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Optimism-Based Adaptive Regulation of Linear-Quadratic Systems

Mohamad Kazem Shirani Faradonbeh , Ambuj Tewari , and George Michailidis

Abstract—The main challenge for adaptive regulation of linear-
quadratic systems is the tradeoff between identification and con-
trol. An adaptive policy needs to address both the estimation
of unknown dynamics parameters (exploration), as well as the
regulation of the underlying system (exploitation). To this end,
optimism-based methods that bias the identification in favor of
optimistic approximations of the true parameter are employed in
the literature. A number of asymptotic results have been estab-
lished, but their finite-time counterparts are few, with important
restrictions. This article establishes results for the worst-case
regret of optimism-based adaptive policies. The presented high
probability upper bounds are optimal up to logarithmic factors.
The nonasymptotic analysis of this article requires the following
very mild assumptions: stabilizability of the system’s dynamics,
and limiting the degree of heaviness of the noise distribution. To
establish such bounds, certain novel techniques are developed to
comprehensively address the probabilistic behavior of dependent
random matrices with heavy-tailed distributions.

Index Terms—Certainty equivalence (CE), exploration-
exploitation, optimism in the face of uncertainty (OFU),
reinforcement learning, regret bounds.

I. INTRODUCTION

Adaptive control of linear-quadratic (LQ) state-space models repre-

sents a canonical problem, and is the main focus of this article. Such

a model describes the dynamics of the system as follows: starting

from the initial state x(0) ∈ R
p, its temporal evolution and cost are

determined by

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1) (1)

ct = x(t)′Qx(t) + u(t)′Ru(t) (2)

for t = 0, 1, . . . . The vector x(t) ∈ R
p denotes the output (and state)

of the system at time t, u(t) ∈ R
r represents the control signal, and

the stochastic process of the noise sequence is denoted by {w(t)}∞t=1.

Furthermore, the quadratic function ct corresponds to the instantaneous

cost of the system (the transpose of the vector v is denoted by v′).
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The transition matrix A0 ∈ R
p×p and the input matrix B0 ∈ R

p×r that

constitute the dynamical parameters of the system are unknown, while

the positive definite matrices of the cost, Q ∈ R
p×p, R ∈ R

r×r are

assumed known.

The main goal is to adaptively regulate the system in order to

minimize its long-term average cost. This canonical problem has

been thoroughly studied in the literature and a number of asymptotic

results have been established, as briefly summarized next. However,

finite-time results are scarce and rather incomplete, despite their need

in applications (e.g., network systems [1]). Note that the theoretical

guarantee for fast stabilization of general linear systems has been

recently established [2], but the existing analysis of the regulation

problem of cost minimization leads to a remarkable loss of generality,

as will be discussed shortly.

Since the system dynamics are unknown, a popular adaptive proce-

dure for regulation is based on the principle of certainty equivalence

(CE) [3]. Alternating between estimation and regulation, CE applies a

control feedback as if the identified parameters A0 and B0 are the true

matrices that drive the system’s evolution [4]–[6]. However, it has been

shown that the CE-based strategy can lead to wildly incorrect parameter

estimates [7]–[9], and thus, suitable modifications have been introduced

in the literature [10], [11]. A popular approach, known as optimism

in the face of uncertainty (OFU) [12], was developed to address the

suboptimality of CE. In OFU, after constructing a confidence set for

the model parameters, a regulation policy is designed based on the most

optimistic parameter in the confidence set [13].

The aforementioned references establish the asymptotic convergence

of the average cost to the optimal value. However, nonasymptotic

results on the growth rate of regret [i.e., the accumulative deviation

from the optimal cost, see (5)] have recently appeared [14], [15]. These

papers provide a near-optimal upper bound for the regret of OFU, under

the following rather restrictive conditions.

1) The dynamics matrices are assumed to be controllable and observ-

able. This leads to an excessive complexity in the computation of

the adaptive regulator. Furthermore, this assumption restricts the

applicability of the analysis since the condition may be violated in

many LQ systems.

2) The operator norm of the closed-loop matrix is less than one, which

excludes a remarkable fraction of systems with stable closed-loop

matrices. In fact, a stable matrix can have an arbitrarily large

operator norm. Note that condition 1 only implies that the largest

closed-loop eigenvalue (not the operator norm) is less than one [16].

3) The noise distribution satisfies a tail condition such as sub-

Gaussianity [14] or Gaussianity [15]. Moreover, the coordinates

of the noise vectors are uncorrelated.

This article aims to address these shortcomings by providing a

comprehensive treatment of the problem. We study optimality of OFU

policies for an extensive family of LQ systems by establishing upper

bounds for the worst-case regret, under a minimal set of assumptions.

Namely, we remove the aforementioned condition 1, and replace the

strict condition 2 with stabilizability, which is the necessary assumption

for the optimal control problem to be well-defined. Furthermore, the

high probability near-optimal upper bound for regret established in
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this article holds for a class of heavy-tailed noise vectors with arbitrary

correlation structures, thus significantly relaxing the condition 3. To the

authors’ knowledge, this study is the first to address the nonasymptotic

analysis of the regret of adaptive policies for general LQ systems.

There are a number of conceptual and technical difficulties one needs

to address in order to obtain the results of optimal regulation. First, the

existing methodology for analyzing adaptive policies [11], [14], [15]

becomes nonapplicable beyond the condition 2. One reason is due to

the fact that matrix multiplication preserves the operator norm; i.e., the

norm of the product is upper bounded by the product of the norms.

However, the product of two stable matrices can have eigenvalues

of arbitrarily large magnitude. Furthermore, sub-Weibull distributions

assumed in this study do not need to have generating functions [17].

Hence, new tools are required to establish concentration inequali-

ties for random matrices with heavy-tailed probability distributions

[18], [19].

In addition, an adaptive strategy is needed to stabilize the system so

that the uncertainty about A0 and B0 does not lead to instability. Adap-

tive stabilization methods are proposed before, and their finite-time

performance analysis is provided [2]. First, a coarse approximation of

the unknown dynamics parameter is shown to be enough for stabiliza-

tion. Then, it is established that such approximations can be achieved

by employing independent random feedbacks in sufficiently many

periods. Nevertheless, for nonasymptotic analysis of the performance

of regulation policies, a comprehensive study is not currently available,

and is adopted as the focus of this study. In case the operator is concerned

with stability issues, the algorithm in the aforementioned reference can

be applied a priori to the regulation algorithms we discuss here.

The remainder of this article is organized as follows. Section II for-

mally defines the problem. Section III addresses the problem of accurate

estimation of the closed-loop matrix and includes the analysis of the

empirical covariance matrix, as well as a high probability prediction

bound. Finally, an optimism-based algorithm for adaptive regulation

of the system is presented in Section IV. We show that the regret of

Algorithm 1 is with high-probability optimal, up to a logarithmic factor.

Finally, Section VI concludes this article.

The following notation is used throughout this article. For matrix

A ∈ C
p×q , A′ is its transpose. When p = q, the smallest (respectively,

largest) eigenvalue of A (in magnitude) is denoted by λmin(A) (respec-

tively,λmax(A)) and the trace ofA is denoted by tr(A). Forγ ∈ R, γ ≥
1, v ∈ C

q , the norm of v is ||v||γ = (
∑q

i=1 |vi|
γ)1/γ . Furthermore,

when γ = ∞, the norm is defined according to ||v||∞ = max1≤i≤q |vi|.
We also use the following notation for the operator norm of matrices.

For β, γ ∈ [1,∞], and A ∈ C
p×q , define

|||A|||γ→β = sup
v∈Cq\{0}

||Av||β
||v||γ

.

Wheneverγ = β, we simply write |||A|||β . Finally, the sigma-field gen-

erated by random vectors X1, . . . ,Xn is denoted by σ(X1, . . . ,Xn).

The notation for θ,K(θ), L(θ), and L̃(θ) are provided in Definition

2, (3), (4), and Definition 4, respectively. Finally, log is employed

throughout this article to refer to the natural logarithm function.

II. PROBLEM FORMULATION

First, we formally discuss the problem of adaptive regulation this

article is addressing. Equation (1) depicts the dynamics of the system,

where {w(t)}∞t=1 are independent mean-zero noise vectors with full

rank covariance matrix C as

E [w(t)] = 0, E [w(t)w(t)′] = C, |λmin(C)| > 0.

The results established also hold if the noise vectors are martingale

difference sequences. The true dynamics are assumed to be stabilizable,

as defined as follows.

Definition 1 (Stabilizability [16]): [A0, B0] is stabilizable if there

is L ∈ R
r×p such that |λmax(A0 +B0L)| < 1. The linear feedback

matrix L is called a stabilizer.

Definition 2 (Notation θ): We use θ to denote the dynamics param-

eter [A,B], where A and B are p× p and p× r matrices, respectively.

Obviously θ ∈ R
p×q , for q = p+ r. In particular, we frequently refer

to θ0 = [A0, B0] throughout this article.

Here, we consider perfect observations, i.e., the output of the system

corresponds to the state vector itself. Next, an admissible control policy

is a mappingπ that designs the control action according to the dynamics

matrix θ0, the cost matrices Q and R, and the history of the system;

that is for all t ≥ 0

u(t) = π
(
θ0, Q,R, {x(i)}ti=0 , {u(j)}

t−1
j=0

)
.

An adaptive policy is ignorant about the parameter θ0. So

u(t) = π
(
Q,R, {x(i)}ti=0 , {u(j)}

t−1
j=0

)
.

When applying the policy π, the resulting instantaneous quadratic cost

at time t defined according to (2) is denoted by c
(π)
t . If there is no

superscript, the corresponding policy will be clear from the context.

For arbitrary policy π, let J π(θ0) be the average cost of the system

J π (θ0) = lim sup
T→∞

1

T

T∑

t=1

c
(π)
t .

Note that the dependence of J π(θ0) to the known cost matrices

Q and R is suppressed. Then, the optimal average cost is defined

by J �(θ0) = minπ J π(θ0), where the minimum is taken over all

admissible policies. Furthermore, π� is called an optimal policy for

the system θ, if satisfying J π�(θ) = J �(θ). To find π� for general

θ ∈ R
p×q , one has to solve a Riccati equation. A solution, is a positive

semidefinite matrix K(θ) satisfying

K (θ) = Q+A′K (θ)A

−A′K (θ)B (B′K (θ)B +R)
−1

B′K (θ)A. (3)

The following result establishes optimality of the linear feedback

provided by K(θ) according to

L (θ) = − (B′K (θ)B +R)
−1

B′K (θ)A. (4)

Definition 3 (Policy π�): Henceforth, let π� denote the linear feed-

back policy u(t) = L(θ0)x(t) for all t ≥ 0.

Lemma 1 (Optimality [2]): If θ0 is stabilizable, then (3) has a

unique solution, π� is optimal, and J �(θ0) = tr(K(θ0)C). Con-

versely, if K(θ0) is a solution of (3), L(θ0) is a stabilizer.

Note that in the latter case of Lemma 1, the existence of a solution

K(θ0) implies that it is unique, π� is an optimal policy, and J �(θ0) =
tr(K(θ0)C).

In order to measure the quality of (adaptive) policy π, the resulting

cost will be compared to the optimal average cost defined previously.

More precisely, letting c
(π)
t be the resulting instantaneous cost at time

t, regret at time T is defined as

R(T ) =

T∑

t=1

[
c
(π)
t − J � (θ0)

]
. (5)

The comparison between adaptive control policies is made according

to regret. The next result describes the asymptotic distribution of the

regret. Lemma 2, which is basically a central limit theorem for R(T ),
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states that even when applying optimal policy, the regret R(T ) scales

as O(T 1/2), multiplied by a normal random variable.

Lemma 2: Applying π�, let D = A0 +B0L(θ0) be the closed-

loop matrix. Then, T−1/2R(T ) converges in distribution to N (0, σ2)
as T grows, where

σ2 = 4 tr

(
K (θ0)CK (θ0)

∞∑

n=1

DnCD′n

)

+ lim
T→∞

T−1

T∑

t=1

Var [w(t)′K (θ0)w(t)] > 0.

The proof of Lemma 2 based on an application of the martingale

central limit theorem [19] is deferred to the supplementary materials.

In the sequel, we discuss the result of Lemma 2. In the definition of

regret in (5), the cumulative deviation from the optimal average cost

can be decomposed into the following two fractions.

1) The probabilistic fraction contributed by the stochastic evolution

of the system and randomness of {w(t)}∞t=1.

2) The statistical fraction caused by the uncertainty about the dy-

namics and unknownness of θ0 to the operator.

Lemma 2 states that the probabilistic fraction scales with the growth

rate O(T 1/2). So, trying to push the statistical fraction of the regret

(which is due to the error in learning the unknown dynamics) to have a

rate less than O(T 1/2) is actually unnecessary. Furthermore, Lemma

2 provides a lower bound for the worst-case regret of adaptive policies.

Since the optimal policy for minimizing the expected cumulative cost∑T
t=0 E[ct] converges to π� as T grows [16], the regret of an arbitrary

policy cannot be smaller than that of π�. On the other hand, the high

probability upper bound of a normal distribution is in magnitude at least

(− log δ)1/2. Therefore, Lemma 2 implies that a high probability regret

bound to hold with probability at least 1− δ, needs to be at least of the

order of magnitude of T 1/2(− log δ)1/2. Note that the aforementioned

argument does not necessarily imply impossibility of the smaller mag-

nitudes for the statistical fraction of the regret.1 However, since there

are information theoretic limits in learning the unknown parameter θ0,

statistical regret cannot be small. A rigorous derivation of lower bounds

for the statistical regret is beyond the scope of this article. Although,

later on, we will intuitively discuss efficiency of the rate T 1/2, based

on the decomposition being used in the regret analysis of Section IV.

Definition 4 (Notation L̃(θ)): For arbitrary stabilizable θ1, θ2, let

L̃(θ1) = [Ip, L(θ1)
′]′. So, θ2L̃(θ1) = A2 +B2L(θ1).

III. CLOSED-LOOP IDENTIFICATION

When applying linear feedback L ∈ R
r×p to the system, the closed-

loop dynamics becomes x(t+ 1) = Dx(t) + w(t+ 1), where D =
A0 +B0L. Subsequently, we present bounds for the time length the

user can interact with the system in order to have sufficiently many

observations for accurate identification of the closed-loop matrix. The

next set of results is used later on to construct the confidence sets being

used to design the adaptive policy. Since the focus is on adaptive policies

for regulating the system, the matrix D is assumed to be stable.

First, we define least-squares estimation for the matrixD, as follows.

Observing the state vectors {x(t)}nt=0, for an arbitrary matrix M ∈
R

p×p consider the sum-of-squares loss function

Ln(M) =

n−1∑

t=0

||x(t+ 1)−Mx(t)||22.

1for example, applying π
�, we get limT→∞ T

−1/2E[R(T )] = 0.

Then, the true closed-loop transition matrix D is estimated by

D̂n, which is a minimizer of the aforementioned loss: Ln(D̂n) =

minM∈Rp×p Ln(M). Solving for D̂n, one can easily see that it admits

the closed-form expression

D̂n =
n−1∑

t=0

x(t+ 1)x(t)′V −1
n

where Vn =
∑n−1

t=0 x(t)x(t)′ denotes the (invertible) empirical covari-

ance matrix of the state process. Therefore, the behavior of Vn needs

to be carefully studied. To this end, one needs to tightly examine the

state sequence {x(t)}nt=0, which in turn highly depends on both the

spectral properties of the transition matrix D, as well as the noise

process {w(t)}nt=1. The former is reflected through the constant η(D),
while the latter is indicated by νn(δ) we shortly define.

To proceed, let D = P−1ΛP be the Jordan decomposition of D;

i.e., Λ is block diagonal, Λ = diag(Λ1, . . . ,Λk), where for all i =
1, . . . , k, Λi is a Jordan matrix of λi as

Λi =

⎡
⎢⎢⎢⎢⎣

λi 1 0 · · · 0

0 λi 1 · · · 0
...

...
...

...
...

0 0 · · · 0 λi

⎤
⎥⎥⎥⎥⎦
∈ C

mi×mi .

Definition 5 (Constant η(D)): Denote the Jordan decomposition

described previously by D = P−1ΛP . Letting

ηt (Λi) = inf
ρ≥|λi|

tmi−1ρt
mi−1∑

j=0

ρ−j

j!

for t ≥ 1, defineηt(Λ) = max1≤i≤k ηt(Λi). Then, letη0(Λ) = 1, and

η (D) =
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2

|||P |||∞

∞∑

t=0

ηt (Λ) .

Letting λ = |λmax(D)|, ifD is diagonalizable, then clearlyη(D) ≤
|||P−1|||∞→2|||P |||∞(1− λ)−1. In general, denoting the dimension

of the largest block in the Jordan decomposition of D by µ =

max1≤i≤k mi, we have ηt(Λ) ≤ tµ−1
λ
t
e1/λ, and

η (D) ≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2

|||P |||∞e1/λ

[
µ − 1

− log λ
+

(µ − 1)!(
− log λ

)µ

]
.

Toward studying the effect of the noise vectors on the state process,

the following tail condition is assumed.

Assumption 1 (Sub-Weibull distribution [17]): There are positive

reals b1, b2, and α, such that for all t ≥ 1; 1 ≤ i ≤ p; and y > 0

P (|wi(t)| > y) ≤ b1 exp

(
−
yα

b2

)
.

Clearly, the smaller the exponent α is, the heavier the tail of wi(t)
will be. Assuming a sub-Weibull distribution for the noise coordinates

is more general than the sub-Gaussian (or subexponential) assumption

routinely made in the literature of nonasymptotic analysis [14], where

α ≥ 2 (α ≥ 1). To gain insight into the basic properties of sub-Weibull

distributions, consider the setting α < 1. It delivers an extensive family

of distributions for which moments of all orders are well defined,

while the moment generating function does not exist. So, it relaxes

more restrictive tail conditions to a minimal framework that finite-time

concentration results can be established. Furthermore, Assumption 1
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encompasses fundamental distributions that subexponential families

fail to capture, such as polynomials of Gaussian random variables.

Finally, to obtain analogous results for uniformly bounded noise se-

quences, it suffices to let α → ∞ in the subsequently presented mate-

rials.

In order to study magnitudes of the state vectors over time, define

νn (δ) =

(
b2 log

(
b1np

δ

))1/α

(6)

ξn (δ) = η (D) (||x(0)||∞ + νn (δ)) . (7)

Lemmas 3 and 4 show that νn(δ), ξn(δ) are the high probability

uniform bounds for the size of the noise and the state vectors. As a matter

of fact, νn(δ) and ξn(δ) scale as log1/α(n/δ). Hence, for uniformly

bounded noise, both of them are fixed constants. Then, recalling that C
is the positive definite covariance matrix of the noise vectors, letN(ε, δ)
be large enough, such that the followings hold for all n ≥ N(ε, δ):

n

νn (δ)2
≥

18 |λmax(C)|+ 2ε

ε2
p log

(
4p

δ

)
(8)

n

ξn (δ)2 νn (δ)2
≥

288

ε2
p|||D|||22 log

(
4p

δ

)
(9)

n

ξn (δ)2
≥

6

ε

(
|||D|||22 + 1

)
. (10)

The following result provides a high probability lower bound for the

smallest eigenvalue of Vn+1. Essentially, Theorem 1 determines the

number of state observations needed to ensure that the excitation is

persistent enough to identify the closed-loop matrix [20], [21].

Theorem 1 (Empirical covariance): If n ≥ N(ε, δ), then

P (|λmin (Vn+1)| < n (|λmin(C)| − ε)) < 2δ.

Moreover, limn→∞ n−1Vn =
∑∞

i=0 D
iCD′i.

Proof: First, for n ≥ 1, and 0 < δ < 1, define the event

W =

{
max
1≤t≤n

||w(t)||∞ ≤ νn (δ)

}
. (11)

We use the following intermediate results, for which the proofs are

delegated to the supplementary materials, due to space limitations.

Lemma 3: Defining W according to (11), we have P (W) ≥ 1− δ.

Lemma 4: The following holds on the event W in (11):

max
1≤t≤n

||x(t)||2 ≤ ξn (δ) .

Lemma 5: Let the event W be as (11), and define Cn =
n−1

∑n
i=1 w(i)w(i)′. Then, on W , we have P (|λmax(Cn − C)| >

ε) ≤ δ, if

n

νn (δ)2
≥

6 |λmax(C)|+ 2ε

3ε2
p log

(
2p

δ

)
. (12)

Lemma 6: Let Un = n−1
∑n−1

i=0 [Dx(i)w(i+ 1)′ + w(i+
1)x(i)′D′], and define W by (11). Then, on W , we have

P (|λmax(Un)| > ε) ≤ δ, if

n

|||D|||22νn (δ)2 ξn (δ)2
≥

32p

ε2
log

(
2p

δ

)
. (13)

Next, note that x(t+ 1) = Dx(t) + w(t+ 1) implies

Vn+1 = x(0)x(0)′ +D
n−1∑

i=0

x(i)x(i)′D′ + nUn + nCn

Algorithm 1: Adaptive Regulation.

Inputs: Ω(0) ⊂ R
p×q , 6δ > 0, γ > 1

Let τ0 = 0
for i = 1, 2, . . . do

Define θ̃(i), τi according to (20) and (21), respectively

while t < τi do

Apply control feedback u(t) = L(θ̃(i))x(t)
end while

Find the estimate D̂(i) given in (22)

Using V (i) in (23), construct Γ(i) according to (24)

Update Ω(i) by (25)

end for

where Cn and Un are defined in Lemmas 5 and 6. So, we obtain the

Lyapunov equation Vn+1 = DVn+1D
′ + nEn, for

En = Un + Cn +
D (x(0)x(0)′ − x(n)x(n)′)D′

n
+

x(0)x(0)′

n

to obtain

Vn+1 = n
∞∑

i=0

DiEnD
′i. (14)

Henceforth, suppose that W holds. According to Lemma 5, (8) implies

that

P

(
|λmax (Cn − C)| >

ε

3

)
≤

δ

2
. (15)

In addition, by Lemma 6, (9) implies that

P

(
|λmax (Un)| >

ε

3

)
≤

δ

2
. (16)

Finally, using Lemma 4, by (10), we get

1

n

(
|||D|||22 + 1

)(
||x(0)||22 + ||x(n)||22

)
≤

ε

3
. (17)

Putting (15)–(17) together, on W , with probability at least 1− δ, it

holds that |λmin(En)| ≥ |λmin(C)| − ε. Therefore, since (14) implies

that |λmin(Vn+1)| ≥ n|λmin(En)|, we get the desired result. When

n → ∞, the conditions hold for arbitrary positive values of ε and δ.

Thus, we have |λmax(En − C)| → 0, which according to (14) implies

the desired result. �

The following corollary provides a high probability confidence set

for D, which will be used later in Algorithm 1. Using the bounds

νn(δ), ξn(δ) introduced in (6) and (7), define the prediction bound

βn(δ) according to

βn (δ) =
16np

(n− 1) |λmin(C)|
ξn (δ)2 νn (δ)2 log

(
2p

δ

)
. (18)

Corollary 1 (Prediction bound): Define βn(δ) by (18). Then, n ≥
N(|λmin(C)|/2, δ) + 1 implies that

P

(∣∣∣∣
∣∣∣∣
∣∣∣∣Vn

1/2
(
D̂n −D

)′
∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

> βn (δ)

)
≤ 3δ.

Proof: First, since n ≥ N(|λmin(C)|/2, δ) + 1, similar to the

proof of Theorem 1, on the event W defined in (11), with probability

at least 1− δ, we have |λmin(Vn)| ≥ |λmin(C)|(n− 1)/2. Then, as

long as Vn is nonsingular, one can write D̂n −D = (
∑n−1

t=0 w(t+

1)x(t)′)V −1
n , which yields (D̂n −D)Vn(D̂n −D)′ = U ′

nV
−1
n Un,
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where Un =
∑n−1

t=0 x(t)w(t+ 1)′. Therefore

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
D̂n −D

)
Vn

(
D̂n −D

)′
∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤
|||Un|||

2
2

|λmin (Vn)|
. (19)

To proceed, for the arbitrary matrix H ∈ R
k×�, define the dilation

Φ(H) =

[
0k×k H

H ′ 0�×�

]
∈ R

(k+�)×(k+�).

A well-known fact states that the equality |||H|||2 = |λmax(Φ(H))|
holds [18]. So, lettingZt = x(t)w(t+ 1)′, apply the following random

matrix concentration inequality to Xt = Φ(Zt) ∈ R
2p×2p.

Lemma 7: [18] Let {Xi}ni=1 be a martingale difference sequence of

symmetric p× pmatrices adapted to the filtration {Fi}ni=0. Assume for

fixed symmetric matrices {Mi}
n
i=1, all matrices M2

i −X2
i are positive

semidefinite. Then, letting σ2 = |λmax(
∑n

i=1 M
2
i )|, for all y ≥ 0, we

have

P

(∣∣∣∣∣λmax

(
n∑

i=1

Xi

)∣∣∣∣∣ ≥ y

)
≤ 2pexp

(
−

y2

8σ2

)
.

Since

Xt
2 =

[
||w(t+ 1)||22x(t)x(t)

′ 0p×p

0p×p ||x(t)||22w(t+ 1)w(t+ 1)′

]

by Lemmas 3 and 4, all matrices Mt
2 −Xt

2 are positive semidefinite

on the event W defined in (11), with Mt = Φ(p1/2νn(δ)ξn(δ)Ip).
By σ2 = npνn(δ)

2ξn(δ)
2, letting y = 81/2σ log1/2( 2p

δ
), Lemma 7

implies P (|||Un|||2 > y) = P (|λmax(Φ(Un))| > y) ≤ δ. Plugging in

(19), we get the desired result. �

IV. DESIGN OF ADAPTIVE POLICY

In this section, we present an algorithm for adaptive regulation

of LQ systems. When applying the following algorithm, we assume

that a stabilizing set is provided. Construction of such a set with an

arbitrary high probability guarantee is addressed in the literature [2].

It is established that the proposed adaptive stabilization procedure

returns a stabilizing set in finite time. Nevertheless, if such a set is not

available, the operator can apply the proposed method of the random

linear feedback [2] in order to stabilize the system before running the

following adaptive policy.

In the episodic algorithm described later, estimation will be rein-

forced at the end of every episode. Indeed, the algorithm is based

on a sequence of confidence sets, which are constructed according to

Corollary 1. This sequence will be tightened at the end of every episode

so that the provided confidence sets become more and more accurate.

According to this sequence, the adaptive linear feedback will be updated

after every episode. After explaining the algorithm, we present a high

probability regret bound.

First, we provide a high level explanation of the algorithm. Starting

with the stabilizing set Ω(0), we select a parameter θ̃(1) ∈ Ω(0) based

on the OFU principle; θ̃(1) is a minimizer of the optimal average cost

over the corresponding confidence set [see (20)].

Then, assuming θ̃(1) is the true parameter, the system evolves accord-

ing to, during the first episode the algorithm applies the optimal linear

feedback L(θ̃(1)). Once the observations during the first episode are

collected, they are used to improve the accuracy of the high probability

confidence set. Therefore, Ω(0) is tightened to Ω(1), and the second

episode starts by selecting θ̃(2), iterating the aforementioned procedure,

and so on. The lengths of the episodes will be increasing, to make every

confidence set significantly more accurate than all previous ones.

The intuition behind proficiency of the OFU principle is as fol-

lows. Applying a linear feedback L, the closed-loop transition matrix

is A0 +B0L = θ0L̃, where L̃ = [Ip, L
′]′. Importantly, the observed

sequence of state vectors accurately identifies the closed-loop matrix

θ0L̃. However, an accurate estimation of θ0L̃ does not lead to that

of θ0. Therefore, θ0 is not guaranteed to be effectively approximable,

regardless of the accuracy in the approximation of θ0L̃.

Nevertheless, one has to focus on finding accurate approximations

of the feedback matrix L(θ0), in order to design an effective adaptive

policy for minimizing the average cost. Specifically, as long as θ1 is

available satisfying L(θ1) = L(θ0), one can apply an optimal linear

feedback L(θ1), no matter how large |||θ1 − θ0|||2 is. In general,

estimation of such a θ1 is not possible. Yet, an optimistic approximation

in addition to exact knowledge of the closed-loop dynamics lead to an

optimal linear feedback, thanks to the OFU principle.

Lemma 8: If J �(θ1) ≤ J �(θ0), and θ1L̃(θ1) = θ0L̃(θ1), then

L(θ1) is optimal for the system θ0: L(θ0) = L(θ1).
In other words, applying linear feedback L(θ1), which is designed

according to an optimistically selected parameter θ1, as long as the

closed-loop matrix θ0L̃(θ1) is exactly identified, the optimal linear

feedback is automatically provided. Recall that the lengths of the

episodes are growing so that the estimation of the closed-loop matrix be-

comes more precise at the end of every episode. Thus, the approximation

θ1L̃(θ1) ≈ θ0L̃(θ1) is becoming more and more accurate. Rigorous

analysis of the aforementioned discussion, leads to the high probability

near-optimal regret bound of Theorem 2.

Algorithm 1 takes the stabilizing set Ω(0), the failure probability 6δ,

and the reinforcement rate γ > 1 as inputs. Indeed, Ω(0) is a bounded

stabilizing set such that for every θ ∈ Ω(0), the system will be stable if

the optimal linear feedback of θ is applied; that is, |λmax(θ0L̃(θ))| < 1.

As mentioned before, an algorithmic procedure to obtain a bounded

stabilizing set in finite time is available in the literature [2]. Furthermore,

6δ > 0 is the highest probability that Algorithm 1 fails to adaptively

regulate the system such that the regret will be nearly optimal (see

Theorem 2). The reinforcement rate γ determines the growth rate of the

lengths of the time intervals (episodes) a specific feedback is applied

until being updated [see (21)].

The algorithm provides an adaptive policy as follows. For i =
1, 2, . . . , at the beginning of the ith episode, we apply linear feedback

u(t) = L(θ̃(i))x(t), where

θ̃(i) ∈ arg min
θ∈Ω(i−1)

J � (θ) . (20)

Indeed, based on the OFU principle, at the beginning of every episode,

the most optimistic parameter among all we are uncertain about is being

selected. The length of the episode i, which is the time period we apply

the adaptive control policy u(t) = L(θ̃(i))x(t), is designed according

to the following equation. Letting τ0 = 0, we update the control policy

at the end of the episode i at the time t = τi, defined according to

τi = τi−1 + γi/qN

(
|λmin(C)|

2
,
δ

i2

)
+ γi/q (21)

where N(·, ·) is defined by (8)–(10). After the ith episode, we es-

timate the closed-loop transition matrix θ0L̃(θ̃
(i)) by the following

least-squares estimator:

D̂(i) = arg min
M∈Rp×p

τi−1∑

t=τi−1

||x(t+ 1)−Mx(t)||22. (22)

Authorized licensed use limited to: Cornell University Library. Downloaded on December 30,2021 at 15:05:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 4, APRIL 2021 1807

Letting V (i) be the empirical covariance matrix of the episode i as

V (i) =


τi�−1∑

t=
τi−1�

x(t)x(t)′ (23)

define the high probability confidence set as

Γ(i) =

{
θ ∈ R

p×q :

∣∣∣∣
∣∣∣∣
∣∣∣∣V

(i)1/2
(
θL̃

(
θ̃(i)

)
− D̂(i)

)′
∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

≤ βτi−τi−1

(
δ

i2

)}
(24)

where βn(δ) is defined in (18). Note that according to Corollary 1,

P (θ0 ∈ Γ(i)) ≥ 1− 3δi−2. Then, at the end of the episode i, the

confidence set Ω(i−1) will be updated to

Ω(i) = Ω(i−1) ∩ Γ(i) (25)

and episode i+ 1 starts, finding θ̃(i+1) by (20), and then, iterating all

steps described previously.

Remark 1: The choice of θ̃(i) does not need to be as extreme as

(20) [14]. In fact, it suffices to satisfy J �(θ̃(i)) ≤ (τi − τi−1)
−1/2 +

infθ∈Ω(i−1) J �(θ).
The following result states that performance of the aforementioned

adaptive control algorithm is optimal, apart from a logarithmic factor.

Theorem 2 also provides the effect of the degree of heaviness of

the noise distribution (denoted by α in Assumption 1) on the regret.

Compared to O(·), the notation Õ(·) used in the following, hides the

logarithmic factors.

Theorem 2 (Regret bound): For bounded Ω(0), with probability at

least 1− 6δ, the regret of Algorithm 1 satisfies

R(T ) ≤ Õ
(
T 1/2 (− log δ)1/2+2/α

)
.

Proof: The stabilizing set Ω(0) is bounded

ρ1 = sup
θ∈Ω(0)

|||θ′|||2 < ∞. (26)

Suppose that for t = 1, 2, . . . , the parameter θt is being used to de-

sign the adaptive linear feedback u(t) = L(θt)x(t). So, during every

episode, θt does not change, and for τi−1 ≤ t < τi, we have θt = θ̃(i).
Letting Ft = σ(w(1), . . . , w(t)), the infinite horizon dynamic pro-

gramming equations [16] are

J � (θt) + x(t)′K (θt)x(t) = x(t)′Qx(t) + u(t)′Ru(t)

+ E

[
y(t+ 1)′K (θt) y(t+ 1)

∣∣∣Ft

]

where u(t) = L(θt)x(t), and

y(t+ 1)=Atx(t) +Btu(t) + w(t+ 1)=θtL̃ (θt)x(t) + w(t+ 1)
(27)

describes the desired dynamics of the system. Note that since the true

evolution of the system is governed by θ0, the next state is

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1)

= θ0L̃ (θt)x(t) + w(t+ 1). (28)

Substituting (27) and (28) into the dynamic programming equation, and

using (2) for the instantaneous cost ct, we have

J � (θt) + x(t)′K (θt)x(t)

= ct + E

[
w(t+ 1)′K (θt)w(t+ 1)

∣∣∣Ft

]

+ x(t)L̃ (θt)
′ θ′tK (θt) θtL̃ (θt)x(t)

= ct + E

[
x(t+ 1)′K (θt)x(t+ 1)

∣∣∣Ft

]

+ x(t)L̃ (θt)
′ [θ′tK (θt) θt − θ′0K (θt) θ0] L̃ (θt)x(t).

Adding up the terms for t = 1, . . . , T , we obtain

R(T ) =
T∑

t=1

[ct − J � (θ0)] = Y1 + Y2 + Y3 + Y4 (29)

Y1 =
T∑

t=1

[J � (θt)− J � (θ0)] (30)

Y2 =
T∑

t=1

(x(t)′K (θt)x(t)

−E

[
x(t+ 1)′K (θt+1)x(t+ 1)

∣∣∣Ft

])
(31)

Y3 =
T∑

t=1

E

[
x(t+ 1)′ (K (θt+1)−K (θt))x(t+ 1)

∣∣∣Ft

]
(32)

Y4 =
T∑

t=1

x(t)′L̃ (θt)
′ [θ′0K (θt) θ0 − θ′tK (θt) θt] L̃ (θt)x(t).

(33)

where the expressions for Y1,Y2,Y3, and Y4 are defined in (30)–(33).

Let m(T ) be the number of episodes considered until time T . Thus

τm(T ) ≤ T < τm(T )+1.

Now, letting ni = 
τi − τi−1� be the length of the episode i, define the

following events:

G =
∞⋂

i=1

{
max

τi−1≤t<τi
||w(t)||∞ ≤ νni

(
δ

i2

)}

H =

∞⋂

i=1

{
θ0 ∈ Ω(i)

}
.

According to Corollary 1

P (G ∩ H) ≥ 1−
∞∑

i=1

3δ

i2
≥ 1− 5δ. (34)

For all i = 1, 2, . . . , as long as θ0 ∈ Ω(i−1), according to (20), we have

J �(θ̃(i)) ≤ J �(θ0); i.e.,J �(θt)− J �(θ0) ≤ 0. Therefore, onG ∩ H,

we have

Y1 ≤ 0. (35)

To conclude the proof, we leverage some auxiliary results. The proofs

of the following lemmas are deferred to supplementary materials due

to space limitations.

Lemma 9 (Bounding Y2): On G ∩ H, the following holds with

probability at least 1− δ:

Y2 ≤ ρ2 + (8T )1/2ρ3 (log (Tm(T )))2/α (− log δ)1/2+2/α

where ρ2, ρ3 < ∞ are fixed constants.

Lemma 10 (Bounding Y3): On G ∩ H, we have

Y3 ≤ ρ3 (log (Tm(T )))2/α (− log δ)2/α m(T )

where ρ3 is the same as Lemma 9.
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Lemma 11 (Bounding Y4): On the event G ∩ H, it holds that

Y4 ≤ ρ4m(T )3/2βT

(
δ

m(T )2

)1/2

T 1/2

for some fixed constant ρ4 < ∞.

Lemma 12 (Bounding m(T )): On the event G ∩ H, the following

holds:

m(T ) ≤
q

log γ
log

(
T
(
γ1/q − 1

)

τ1
+ 1

)
.

Finally, the definition of βn(δ) in (18) yields

βn (δ) = O
(
(logn)4/α (− log δ)1+4/α

)
.

Therefore, plugging (35), and the results of Lemmas 9–12 into (29), we

get R(T ) ≤ Õ(T 1/2(− log δ)1/2+2/α), with probability at least 1− δ
on G ∩ H. Hence, according to (34), the failure probability is at most

6δ, which completes the proof. �

To conclude this section, we briefly discuss the behavior of the statis-

tical regret introduced in the discussion after Lemma 2. For this purpose,

we use the regret decomposition of (29) into the terms Y1, . . . ,Y4 being

defined in (30)–(33). According to Lemma 10, Y3 scales logarithmically

withT . Furthermore, since the martingale Y2 is bounded in expectation,

we have lim supT→∞ E[Y2] < ∞. Hence, one can approximately study

the behavior of the statistical regret by addressing Y1 and Y4. First, note

that the expression θ′0K(θt)θ0 − θ′tK(θt)θt in (33) can be substituted

by (θ0 + θt)
′K(θt)(θ0 − θt). Since K(θt) is positive definite [2], the

magnitude of Y4 is approximately as large as
∑T

t=1 |||θt − θ0|||2. A

similar argument applies to Y1 in the sense that the decay rate of

J �(θt)− J �(θ0) heavily relies on the error of learning θ0 through θt.
Then, the learning accuracy at time t is at best of the order t−1/2 [4].

Hence, the statistical regret an adaptive policy needs to incur is at

least O(T 1/2), because of lack of knowledge about the true parameter.

Converting this lower bound sketch into a rigorous proof is beyond the

scope of this article, and is left as an interesting problem for future

studies.

V. CONCLUSION

This article investigated adaptive regulation schemes for linear dy-

namical systems with quadratic costs, focusing on finite-time analysis

for regret. Using the OFU principle, we established nonasymptotic

efficiency results under the mild condition of stabilizability, and also

assuming a fairly general heavy-tailed noise distribution.

Note that implementation of the OFU principle in (20) leads to a

nonconvex optimization problem. Thus, from a practical viewpoint,

computationally faster algorithms for adaptive regulation are of interest.

For this purpose, one can employ randomization methods in order

to balance identification and regulation. Analysis of adaptive policies

based on dithering the control signal, or randomizing the parameter

estimate is provided by Faradonbeh et al. [22], [23].

There are a number of interesting extensions of the current work.

First, generalizing the nonasymptotic analysis of efficiency to imperfect

observations of the state vector is a topic of future investigation. Another

interesting direction is to specify the sufficient and necessary conditions

for the true dynamics which lead to optimality of CE. In addition,

reexamining the problem for large network systems where the dynamics

matrices can be sparse is also of interest.
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