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Figure 9. Timeline of estimation results and main events in the financial crisis. The proposed monitoring framework would have raised alarms in real time to regu-
lators and financial institutions about changes in interbank market conditions that coincide with the onset and end of the crisis.

the market as overall conditions and trust levels improved.
In unreported results, a very similar pattern emerges as pre-
viously reported when inspecting the estimated coefficients
for independent variables.

4.4. Validation of results with ECB activity

As shown in Figure 9, our monitoring approach applied to
the e-MID data results in practically meaningful results. In
fact, a regulator could have raised the alarm in real time
about the change from calm to crisis conditions during the
week of June 18, 2007 using our methodology. Note that
this is well before August 8-9, 2007, which is widely consid-
ered the official recognition of the crisis when central banks
around the world announced significant liquidity shortages
(Brunetti et al., 2019). This is a notable finding given that it
is difficult to correctly identify the onset of the crisis from
typical financial variables in our data (see Figure 3) and that
previous research using network analysis on the same data
had difficulty correctly identifying this moment as the

beginning of the crisis. Indeed, Finger et al. (2013, p.205)
conduct a detailed network analysis of data from the same
market and remark that “The start of the GFC [global
finance crisis] is not easy to determine [from the data] ....”

Although we do not know precisely when governments
realized internally there was a crisis, we find evidence that
the model results were ahead of official policy. For instance,
both aspects of the Hurdle model raised alarms by June 18,
2007. On June 6, the ECB raised interest rates, followed by
the publication of the Financial Stability Review (European
Central Bank, 2007) on June 15, which struck a cautiously
optimistic tone. The Financial Stability Review included
positive outlooks, with statements such as:

Looking forward, with the euro area financial system in a
generally healthy condition and the economic outlook
remaining favorable, the most likely prospect is that financial
system stability will be maintained in the period ahead.

Such forecasts were coupled with warnings about how the
financial system was growing particularly vulnerable “to an
abrupt and unexpected sharp decline in market liquidity”,



which underscores the importance of our results given that
we are studying an interbank market - a key source of
liquidity for banks.

Similarly, the alarms signifying the end of the crisis using
the proposed methodology is raised between December 15,
2008, to January 5, 2009. Coincidentally, the ECB published
another Financial Stability Review on December 15
(European Central Bank, 2008) stating that:

The extraordinary remedial actions taken by central banks and
governments, which are aimed at addressing liquidity stresses
and strengthening capital positions, thus contributing to
restoring confidence in, and improving the resilience of
financial systems, were successful in stabilising the euro area
banking system.

This period also coincides with an intense activity by the
U.S. Treasury Department as a result of the new law giving
it broad new powers (see discussion of the Emergency
Economic Stabilization Act below) to strengthen the finan-
cial and auto sectors of the U.S. economy.

To further validate our results, we consider whether the
identified change point dates match previously reported
results or known events. The earliest detected change point
for Crisis 1, the week of March 12, 2007, for the Positive
Poisson regression, closely follows the root-cause event as
identified by the Federal Reserve Bank of St. Louis (2018) of
a Freddie Mac announcement on February 27, 2007, that
they would no longer buy the riskiest type of mortgages
(sub-prime). Similarly, the earliest identified change point
signaling the end of the crisis was October 6-10, 2008 for
the Bernoulli model, which coincides with the “bank
bailouts” (the Emergency Economic Stabilization Act of
2008) being signed into law by then President Bush on
October 3, 2008. To our knowledge, this is a new finding
within the network analysis literature that shows evidence
that U.S. fiscal and monetary policy directly impacted
European financial activity and markets, particularly during
the 2007-2009 crisis which was U.S.-based.

5. Conclusion

In this article we proposed a new network monitoring sys-
tem to detect changes within a sequence of sparse and
attributed networks. We started by modeling a single net-
work with the Hurdle model, which captures sparsity appro-
priately while allowing edges to be modeled as a function of
node and edge attributes. Then, to capture temporal dynam-
ics of the edge formation process, we allowed the parameters
of the Hurdle model to evolve using a state-space model. A
sequential estimation scheme relying on the EKF is used to
update the state-space parameters and predict the value of
upcoming networks. Finally, SPC charts are used to monitor
the network sequence in real time in order to identify
changes in connectivity patterns that are caused by regime
shifts. The proposed approach was validated in two ways.
First, with simulation, we established self-consistency and
functional performance of the proposed modeling and esti-
mation framework. Second, with a detailed case study, we
demonstrated how the methodology can be applied to
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monitor interbank lending networks. We found several
promising and novel results showing that the proposed
model would have raised alarms to the public before official
announcements by the ECB. The identified change point
dates were also highly interpretable, matching closely with
several key real-world events. This article focused on detect-
ing global changes in a network as they are the most crucial
ones in our case study of financial networks. Therefore, we
take the average over all prediction residuals as the monitor-
ing statistics. Nevertheless, this monitoring approach can be
extended for detection of local changes and performing
diagnosis as a future line of work.
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