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ABSTRACT

In this article we create a novel monitoring system to detect changes within a sequence of net-
works. Specifically, we consider sparse, weighted, directed, and attributed networks. Our approach
uses the Hurdle model to capture sparsity and explain the weights of the edges as a function of
the node and edge attributes. Here, the weight of an edge represents the number of interactions
between two nodes. We then integrate the Hurdle model with a state-space model to capture
temporal dynamics of the edge formation process. Estimation is performed using an extended
Kalman Filter. Statistical process control charts are used to monitor the network sequence in real
time in order to identify changes in connectivity patterns that are caused by regime shifts. We
show that the proposed methodology outperforms alternative approaches on both synthetic and
real data. We also perform a detailed case study on the 2007–2009 financial crisis. Demonstrating
the promise of the proposed approach as an early warning system, we show that our method
applied to financial interbank lending networks would have raised alarms to the public prior to
key events and announcements by the European Central Bank.
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1. Introduction

Due to advances in information technology and data collec-

tion systems, it is becoming increasingly common to collect

node or entity-level data over time. When such data

includes interactions between nodes, a natural representation

that is often utilized is networks (graphs). For instance,

social networks composed of individual accounts and their

connections are ubiquitous (Goel and Goldstein, 2013), as

are supply chain networks (Osadchiy et al., 2016), commu-

nication networks (Trier, 2008), financial networks (Brunetti

et al., 2019), among others (Fienberg, 2012). Recent schol-

arly attention has been given to modeling and analysis of a

sequence of networks (see Reisi Gahrooei and Paynabar

(2018) and references therein). In this setting, detecting

changes in the underlying network stream can be extremely

important, as it facilitates better management of the overall

system being modeled (Woodall et al., 2017). Policy inter-

ventions, such as preventive maintenance in mechanical sys-

tems or liquidity injections in financial systems, can be

taken in an informed and timely manner to mitigate poten-

tially negative outcomes.
Attributed (labeled) binary networks have been widely

used for modeling cases in which the connectivity of two

nodes is a function of node attributes. For example, in a

social network the likelihood of friendship between two peo-

ple is a function of their age, sex, education, etc. Azarnoush

et al. (2016) integrated logistic regression with Statistical

Process Control (SPC) methods to detect changes in

attributed network streams. One major drawback of their

method is that it does not properly model the dynamic evo-

lution of network streams. In order to address this issue,

Reisi Gahrooei and Paynabar (2018) proposed a method

that integrates Generalized Linear Models (GLMs) with

State-Space Models (SSMs). GLMs can help to model the

attributed network structure and SSMs are used to capture

the temporal dynamic of the network stream. In addition,

Xu and Hero (2014) and Zou and Li (2017) employed state-

space modeling framework to capture the net-

work dynamics.
In practice, the nodes in attributed networks are often

sparsely connected. For example, in financial networks,

interactions are rarely seen between banks (nodes), especially

in crisis environments, which leads to a sparse attributed

network. As an example, consider the e-MID trading plat-

form, the only electronic regulated interbank market in the

world, from January 2006 to December 2012. Edges are

defined by the number of overnight loans between European

banks on this platform, that is, if Bank A lends to Bank B,

then an edge is drawn from Bank A to Bank B and weighted

by the number of directed loans in the given week. There is

around 74% sparsity among all possible bank interactions.

This value increases to 84% during a crisis. As GLMs are

not capable of modeling zero-inflated distributions, the

modeling method by Reisi Gahrooei and Paynabar (2018)

would fall short of the required outcome.
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In this article we are primarily concerned with proposing

a new modeling and change detection methodology for

sparse, weighted, attributed network streams. Here, the

weight of an edge represents the number of interactions

between two nodes. A novel aspect of our setting is that of

sparsely connected networks. Sparsity, a lack of edge con-

nections, is present in a variety of contexts where highly

granular data is available, including our case study applica-

tion of financial networks. Beyond sparsity, edges in net-

works can in general be weighted and additional covariates

(attributes) may be available over time about the nodes or

edges. It is in this context that we propose a new modeling,

monitoring and change detection methodology.
The main idea behind our approach is to use the Hurdle

model (Mullahy, 1986) to understand the edge formation

process as a function of the node and edge attributes. The

parameters of the Hurdle model evolve based on a state-

space model to capture the temporal dynamics in the data.

An Extended Kalman Filter is used as an online, recursive

inference procedure to estimate and update the parameters

over time. Finally, we generate a one-step-ahead prediction

of the network and compare it to the realized network to

decide whether the observed evolution was smooth or

abrupt using an Exponentially Weighted Moving Average

(EWMA) control chart. A novel methodological contribu-

tion is the combination of these methods: the Hurdle model

plus state-space evolution, Extended Kalman Filter estima-

tion and statistical process control charts to monitor sequen-

ces of sparse, attributed, and weighted networks. The

method is discussed in detail in Section 2.
We validate the proposed approach in two ways. First, in

Section 3, we use simulation to establish self-consistency

and functional performance of the proposed modeling and

estimation framework. We show that the proposed method

outperforms several alternative techniques, and that sparsity

of the networks is a key data characteristic driving our mod-

el’s favorable results. This important insight provides guid-

ance into when the proposed model should be strongly

considered over alternative methods. Our second validation

is done through a detailed case study in Section 4, where we

demonstrate how the methodology can be applied for moni-

toring interbank lending networks during the 2007–2009

financial crises. The application addresses the important
societal problem of assessing financial stability. In fact, we
find several promising and novel results showing that the
proposed model would have raised alarms to the public
before official announcements by the European Central
Bank. The identified change point dates are also highly
interpretable, matching closely with several key real-world
events. Overall, our consistently favorable and positive
results demonstrate that the proposed approach could be a
valuable tool for regulators and financial institutions to util-
ize when monitoring the banking system as well as in other
settings where dynamic networks are encountered.

2. The proposed methodology

2.1. Overview

We propose a new monitoring methodology for sparse
attributed network streams with dynamic structures. The
methodology is comprised of modeling the network struc-
ture and providing a change detection methodology. In our
modeling framework, it is assumed that the edge probabil-
ities are functions of the node and edge attributes. For
example, in the context of financial networks, the probability
of a transaction (or the number of transactions) between
two banks could be a function of their country of origins,
prevailing interest rates, and so on. Although GLMs have
been successfully used to model attributed networks
(Azarnoush et al., 2016; Reisi Gahrooei and Paynabar,
2018), network sparsity (extreme lack of node connections)
violates the assumption to GLMs that the underlying prob-
ability distribution should belong to the exponential family
of distributions. To address this issue, we use the Hurdle
model, which is capable of handling zero-inflated distribu-
tions (Mullahy, 1986).

The Hurdle model has been used previously to account
for network sparsity (Heard et al., 2010); however, previous
approaches did not utilize edge and node attributes, instead
modeling edge probabilities as a function of time. To take
the network dynamics coupled with edges and nodes’ attrib-
utes into account, we integrate the state-space model with
the Hurdle model, where it is assumed that the parameters
of the Hurdle regression follow a Markovian process, and

Figure 1. Overview of the proposed network monitoring methodology.
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develop a sequential estimation scheme using an Extended

Kalman Filter (EKF) to update the state space parameters
and predict the value of upcoming networks. The overall

framework is illustrated in Figure 1. As shown in the figure,
in the offline phase, using a stream of in-control (i.e., train-

ing) networks, we build a Hurdle model using nodes and

edges attributes, and estimate the initial state-space parame-
ters. In the online (i.e., deployment) phase, as new network

observations arrive, the estimated Hurdle model is used to

predict the edge values for the incoming network snapshot.
Additionally, with the upcoming network observations, the

parameters of the state-space Hurdle model are updated
using EKF. As time progresses, residuals that compare the

newly realized network with the predicted one are used to

detect a sudden, structural change in the network through
EWMA control charts.

2.2. Hurdle models

As mentioned earlier, in attributed networks, the edge prob-
abilities can be defined as functions of nodes and/or edge

attributes and often modeled by using GLMs. However, in

practice, networks are often sparse (Faloutsos et al., 2004;
Akoglu et al., 2015), where typically each node interacts

with only a few other nodes with which it shares some com-
mon attributes and characteristics. The sparsity of a network

in a sequence of dynamic networks depends on the reso-

lution of the temporal sampling (i.e., the window size). That
is the shorter the sampling interval is, the sparser the corre-

sponding network would be. For example, banking networks

constructed on the basis of daily interactions would be
sparser than the networks constructed based upon weekly

data. As a result the number of zeros within the network
could be inflated or deflated depend on the sampling reso-

lution. Regular Poisson models are ineffective in modeling

these situations, as they cannot capture zero inflation or
deflation. A zero-inflated Poisson model is also not appro-

priate, as it can only capture the inflation in the number of

zeros. In addition, We assume that all nodes can have inter-
actions with one another. This assumption aligns with our

case study, in which all European banks are in-theory
allowed to interact with each other without any restrictions.

Therefore, we assume only one type of zero (related to sam-

pling) exits in our model. Therefore, an alternative modeling
approach that treats zeros separately from other interaction

counts in the network is required. In this article, we con-

sider a Hurdle model and extend it to dynamic settings.
The fundamental idea behind the Hurdle model is to

generate count variables (edge weights) in a two-stage pro-
cess. In the first stage, a binary process specifies whether the

edge weight is zero or positive. Given the first stage indicat-

ing a non-zero edge weight (i.e., if the hurdle is crossed),
another stochastic process generates a positive edge weight.

In the first stage of the Hurdle model, we assume that the

weight of an edge between nodes i and j at time t is equal
to zero with probability of pi, j, t and is a positive value with

probability 1� pi, j, t: Our proposed framework can in fact

handle both dense and sparse networks. For the dense

networks the proposed framework will estimate a small
value for pi, j and for sparse networks it estimates larger pi, j:

Given that the edge weight is positive, we assume that its
value k follows a probability distribution function

fþ1 ðk;Ki, j, tÞ with parameters Ki, j, t: The associated truncated

probability is then calculated as fþ1 ðk;Ki, j, tÞ=ð1�

fþ1 ð0;Ki, j, tÞÞ, which ensures that a zero count does not

occur in this case. Note that the positive probability needs
to be multiplied by ð1� pi, j, tÞ to ensure that probabilities

sum to one (Cameron and Trivedi, 2013). Different Hurdle

models can be introduced based on the choice of fþ1 : For
our Hurdle model, we focus on the “Poisson-logit” specifica-

tion, where fþ1 is a Poisson distribution. The probabilities

for our hurdle model are shown in Equation (1):

Pðwi, j, t ¼ kÞ ¼

pi, j, t k ¼ 0

ð1� pi, j, tÞ
exp ð�ki, j, tÞk

k
i, j, t

k!ð1� exp ð�ki, j, tÞÞ
k � 1,

8

>

<

>

:

(1)

where wi, j, t is a random variable for the weight of the edge

between node i and j at time t, pi, j, t is the probability of

having no edge between nodes i and j, and

exp ð�ki, j, tÞk
k
i, j, t

k!ð1� exp ð�ki, j, tÞÞ

is the probability distribution function of a truncated
Poisson process at zero (also known as Positive Poisson;
Grogger and Carson (1991)). Equation (1) can clearly be
decomposed as the mixture of a Bernoulli distribution with
parameter pi, j, t and a Positive Poisson distribution with par-

ameter ki, j, t:

To extend this model to a regression setting, we assume
that model parameters (ki, j, t and pi, j, t) are functions of

covariates (node and edge attributes). To write our model,
we first define a Bernoulli random variable di, j, t as the indi-

cator of positive occurrence (if di, j, t ¼ 1 then wi, j, t > 0) ,

and wþ
i, j, t as a random variable for positive value of an edge

weight. For simplicity, we denote f0ðpi, j, tÞ and fþ1 ðki, j, tÞ as

distributions of zero and positive counts, respectively. The
Hurdle regression, using logit and exponential link functions
(Nelder and Baker, 1972) can be written as:

di, j, t � f0ð1� pi, j, tÞ

pi, j, tðb0, t; zi, j, tÞ ¼ 1� logit�1ðzi, j, tb0, tÞ

and

wþ
i, j, t � fþ1 ðki, j, tÞ

ki, j, tðb1, t; xi, j, tÞ ¼ exp ðxi, j, tb1, tÞ,

where f0 ¼ p
ð1�di, j, tÞ
i, j, t ð1� pi, j, tÞ

ðdi, j, tÞ and xi, j, t and zi, j, t are the

covariates (attributes corresponding to the starting node i,
ending node j, and edge ij) used in Bernoulli and Positive
Poisson count models, respectively. In general, xi, j, t (zi, j, t)

differs from xj, i, t (zj, i, t), and so a directed relationship can

be explained. Note that in this work, we have two types of
variables: One that mainly explains the presence of an edge
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denoted by zi, j, t , and one that explains the strength of the

relationship represented by xi, j, t: For this reason, we sepa-

rated their corresponding parameters denoted by b0, t and

b1, t: Note that it is assumed that given attributes the inter-

actions between nodes are independent. The set of covariates

used in each model can be the same or different.
To estimate the model parameters, b0, t and b1, t , the fol-

lowing likelihood should be maximized

lðb0, b1Þ ¼ f ðwtÞ ¼
Y

i, j2N, i6¼j

p
ð1�di, j, tÞ
i, j, t ð1� pi, j, tÞ

di, j, t

�
exp ð�ki, j, tÞk

wi, j, t
i, j, t

wi, j, t!ð1� exp ð�ki, j, tÞ

" #di, j, t

Therefore the log likelihood can be written as:

Lðb0, b1Þ ¼
X

fi, j2N

X

, j6¼ig

(

ðdi, j, tÞ � log ð1� pi, j, tðb0, tzi, j, tÞÞ
� �

þ ð1� di, j, tÞ � log ðpi, j, tðb0, tzi, j, tÞÞ
� �

þ ðdi, j, tÞ

� log
exp ð�ki, j, tðb1, txi, j, tÞÞki, j, tðb1, txi, j, tÞ

wi, j, t

wi, j, t!ð1� exp ð�ki, j, tðb1, txi, j, tÞÞ

 !)

(2)

where N is the set of total nodes in the network. Assuming

independence among f0ðb0, zÞ and fþ1 ðb1, xÞ, the log-likeli-

hood function in Equation (2) can be written as a sum of

two separate components, namely,
P

fi, j2N

P

, j 6¼igfðdi, j, tÞ�

½log ð1�pi, j, tðb0, t;zi, j, tÞÞ� þ ð1� di, j, tÞ� ½log ðpi, j, tðb0, t;zi, j, tÞÞ�

and
P

fi, j2N

P

, j 6¼igfdi, j, t � log ðfþ1 ðwþ
i, j, t , ki, j, tðb1, t; xi, j, tÞÞg:

Hence, each component can be maximized individually

resulting in the following estimates:

p̂i, j, t ¼ 1 � logit�1ðzi, j, tb̂0, tÞ (3)

k̂i, j, t ¼ exp ðxi, j, tb̂1, tÞ, (4)

where b̂0, t and b̂1, t are the estimated regression coefficients

at time t. Next we discuss how to incorporate network struc-

tural dynamics through a state-space model on the parame-

ters of the Hurdle model, and use the EKF to estimate and

update model parameters over time.
Note that, in this article the equations are presented for

directed networks; however, this methodology can be applied

for estimating the edge values of undirected networks, using

symmetric mappings from attributes to edge values. This is

because undirected networks are a special case of directed net-

works when edges take same value in both directions.

2.3. State-space models and the EKF

State-space models provide a flexible framework for model-

ing dynamic systems. In this approach, although the actual

state of the system is unknown, it can be inferred over time

using noisy observations. In the context of attributed net-

work streams, we assume that the coefficients of the

Bernoulli and truncated Poisson regression (b0 and b1) are

the state variables, which are driven by a stochastic process.

The observed edge values, wi, j, t for t ¼ 1, 2, :::, are noisy

observations. Therefore, the state-space Hurdle model is

defined by the following equations:

bt ¼ Fbt�1 þ �t

wi, j, t ¼ hðxi, j, t , zi, j, t ,btÞ,
(5)

where bt ¼ ½b0, t , b1, t� is the state vector and F is the state

transition matrix, and �t � Nð0,QÞ is the process noise with

mean 0 and covariance matrix Q. And h is the nonlinear

link function generating a realization of wi, j, t given the state

of the system bt and the vector of covariates (xi, j, t and

zi, j, t). In the case of the Hurdle model, we showed that the

likelihood function can be separated into two components

and optimized by maximizing each component, separately.

This will lead to two decoupled models given in Equations

(3) and (4). Therefore, we can take hðxi, j, t , zi, j, t , btÞ ¼

1� logit�1ðzi, j, tb0, tÞ for modeling the zero counts (logistic

regression) and hðxi, j, t , zi, j, t , btÞ ¼ exp ðxi, j, tb1, tÞ for model-

ing positive Poisson counts.
In the case of linear state-space models, the Kalman Filter

(KF) procedure achieves the optimal estimate of the states

(Kalman, 1960). However, as the observation model in

Equation (5) is nonlinear, we employ the EKF, which is shown

to be effective in incorporating nonlinearity in parameter esti-

mation (Fahrmeir and Kaufmann, 1991; Brown and Hwang,

1997). EKF is mainly designed for normally distributed obser-

vations. However, Fahrmeir and Kaufmann (1991) showed that

EKF can also be used for the exponential family of distribu-

tions. As our proposed Hurdle model is decomposed into

Bernoulli and Poisson distributions that are both from the

exponential family, we will employ EKF for parameter estima-

tion. Similar to KF, EKF provides a recursive estimation pro-

cedure that only uses the current network snapshot (at time t)

and the previous parameter estimates (at time t – 1) to update

the parameter estimates. EKF uses the Taylor expansion to lin-

earize the nonlinear observation function, hðxi, j, t , zi, j, t ,btÞ,

and then applies the KF estimation equations. Specifically,

given F and Q, the EKF for the state-space Hurdle regression

can be summarized as follows. Note that the detailed deriva-

tions of the prediction and update equations for EKF can be

found in Brown and Hwang (1997).

2.3.1. Prediction step

Let btjt�1 and Ptjt�1 denote the Kalman predictions of the state

bt and its covariance matrix given observation until time t – 1

(wl; l ¼ 1, :::, t � 1, ), and let btjt and Ptjt denote the estima-

tion of the state and its covariance matrix, given observations

until time t (wl; l ¼ 1, :::, t). Now using the previous esti-

mates, the prediction equations at time t are given by

btjt�1 ¼ Fbt�1jt�1

Ptjt�1 ¼ FPt�1jt�1F
T þQ, t ¼ 1, 2, :::

where the initial estimates. b0j0 and P0j0 can be obtained

from fitting a Hurdle model to the first network snap-

shot data.
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2.3.2. Update step

Let wt ¼ vec½wi, j, t� to be the vectorized adjacency matrix

containing the noisy trades between pairs of nodes. Also let

xt and zt to be covariate matrices whose rows are xi, j, t and

zi, j, t , respectively. At time t, the incoming network data

(wt) are used to update the predicted parameters using the

set of equations:

Kt ¼ Ptjt�1Ht
T HtPtjt�1Ht

T þ Rt

� ��1

btjt ¼ btjt�1 þ Kt wt � h xt , zt ,btjt�1

� �� �

Ptjt ¼ I� KtHtð ÞPtjt�1,

where

Ht ¼
dh

db

� �

b¼btjt

is the measurement Jacobian matrix used for linearization of

the observation function h xi, j, t , zi, j, t , bt
� �

,Kt is known as the

Kalman gain, and Rt is a covariance matrix of observations at
time t, which depends on the distribution of observations.

Specifically, for Bernoulli observations Ri, j, t ¼ 1� p̂i, j, t

� �

p̂i, j, t

and for Positive Poisson

Ri, j, t ¼
k̂i, j, t

1� exp �k̂i, j, t

� 	 1þ k̂i, j, t þ
k̂i, j, t

1� exp �k̂i, j, t

� 	

0

@

1

A:

2.3.3. Initializing F and Q

In practice, the state transition matrix F and the state covari-

ance matrix Q are unknown, and thus must be estimated
based on an in-control sequence of networks w1,w2, � � � ,wT ;

we do so using the following heuristic algorithm. First, for

each in-control network observation wi, we estimate the
Hurdle model coefficients by fitting a static logistic regression

on edge occurrence and a static positive Poisson regression
model on positive edge weights to obtain initial vector parame-

ters b1,b2, :::, bT : This sequence of estimated coefficients can
be seen as a multi-dimensional time-series. Using the multi-

dimensional time-series representation, a Vector Auto-
Regression (VAR) model is fitted to yield initial values F0 and

Q0 for the Bernoulli model and F1 and Q1 for the Positive
Poisson model. The VAR model is a common approach for

analysis of multivariate time series, which is an extension of
the univariate autoregressive model to multivariate time series

(Sims, 1980). We fit the VAR on coefficients for each model
using R (Pfaff 2008). The overall estimation uses these initiali-

zations as inputs to the following procedure, which is repeated
until convergence. First, we fit the state-space Hurdle model to

the in-control data using the initializations (F0,Q0) and
(F1,Q1). The estimated state-space Hurdle model yields new

coefficient estimates for each network observation, i.e.,
b1,b2, :::,bT : Once again, the estimated coefficients for each

stage of the Hurdle model can be organized into a multidi-
mensional time-series. Another VAR model is fitted on the

estimated coefficients to update (F0,Q0) and (F1,Q1). This
procedure is continued until convergence. In summary, the

estimation process for each model is is as follows:

Step 0 Initialize the Hurdle model coefficients b1, b2, :::, bT
by fitting a static logistic regression on edge occur-
rence and a static positive Poisson regression model
on positive edge weights for each in-control network
observations wi:

Step 1 Estimate F and Q using a first-order VAR model to
solve Equation (5). Here, for F0 we have b0, t ¼
F0b0, t�1 þ �t: Similarly, for F1 we have b1, t ¼
F1b1, t�1 þ �t: After fitting the VAR model, F0 (and

F1) will be the model coefficients matrix, and Q0

(and Q1) will be estimated as the covariance matrix
of the model’s error.

Step 2 Using estimated F and Q from the step above, use
the EKF prediction and update steps explained in
Sections 2.3.1 and 2.3.2 to estimate the updated set
of coefficients [b1, b2, :::, bT].

Step 3 Return to Step 1 and repeat Step 1 and 2 until con-
vergence or until the maximum number of iterations
is reached.

2.4. Monitoring of dynamic and sparse network stream

In this section, we propose a monitoring procedure to detect
structural changes in sparse attributed networks.

Recall that we fit the data incrementally as it arrives by
combining the steps previously outlined. Specifically, the
Hurdle model is estimated with its parameters updated at
each time point via the EKF. The vector of updated parame-
ters btjt�1 are used to predict the upcoming adjacency

matrix, i.e., ŵi, j, t ¼ h xi, j, t�1, zi, j, t�1, btjt�1

� �

using Equation

(5). Once the network at time t is realized, we compute
residuals, defined as �̂i, j, t ¼ wi, j, t � ŵi, j, t , for every possible

edge. The residuals reflect network connectivity that cannot
be explained by the independent variables in the
Hurdle model.

To ensure the residuals have approximately constant unit
variance, we use the Pearson residual, denoted by ri, j, t ,

which is computed as,

ri, j, t ¼
�̂i, j, t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var ŵi, j, t

� �

q ,

where var ŵi, j, t

� �

is the estimated variance of the observa-

tion, which can be calculated using the predicted observa-
tion and its probability distribution (Positive Poisson
or Bernoulli).

If the process is in-control, Pearson residuals asymptotic-
ally follow an independent, standard normal distribution.
Hence, we can use SPC charts to monitor the residuals and
detect change points. We choose the EWMA control chart
for monitoring, which is a control chart used to monitor
small shifts in a process by incorporating memories of the
previous observations in calculating the monitoring statistic.
The EWMA weights observations in a geometrically declin-
ing order, such that the newest observations have higher
weights while the oldest ones have much smaller weights. At
each time, we have a total of m residuals calculated where m

IISE TRANSACTIONS 95



is the total number of edges in a network. To calculate one

collective statistic, we define �r t ¼

P

i, j ri, j, t
m

and monitor �r t
over time.

The EWMA statistic corresponding to �r t is denoted by xt

and calculated as

xt ¼ k�r t þ 1� kð Þxt�1t � 1

x0 ¼ 0,
(6)

where k 2 0, 1½ � is a constant that specifies the depth of
memory. A higher lambda gives more weight to the current
observation, and smaller k gives more weight to previous
observations. The control limits are defined as

UCL ¼ l0 þ kr0

ffiffiffiffiffiffiffiffiffiffiffi

k

2� k

r

LCL ¼ l0 � kr0

ffiffiffiffiffiffiffiffiffiffiffi

k

2� k

r

,

where l0 and r0 are the mean and standard deviation of off-
line (training) Pearson errors, and k is a parameter that con-
trols the width the control limits. If xt > UCL or
xt < LCL, we reject the null hypothesis of a stable network
process, indicating a change has occurred in the net-
work stream.

Note that the values of k and k effectively set the (false)
alarm rate and are adjustable. In our analysis, we set these
parameter values by estimating the false alarm rate for given
values of k and k in an in-control state. Specifically, an in-
control stream of networks is simulated to match the
observed data as closely as possible, and then monitored
until an out-of-control alarm is falsely raised. The time until
the false alarm is raised is called the run-length. The simula-
tion procedure is repeated several times to compute the
average of the run-lengths (ARL), which indicates the aver-
age number of observations until a false alarm is raised. In
our analysis, we set the values of k and k so that the control
limits for the in-control ARL is equal to 200 (a � 0:005).
Upon the detection of a change based on an aggregated sta-
tistics obtained from the prediction errors, one can identify
the edges with the highest prediction errors (say top r) and
consider those as the root-cause.

3. Performance evaluation using simulation

In this section, we evaluate the performance of our monitor-
ing methodology against benchmark methods through simu-
lation. We start by describing the simulation setup,
evaluation criteria, and alternative methods, followed by
the results.

3.1. Simulation setup

To closely match our real data setting in terms of size of
networks and number of explanatory covariates, each simu-
lated network is composed of 50 nodes, hence there are
50� ð50� 1Þ ¼ 2450 potential directed edges in each net-
work. We assume that the number of interactions between
nodes i and j is a function of five attributes in the model

denoted as xi, j, t ¼ zi, j, t ¼ ½x
ð1Þ
i, j, t , x

ð2Þ
i, j, t , :::, x

ð5Þ
i, j, t�

T : The attribute

values vary for each edge and time, and are generated using

normal distribution with mean l ¼ ½0:5, 0:5, 0:5, 0:5, 0:5�T and
variance R ¼ 0:25� I5�5: The relationship between the
attributes and the response value follows a dynamic Hurdle
model. Therefore, we assume that the binary outcomes
(whether there is a connection between two nodes) have a

Bernoulli distribution, with probability pi, j, t ¼ 1�

logit�1ðxi, j, tb0, tÞ, and the positive edge weight outcomes fol-

low a Positive Poisson distribution with ki, j, t ¼

exp ðxi, j, tb1, tÞ: Here, b0, t ¼ ½b00, t ,b
1
0, t , b

2
0, t , :::, b

5
0, t�

T are the

coefficients of the binary model at time t, where b00, t is the

coefficient corresponding to the intercept. Similarly, b1, t ¼

½b01, t ,b
1
1, t ,b

2
1, t , :::, b

5
1, t�

T are the coefficients of the Positive

Poisson model at time t.
To simulate a dynamic stream of networks, we assume

the underlying state transition model with b0, t ¼ Fb0, t�1 þ

�0, t and b1, t ¼ Fb1, t�1 þ �1, t: Here, we set �0, t � Nð0,QÞ

and �1, t � Nð0,QÞ: In the simulations, we use b0, 0 ¼
½0:01, 0:01, 0:01, 0:01, 0:01, 0:01� and b1, 0 ¼ ½0:2, 0:2, 0:2, 0:2,
0:2, 0:2�,F ¼ 0:8I6�6, and Q ¼ 0:25I6�6: We use in-control
simulated snapshots of networks to estimate the control
chart and calculate the EWMA control limits based on
methods described in Section 2.

We investigate three scenarios, each of which induces
changes to specific coefficients underlying the network pro-
cess to create out-of-control situations. Specifically, for each
selected coefficient bi, the shift is dri, where d is a constant

representing the magnitude of the shift and ri is the stand-
ard deviation of the ith coefficient for the in-control situ-
ation, which is equal to

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qii

1� Fiið Þ2

s

¼ 2:5:

Therefore, for the Bernoulli model the changed coefficient

will be bi0, s ¼ Fiib
i
0, s�1 þ �i0, s þ dri and for Positive for the

Poisson model the changed coefficient will be bi1, s ¼

Fiib
i
1, s�1 þ �i1, s þ dri at time s, i.e., the coefficients are

shifted by dri at time s. The three scenarios are as follows:

1. Scenario I represents a case where the change point is
affecting the underlying dynamics in two ways. First, it
affects the decision of whether two nodes are interact-
ing. Second, it affects the level of interaction (weights)
after the first decision is made. In other words, we
assume the change has affected both the Bernoulli and
Positive Poisson models. In each model, we apply the
change in three out of six coefficients so that coeffi-

cients b20, s, b
4
0, s, b50, s of the Bernoulli model, and b21, s,

b41, s, b
5
1, s of the Positive Poisson model change at

time s.
2. Scenario II represents a case where the change only

affects the decision of whether two nodes interact.
However, after this decision is made, the coefficients of
the Positive Poisson model remain unchanged.
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Therefore, we suppose that the change has only affected
the coefficients of the Bernoulli model. Accordingly, we
assume that the change has affected b20, s, b40, s, b

5
0, s from

the Bernoulli model.
3. Scenario III represents a case where the change only

affects the amount of interaction (edge weight) between
two nodes. The coefficients determining whether two
nodes interact remains unchanged, but b21, s, b41, s, b

5
1, s

from the Positive Poisson model have changed at
time s.

Performance of a method is evaluated with the ARL, which
measures how quickly the method detects the change
induced in each scenario for different values of d.
Specifically, we simulate networks for an out-of-control
scenario until an out-of-control alarm is raised. Each time
the alarm is raised, we record the run length, which is the
number of simulated time points until the change is
detected. We iterate this procedure 1000 times and record
the ARL over all iterations. A method with the smallest ARL
for an out-of-control situation represents superior ability in
detecting the change.

We compare the proposed approach against four bench-
mark methods. The first two benchmark methods monitor
network connectivity measures using EWMA control charts;
the particular network statistics that we consider, degree and
betweenness, have been utilized previously for change point
network analysis in financial economics (Adamic et al.,
2017) and related areas, such as social networks (McCulloh
and Carley, 2011; Hassanzadeh et al., 2012). Specifically, we
compute the average of each network statistic among all in-
control network observations. Then, we use the average sta-
tistics to build the EWMA statistics as explained in
Equation (6). The third benchmark treats the weights wi, j, t

as a vector and calculates the mean over the last lt observed
networks as the prediction of the upcoming network (here,
we used lt ¼ 10). Afterwards, for each time step t, we calcu-
late errors as the difference between the current wi, j and the

predicted values. Finally, we monitor the mean of the errors
using an EWMA control chart similar to our proposed
method. For simplicity, we denote this benchmark by
dynamic average weight monitoring. The fourth benchmark
utilizes the closest extant Statistical method to our know-
ledge, the “Dynamic GLM” approach proposed by Reisi
Gahrooei and Paynabar (2018), which utilizes a Poisson

distribution to model the count data without accounting

explicitly for extreme sparsity. Edge weights are assumed to

have a Poisson Distribution where the mean of the distribu-

tion is a function of network attributes xi, j, t: The rest of the

Dynamic GLM (using EKF, EWMA, etc.) are similar to our

proposed approach.
Finally, note that to ensure that all methods can be com-

pared fairly using the out-of-control scenarios, we specify

control limits such that the in-control ARL for all methods

is equal to 200 (a ¼ 0:005) and subsequently use these tuned

control limits for detection in the out-of-control scenarios.

3.2. Simulation results

The ARL results are shown in Figure 2 for all scenarios. As

can be readily observed, for all scenarios, monitoring net-

work connectivity measures (degree and betweenness) has

the highest ARL (worst performance), showing that static

methods should not be preferred for the explicit purpose of

detecting changes in networks. We also see from the figure

that all methods perform better in the first scenario, where

the coefficients are shifted in both the Bernoulli and Positive

Poisson models. Yet, in this scenario, we can see that for a

change as small as d ¼ 0:75 our method has ARL � 2,

whereas the Dynamic GLM method has ARL � 35, and

EWMA monitoring of network statistics and dynamic aver-

age weight monitoring have ARL � 200: Hence, for this

small shift, our method almost instantly detects the change

whereas it takes on average 35 runs for the Dynamic GLM

method to detect this shift; the other methods are not cap-

able of detecting this small shift.
For Scenario II, all methods have higher ARL values in

comparison with other scenarios, which is due to the shift

being solely imposed on the existence of an edge while the

edge weights remained intact, hence detecting such a shift

more challenging. In this case, approaches based on moni-

toring network connectivity measures are not able to detect

changes with even large d shifts. Furthermore, we again see

that the dynamic GLM method has a significantly higher

ARL in comparison with our proposed method. For

example, for a shift with d ¼ 3:5, our method has ARL �
1:5, whereas the Dynamic GLM method has ARL � 148,

Dynamic average weight monitoring has ARL � 189, and

EWMA monitoring of network statistics has ARL � 200:

Figure 2. ARL comparison of methods based on simulated data for different magnitude of shifts (d). Smaller ARL indicates better performance.
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For Scenario III, all methods have slightly higher ARL
values in comparison with the first scenario, which is
because the shift is imposed only on the Positive Poisson
model (the edge weights) while the Bernoulli model (deci-
sion to connect) remains intact. We can again observe that
for a change as small as d¼ 1 our method almost instantly
detect the change (ARL � 1), whereas the Dynamic GLM
method has ARL � 22 and EWMA monitoring of network
statistic and dynamic average weight monitoring
have ARL � 200:

Thus, by comparing our proposed method with other
methods in all three scenarios, we observe that our proposed
method has the lowest ARL for different magnitudes of
shifts in all the scenarios. Hence, we see evidence that moni-
toring network statistics or using dynamic average weight
for prediction are not well suited for an abrupt change point
detection. We also see that our proposed approach outper-
forms the dynamic GLM model proposed by Reisi Gahrooei
and Paynabar (2018) in all cases. The gap between our pro-
posed method and the benchmark methods is particularly
pronounced in Scenario II, emphasizing the importance of
appropriately modeling the sparse nature of the data.

4. Case study: Monitoring the interbank market
during the 2007 financial crisis

As a consequence of the 2007–2009 financial crisis, accord-
ing to the U.S. Financial Crisis Inquiry Commission’s final
report in January 2011, 8 500 000 families lost their homes
in foreclosure or were seriously behind on their mortgage
payments (Financial Crisis Inquiry Commission, 2011). The
unemployment rate peaked at about 10% in October 2009
(U.S. Government Accountability Office, 2013), and the
stock market suffered record losses, with the S&P 500 Index
losing half of its value between October 2007 and March
2009. Nearly half a trillion dollars of taxpayer money was
spent in the United States to stabilize the financial economic
system (U.S. Department of the Treasury, 2016). Indeed, the
financial crisis induced large societal costs in the form of
slower economic growth and direct bailouts, and has thus
clearly accentuated the need for more effective monitoring
and oversight of financial markets and institutions.

Researchers have responded to this call by analyzing
financial networks to capture the interconnectedness among
financial institutions. A financial network describes a collec-
tion of financial institutions (nodes) and the links between
them. Edges in financial networks reveal information about
the underlying balance sheets of the connected firms. Thus,

a central idea in financial network analysis is to draw
insights about the level of systemic risk from connectivity
patterns, e.g., a sparsely connected interbank lending net-
work can indicate that banks have stopped participating in
the interbank market due to higher perceived counter-party
risk, which has systemic risk implications. Supporting the
notion of monitoring financial networks over time for risk
management, multiple works have shown empirically that
network statistics, such as the average of the network degree
distribution, can shift depending on stable or crisis market
conditions (Finger et al., 2013; Squartini et al., 2013;
Brunetti et al., 2019).

Although the literature has established the importance of
characterizing network topology for early warning systems,
to our knowledge explicit methodology to systematically
identify in real-time whether the network has entered a new
state has not yet been developed. We address this gap in the
literature by demonstrating our methodology on the e-MID
trading platform, the only electronic regulated interbank
market in the world, from January 2006 to December 2012.
Edges are defined by the number of overnight loans between
European banks on this platform, that is, if Bank A lends to
Bank B, then an edge is drawn from Bank A to Bank B and
is weighted by the number of directed loans in the
given week.

4.1. Data

The e-MID market is open to all banks allowed to operate
in the European interbank market. As of August 2011,
e-MID had 192 members from European Union countries
and the U.S., including 29 central banks acting as market
observers (Finger et al., 2013). Our data contains all e-MID
transactions from January 2006 through December 2012.
Each transaction includes the date, lender, and borrower
(with their real names anonymized), country of origin for
lender and borrower, interest rate, quantity, and an indica-
tion of which party initiated the trade. The data includes
40–60 banks that are publicly-traded. Please note that bank
identities in the interbank market are confidential and there-
fore the exact number is not given to protect confidentiality.
For these banks, we also observe their weekly returns in the
stock market.

Figure 3 shows weekly volume and interest rates in the
e-MID market. As the financial crisis progressed, interest
rates dropped to near zero and activity in the market
decreased markedly. In fact, the changes in these financial
variables reflect major real-world events. For example, using

Figure 3. Weekly interest rate and volume in the e-MID interbank market.
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the same data, Brunetti et al. (2019) analyze four sub-peri-
ods: (i) a pre-crisis period from January 2, 2006, until
August 7, 2007, when the European Central Bank (ECB)
noted worldwide liquidity shortages; (ii) the first crisis
period from August 8, 2007 until September 12, 2008, when
Lehman Brother’s collapsed; (iii) the second crisis period
from September 16, 2008, through April 1, 2009 when the
ECB announced the end of the recession; and (iv) post-
recession period, from April 2, 2009 onwards. Note that as
opposed to monitoring in real time, previous works per-
formed historical analyses that utilized ex-post information
about when critical events occurred. We utilize these four
sub-period definitions to validate our monitoring results.

Several works have focused on characterizing the general
network structure within the e-MID interbank lending mar-
ket. For instance, Fricke and Lux (2015a) summarize the
degree distribution as heavy-tailed (negative Binomial), but
not power-law or scale-free. Fricke and Lux (2015b) find
that networks from the e-MID consistently exhibit so-called
core-periphery structure, where a temporally stable core of
banks that comprise 20–30% of the market is actively
engaged in both lending and borrowing. During the finan-
cial crisis, the authors find that the reduction of e-MID
activity was mainly due to these core banks reducing their

trading. Finger et al. (2013) find that the level of temporal
aggregation is an essential methodological choice, where
daily-level network analysis of e-MID interbank lending data
looks almost random and uninformative, but meaningful
and significant non-random structures appear for longer
aggregation periods. As such, in this article, we present a
weekly analysis to improve both interpretability and prac-
tical utility for regulators and market participants. The net-
works are created by connecting lender to borrowers, that is,
if Bank A lends to Bank B, then an edge is drawn from
Bank A to Bank B and weighted by the number of
directed loans.

4.2. Model specification

Motivating our use of the Hurdle model, we observe a high
level of sparsity (lack of node connections) in the e-MID
market networks. During the pre-crisis era, there is 73.68%
sparsity among all possible bank interactions. This value
increases to 77.12% and 83.78% during Crisis 1 and Crisis 2
sub-periods, respectively. In the post-crisis era, the level of
sparsity is 76.87%, nearly returning to pre-crisis levels. Note
also that the two-stage process underlying the Hurdle model

mimics the actual decision that a bank would make about

whether to participate in the e-MID market with another

bank in addition to modeling the number of interactions

between banks in a second stage.
We use a number of nodes (bank) and edge attributes

listed in Table 1 as independent variables in the Hurdle

model, including whether the two banks are originating

from different countries, the interest rate in the e-MID mar-

ket, returns correlation, and so on. Country Difference is

motivated by Finger et al. (2013), who found that Italian

banks tended to trade with other Italian banks a vast major-

ity of the time. Thus, we expect this variable to be signifi-

cant, especially for modeling whether two banks have any

trades with each other. Most of the other variables are based

fundamentally on stock market returns. Bank activity in the

interbank market can be influenced by stock market per-

formance, especially when the impact on the bank’s balance

sheet is large (Brunetti et al., 2019). As such, we expect

returns-based variables to be important, particularly when

the stock market is volatile, i.e., in crisis sub-periods. Note

that we are not including Number of Trades and Rate in the

logistic regression model, as this information is generated

only after a transaction occurs.

4.3. Monitoring results: Uncovering the epochs of the

financial crisis

We use a hierarchical analysis approach to simulate how the

methodology would have performed if implemented in real

time. Specifically, the first 20 weeks of pre-crisis data are

used as in-control observations to obtain appropriate values

of F and Q as well as initial estimates of the regression coef-

ficients. Also based on the Pearson residual errors from the

in-control data, we determine the control limits for the in-

control ARL to be equal to 200 (a � 0:005). Starting with

week 21, we enter the online monitoring phase (see Figure 1

to review the methodology). Whenever a change point is

detected, the entire methodology is restarted, with retraining

of all model parameters using the next 20 weeks as in-con-

trol data before entering another online monitoring phase.
Figure 4 shows the EWMA control charts for Logistic

and Positive Poisson regressions, where we can see that both

aspects of the Hurdle model “raise the alarm” before the

official announcement that marks the beginning of the first

crisis sub-period. Specifically, the Positive Poisson model

would have alerted regulators and financial institutions the

Table 1. Independent variables used in the Hurdle mode for predicting week t.

Node attributes

Variable Description

Lender’s return The average stock market return of the lending bank in week t – 1
Borrower’s return The average stock market return of the borrowing bank in week t – 1

Edge attributes

Variable Description

Return Correlation The correlation between the two banks’ returns from the start of the data up to week t – 1
Number of Trades The average number of transactions between two banks in week t – 1 (if any transaction occurred)
Rate The average interest rate of each loan between two banks in week t – 1 (if any transaction occurred)
Country Difference An indicator variable that is one if two banks are from different countries
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week starting on May 28, 2007, and the Bernoulli model
would have raised an alarm the week of June 18, 2007.

To compare the performance of our method with net-
work statistics commonly used in financial economics
(Finger et al., 2013; Adamic et al., 2017 Basu et al., 2017;
Brunetti et al., 2019), we provide the EWMA control charts
for monitoring network’s average degree and betweenness in
Figure 5. Network degree centrality is defined by the num-
ber of connections attached to each node. We can calculate
the degree centrality of node i by the sum of the weights of

edges starting from node i. Hence dti ¼
P

j 6¼i wi, j, t: The net-

work overall degree at time t is the average of degrees over

all nodes, hence dt ¼ di
t
: Betweenness centrality quantifies

the number of times a node acts as a bridge along the short-
est path between two other nodes. For a node i the between-

ness centrality is calculated as cti ¼
P

j, k
rjk ið Þ

rjk
where rjk is the

number of shortest paths from node j to k and rjk ið Þ is the

number of those paths that pass through node i. Similarly,
the network overall betweenness is the average of between-

nesses over all nodes, hence ct ¼ ci
t:

As the results show, these control charts fail to raise the
alarm before an official announcement of the first crisis sub-

period, providing evidence that network statistics may serve

as a weak foundation for an early-warning system.
When monitoring using our approach, since the EWMA

statistic is representing the difference between the actual and

estimated value, observing its trend during the first crisis

can help us interpret the changes in comparison with the

Pre-Crisis era. For the Bernoulli model, the EWMA statistic

is sharply negative at the onset of the first crisis sub-period,

which means that the model over-estimates the existence of

edges (loans between banks). In other words, for two banks,

the probability that they have any transactions sharply

decreases at the start of the crisis. Adding evidence that

activity in the interbank market dropped precipitously, as

shown in Figure 6, the regression coefficient for Country

Difference is consistently negative, indicating that banks

generally prefer to trade with other banks based in the same

country. The U shape shows that as the crisis unfolded,

banks became even less willing to have transactions with

banks from other countries, but as the crisis concluded and

in the Post-Recession sub-period trading activity (specifically

counter-party trust) was returning to normal. Similarly, for

the Positive Poisson model, we can see, in contrast with

activity during the crisis, an apparent increasing trend

within the Post-Recession sub-period with coefficients end-

ing close to zero. Thus, by the end of 2012, the number of

transactions among two connected banks is not affected by

country differences. The estimated coefficients for the

Number of Trades and Rate variables in Figure 7 also show

meaningful patterns. There is a clear increasing trend in the

coefficient for Number of Trades, denoting that post-reces-

sion, banks were able to obtain more funding in comparison

with before this era. The coefficient for Rate was positive

during the crisis, but negative in the post-recessionary

period. One potential explanation is that banks that wanted

funding had to pay higher rates during the crisis (i.e., it was

a lender’s market), but after the crisis, interbank funding

was more readily available. Estimated coefficients for other

independent variables are not shown, since they were cen-

tered on zero without meaningful trends. Overall, in add-

ition to detecting the onset of the crisis in real-time, the

Figure 4. EWMA charts for Pearson Residuals from the proposed model to
detect the onset of Crisis 1.

Figure 5. EWMA charts for networks statistic (degree, and betweenness) to detect the onset of Crisis 1.
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detailed results are consistent with accepted narratives about

the crisis (Finger et al., 2013; Brunetti et al., 2019;) , where

trust in the interbank market dropped markedly causing

banks to stop participating entirely in the e-MID market,

followed by a return to pre-crisis conditions.
In practice, it can be important to identify possible root

causes for the alarms, which can be accomplished by esti-

mating the actual date of the change point. Doing so

through network analysis is an important novelty and

innovation of this work to the financial network analysis lit-

erature. Nishina (1992) proposed a method to estimate the

EWMA change point after receiving an out-of-control signal

at time T. In this method, if the out-of-control signal is

raised when the monitoring statistic is above the Upper

Control Limit (UCL), the estimated change point is ŝ ¼
max i : zi 	 l0, i 	 T½ �, i.e., the estimated change point ŝ is

the first point before the alarm time when the EWMA stat-

istic is below the center line l0. Similarly, if the out-of-con-

trol signal is raised when the monitoring statistic is below

the Lower Control Limit (LCL), the estimated change point

is ŝ ¼ max i : zi � l0, i 	 T½ �, i.e., the estimated change

point ŝ is the first point before the alarm time when the

EWMA statistic is above the center line l0. Using this heur-

istic, we find a change to crisis conditions in the Bernoulli

model dated to the week of May 28, 2007, and for the

Positive Poisson model dated to the week of March 12-

16, 2007.
Moving to the detection of the onset of Crisis 2 and the

Post-Crisis eras, we use the first 20 weeks of Crisis 1 era for

offline training. The EWMA control charts for Bernoulli

and Positive Poisson regression are shown in Figure 8,

where we see that both parts of the Hurdle model do not

detect any change in the interbank market around the fail-

ure of Lehman Brothers (the onset of Crisis 2). Both models

do successfully capture the change before the onset of Post

of the Recession announcement. The Bernoulli model raises

the alarm the week of January 5, 2009, with the change

point dated to October 6-10, 2008. The Positive Poisson

model raises the alarm the week of December 15, 2008, with

its change point dated back on November 3, 2008.
Inspecting the trend in the EWMA statistics, we see

increases for the Bernoulli and Positive Poisson models

before the onset of the Post-Recession period that continue

to the end of the data, demonstrating that banks returned to

Figure 6. Estimated coefficients for Country Difference in the Bernoulli and Positive Poisson models starting from Pre-Crisis data.

Figure 7. Estimated coefficients for Number of Trades and Rate in the Positive Poisson model starting from Pre-Crisis data.
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the market as overall conditions and trust levels improved.

In unreported results, a very similar pattern emerges as pre-

viously reported when inspecting the estimated coefficients

for independent variables.

4.4. Validation of results with ECB activity

As shown in Figure 9, our monitoring approach applied to

the e-MID data results in practically meaningful results. In

fact, a regulator could have raised the alarm in real time

about the change from calm to crisis conditions during the

week of June 18, 2007 using our methodology. Note that

this is well before August 8-9, 2007, which is widely consid-

ered the official recognition of the crisis when central banks

around the world announced significant liquidity shortages

(Brunetti et al., 2019). This is a notable finding given that it

is difficult to correctly identify the onset of the crisis from

typical financial variables in our data (see Figure 3) and that

previous research using network analysis on the same data

had difficulty correctly identifying this moment as the

beginning of the crisis. Indeed, Finger et al. (2013, p.205)

conduct a detailed network analysis of data from the same

market and remark that “The start of the GFC [global

finance crisis] is not easy to determine [from the data]… .”
Although we do not know precisely when governments

realized internally there was a crisis, we find evidence that

the model results were ahead of official policy. For instance,

both aspects of the Hurdle model raised alarms by June 18,

2007. On June 6, the ECB raised interest rates, followed by

the publication of the Financial Stability Review (European

Central Bank, 2007) on June 15, which struck a cautiously

optimistic tone. The Financial Stability Review included

positive outlooks, with statements such as:

Looking forward, with the euro area financial system in a

generally healthy condition and the economic outlook

remaining favorable, the most likely prospect is that financial

system stability will be maintained in the period ahead.

Such forecasts were coupled with warnings about how the

financial system was growing particularly vulnerable “to an

abrupt and unexpected sharp decline in market liquidity”,

Figure 8. EWMA charts for Pearson Residuals from the proposed model to detect the end of the financial crisis and start of the post-recessionary period.

Figure 9. Timeline of estimation results and main events in the financial crisis. The proposed monitoring framework would have raised alarms in real time to regu-
lators and financial institutions about changes in interbank market conditions that coincide with the onset and end of the crisis.
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which underscores the importance of our results given that

we are studying an interbank market – a key source of

liquidity for banks.
Similarly, the alarms signifying the end of the crisis using

the proposed methodology is raised between December 15,

2008, to January 5, 2009. Coincidentally, the ECB published

another Financial Stability Review on December 15

(European Central Bank, 2008) stating that:

The extraordinary remedial actions taken by central banks and
governments, which are aimed at addressing liquidity stresses
and strengthening capital positions, thus contributing to
restoring confidence in, and improving the resilience of
financial systems, were successful in stabilising the euro area
banking system.

This period also coincides with an intense activity by the

U.S. Treasury Department as a result of the new law giving

it broad new powers (see discussion of the Emergency

Economic Stabilization Act below) to strengthen the finan-

cial and auto sectors of the U.S. economy.
To further validate our results, we consider whether the

identified change point dates match previously reported

results or known events. The earliest detected change point

for Crisis 1, the week of March 12, 2007, for the Positive

Poisson regression, closely follows the root-cause event as

identified by the Federal Reserve Bank of St. Louis (2018) of

a Freddie Mac announcement on February 27, 2007, that

they would no longer buy the riskiest type of mortgages

(sub-prime). Similarly, the earliest identified change point

signaling the end of the crisis was October 6-10, 2008 for

the Bernoulli model, which coincides with the “bank

bailouts” (the Emergency Economic Stabilization Act of

2008) being signed into law by then President Bush on

October 3, 2008. To our knowledge, this is a new finding

within the network analysis literature that shows evidence

that U.S. fiscal and monetary policy directly impacted

European financial activity and markets, particularly during

the 2007–2009 crisis which was U.S.-based.

5. Conclusion

In this article we proposed a new network monitoring sys-

tem to detect changes within a sequence of sparse and

attributed networks. We started by modeling a single net-

work with the Hurdle model, which captures sparsity appro-

priately while allowing edges to be modeled as a function of

node and edge attributes. Then, to capture temporal dynam-

ics of the edge formation process, we allowed the parameters

of the Hurdle model to evolve using a state-space model. A

sequential estimation scheme relying on the EKF is used to

update the state-space parameters and predict the value of

upcoming networks. Finally, SPC charts are used to monitor

the network sequence in real time in order to identify

changes in connectivity patterns that are caused by regime

shifts. The proposed approach was validated in two ways.

First, with simulation, we established self-consistency and

functional performance of the proposed modeling and esti-

mation framework. Second, with a detailed case study, we

demonstrated how the methodology can be applied to

monitor interbank lending networks. We found several

promising and novel results showing that the proposed

model would have raised alarms to the public before official

announcements by the ECB. The identified change point

dates were also highly interpretable, matching closely with

several key real-world events. This article focused on detect-

ing global changes in a network as they are the most crucial

ones in our case study of financial networks. Therefore, we

take the average over all prediction residuals as the monitor-

ing statistics. Nevertheless, this monitoring approach can be

extended for detection of local changes and performing

diagnosis as a future line of work.
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