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Optimism-Based Adaptive Regulation of Linear-Quadratic Systems

Mohamad Kazem Shirani Faradonbeh

Abstract—The main challenge for adaptive regulation of linear-
quadratic systems is the tradeoff between identification and con-
trol. An adaptive policy needs to address both the estimation
of unknown dynamics parameters (exploration), as well as the
regulation of the underlying system (exploitation). To this end,
optimism-based methods that bias the identification in favor of
optimistic approximations of the true parameter are employed in
the literature. A number of asymptotic results have been estab-
lished, but their finite-time counterparts are few, with important
restrictions. This article establishes results for the worst-case
regret of optimism-based adaptive policies. The presented high
probability upper bounds are optimal up to logarithmic factors.
The nonasymptotic analysis of this article requires the following
very mild assumptions: stabilizability of the system’s dynamics,
and limiting the degree of heaviness of the noise distribution. To
establish such bounds, certain novel techniques are developed to
comprehensively address the probabilistic behavior of dependent
random matrices with heavy-tailed distributions.

Index Terms—Certainty equivalence (CE), exploration-
exploitation, optimism in the face of uncertainty (OFU),
reinforcement learning, regret bounds.

|. INTRODUCTION

Adaptive control of linear-quadratic (LQ) state-space models repre-
sents a canonical problem, and is the main focus of this article. Such
a model describes the dynamics of the system as follows: starting
from the initial state x(0) € RP, its temporal evolution and cost are
determined by

z(t+1) = Agz(t) + Bou(t) + w(t + 1) (1)
e = z(t)' Qu(t) + u(t) Ru(t) ()
fort =0,1,.... The vector z(¢) € R? denotes the output (and state)

of the system at time ¢, u(t) € R" represents the control signal, and
the stochastic process of the noise sequence is denoted by {w(¢)}32 .
Furthermore, the quadratic function ¢, corresponds to the instantaneous
cost of the system (the transpose of the vector v is denoted by v").
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The transition matrix Ag € RP*P and the input matrix By € R?*" that
constitute the dynamical parameters of the system are unknown, while
the positive definite matrices of the cost, @ € RP*P, R € R™*" are
assumed known.

The main goal is to adaptively regulate the system in order to
minimize its long-term average cost. This canonical problem has
been thoroughly studied in the literature and a number of asymptotic
results have been established, as briefly summarized next. However,
finite-time results are scarce and rather incomplete, despite their need
in applications (e.g., network systems [1]). Note that the theoretical
guarantee for fast stabilization of general linear systems has been
recently established [2], but the existing analysis of the regulation
problem of cost minimization leads to a remarkable loss of generality,
as will be discussed shortly.

Since the system dynamics are unknown, a popular adaptive proce-
dure for regulation is based on the principle of certainty equivalence
(CE) [3]. Alternating between estimation and regulation, CE applies a
control feedback as if the identified parameters Ay and By are the true
matrices that drive the system’s evolution [4]-[6]. However, it has been
shown that the CE-based strategy can lead to wildly incorrect parameter
estimates [7]-[9], and thus, suitable modifications have been introduced
in the literature [10], [11]. A popular approach, known as optimism
in the face of uncertainty (OFU) [12], was developed to address the
suboptimality of CE. In OFU, after constructing a confidence set for
the model parameters, a regulation policy is designed based on the most
optimistic parameter in the confidence set [13].

The aforementioned references establish the asymptotic convergence
of the average cost to the optimal value. However, nonasymptotic
results on the growth rate of regret [i.e., the accumulative deviation
from the optimal cost, see (5)] have recently appeared [14], [15]. These
papers provide a near-optimal upper bound for the regret of OFU, under
the following rather restrictive conditions.

1) The dynamics matrices are assumed to be controllable and observ-
able. This leads to an excessive complexity in the computation of
the adaptive regulator. Furthermore, this assumption restricts the
applicability of the analysis since the condition may be violated in
many LQ systems.

2) The operator norm of the closed-loop matrix is less than one, which
excludes a remarkable fraction of systems with stable closed-loop
matrices. In fact, a stable matrix can have an arbitrarily large
operator norm. Note that condition 1 only implies that the largest
closed-loop eigenvalue (not the operator norm) is less than one [16].

3) The noise distribution satisfies a tail condition such as sub-
Gaussianity [14] or Gaussianity [15]. Moreover, the coordinates
of the noise vectors are uncorrelated.

This article aims to address these shortcomings by providing a
comprehensive treatment of the problem. We study optimality of OFU
policies for an extensive family of LQ systems by establishing upper
bounds for the worst-case regret, under a minimal set of assumptions.
Namely, we remove the aforementioned condition 1, and replace the
strict condition 2 with stabilizability, which is the necessary assumption
for the optimal control problem to be well-defined. Furthermore, the
high probability near-optimal upper bound for regret established in
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this article holds for a class of heavy-tailed noise vectors with arbitrary
correlation structures, thus significantly relaxing the condition 3. To the
authors’ knowledge, this study is the first to address the nonasymptotic
analysis of the regret of adaptive policies for general LQ systems.

There are a number of conceptual and technical difficulties one needs
to address in order to obtain the results of optimal regulation. First, the
existing methodology for analyzing adaptive policies [11], [14], [15]
becomes nonapplicable beyond the condition 2. One reason is due to
the fact that matrix multiplication preserves the operator norm; i.e., the
norm of the product is upper bounded by the product of the norms.
However, the product of two stable matrices can have eigenvalues
of arbitrarily large magnitude. Furthermore, sub-Weibull distributions
assumed in this study do not need to have generating functions [17].
Hence, new tools are required to establish concentration inequali-
ties for random matrices with heavy-tailed probability distributions
[18], [19].

In addition, an adaptive strategy is needed to stabilize the system so
that the uncertainty about Ay and By does not lead to instability. Adap-
tive stabilization methods are proposed before, and their finite-time
performance analysis is provided [2]. First, a coarse approximation of
the unknown dynamics parameter is shown to be enough for stabiliza-
tion. Then, it is established that such approximations can be achieved
by employing independent random feedbacks in sufficiently many
periods. Nevertheless, for nonasymptotic analysis of the performance
of regulation policies, a comprehensive study is not currently available,
and is adopted as the focus of this study. In case the operator is concerned
with stability issues, the algorithm in the aforementioned reference can
be applied a priori to the regulation algorithms we discuss here.

The remainder of this article is organized as follows. Section II for-
mally defines the problem. Section III addresses the problem of accurate
estimation of the closed-loop matrix and includes the analysis of the
empirical covariance matrix, as well as a high probability prediction
bound. Finally, an optimism-based algorithm for adaptive regulation
of the system is presented in Section IV. We show that the regret of
Algorithm I is with high-probability optimal, up to a logarithmic factor.
Finally, Section VI concludes this article.

The following notation is used throughout this article. For matrix
A € CP*1, A’ is its transpose. When p = ¢, the smallest (respectively,
largest) eigenvalue of A (in magnitude) is denoted by A, (A) (respec-
tively, Amax (A)) and the trace of A is denoted by tr(A).Fory € R,y >
1,v € €, the norm of v is [|v]|, = (327, |v;|")*/7. Furthermore,
when 7 = oo, the norm is defined according to ||v||,, = maxi<;<q |v;].
We also use the following notation for the operator norm of matrices.
For 8,~ € [1, 0], and A € CP*9, define

||AUH[3

loll,

ATl

sup
veCa\{0}

8 =
Whenevery = (3, we simply write ||| A]|| ;. Finally, the sigma-field gen-
erated by random vectors X1, ..., X, is denoted by o(X1, ..., X,,).
The notation for 6, K (), L(0), and L(6) are provided in Definition
2, (3), (4), and Definition 4, respectively. Finally, log is employed
throughout this article to refer to the natural logarithm function.

Il. PROBLEM FORMULATION

First, we formally discuss the problem of adaptive regulation this
article is addressing. Equation (1) depicts the dynamics of the system,
where {w(t)};2, are independent mean-zero noise vectors with full
rank covariance matrix C' as

E[w()] =0, Elw®w)]=C, |Amin(C)| > 0.

The results established also hold if the noise vectors are martingale
difference sequences. The true dynamics are assumed to be stabilizable,
as defined as follows.

Definition 1 (Stabilizability [16]): [Ag, Bo] is stabilizable if there
is L € R™P such that |Ayax (Ao + BoL)| < 1. The linear feedback
matrix L is called a stabilizer.

Definition 2 (Notation 6): We use 6 to denote the dynamics param-
eter [A, B], where A and B are p x p and p X r matrices, respectively.
Obviously § € RP*9, for ¢ = p + r. In particular, we frequently refer
to 0 = [Ao, Bo| throughout this article.

Here, we consider perfect observations, i.e., the output of the system
corresponds to the state vector itself. Next, an admissible control policy
is amapping 7 that designs the control action according to the dynamics
matrix 6y, the cost matrices () and R, and the history of the system;
that is for all ¢ > 0

ult) = 7 (00, @ R Ax(i) Yo {u(i) Y5 )

An adaptive policy is ignorant about the parameter 6. So

u(t) = 7 (Q R Az} {u(i)}h) -

When applying the policy 7, the resulting instantaneous quadratic cost
at time ¢ defined according to (2) is denoted by cgﬂ. If there is no
superscript, the corresponding policy will be clear from the context.

For arbitrary policy 7, let 7 - (6) be the average cost of the system

T
- . 1 ™
Jﬂ(éo):hmsupf E ci ).

T—o0 t—1

Note that the dependence of 7, (6y) to the known cost matrices
@ and R is suppressed. Then, the optimal average cost is defined
by J*(00) = min, J (), where the minimum is taken over ail
admissible policies. Furthermore, 7* is called an optimal policy for
the system 0, if satisfying 7+ (8) = J*(#). To find * for general
0 € RP*9, one has to solve a Riccati equation. A solution, is a positive
semidefinite matrix K (0) satisfying

K©0)=Q+AK(0)A
—~AK@®)B(BK#)B+R) 'BK () A. 3)

The following result establishes optimality of the linear feedback
provided by K () according to

L(0)=—(BK(@®)B+R) "'BK()A. 4)

Definition 3 (Policy m*): Henceforth, let 7* denote the linear feed-
back policy u(t) = L(6y)x(t) for all t > 0.

Lemma I (Optimality [2]): If 6, is stabilizable, then (3) has a
unique solution, 7* is optimal, and J*(0y) = tr(K(6y)C). Con-
versely, if K () is a solution of (3), L(0y) is a stabilizer.

Note that in the latter case of Lemma 1, the existence of a solution
K (0y) implies that it is unique, 77* is an optimal policy, and J*(0y) =
tr(K(6y)C).

In order to measure the quality of (adaptive) policy m, the resulting
cost will be compared to the optimal average cost defined previously.
More precisely, letting c,ETr) be the resulting instantaneous cost at time
t, regret at time 7' is defined as

T
R(T) =3 [e” = 7" (80)] - )
=1
The comparison between adaptive control policies is made according
to regret. The next result describes the asymptotic distribution of the
regret. Lemma 2, which is basically a central limit theorem for R(7'),
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states that even when applying optimal policy, the regret R(T") scales
as O(T"/?), multiplied by a normal random variable.

Lemma 2: Applying 7*, let D = Ay + BoL(0y) be the closed-
loop matrix. Then, T-*/2R(T’) converges in distribution to A/(0, 02)
as T" grows, where

n=1
T
. —1 !
+ lim T > Var [w(t)

t=1

K (6p) w(t)] > 0.

The proof of Lemma 2 based on an application of the martingale
central limit theorem [19] is deferred to the supplementary materials.
In the sequel, we discuss the result of Lemma 2. In the definition of
regret in (5), the cumulative deviation from the optimal average cost
can be decomposed into the following two fractions.

1) The probabilistic fraction contributed by the stochastic evolution
of the system and randomness of {w(¢)}32 ;.

2) The statistical fraction caused by the uncertainty about the dy-
namics and unknownness of ¢, to the operator.

Lemma 2 states that the probabilistic fraction scales with the growth
rate O(T"/?). So, trying to push the statistical fraction of the regret
(which is due to the error in learning the unknown dynamics) to have a
rate less than O(T'*/?) is actually unnecessary. Furthermore, Lemma
2 provides a lower bound for the worst-case regret of adaptive policies.
Since the optimal policy for minimizing the expected cumulative cost
Zf:o E[c;] converges to 7* as 1" grows [16], the regret of an arbitrary
policy cannot be smaller than that of 7*. On the other hand, the high
probability upper bound of a normal distribution is in magnitude at least
(—1log 6)'/2. Therefore, Lemma 2 implies that a high probability regret
bound to hold with probability at least 1 — §, needs to be at least of the
order of magnitude of T%/2(— log §)*/2. Note that the aforementioned
argument does not necessarily imply impossibility of the smaller mag-
nitudes for the statistical fraction of the regret.! However, since there
are information theoretic limits in learning the unknown parameter 6,
statistical regret cannot be small. A rigorous derivation of lower bounds
for the statistical regret is beyond the scope of this article. Although,
later on, we will intuitively discuss efficiency of the rate 7"/2, based
on the decomposition being used in the regret analysis of Section IV.

Definition 4 (Notation L(0 ) ): For arbitrary stabilizable 64, 05, let
L(al) = [[ 01 ]/ SO 92 (91) = A2 + BQL(al)

Ill. CLOSED-LOOP IDENTIFICATION

When applying linear feedback L € R"*? to the system, the closed-
loop dynamics becomes z(t + 1) = Dx(t) + w(t + 1), where D =
Ap + BoL. Subsequently, we present bounds for the time length the
user can interact with the system in order to have sufficiently many
observations for accurate identification of the closed-loop matrix. The
next set of results is used later on to construct the confidence sets being
used to design the adaptive policy. Since the focus is on adaptive policies
for regulating the system, the matrix D is assumed to be stable.

First, we define least-squares estimation for the matrix D, as follows.
Observing the state vectors {z(t)}}_, for an arbitrary matrix M €
RP*P consider the sum-of-squares loss function

s

n—

L,(M) =" lle(t +1) = Mz(t)]l5-

o
Il
<}

Ifor example, applying 7*, we get limp_,o, T~ Y/2E[R(T)] = 0.

Then, the true closed-loop transition matrix D is estimated by
Dn, which is a minimizer of the aforementioned loss: L ( n) =
minycrexp L, (M). Solving for D,,, one can easily see that it admits
the closed-form expression

n—1
=> a(t+Dzt)V,"
t=0

where V,, = 37} (t)x(t)’ denotes the (invertible) empirical covari-
ance matrix of the state process. Therefore, the behavior of V,, needs
to be carefully studied. To this end, one needs to tightly examine the
state sequence {x(¢)};_,, which in turn highly depends on both the
spectral properties of the transition matrix D, as well as the noise
process {w(t) }7, . The former is reflected through the constant iy (D),
while the latter is indicated by v,, () we shortly define.

To proceed, let D = P~1AP be the Jordan decomposition of D;
i.e., A is block diagonal, A = diag(A4,...,Ax), where for all ¢ =

1,...,k, A; is a Jordan matrix of A; as
Ao 10 0
0 A 1 0
A = € Cmixmi,
o 0 -+ 0 n

Definition 5 (Constant n(D)): Denote the Jordan decomposition
described previously by D = P~'AP. Letting

mL—l

>0

= max;<;<g 1 (A;). Then,letny(A) = 1,and

7, (A;) = inf t™itpt

p=[ai]

fort > 1,definen,(A)

n (D) = [|1P || _ollPl S m, (A)

Letting A = |Amax (D)|,if D is diagonalizable, thenclearly (D) <
P |osallIPl].(1 —2)71. In general, denoting the dimension
of the largest block in the Jordan decomposition of D by pu =
maxi<;<k M4, we have 1, (A) < t+=13 /% and
1 (p—1) ]

b pi p x| M~ — —
n( )SH‘ ’HOOHQH‘ e [log)»Jr (*108')‘)“

Toward studying the effect of the noise vectors on the state process,
the following tail condition is assumed.

Assumption 1 (Sub-Weibull distribution [17]): There are positive
reals by, by, and «, such that forallt > 1;1 <¢ < p;andy >0

yOé
%)

Clearly, the smaller the exponent « is, the heavier the tail of w; ()
will be. Assuming a sub-Weibull distribution for the noise coordinates
is more general than the sub-Gaussian (or subexponential) assumption
routinely made in the literature of nonasymptotic analysis [14], where
a > 2 (a > 1). To gain insight into the basic properties of sub-Weibull
distributions, consider the setting o < 1. It delivers an extensive family
of distributions for which moments of all orders are well defined,
while the moment generating function does not exist. So, it relaxes
more restrictive tail conditions to a minimal framework that finite-time
concentration results can be established. Furthermore, Assumption 1

P (juwi(8)] > v) < by exp(
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encompasses fundamental distributions that subexponential families
fail to capture, such as polynomials of Gaussian random variables.
Finally, to obtain analogous results for uniformly bounded noise se-
quences, it suffices to let & — oo in the subsequently presented mate-
rials.

In order to study magnitudes of the state vectors over time, define

1/
v, (8) = (bz log <b1§p )) 6)

£, (6) = n (D) ([[z(0)] +vn (9)). ™

Lemmas 3 and 4 show that v,,(9),&,,(0) are the high probability
uniform bounds for the size of the noise and the state vectors. As a matter
of fact, v,, () and £,,(8) scale as log'/“(n/5). Hence, for uniformly
bounded noise, both of them are fixed constants. Then, recalling that C'
is the positive definite covariance matrix of the noise vectors, let N(e, d)
be large enough, such that the followings hold for all n > N(e, d):

n 18 [Amax (C)| + 2¢ 4p
o (O > 2 plog (7> )
288 4
5(5)2“7'/(5)22 2P|HD|H21g<§9> )
n

6 2
o7 2 < (Pl +1).
The following result provides a high probability lower bound for the
smallest eigenvalue of V,,4 ;. Essentially, Theorem 1 determines the
number of state observations needed to ensure that the excitation is
persistent enough to identify the closed-loop matrix [20], [21].

Theorem 1 (Empirical covariance): If n > N(e, d), then

(10)

P (P‘min (Vn+l)| <n (‘)‘min(C” - 5)) < 26.

Moreover, lim,, oo n" !V, = > DiCD'.
Proof: First, forn > 1,and 0 < ¢ < 1, define the event

W= {max 0] < v, ()} (i
We use the following intermediate results, for which the proofs are
delegated to the supplementary materials, due to space limitations.
Lemma 3: Defining W according to (11), we have P(W) > 1 — 4.
Lemma 4: The following holds on the event JV in (11):
max [[z(t)[[, < &, (9) .

1<t<n

Lemma 5: Let the event W be as (11), and define C, =
n !> w(i)w(i). Then, on W, we have P(|Amax(Cr — C)| >
€) <6, if

n 6 [Amax(C)] + 2¢ 2p
> 1 — . 12
v (67 ° 3¢2 PIoe 5 12)
Lemma 6: Let Uy =n 'S D) w(i + 1) 4+ wli +
1)(¢)’D’], and define W by (11). Then, on ), we have
P(|Amax(Un)| > €) <4, if

n 32p 2p
lo . 1
DI (07, 07 — ( 5 ) (13

Next, note that (¢t + 1) = Dz(t) + w(t + 1) implies

+DZ

Visr = (0 i)'D’ + nU, + nC,

Algorithm 1: Adaptive Regulation.

Inputs: Q0 c RP*7, 6§ > 0,y > 1

Leto =0

fori=1,2,... do
Define 69, ; according to (20) and (21), respectively
while ¢ < 7; do _

Apply control feedback u(t) = L(0)xz(t)

end while
Find the estimate D(?) given in (22)
Using V' in (23), construct I'(¥) according to (24)

Update Q) by (25)
end for

where (), and U,, are defined in Lemmas 5 and 6. So, we obtain the
Lyapunov equation V,, 1 = DV,, 1D’ + nFE,, for

D (@(0)x(0)' — z(n)z(n)) D' 2(0)x(0)

n=Un+Cp+

to obtain

Vg1 =n ij D'E,D".

i=0

(14)

Henceforth, suppose that WV holds. According to Lemma 5, (8) implies
that

0
P (JAmes (Co = O) > 5) < 5. as)
In addition, by Lemma 6, (9) implies that
€ 6
Z) < -,
P (JAmax (Un)] > £) < 5 ae)
Finally, using Lemma 4, by (10), we get
1 €
= (D13 +1) (@) + lemB) < 5. (D

Putting (15)—(17) together, on W, with probability at least 1 — 9, it
holds that |Amin(Ey)| > [Amin(C)| — €. Therefore, since (14) implies
that |Amin(Vat1)| > nfAmin (Er)|, we get the desired result. When
n — oo, the conditions hold for arbitrary positive values of ¢ and §.
Thus, we have |Ayax (Fn — C')| — 0, which according to (14) implies
the desired result. |

The following corollary provides a high probability confidence set
for D, which will be used later in Algorithm 1. Using the bounds
v, (0),€&,(9) introduced in (6) and (7), define the prediction bound
3,,(8) according to

16mp
(1= 1) [Amin (C)]

Corollary 1 (Prediction bound): Define 3,,(9) by (18). Then, n >
N(|Amin(C)|/2,8) + 1 implies that

‘(I

Proof: First, since 1 > N(|Amin(C)|/2,6) + 1, similar to the
proof of Theorem 1, on the event JV defined in (11), with probability
at least 1 — 8, we have |Apin(Vi)| > [Amin(C)|(n — 1)/2. Then as
long as V,, is nonsingular, one can write D,—D= Zt o w(t+
Da(t))V, L, which yields (D, — D)V, (D, — D) = U.V,'U,,

B.(0) = € (0w, 0102 (%) a9

Vn1/2 (ﬁn B D),

>3, (5)) < 30.
2
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where U,, = 327} &:(t)w(t + 1)'. Therefore
11Ul

H’(ﬁn—D> v, (ﬁn—D)l < R T

To proceed, for the arbitrary matrix H € R*¥*¢, define the dilation

19)

Opxr H
H/

c RE+Ox(k+E)
Opxe

O(H) = [

A well-known fact states that the equality |||H]|||, = [Amax(P(H))]
holds [18]. So, letting Z, = x(t)w(t + 1)’, apply the following random
matrix concentration inequality to X; = ®(Z;) € R2P*2P,

Lemma 7: [18]Let{X,}!_, be amartingale difference sequence of
symmetric p X p matrices adapted to the filtration { F; } . Assume for
fixed symmetric matrices { M; }?_,, all matrices M2 — X ? are positive
semidefinite. Then, letting 0% = |Amax (D5 M7)|, forally > 0, we

have
P [Amax Xl > <2 - .
; y | < 2pexp < 802)
Since
X% = l|w(t + 1)||52(t)z(t) Opxp
- 2
Opxp [z (@)[5w(t + Dw(t +1)

by Lemmas 3 and 4, all matrices M,? — X,? are positive semidefinite
on the event W defined in (11), with M; = ®(p'/?v,, (), (5)1,).
By 02 = npv,(6)%€,,(6)?, letting y = 8'/%5 log'/?(22), Lemma 7
implies P(|||Un|ll; > y) = P(|Amax(2(Un))| > y) < 4. Plugging in
(19), we get the desired result. |

IV. DESIGN OF ADAPTIVE PoLICY

In this section, we present an algorithm for adaptive regulation
of LQ systems. When applying the following algorithm, we assume
that a stabilizing set is provided. Construction of such a set with an
arbitrary high probability guarantee is addressed in the literature [2].
It is established that the proposed adaptive stabilization procedure
returns a stabilizing set in finite time. Nevertheless, if such a set is not
available, the operator can apply the proposed method of the random
linear feedback [2] in order to stabilize the system before running the
following adaptive policy.

In the episodic algorithm described later, estimation will be rein-
forced at the end of every episode. Indeed, the algorithm is based
on a sequence of confidence sets, which are constructed according to
Corollary 1. This sequence will be tightened at the end of every episode
so that the provided confidence sets become more and more accurate.
According to this sequence, the adaptive linear feedback will be updated
after every episode. After explaining the algorithm, we present a high
probability regret bound.

First, we provide a high level explanation of the algorithm. Starting
with the stabilizing set Q(*), we select a parameter (1) € Q(%) based
on the OFU principle; §(!) is a minimizer of the optimal average cost
over the corresponding confidence set [see (20)].

Then, assuming §(1) is the true parameter, the system evolves accord-
ing to, during the first episode the algorithm applies the optimal linear
feedback L(0(1)). Once the observations during the first episode are
collected, they are used to improve the accuracy of the high probability
confidence set. Therefore,~ 0O jg tightened to QW and the second
episode starts by selecting §(?), iterating the aforementioned procedure,
and so on. The lengths of the episodes will be increasing, to make every
confidence set significantly more accurate than all previous ones.

The intuition behind proficiency of the OFU principle is as fol-
lows. Applying a linear feedback L, the closed-loop transition matrix
is Ag + BoL = 0oL, where L = [1,, L']'. Importantly, the observed
sequence of state vectors accurately identifies the closed-loop matrix
0y L. However, an accurate estimation of HOL does not lead to that
of 0. Therefore, 0 is not guaranteed to be effectively approximable,
regardless of the accuracy in the approximation of 6 L

Nevertheless, one has to focus on finding accurate approximations
of the feedback matrix L (), in order to design an effective adaptive
policy for minimizing the average cost. Specifically, as long as 6, is
available satisfying L(61) = L(6y), one can apply an optimal linear
feedback L(6;), no matter how large |||61 — 0o|||, is. In general,
estimation of such a 6, is not possible. Yet, an optimistic approximation
in addition to exact knowledge of the closed-loop dynamics lead to an
optimal linear feedback, thanks to the OFU principle.

Lemma 8: 1If j*(@l) S j*(eo) and 01 (91) = 90 (91) then
L(6,) is optimal for the system 0y: L(6y) = L(6;).

In other words, applying linear feedback L(6; ), which is designed
according to an optimistically selected parameter ¢, as long as the
closed-loop matrix 6yL(6;) is exactly identified, the optimal linear
feedback is automatically provided. Recall that the lengths of the
episodes are growing so that the estimation of the closed-loop matrix be-
comes more precise at the end of every episode. Thus, the approximation
0. L(6,) ~ 0yL(6,) is becoming more and more accurate. Rigorous
analysis of the aforementioned discussion, leads to the high probability
near-optimal regret bound of Theorem 2.

Algorithm 1 takes the stabilizing set Q(°), the failure probability 65,
and the reinforcement rate v > 1 as inputs. Indeed, Q(%) is a bounded
stabilizing set such that for every 8 € Q(%), the system will be stable if
the optimal linear feedback of 6 is applied; that is, |Amax (60 L(6))] < 1.
As mentioned before, an algorithmic procedure to obtain a bounded
stabilizing setin finite time is available in the literature [2]. Furthermore,
66 > 0 is the highest probability that Algorithm 1 fails to adaptively
regulate the system such that the regret will be nearly optimal (see
Theorem 2). The reinforcement rate v determines the growth rate of the
lengths of the time intervals (episodes) a specific feedback is applied
until being updated [see (21)].

The algorithm provides an adaptive policy as follows. For ¢ =
1,2,..., at the beginning of the ith episode, we apply linear feedback
u(t) = L(0W)x(t), where

0% carg min J*(6).
0eQ(i-1)

(20)
Indeed, based on the OFU principle, at the beginning of every episode,
the most optimistic parameter among all we are uncertain about is being
selected. The length of the episode 7, which is the time period we apply
the adaptive control policy u(t) = L(6)z(t), is designed according
to the following equation. Letting 7, = 0, we update the control policy
at the end of the episode ¢ at the time ¢ = 7;, defined according to

i )\min C 5
Ti = Ti-1 +’Yl/qN<% 12) +71

2D
where N(,-) is defined by (8)—(10). After the ith episode, we es-
timate the closed-loop transition matrix 6 L(6(")) by the following
least-squares estimator:

T;—1

5O — 1)
argMElé?xptZ |zt + 1)
=Ti-1

Mz(t)|;.  (22)
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Letting V(¥ be the empirical covariance matrix of the episode 4 as +z(t)L (6,) 0,K (6;) 0,.L (6;) z(t)
[ri]-1 !
VO S vty o3 =c,+E [x(t F1VK (0,) (t + 1)’]—1}
t=Trs 1] + ()L (8,) [0, (1) 0; — 0y K (8,) 0] L (8,) x(t).
define the high probability confidence set as ) )
Adding up the terms fort = 1,...,7T, we obtain
1 — g e rra H'V@”? (o (59) - D©)’ v
2 R(T)= ) e =T (00)] = Y1 + Yo+ V3 + ¥y (29)
t=1
<p <é> (24) T
= Fri-rio1 |\ 42 Yl _ Z [j* (et) _ J* (90)} (30)
where 3,,(9) is defined in (18). Note that according to Corollary 1, =
P(fy € T(?) > 1 — 36i2. Then, at the end of the episode 4, the T )
confidence set (1) will be updated to Yy = Z (@(t) K (8:) x(t)
t=1
QO = Q-1 A 25)
» ( _E [x(t P 1)K (Bppn) 2t + 1)‘;@) 31
and episode i + 1 starts, finding ¢+1) by (20), and then, iterating all
steps described previously. T
Remark 1: The choice of #(¥) does not need to be as extreme as Y5 = Z]E [m(t + 1) (K (0r41) — K (0r)) z(t + 1)’]::&] (32)
(20) [14]. In fact, it suffices to satisfy J*(0D) < (1; — 73_1) /% + t=1
infyeqa-1) T*(0). T ~ ~
The following result states that performance of the aforementioned Y, = Z z(t)'L (0:) [0, K (0:) 0o — 0,K (6;) 0] L () x(t).
t=1

adaptive control algorithm is optimal, apart from a logarithmic factor.
Theorem 2 also provides the effect of the degree of heaviness of
the noise distribution (denoted by « in Assumption 1) on the regret.
Compared to O(+), the notation O(-) used in the following, hides the
logarithmic factors.

Theorem 2 (Regret bound): For bounded (%), with probability at
least 1 — 66, the regret of Algorithm 1 satisfies

R(T) < O (Tl/2 (—log 5)1/’”2/”‘) .

Proof: The stabilizing set Q%) is bounded

p1 = sup |[||0']||, < co. (26)
0eQ(0)
Suppose that for ¢ = 1,2,. .., the parameter 0, is being used to de-

sign the adaptive linear feedback u(t) = L(6;)z(t). So, during every
episode, 6, does not change, and for 7;_; < t < 7;, we have 6, = 6(9).

Letting F; = o(w(1),...,w(t)), the infinite horizon dynamic pro-
gramming equations [16] are

T (0)) + a(t) K (6) x(t) = o(t) Qu(t) + u(t) Ru(?)

+E [y(t+ 1)K (0) y(t+1)

7
where u(t) = L(0;)z(t), and

y(t 4+ 1)= Az (t) + Bou(t) + w(t + 1) =0,L (6;) z(t) + w(t + 1)

describes the desired dynamics of the system. Note that since the (tfzg,

evolution of the system is governed by 6, the next state is
z(t+1) = Aox(t) + Bou(t) + w(t + 1)

= 0oL (6,) z(t) + w(t +1). (28)

Substituting (27) and (28) into the dynamic programming equation, and
using (2) for the instantaneous cost c;, we have

T (0:) + () K (6:) x(t)

—c¢,+E [w(t + 1)K (0;) w(t + 1)‘3]

(33)

where the expressions for Y;, Ys, Y3, and Y, are defined in (30)—(33).
Let m(T") be the number of episodes considered until time 7. Thus

Tm(T) <T< Tm(T)+1-

Now, letting n; = |7; — 7;_1 | be the length of the episode 7, define the
following events:

~ 5
H= ({0 €D}

Il
—

According to Corollary 1

=35
P(gmﬂ)zkzﬁzkw (34)
i—1
Foralli=1,2,...,aslongas 6, € Q") according to (20), we have
T*(0D) < T*(0p)sie., T*(0,) — T*(0p) < 0.Therefore,onG N H,
we have

Y: <0. (35)

To conclude the proof, we leverage some auxiliary results. The proofs
of the following lemmas are deferred to supplementary materials due
to space limitations.

Lemma 9 (Bounding Y5): On G N H, the following holds with
probability at least 1 — 9:

¥ < po + (8T)"/?ps (log (Tm(T)))** (- log §)'/*+*/

where ps, p3 < oo are fixed constants.
Lemma 10 (Bounding Y3): On G N H, we have

¥ < pg (log (Tm(T)))* (= log 8)*/* m(T)

where ps is the same as Lemma 9.
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Lemma 11 (Bounding Y4): On the event G N H, it holds that

d )2>1/2 T1/2

Ya < pam(T)*/* B (m(T

for some fixed constant p; < oo.
Lemma 12 (Bounding m(T')): On the event G N H, the following

holds:
T (v -1
m(T) < d 10g( (o )+1>.
1

= logy
Finally, the definition of 3,,(9) in (18) yields

B, (8) = O ((1ogn)*/* (~10g8) +*/*) .

Therefore, plugging (35), and the results of Lemmas 9-12 into (29), we
get R(T) < O(TY?(—log §)*/2+2/), with probability at least 1 — §
on G N H. Hence, according to (34), the failure probability is at most
66, which completes the proof. |

To conclude this section, we briefly discuss the behavior of the statis-
tical regret introduced in the discussion after Lemma 2. For this purpose,
we use the regret decomposition of (29) into the terms Y1, . . ., Y, being
defined in (30)—(33). According to Lemma 10, Y3 scales logarithmically
with 7". Furthermore, since the martingale Y5 is bounded in expectation,
we have lim sup,_, . E[Ys] < co. Hence, one can approximately study
the behavior of the statistical regret by addressing Y; and Y,. First, note
that the expression 6, K (6;)0y — 0, K (6:)6; in (33) can be substituted
by (0o + 6,)' K (0;)(0o — 0;). Since K (0,) is positive definite [2], the
magnitude of Y, is approximately as large as S, |||6: — 6ol||,- A
similar argument applies to Y; in the sense that the decay rate of
J*(0;) — T*(0p) heavily relies on the error of learning 0 through 0;.
Then, the learning accuracy at time ¢ is at best of the order t~1/2 [4].
Hence, the statistical regret an adaptive policy needs to incur is at
least O(T'*/2), because of lack of knowledge about the true parameter.
Converting this lower bound sketch into a rigorous proof is beyond the
scope of this article, and is left as an interesting problem for future
studies.

V. CONCLUSION

This article investigated adaptive regulation schemes for linear dy-
namical systems with quadratic costs, focusing on finite-time analysis
for regret. Using the OFU principle, we established nonasymptotic
efficiency results under the mild condition of stabilizability, and also
assuming a fairly general heavy-tailed noise distribution.

Note that implementation of the OFU principle in (20) leads to a
nonconvex optimization problem. Thus, from a practical viewpoint,
computationally faster algorithms for adaptive regulation are of interest.
For this purpose, one can employ randomization methods in order
to balance identification and regulation. Analysis of adaptive policies
based on dithering the control signal, or randomizing the parameter
estimate is provided by Faradonbeh er al. [22], [23].

There are a number of interesting extensions of the current work.
First, generalizing the nonasymptotic analysis of efficiency to imperfect
observations of the state vector is a topic of future investigation. Another
interesting direction is to specify the sufficient and necessary conditions
for the true dynamics which lead to optimality of CE. In addition,
reexamining the problem for large network systems where the dynamics
matrices can be sparse is also of interest.
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