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Model of spontaneous droplet transport on a soft viscoelastic substrate with nonuniform thickness
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Dynamic wetting of droplets on soft solids has many industrial and biological applications which require an
understanding of the underlying fluid transport mechanism. Here we study the case of a droplet on a viscoelastic
substrate of variable thickness which is known to give rise to a spontaneous droplet transport. This phenomenon
is known as droplet durotaxis and has been observed experimentally. Here we develop a model assuming a
small linear gradient in substrate thickness to reveal the physical mechanism behind this transport phenomena.
We show the variable thickness causes an asymmetric deformation along the drop contact line, which causes a
variation in the contact angle. This generates a net driving force on the drop, causing it to move in the direction of
higher thickness. The resulting drop velocity is determined by balancing the work done by the moving drop with
the viscoelastic dissipation of the substrate (viscoelastic braking) and computed from a self-consistent model.
We find our results to be in qualitative agreement to previously reported experimental findings.

DOI: 10.1103/PhysRevE.104.034611

I. INTRODUCTION

Soft surfaces that are easily deformed by capillary forces
from a liquid droplet show many unique phenomena during
fluid-solid interactions, such as viscosity-independent spread-
ing, stick-slip behavior, and swelling-induced deformation
[1–5]. The recent review by Andreotti and Snoeijer [6] pro-
vides an overview of the unique physics associated with the
various cases of static and dynamic wetting of soft solids as
relevant to numerous industrial applications such as controlled
droplet manipulation in microfluidics [7], enhanced conden-
sation [8], and evaporation [9]. Spontaneous droplet transport
on soft surfaces has received much attention recently, as moti-
vated by the different forms of mechanotaxis found in nature
[10–12]. This includes droplet durotaxis, as reported by Style
et al. [10], in which a drop is spontaneously transported across
a soft substrate with gradient in thickness. In this work we
study droplet durotaxis by developing a theoretical model to
better understand the physics of drop transport in this phe-
nomena.

Droplet durotaxis is inspired by a more general durotaxis
phenomenon where living cells tend to move along gradients
in the rigidity of their underlying soft substrate [13–15]. Re-
cently, similar behavior have been demonstrated in droplets to
create patterns on soft solids [10]. In this experiment, small
glycerol drops were placed on a soft silicone substrate with a
thickness gradient, and it was found that drops spontaneously
moved towards the thicker regions of the substrate. They also
noted that the direction of drop motion was opposite to what is
observed in living cells. Here we illustrate how elastocapillary
deformation can give rise to such motions.

We briefly illustrate the physics of soft wetting. Consider
the canonical case of a drop resting on a solid substrate.
Here the three-phase contact line of the liquid droplet forms
an equilibrium contact angle α with the solid, which is

determined by the classical force balance equation by Young
and Dupré [16,17],

γls + γlg cosα = γsg. (1)

Here, γls, γlg, and γsg are the liquid-solid, liquid-gas, and
solid-gas surface tensions, respectively. Note there is a vertical
component of γlg that remains unbalanced and causes the
substrate to deform at the contact line. This deformation has
size defined by the elastocapillary length scale �e = γlg/E ,
where E is the elastic modulus of the substrate. For wetting
by droplets, �e can be comparable to the size of drop and in
this case, the contact line deformation in the solid becomes
significant. The substrate is pulled upwards at the contact line,
forming a wetting ridge which takes the shape of a triangular
cusp [18–20]. The capillary pressure inside the droplet causes
the wetting ridge to rotate and change orientation. This ro-
tation also changes the macroscopic contact angle α, which
is the angle liquid-gas interface makes with the horizontal
line (cf. Fig. 1). As the drop deforms, the equilibrium force
balance at the contact line deviates from Young’s law (1) and
obeys Neumann’s law for liquid-liquid wetting [21,22] and is
given by

�γlg + �γsg + �γsl = �0. (2)

For dynamic wetting with a moving contact line, the exact
description of force equilibrium can become more compli-
cated [23,24]. This difficulty arises partly due to fact that
the solid surface tension is usually not a constant material
property but rather a function of the applied strain. This strain
dependence is known as the Shuttleworth effect [25] and
needs to be considered for cases of large strain in stretched
materials [26,27]. In this work we follow Karpitschka et al.
[28] in assuming a constant solid surface tension and use
Neumann’s force balance at the contact line during dynamic
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FIG. 1. Orientation of the triangular cusp formed at the tip of the
wetting ridge. Macroscopic solid-liquid contact angle α changes as
the cusp rotates through a tilt angle φ which depends upon the elastic
response of the solid substrate. The solid angle formed inside the
cusp is denoted as θs.

wetting. This is justified given the slow velocities associated
with droplet durotaxis and allows us to neglect the Shuttle-
worth effect. The surface tension of a soft solid is also known
to have nontrivial contribution to the deformed shape of its
interface [29–31], and we include that effect in our model.

Previous researchers have demonstrated the dependence
of the wetting ridge geometry on the substrate thickness,
especially for small size droplets [32,33]. As such, one could
expect an asymmetric deformation of the wetting ridge, and
equivalently, a contact angle asymmetry, for drops on a
substrate with thickness gradient. Contact angle asymmetry
created by wettability gradients on rigid solids have long been
known to generate droplet motion [34–37]. Droplet motion on
soft solids have received limited attention so far, in contrast
to that on rigid solids. Recently, Bardall et al. [38] have
studied the possibility of propelling droplets along soft in-
terfaces using either a stiffness gradient or a surface tension
gradient. Molecular dynamics studies have also demonstrated
the promise of droplet durotaxis by studying the effect of
stiffness gradients [39]. Direct numerical simulations have
shown the relation between drop velocity and contact angle
during motion, proving that contact angle variation drives the
drop motion [40].

Drop motion on soft solids such as polymeric gels are
known to be strongly dependent on the viscous dissipation
within the solid, rather than the liquid [28,41–43]. In our
model we assume the substrate to be a linear viscoelastic
material with a power-law rheology and compute the response
due to the interaction with a liquid drop moving along the
free surface with a constant velocity. We assume the liquid
viscosity to be small and the drop to retain its spherical cap
shape. Here the liquid only interacts with the solid through
surface tension forces applied at the contact line and capillary
pressure applied along the wet interface.

In this paper we build upon the number of static
deformation models that calculate the symmetric deforma-
tion profile of the wetting ridge [32,33,44,45] by intro-
ducing a variable substrate thickness that results in an
asymmetric deformation profile. To simplify our results and
focus on the physics of transport, we consider a two-
dimensional solid-liquid interface and incorporate a small

FIG. 2. Definition sketch showing a two-dimensional liquid
droplet of radius R in contact with the free surface of a solid substrate
with a variable thickness −h + κx. The drop applies surface tension
forces on the solid at the contact line x = R and bulk fluid pressure
along the length of the droplet

unidirectional gradient to the substrate thickness using a
boundary perturbation method [46]. This allows us to apply
integral transform methods to solve the viscoelastic boundary
value problem, in an approach similar to the classic cor-
respondence principle [47]. Our solution delivers the solid
deformation profile and advancing/receding macroscopic
contact angles, from which we show that the local equilibrium
conditions at these two contact points generate a driving force
in the direction of the gradient. This driving force is balanced
by the viscous dissipation in the solid, giving rise to a steady
drop velocity, which we calculate in a self-consistent man-
ner. Our results show reasonable agreement with previously
reported experiments. Lastly, we provide some concluding
remarks including future directions.

II. FORMULATION OF DYNAMIC WETTING PROBLEM

Consider the two-dimensional geometry shown in Fig. 2
in which a liquid droplet is in contact with the free surface
of a soft viscoelastic substrate fixed to a rigid base. The soft
substrate has a thickness h at the center of the droplet of
radius R. The system shown in Fig. 2 is a moving reference
frame with velocity v where the vertical axis always passes
through the center of the drop. This is related to a fixed refer-
ence frame (x′) through the relation x′ = x − vt . Here we are
interested in the case of spontaneous drop motion along the
solid interface which arises due to a small thickness gradient
κ on the substrate. We consider a linear gradient in thickness
from the left to the right side of the droplet, which implies
the base of the substrate is located at z = −h + κx. Based on
experimental observations of such cases we make a number
of approximations to simplify the problem. First, the drop is
assumed to not deform, i.e., spread, such that the wetted radius
R is always maintained. We also limit our analysis to small
velocities, which allows us to assume a translational velocity
v that is independent of time. In this case the liquid interacts
with the solid through surface tension forces only, and the
balance of these forces at the contact point creates a local
equilibrium contact angle α.
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The solid substrate is assumed to be linear viscoelastic with
a time-dependent stress-strain relationship given by [48]

Ti j (t ) = 2
∫ t

−∞
μ(t − t ′)

∂εi j (t ′)
∂t ′

dt ′

+ δi j

∫ t

−∞
λ(t − t ′)

∂εkk (t ′)
∂t ′

dt ′, (3)

where μ and λ are relaxation moduli related to shear and
bulk deformation, respectively. They are related to each other
through a constant Poisson’s ratio ν as λ = 2μν/(1 − 2ν).

The strain field εi j is related to the two-dimensional dis-
placement field u = ux(x, z)êx + uz(x, z)êz as

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (4)

Since we expect fluid motion to be in the low-Reynolds-
number regime, i.e., negligible inertia effects, we can assume
a quasi-steady state of motion defined by the equilibrium
condition,

∇ · T = 0. (5)

A. Boundary conditions

At the rigid base z = −h + κx, a zero displacement condi-
tion is enforced,

ux(x,−h + κx, t ) = 0, uz(x,−h + κx, t ) = 0. (6)

Stress continuity is enforced at the free surface z = 0 where
the normal stress is balanced by the contributions from
Laplace pressure due to curvature of the solid surface and the
contact line forces from the droplet,

Tzz(x, 0, t ) = γs
∂2uz(x, 0, t )

∂x2
+ Fcl(x, t ). (7)

Here we assume a neutrally wetting substrate with the solid
surface tension on the dry and wet side being equal, γls =
γsg ≡ γs. In this case a point load directed vertically upwards
and a uniformly distributed line load in the opposite direction
along the length of the droplet constitute the contact line force
being applied by the liquid drop. This combined loading is
described as

Fcl(x, t ) = γlg

(
δ(R − |x − vt |) − 1

R
H (R − |x − vt |)

)
, (8)

where δ and H are the Dirac delta and Heaviside theta func-
tions, respectively. Finally, we consider the solid surface to be
free of shear,

Txz(x, 0, t ) = 0. (9)

III. SOLUTION METHOD

A. Frequency domain

The boundary value problem is converted from the
time domain to the frequency domain ω by the Fourier

transform [49]

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t )e−iωt dt,

f (t ) = 1√
2π

∫ ∞

−∞
f̃ (ω)eiωt dω.

(10)

Applying Eq. (10) to Eq. (3) gives

T̃i j (ω) = 2μ̃(ω)ε̃i j (ω) + δi j λ̃(ω)ε̃kk (ω). (11)

Here μ̃(ω) is defined as [28,42]

μ̃(ω) = iω
∫ ∞

0
�(t )e−iωt dt, (12)

where the relaxation function � depends upon the rheology
of the viscoelastic material. For crosslinked polymers, such as
silicone gels, it follows the power-law relation [28],

�(t ) = μ0

[
1 + �(1 − n)−1

(τ

t

)n]
, (13)

which yields

μ̃(ω) = μo[1 + (iωτ )n]. (14)

Here μo is the static shear modulus, � the gamma function,
τ the viscoelastic relaxation timescale, and n the power-law
exponent. The classic Kelvin-Voigt model is recovered at
n = 1. In this work we consider the case where solid viscosity
is much larger than the fluid viscosity μ0τ > η f , and thus
droplet transport is governed primarily by the solid response.
Using the stress-strain relation (11) we get the frequency-
dependent equilibrium equation

(1 − 2ν)∇2ũ + ∇(∇ · ũ) = 0. (15)

We express the displacement field ũ(x, z) in terms of the
Galerkin vector G(x, z) [50] as

ũ = 2(1 − ν)�G̃ − ∇(∇ · G̃), (16)

where G̃(x, z) = ζ̃ (x, z)êz. Applying Eq. (16) to the governing
equation, Eq. (15), results in a biharmonic equation for the
potential function ζ̃ (x, z),

∇4ζ̃ (x, z) = 0. (17)

B. Boundary perturbation

We assume the thickness gradient κ to be a small parameter
and expand the boundary condition (6) at the rigid base to first
order of κ ,

ũ(−h + κx) ≈ ũ(−h) + κx
∂ũ
∂z

∣∣∣∣
z=−h

= 0. (18)

Then we consider an asymptotic expansion of the problem in
terms of κ ,

ũ = ũ0 + κũ1, T̃ = T̃0 + κT̃1, ζ̃ = ζ̃0 + κζ̃1. (19)

C. Scaling and nondimensional groups

All lengths are scaled by the droplet radius R and wave
numbers by 1/R in the problem. Also, time is scaled with the
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relaxation timescale τ and frequency by 1/τ :

x = xR, z = zR, s = s/R, t = tτ, ω = ω/τ,

ho = hoR, h = hR, u = uR, v = vR

τ
. (20)

In the following sections, bars are dropped from the scaled
variables for simplicity. This choice of scaling yields the fol-
lowing nondimensional groups:

�s = γs

μoR
: Solid elastocapillary number

�l = γlg

μoR
: Liquid elastocapillary number

� = ho
R

: Aspect ratio.

D. Zeroth order problem

First we derive the zeroth order base solution which refers
to constant thickness, i.e., κ = 0. The dimensionless boundary
value problem at this order is

∇4ζ̃0 = 0, (21a)

T̃zz0
∣∣∣
z=0

= �s
∂2ũz0
∂x2

∣∣∣∣∣
z=0

+ �l F̃cl, (21b)

T̃zx0|z=0 = 0, (21c)

ũx0|z=−� = ũz0|z=−� = 0. (21d)

To solve these equations we introduce the spatial Fourier
transform pair between horizontal length x and wave
number s,

f̃ (s) = 1√
2π

∫ ∞

−∞
f (x)eisxdx,

f (x) = 1√
2π

∫ ∞

−∞
f̃ (s)e−isxds,

(22)

which when applied to the biharmonic equation (21a) results
in an ordinary differential equation for ˆ̃ζ0(s, z, ω),

(
d2

dz2
− s2

)2
ˆ̃ζ0 = 0. (23)

E. Zeroth order solution

The general solution of Eq. (23) is given by

ˆ̃ζ0(s, z) = (A + Bsz) cosh(sz) + (C + Dsz) sinh(sz), (24)

with the constants A,B,C,D to be determined from the
boundary conditions in Eqs. (21b)–(21d):

[ ˆ̃ux0(s,−�), ˆ̃uz0(s,−�)] = 0, (25a)

ˆ̃Tzz0(s, 0) + �ss
2 ˆ̃uz0(s, 0) = �l

ˆ̃Fcl(s, ω), (25b)

ˆ̃Txz0(s, 0) = 0. (25c)

Solution of the linear system of equations in Eq. (25) gives
the unknowns A,B,C,D. Then the transformed displacement
at the free surface z = 0 is given by Eq. (16). In what fol-
lows we report the solution corresponding to incompressible

materials ν = 0.5, as this represents most soft materials used
in experiment. The vertical and horizontal components of the
transformed deformation are given by

ˆ̃uz0(s, z, ω) = �l
ˆ̃Fcl(s, ω)Nz(s, z)

M(s, ω)
, (26a)

ˆ̃ux0(s, z, ω) = −i
�l

ˆ̃Fcl(s, ω)Nx(s, z)

M(s, ω)
. (26b)

The definition of the functions M(s, ω), Nz(s, z), and Nx(s, z)
are given in Appendix A.

The Dirac delta function appearing in Eq. (26) has the
following property:

∫ ∞

−∞
f (ω)δ(ω − ω0)dω = f (ω0). (27)

This allows us to compute the inverse transform of the defor-
mation field by a single integral such as

u0(x, z) = 1√
2π

∫ ∞

−∞
û0(s, z,−sv)e−is(x−vt )ds. (28)

F. First order solution

The dimensionless governing equation and boundary con-
ditions at O(κ ) are given by

∇4ζ̃1 = 0, (29a)

T̃zz1|z=0 = �s
∂2ũz1
∂x2

∣∣∣∣
z=0

, (29b)

T̃xz1|z=0 = 0, (29c)

ũx1|z=−� = −x
∂ ũx0
∂z

∣∣∣∣
z=−�

, (29d)

ũz1|z=−� = −x
∂ ũz0
∂z

∣∣∣∣
z=−�

. (29e)

The functions ∂ ũz0
∂z and ∂ ũx0

∂z are determined from the zeroth
order solution.

We take the general solution of Eq. (29a) to be

ζ̃1 = e−ix[(E + Fx) cosh z + (G + Hx) sinh z]. (30)

The first order deformation components at z = 0 in the trans-
formed space are given by

ũz1 = 8eix
ω
v x��l

ˆ̃Fcl
( − ω

v
, ω

)
Pz(ω, z)

πM
( − ω

v
, ω

)
Q(ω, z)

, (31a)

ũx1 = i8eix
ω
v x��l

ˆ̃Fcl
( − ω

v
, ω

)
Px(ω, z)

πM
( − ω

v
, ω

)
Q(ω, z)

. (31b)

Defining ω = −sv, we can compute the first order in-
verse transformed solutions by the same integral as shown in
Eq. (28) and combine with the zeroth order solution to obtain
the full deformation field. The functions Px, Pz, and Q are
given in Appendix A.
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(a)

(b)

FIG. 3. Vertical deformation uz of a soft substrate at the liquid-
solid interface z = 0 as it depends upon (a) thickness gradient κ

(� = 1, �s = 1, �l = 2, v = 0) and (b) dimensionless velocity v

(� = 1, �s = 1, �l = 2, κ = 0.3, n = 0.5).

IV. RESULTS

A. Deformation of solid substrate

Figure 3 shows the vertical deformation profiles of the solid
at the free surface uz(x, 0) due to a resting liquid droplet. The
results are presented here in a moving reference frame putting
x = vt . Figure 3(a) shows that deformation is symmetric at
two sides of the droplet for κ = 0. For κ > 0, this symmetry
is broken as the liquid drop tends to deform the thicker side
of the substrate more than the thinner side. The effect of
viscoelasticity on the deformation is illustrated in Fig. 3(b) by
plotting uz(x, 0), as it depends on the dimensionless velocity
v. Recall that the viscoelastic timescale is implied within v

due to our choice of scaling. We find that increased viscoelas-
tic effects would lead to a decrease in the overall deformation
of the solid by the droplet.

The asymmetric deformation caused by the thickness gra-
dient induces a spontaneous motion on the droplet and makes
it move towards the direction of higher thickness. This motion
is driven by a variation in the macroscopic contact angles
α at the two contact points (cf. Fig. 1), which is a result of
the asymmetry in deformation at the contact line region. It is
known that the solid wetting ridge shown in Fig. 1 assumes
a universally triangular shape in the region very close to the

(a)

(b)

FIG. 4. (a) Advancing (αa) and receding (αr) receding contact
angles of the drop in degrees plotted against the aspect ratio �. Here
κ = 0.25. (b) Dimensionless driving force � cosα against � for dif-
ferent thickness gradient κ . In both figures, v = 0, �s = 0.5, �l = 2.

contact line x → 1 and undergoes a rotation that depends on
the aspect ratio of the system [19]. Now, it is possible to obtain
the liquid contact angle directly from the rotation φ of the
wetting ridge given that the surface tension forces maintain a
local equilibrium. This equilibrium would hold at the contact
line of a moving droplet if the solid angle θs formed within the
substrate at the contact line remained constant for different ve-
locities. For a neutrally wetting substrate we have the simple
relation α + φ = π

2 . We can calculate both φ and θs from the
discontinuity of the surface slope u′

z(x, 0) at the contact line,
which is given in Appendix B.

We find the cusp rotation angle φ to be sensitive to the
aspect ratio, which makes the macroscopic contact angle α

vary along the contact line, given a thickness gradient ex-
ists. We refer to the contact angle on the higher thickness
side as the advancing angle αa and the one on the lower
thickness side as the receding angle αr . In Fig. 4(a) we plot
these angles against aspect ratio � showing that both of the
contact angles decrease as � increases, which results from
increased rotation of the triangular cusp at the contact line.
We note that the difference between the two angles is also
inversely related to �, and this difference approaches zero
for large aspect ratio. As mentioned above, this calculation
relies upon the constant θs for all v, which we verify in
Appendix C.

The difference in contact angles created by the thickness
gradient generates an unbalanced horizontal force in the di-
rection of lower contact angle, which drives the droplet. This
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FIG. 5. Driving force � cosα plotted against the elastocapil-
lary number �l with different aspect ratios �. Here, ν = 0.5, �s =
0.5�l , κ = 0.3, v = 0.

driving force per unit length is

Fd = γlg(cosαa − cosαr ). (32)

Figure 4(b) plots � cosα = cosαa − cosαr against �,
showing a decreased driving force with increasing substrate
thickness. This reduction in the driving force predicts a slow-
ing down of the drop as it moves towards higher thickness
regions. Style et al. [10] showed similar trends with a non-
linear thickness gradient where a decelerating drop eventually
comes to rest on a point of high aspect ratio. We note that
the presence of surface imperfections will cause contact angle
hysteresis, which acts in the opposite direction to the driving
force. When the driving force becomes too small to over-
come this hysteresis effect, the drop will no longer be able to
move. Larger slopes always generate a higher driving force.
Similar driving forces have been studied for wetting on rigid
solids, where the wettability gradient induces a contact angle
asymmetry on liquid drop causing motion [34,35]. The key
difference for soft wetting is that a wettability gradient is not
essential for generating drop motion. In fact, for the neutral
wetting case with γsg − γsl = 0 considered in our model here,
drop motion is induced through a change in the macroscopic
contact angles by the rotation of the wetting ridge.

Figure 5 plots � cosα against liquid elastocapillary num-
ber �l with �s = 0.5�l . Here we find that � cosα increases
with increasing elastocapillarity until it reaches a maximum
value beyond which it starts to decrease. The maximum
driving force is found to occur at around � ∼ 1. A lower
elastocapillary effect is typically associated with small solid
deformation, resulting in a trivial amount of rotation of the
wetting ridge. On the other hand, a high elastocapillary ef-
fect means the capillary pressure, which scales as O(�l ) and
pushes the solid downward, becomes large. In this case the
substrate essentially behaves like a fluid, making the effect of
underlying thickness negligible.

The driving force on a droplet also depends on the velocity
due to the viscoelastic response of the substrate. Figure 6 plots
� cosα against the scaled velocity v, as it depends upon the
power-law exponent n. From (14) we know that increasing n
increases both the storage (μ′) and loss modulus (μ′′), which

FIG. 6. Driving force� cosα against scaled velocity v for differ-
ent power-law exponent n. Here, � = 1, �s = 2, �l = 5, κ = 0.4.

are given by

μ′ = μ0

[
1 + (ωτ )n cos

nπ

2

]
, μ′′ = μ0(ωτ )n sin

nπ

2
. (33)

We find that � cosα decreases with increasing velocity. The
effect of n is observed in two different regions with a transition
point at v ∼ 1. For v < 1 we find a higher driving force at
the same velocity for higher n. This is the region where μ′
is higher than μ′′. For v > 1, driving force decreases with
increasing n, where μ′′ becomes larger than μ′.

B. Velocity of the moving drop

Our deformation model predicts the driving force exerted
on the drop. For gradient-driven droplet motion on rigid sub-
strates, a steady state velocity is obtained from a steady state
force balance between the driving force and the resistive vis-
cous force,

Pf + Ps = Fdv. (34)

Here Pf and Ps are the dissipated powers within the fluid
and solid, respectively. The dissipation in the fluid scales
with fluid viscosity η f and can be analytically determined
assuming slow Poiseuille flow as [51]

Pf
∼= 3η f v

2

α
ln rc. (35)

Here rc is a ratio of cutoff length scales to remove the contact
line singularity. The typical value of ln rc isO(10). For motion
on a rigid substrate, the dissipation occurs primarily in the
fluid and one need not consider Ps in Eq. (34). However, the
opposite is true for most soft substrates. Viscoelasticity in a
soft solid can significantly affect the liquid motion, reducing
its velocity by orders of magnitude in a phenomenon known
as viscoelastic braking [2]. Therefore to accurately predict
drop velocity on a soft substrate, we need to calculate the
dissipation within the solid,

Ps =
∫

Ti j :
∂εi j

∂t
d2x, (36)

which can be expressed as an integral over the free surface
using the divergence theorem,

Ps =
∮

�T · ∂ �u
∂t

ds. (37)
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This approach was followed by Van Gorcum et al. [23]
and allows further simplification for incompressible materials
which only have a single nonzero stress component at the free
surface z = 0. If we consider the free surface to extend over an
infinite domain in the horizontal extent, then Eq. (37) becomes

Ps =
∫ ∞

−∞
Tzz(x, 0, t )

∂uz
∂t

(x, 0, t )dx. (38)

Writing this integral in terms of the spatial transform, we get

Ps = μ0R2

τ

∫ ∞

−∞
dx

∫ ∞

−∞
dsT̂zz(s, 0)e

−is(x−vt )

×
∫ ∞

−∞
ds′(is′v)ûz(s′, 0)e−is′ (x−vt ). (39)

The case of an infinitely wide solid substrate only applies
to the κ = 0 case. Therefore in order to make progress we use
the zeroth order solutions to evaluate the integral in Eq. (39).
Since we consider κ to be a small parameter, the zeroth order
analysis should provide us with an estimate for the scale of
the dissipated power. Keeping the real part of the dissipated
power only we can write

Ps ∼= 1

τ
μ0R

2vn+1�2
l H, (40)

with

H =
∫ ∞

−∞
ds

2sn+2(F̂cl(s))2

[M(s,−sv)]2
[2s� − sinh(2s�)]

× [1 + 2s2�2 + cosh(2s�)]. (41)

For low velocities we can approximate,M(s,−sv) ≈ M(s, 0),
to simplify the computation. Putting Eqs. (35) and (40) in
the force balance (34) we get the following dimensionless
equation:

vn�2
l H + 3ε

α
ln rc ∼= �l� cosα. (42)

Here ε = η/μ0τ is a viscosity ratio, typically a small param-
eter in viscoelastic wetting experiments, especially when the
viscoelastic timescale τ ≈ 0.1–1s. Therefore in this work we
limit our analysis to the ε → 0 case and assume that solid
viscosity gives the dominant dissipation in the force balance
(42), which gives the following equation for velocity:

v ∼=
(

� cosα

�lH

)1/n

. (43)

We combine Eq. (43) with the solution for � cosα derived
in the previous sections and determine the magnitude of the
velocity of a spontaneously moving drop on a soft substrate.
We do this in a self-consistent manner where we calculate the
driving force for a initial velocity guess, fit the solution to
Eq. (43), and iteratively find the correct velocity that satisfies
this equation.

Previously, Long et al. [42] derived an expression for
the solid dissipation with similar rheology. They assumed a
small elastocapillary effect and calculated dissipation over
a small domain of wave numbers where substrate thickness
has negligible influence on the dynamics. In contrast, droplet
durotaxis typically involves finite elastocapillarity and sub-
strate thickness, which can have a significant effect on the

(a)

(b)

FIG. 7. (a) Dimensionless velocity v plotted against aspect ratio
�with different thickness gradient κ . Here, �s = 1, �l = 2, n = 0.6.
(b) Velocity in μm/s plotted against relaxation timescale τ with
different power-law exponent n. Here, � = 1, �s = 3, �l = 6, κ =
0.4,R = 10 μm.

solid dissipation. These are incorporated in our current numer-
ical solution and provide a more reliable method to calculate
the drop velocity.

Figure 7(a) plots the scaled velocities v obtained using
this method against aspect ratio �. We see that drop velocity
reduces with increasing �, similar to � cosα in Fig. 4(b). We
also find higher velocities for higher values of κ as expected.
Figure 7(b) shows the dependence of drop velocity on the
viscoelastic parameters τ and n. Higher τ reflects a longer
relaxation time in the solid and therefore a smaller predicted
velocity. The power-law exponent n has little effect on the
velocity.

Style et al. [10] observed the motion of microsized glyc-
erol droplets on a PDMS substrate with a nonlinear thickness
gradient. They reported velocities as high as v ∼ 0.1 μm/s in
the shallowest regions of the substrate. We find from Eq. (43)
that the drop velocity is strongly dependent on the elasto-
capillary numbers, as well as the viscoelastic parameters.
Therefore one needs to know the exact value of the material
parameters to accurately compare the experimental findings
with the theoretical prediction. For example, we consider
R = 7 μm,� = 0.8, and κ = 0.4 to represent one droplet
reported in the experiment which had v ≈ 0.08 μm/s. If
we let μ0 = 1 kPa, γs = 0.04 N/m, γlg = 0.06 N/m, n = 0.8,
τ = 0.5 s, our model predicts a drop velocity of 0.2 μm/s,
which is close to the experimental value. The slightly higher
numerical value of theoretical prediction could be due to the
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contact angle hysteresis, which would tend to decrease the
drop velocity.

V. CONCLUSION

We have developed a two-dimensional boundary perturba-
tion model for the deformation of a soft viscoelastic substrate
due to a rigid droplet moving along the interface with velocity
v across its interface. The competition between elasticity and
capillary forces is characterized by nondimensional elastocap-
illary numbers for the solid and liquid, while viscoelasticity
is described using a power-law model for the complex shear
modulus. A small linear gradient in the substrate thickness
is shown to change the contact angle along the contact line
and generate a net driving force in the direction of increas-
ing substrate thickness. We compute the contact angles by
measuring the rotation of the triangular cusp at the tip of
the wetting ridge. Here, Neumann’s law requires the solid
angle to remain constant for a moving drop, and we show
that this is valid for droplets moving at low velocities. The
drop velocity is determined using a self-consistent calculation
balancing the power with viscous dissipation in the solid. We
show the drop velocity decreases with increasing aspect ratio,
in agreement with experiments on droplet durotaxis. We also
show the sensitivity of the drop velocity on the viscoelastic
parameters in the solid, where increased relaxation time of the
solid reduces the velocity. Our predictions compare favorably
to the experiments of Style et al. [10] when using reasonable
parameter values.

We have identified the parameter regimes more favorable
to droplet motion, and those should provide directions for
designing future experiments and shed light on the droplet
durotaxis phenomena. Cell motility in nature by durotaxis
is typically attributed to the inherent ability of the cells to
probe the elasticity of the substrate by exerting traction forces.
The elastocapillary mechanism offers an alternative and sim-
pler understanding of this biological process from a transport
perspective. More experimental investigation is needed to de-
termine under what circumstances the cell motion becomes
independent of the internal properties of the cell and follows
the simple drop transport mechanism described here. While
cells move from lower to higher stiffness regions, droplet
motion occurs in the opposite direction. This discrepancy
has been attributed to the wetting conditions of the solid in
literature [52]. Incorporating partial wetting effects is a natural
extension to our model and needs to be investigated in future
works to compare with cellular durotaxis.

Our droplet transport model could be verified by analyz-
ing thickness gradients seen in experiment. For example, the
experiments of Style et al. [10] investigated drop motion on
a nonlinear thickness gradient. Solving this problem with
nonlinear gradients could shed light on the effect that different
types of gradients might have on the droplet transport. In our
model we have assumed a nontrivial but constant capillary
pressure from the liquid drop on a solid substrate, which
is important for small droplets and had not been included
in previous dynamic wetting models. If the contact angle
difference is large, the free surface of the drop will be signifi-
cantly deformed and our analysis would need to be modified.
Future works could focus on developing new techniques to

include these effects in the dynamic model. Finally, we have
ignored the effect of liquid viscosity, which affects the dy-
namic contact angle for rigid substrates [53,54]. The cases
where solid and liquid viscosity are of the same scale have
only received limited attention so far [24,55]. A more general
model is desired to reinterpret classical wetting models for
rigid substrates to soft surfaces which would enable us to
exploit the unique properties of soft wetting in many industrial
applications.
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APPENDIX A: FUNCTIONS DEFINED IN THE SOLUTION
OF DEFORMATION

The functions defined in Eq. (26) are given by

M(s, ω) = s[2(1 + (iωτ )n)(1 + 2s2�2 + cosh(2s�))

+ s�s( sinh(2s�) − 2s�)],

Nz(s, z) = [1 + 2s2�(z + �) sinh(sz) + sinh (s(z + 2�))]

− s(z + 2�) cosh(sz) − sz cosh (s(z + 2�)),

Nx(s, z) = 2s�(z + �) cosh(sz)

− z[sinh(sz) + sinh (s(z + 2�))].

The functions in Eq. (29) are given by

Pz(ω, z) = cosh z{2(1 + (iω)n)(z + �) cosh�

+ z[�s − 2�(1 + (iω)n)] sinh�}
− �[�s + 2z(1 + (iω)n)] sinh z cosh�,

Px(ω, z) = sinh�(cosh z + z sinh z)[2�(1 + (iω)n) − �s]

× [2(z� − 1)(1 + (iω)n) + ��s] cosh z cosh�

− 2z(1 + (iω)n) sinh z cosh�,

Q(ω, z) = 2(1 + (iω)n)(1 + 2�2 + cosh(2�))

+ �s( sinh(2�) − 2�).

The contact line force is

ˆ̃Fcl(s, ω) =
√

2

π

(
cos s − sin s

s

)
δ(ω + sv). (A1)

APPENDIX B: DETERMINING CUSP ROTATION
AND SOLID ANGLE

The cusp rotation φ and the solid angle θs are calculated
from the following relations using the slope at the contact
point u′

z(x, 0):

φ = 1
2 (tan

−1 lim
x→1+

u′
z(x, 0) − tan−1 lim

x→1−
u′
z(x, 0)), (B1a)

θs = 180 − (tan−1 lim
x→1+

u′
z(x, 0) + tan−1 lim

x→1−
u′
z(x, 0)).

(B1b)

The + and − signs refer to the wet and dry sides of solid,
respectively. Here we obtain the slope u′

z(x, 0) using the
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FIG. 8. Solid angle θs plotted against the scaled velocity v with
different elastocapillary numbers �s. Here, � = 1, �s = 0.5�l , n =
0.5, κ = 0.3.

following property of the Fourier transform:∫ ∞

−∞

df (x)

dx
eisxdx = −is

∫ ∞

−∞
f (x)eisxdx. (B2)

APPENDIX C: VALIDITY OF THE NEUMANN FORCE
BALANCE IN DYNAMIC WETTING

Figure 8 plots the cusp angle θs against dimensionless
velocity v for different elastocapillary numbers. This shows
that for small values of �s, which refers to either a nearly rigid
substrate or a large droplet, θs increases with increasing veloc-
ity until it reaches the maximum value of 180o. This means
that Neumann’s equilibrium does not hold for this case. As
we increase �s, θs tends to remain constant over a wider range
of velocity before starting to increase. Therefore Neumann’s
equilibrium is sufficient for predicting the contact angle for
this velocity range. Since the droplet durotaxis phenomenon
has been found to occur at low velocity with elastocapil-
lary numbers � ∼ O(1), we proceed with the assumption of
Neumann’s triangular force equilibrium at the contact line is
valid for our analysis. We also find the solid angle θs to be
independent of the substrate thickness, in line with previous
findings [56].
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