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Vector autoregressive (VAR) models aim to capture linear temporal in-
terdependencies among multiple time series. They have been widely used in
macroeconomics and financial econometrics and more recently have found
novel applications in functional genomics and neuroscience. These applica-
tions have also accentuated the need to investigate the behavior of the VAR
model in a high-dimensional regime, which will provide novel insights into
the role of temporal dependence for regularized estimates of the models pa-
rameters. However, hardly anything is known regarding posterior model se-
lection consistency for Bayesian VAR models in such regimes.

In this work, we develop a pseudo-likelihood based Bayesian approach
for consistent variable selection in high-dimensional VAR models by consid-
ering hierarchical normal priors on the autoregressive coefficients, as well as
on the model space. We establish strong selection consistency of the proposed
method, namely that the posterior probability assigned to the true underlying
VAR model converges to one under high-dimensional scaling where the di-
mension p of the VAR system grows nearly exponentially with the sample
size n.

Further, the result is established under mild regularity conditions on the
problem parameters. Finally, as a by-product of these results, we also es-
tablish strong selection consistency for the sparse high-dimensional linear
regression model with serially correlated regressors and errors.

1. Introduction. Modeling a large panel of time series is an important task in many
fields, including macroeconomic modeling Stock and Watson (2005), identification of regu-
latory networks in functional genomics Michailidis and d’Alché-Buc (2013) and brain con-
nectivities from neuroimaging data Seth, Barrett and Barnett (2015). A popular and flexible
model is that of Vector Autoregressions (VAR) that represents the current values of each time
series as a linear function of the first d-lags of itself and the other time series under consid-
eration, plus a serially uncorrelated error term. Due to the importance of the VAR model in
economic policy analysis (Sims (1980)), its statistical properties have been thoroughly ex-
plored in the econometrics literature for low-dimensional settings (Lütkepohl (2005)). How-
ever, new applications in genomics and neuroscience, as well as the realization by macroe-
conomic modelers that VAR models based on a small number of variables (time series) lead
to estimates that contradict basic tenets of economic theory, accentuated the need to examine
VAR models in high-dimensional settings. An in-depth theoretical analysis of the model for
Gaussian data under a sparsity assumption and using an �1 penalty term was provided in Basu
and Michailidis (2015), while follow-up work extended the results to other penalties Melnyk
and Banerjee (2016), to strategies for selecting the number of lags Nicholson, Matteson and
Bien (2017) and to incorporating exogenous variables Lin and Michailidis (2017). Key is-
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sues that this line of work addressed was the role of temporal dependence on the estimates of
the model parameters, together with providing technical tools (appropriately modified con-
centration inequalities for the resulting design matrix and with the error term) to handle this
dependence (see Proposition 2.4 in Basu and Michailidis (2015)).

On the other hand, Bayesian approaches for analyzing medium and large size VAR mod-
els have been quite extensively used in empirical work in macroeconomic modeling and
forecasting (e.g. Bańbura, Giannone and Reichlin (2010), De Mol, Giannone and Reichlin
(2008), Robertson and Tallman (1999), Sims and Zha (1998)). However, a detailed theo-
retical investigation of Bayesian variable selection procedures for the VAR parameters in
modern high-dimensional settings has not been undertaken. This is in contrast to Bayesian
variable selection for high-dimensional linear regression models with independent and iden-
tically distributed observations, where a rich literature exists; for example, see Bondell and
Reich (2012), Brown, Vannucci and Fearn (2002), George and Foster (2000), Ishwaran and
Rao (2005), Johnson and Rossell (2012), Kinney and Dunson (2007), Liang et al. (2008),
Narisetty and He (2014), Song and Liang (2015) to name a few. Almost all of these meth-
ods consider a hierarchical prior structure, where given a set of active regression coefficients,
a concentrated prior around zero (spike) is placed on the set of inactive coefficients, and a
diffused prior (slab) is placed on the set of active coefficients. An appropriate prior distri-
bution is then chosen for the activity pattern of coefficients; one common choice is to in-
dependently assign each coefficient to be active or inactive with a common probability. The
high-dimensional consistency properties of these methods have been extensively studied; see,
for example, Bondell and Reich (2012), Casella et al. (2009), Castillo, Schmidt-Hieber and
van der Vaart (2015), Narisetty and He (2014), Shin, Bhattacharya and Johnson (2018) and
references therein. In this line of work, roughly three major notions of posterior selection
consistency emerge. The first is pairwise or posterior ratio consistency (Casella et al. (2009)),
which implies that the ratio of the posterior probabilities of any nontrue model and the true
model goes to zero. The second notion is model selection consistency, which implies that
the chosen model (such as the posterior mode or the sparsest model in a credible region)
is equal to the true model with probability converging to one (Bondell and Reich (2012)).
The strongest notion of consistency is strong selection consistency which implies that the
posterior probability of the true model converges to one (Castillo, Schmidt-Hieber and van
der Vaart (2015), Narisetty and He (2014), Shin, Bhattacharya and Johnson (2018)). In all
of the above studies, the results hold when the number of coefficients p grows subexponen-
tially with the sample size n, and the errors are assumed to be independent and identically
distributed (i.i.d.) with a common variance parameter σ 2.

The VAR model, although related to linear regression, leads to a more complex setting. In
particular, for a p-dimensional stationary time series {Xt }, a VAR model of lag-d is given by

Xt = c +
d∑

i=1

AiX
t−i + εt .(1)

The temporal dependence structure of the model is characterized by the p × p transition
matrices A1,A2, . . . ,Ad , and c is a p × 1 location vector. In the Gaussian VAR model, the
errors εt are assumed to be independent and identically distributed (i.i.d.) Np(0,�ε), with
the error covariance matrix �ε unknown in most applications. Note that our main parameters
of interest are the transition matrices A1,A2, . . . ,Ad , and we treat the error covariance matrix
as an unknown nuisance parameter.

The model in (1) can be rewritten in the Yule–Walker representation (Lütkepohl (2005))
as

Xt − μ =
d∑

i=1

Ai

(
Xt−i − μ

)
+ εt ,
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where μ = (I − A1 − A2 − · · · − Ad)−1c is known as the process mean. Usually μ will
not be known in advance. In that case, μ is estimated by the vector of sample means X̄ =∑n

1 Xt . Henceforth, we assume without loss of generality that μ = 0. Based on the data
{X0, . . . ,XT }, we define the response matrix Y and design matrix X as follows:

Y =

⎡
⎢⎢⎣

(
XT )′

...(
Xd)′

⎤
⎥⎥⎦

n×p

, X =

⎡
⎢⎢⎣

(
XT −1)′ · · ·

(
XT −d)′

...
. . .

...(
Xd−1)′ · · ·

(
X0)′

⎤
⎥⎥⎦

n×dp

.

We can then rewrite the above model in a linear regression setup as

(2) Y = X� + E,

where

� =

⎡
⎢⎢⎢⎣

A′
1

A′
2
...

A′
d

⎤
⎥⎥⎥⎦ , E =

⎡
⎢⎢⎣

(
εT )′
...(

εd)′

⎤
⎥⎥⎦ .

In this formulation, the number of samples is n = T − d + 1 and the number of unknown
parameters in the coefficient matrix � is q = dp2, respectively.

Although the estimation of the VAR model parameters can be formulated as a linear re-
gression problem using (2), there are significant differences from a technical point of view.
The most important difference is that the resulting (random) design matrix for the VAR model
in (2) exhibits dependencies both between its rows and across its columns, and also with the
error term of the model. Another notable difference is that the single variance parameter σ 2 in
simple linear regression is replaced by the covariance matrix �ε of the (multivariate) errors in
the VAR model with p2 parameters (we partially alleviate this by using a pseudo-likelihood
which only involves the p diagonal entries of �ε ; see Section 3). Thus, the presence of
temporal dependence introduces significantly nontrivial technical challenges for establishing
high-dimensional posterior selection consistency.

In this paper, we first propose a pseudo-likelihood based, fully Bayesian approach for
variable selection, and then examine model selection consistency for the VAR model under
the assumption of sparsity in �. Sparsity in � is introduced through an “activity graph”
G, which is the direct sum of d p × p matrices of 1’s and 0’s, identifying which entries
of � are active/inactive. Given G, an appropriate multivariate normal prior is chosen for
the active entries of �. Under standard regularity assumptions, which include stability of
the true VAR process, uniform boundedness of the eigenvalues of the true error covariance
matrix, and letting p increase at an appropriate subexponential rate with n, we establish
strong selection consistency of our Bayesian variable selection approach, that is, the posterior
probability assigned to the true activity graph converges to one as n → ∞ (Theorem 4.2). As
discussed earlier, this is the strongest notion of posterior selection consistency, and implies
model selection consistency, that is, the true activity graph will be the mode of the posterior
distribution with probability tending to 1 as n → ∞.

To the best of our knowledge, these variable selection results are the first of their kind for
Bayesian high-dimensional multivariate models exhibiting temporal dependence. We would
like to point out that in our recent work Ghosh, Khare and Michailidis (2019a), the focus
was on posterior estimation consistency for VAR models in a moderate dimensional set-
ting wherein p = o(n), whereas in this study the focus is on high-dimensional settings with
logdp2 = o(n). In order to prove our strong selection consistency result, we first obtain
bounds for the Bayes factor of any nontrue activity graph with respect to the true activity
graph. Different bounds are obtained for different types of nontrue activity graphs, through
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involved analysis and leveraging selected concentration inequalities from Basu and Michai-
lidis (2015) and Ghosh, Khare and Michailidis (2019a) to handle the temporal dependence
structure within the design matrix and with the design matrix and the error matrix. Careful
calculations ensure that the sum of the resulting bounds over all the nontrue activity graphs
converges to zero, thereby proving strong selection consistency. Another notable feature of
our strong selection consistency result is its application to linear regression with serially cor-

related predictors and errors (as opposed to i.i.d. errors and predictors considered in previous
work such as Narisetty and He (2014), Shin, Bhattacharya and Johnson (2018)).

The remainder of the paper is organized as follows. In Section 2, we review notions of
stability and interdependence in VAR models. In Section 3, we motivate and describe our
pseudo-likelihood based hierarchical model. In Section 4, we provide the necessary assump-
tions on the underlying true model, and establish our strong selection consistency and estima-
tion consistency results. Based on these results, we provide a framework for estimating the
activity graph and the coefficient matrix in Section 5. In Section 6, we illustrate the results
in Section 4 and the estimation methodology in Section 5 using synthetic data. In Section 7,
as a by-product of our pseudo-likelihood based approach, we establish strong selection con-
sistency for Bayesian linear regression with serially correlated errors. The proofs of the main
theorems are given in the Appendix, while those of all supporting lemmas are in the Supple-
mentary Material (Ghosh, Khare and Michailidis (2021)).

Notation. Throughout the paper, Z, R and C denote the sets of integers, real numbers and
complex numbers, respectively. We denote the cardinality of a set J by |J |. For a vector v ∈
Rp , ‖v‖ :=

√∑
v2
j denotes the �2-norm. For a matrix A, ‖A‖ and σmax(A) denote spectral

norm, that is, ‖A‖ = supx �=0
‖Ax‖2
‖x‖2

and the largest singular value of A, respectively. For a
symmetric or Hermitian matrix A, we denote its maximum and minimum eigenvalues by
λmax(A) and λmin(A). The vector ei is used for the ith unit vector in Rp . Bold uppercase
letters are only used to denote matrices, and vectorized form of such matrices are represented
by corresponding lower cases. For example, if � is a p × p matrix then φ is vec(�). Also,
O represents a zero-matrix of appropriate dimension, and in general vectors are denoted by
italicized bold lowercase letters. an ∼ bn if and only if an

bn
→ c for some constant c > 0 and

an 	 bn if and only if an = O(bn).

2. Model formulation.

2.1. Preliminaries: Stability of VAR models. Since VAR models are (linear) dynamical
systems, for their analysis we need to establish conditions under which the VAR model in (2)
is stable, that is, the time-series process does not diverge over time. The VAR process {Xt }
with lag d is stable and invertible if det(Ip −∑d

i=1 Aiz
i) �= 0 inside the unit circle of the

complex plane, that is, {z ∈ C : |z| ≤ 1}. It is often convenient to rewrite the VAR model of
lag d in (2) as an equivalent dp-variate VAR model of lag 1, {X̃t }, where

X̃t =

⎡
⎢⎢⎣

Xt

...

Xt−d+1

⎤
⎥⎥⎦

dp×1

, Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 A2 · · · Ad−1 Ad

Ip O · · · O O

O Ip · · · O O
...

...
. . .

...
...

O O · · · Ip O

⎤
⎥⎥⎥⎥⎥⎥⎦

dp×dp

and

ωt =

⎡
⎢⎢⎢⎢⎣

εt+1

0
...

0

⎤
⎥⎥⎥⎥⎦

dp×1

,
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where Ã is a dp × dp transition matrix and the new representation becomes

X̃t = ÃX̃t−1 + ωt , t = d, . . . , n + d − 1.(3)

It follows that X = [X̃n+d−2X̃n+d−3 · · · X̃d−1]′, where the ith row of X is denoted as a (dp×1
vector) X̃n+d−i−1. The VAR process {Xt } (with lag d) is stable if and only if the VAR process
{X̃t } is stable (see Basu and Michailidis (2015)), which is true if all the eigenvalues of Ã have
absolute value strictly less than 1; that is, max1≤i≤p |λi(Ã)| < 1.

The autocovariance function of the dp-dimensional centered covariance-stationary time
series {X̃t } (stability guarantees stationarity) is defined as �

X̃
(h) = Cov(X̃t , X̃t+h) t, h ∈ Z

and it is invariant in t . Also, for the stable VAR process {X̃t }, the (matrix-valued) spectral
density f

X̃
is defined by

f
X̃
(θ) := 1

2π

∞∑

h=−∞
Cov

(
X̃t , X̃t+h)e−ihθ , θ ∈ [−π,π ].

The maximum and minimum eigenvalues of the spectral density f
X̃

are denoted by

M(f
X̃
) := ess sup

θ∈[−π,π ]
λmax

(
f

X̃
(θ)
)
,

m(f
X̃
) := ess inf

θ∈[−π,π ]
λmax

(
f

X̃
(θ)
)
.

The largest eigenvalue M(f
X̃
) captures the “peak” of the spectral density and can be used

as a measure of stability of the VAR process. In particular, processes with larger M(f
X̃
)

are considered less stable. The smallest eigenvalue m(f
X̃
) captures the dependence among

the univariate components of {X̃t }. As pointed out in Basu and Michailidis (2015), Proposi-
tion 2.2, it is often easier to work with quantities μmax(Ã) and μmin(Ã) which are defined
as

μmax(Ã) := max
θ∈[−π,π ]

λmax
((

Ip − Ã′eiθ )(Ip − Ãe−iθ ))≤
[
1 + (vin + vout)/2

]2
,(4)

where vin = max1≤i≤dp

∑dp
j=1 |Ãij | and vout = max1≤j≤dp

∑dp
i=1 |Ãij |, and

μmin(Ã) := min
θ∈[−π,π ]

λmin
((

Ip − Ã′eiθ )(Ip − Ãe−iθ ))

≥
(
1 − ρ(Ã)

)2‖P‖−2∥∥P−1∥∥−2
,

(5)

and where ρ(Ã) is the spectral radius of Ã and the columns of P correspond to eigenvectors
of Ã (assuming Ã is diagonalizable).

We establish additional bounds and properties on μmax and μmin which will be useful for
understanding their behavior, and verifying the validity of our assumptions for consistency in
various settings, a novel result of independent interest (see Supplementary Material, Sections
S5 and S6).

PROPOSITION 2.1.

(a) Let ‖ · ‖ denote the operator norm. Then

(6) μmin(Ã) ≥ 1 − 2‖Ã‖ + λmin
(
Ã′Ã

)
,

(b) Let ‖ · ‖1 and ‖ · ‖∞ denote the maximum row and column sum norms, respectively.
Then

(7) μmin(Ã) ≥ 3 −
√

5

2
−
(

2
d∑

i=1

‖Ai‖1 + ‖A1‖∞

)
.



1272 S. GHOSH, K. KHARE AND G. MICHAILIDIS

(c) If d = 1 and Ã = A is symmetric, then

(8) μmax(A) =
(
1 + ρ(A)

)2
,

where ρ(A) is the spectral radius of A. Similarly,

(9) μmin(A) =
(
1 − ρ(A)

)2
.

Since each εt is i.i.d. as Np(0,�ε), each row of X is distributed as Ndp(0,CX), where
CX = �

X̃
(0). The quantities μmin(Ã), μmax(Ã), the eigenvalues of f

X̃
and the eigenvalues

of CX are related by the following chain of inequalities (see Basu and Michailidis (2015)):

λmin(�ε)

μmax(Ã)
≤ 2πm(f

X̃
) ≤ λmin(CX) ≤ λmax(CX) ≤ 2πM(f

X̃
) ≤ λmax(�ε)

μmin(Ã)
.(10)

3. Bayesian VAR model formulation based on a pseudo-likelihood approach. We
consider a high-dimensional setting wherein the dimension p of the VAR model (2) increases
with the sample size n. In such settings, a popular and effective method to reduce the dimen-
sion of the parameter space is to induce sparsity or zeros in the parameter. Following this
approach, we introduce binary variables γij to indicate if the (k, �)-th entry of � is active,
that is, γk� = 1(�k� �= 0) for 1 ≤ k ≤ dp,1 ≤ � ≤ p. Let G := ((γk�))dp×p be a matrix of
active positions in �, henceforth referred to as the “activity graph of �.”

Given an activity graph G, let νi = νi(G) =∑dp
k=1 γki denote the number of nonzero en-

tries in the ith column of G, and φ̃i = (φki)k:γki=1 be the νi -dimensional vector of active
coefficients in the ith column of �. The VAR model (2) can now be written as

yi = Xi φ̃i + ξ i for i = 1, . . . , p,(11)

where ξ i and yi correspond to the ith column of E and Y, respectively, and Xi is a n × νi

submatrix of X consisting of the columns of X corresponding to the active entries in the ith
column of �. Let σ 2

i be the ith diagonal entry of �ε . Since the rows of E (i.e., εt ) are i.i.d.
Np(0,�ε), we have that ξ i ∼ Nn(0, σ 2

i In).
Note that the vectors y1,y2, . . . ,yp . The joint density of y1,y2, . . . ,yp , or equivalently,

the likelihood function of �,�ε given the data, is given by

L(�,�ε | yi, i = 1, . . . , p)

:= 1
√

(2π)p|�ε |n
exp
(
−1

2
tr
(
(Y − X�)�−1

ε (Y − X�)′
))

.
(12)

As mentioned earlier, the main parameter of interest is the coefficient matrix �, while the
error covariance matrix �ε is essentially an unknown nuisance parameter. Keeping this in
mind, we construct a pseudo-likelihood which is equal to the joint density of y1,y2, . . . ,yp

under the assumption that �ε is diagonal. In particular, we define

Lpseudo(�,�ε | yi, i = 1, . . . , p)

:= 1
√

(2π)p
∏p

i=1 σ 2
i

n exp

(
−1

2

p∑

i=1

‖yi − Xi φ̃i‖2

σ 2
i

)
.

(13)

The function Lpseudo in (13) has a simpler form than the likelihood function L and only
involves the diagonal entries of �ε . This form leads to significant computational simplifica-
tions. For example, under our proposed Bayesian model, the pseudo-posterior probability for
any activity graph can be computed in closed form, as shown in (15) below. On the other
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hand, it turns out that the regular posterior probabilities computed using the likelihood L in
(12) can in general only be expressed as intractable high-dimensional integrals.

The use of Lpseudo in place of L, of course, comes with a cost. Ignoring the correlations be-
tween the errors leads to a loss of statistical efficiency and raises potential questions regarding
the accuracy of the resulting estimates. However, the main result of the paper (Theorem 4.2)
establishes under mild regularity conditions (which include the assumption that the eigen-
values of the true error covariance matrix are uniformly bounded) that the pseudo-posterior
activity graph density puts all of its mass at the true activity graph generating the data as
n,p → ∞. The associated computational gains, along with the consistency result, render the
pseudo-likelihood based approach strongly preferable in the high-dimensional setting con-
sidered in this paper.

Having made the choice to use Lpseudo, we now construct the following hierarchical prior
distribution for (�,G):

φji |G,σ 2 ∼ (1 − γji)1φji=0 + γjiN
(
0, τ 2σ 2

i

)

independently for 1 ≤ i ≤ p,1 ≤ j ≤ dp
(14)

π(G) ∝
p∏

i=1

{
q

νi(G)
1 (1 − q1)

dp−νi(G)1{νi(G)<M} + q
νi(G)
2 (1 − q2)

dp−νi(G)1{νi(G)≥M}
}

σ 2
i ∼ Inv. Gamma(αi, βi/2) independently for i = 1, . . . , p,

where σ 2 denotes (σ 2
1 , . . . , σ 2

p).
Interpretation of M , q1 and q2: Note that under the prior distribution in (14), each column

of G is a priori independent and identically distributed. Next, we comment on how the hy-
perparameters M , q1 and q2 shape this common distribution of the columns of G. For each
column of G, the parameter space is the set of dp-dimensional vectors with entries in {0,1}.
The prior on each column is defined separately on two subsets of the parameter space, as
described below:

• The first subset is the set of realistic vectors, where the number of nonzero entries in the
given column is less than M . On this subset, the probability of each vector is proportional
to q

nz

1 (1 − q1)
nz , where nz denotes the number of nonzero entries in that vector. In this

sense, q1 will be referred to as the edge inclusion probability for realistic vectors.
• The second subset is the set of unrealistic vectors, where the number of nonzero entries

in the given column is greater than M . On this subset, the probability of each vector is
proportional to q

nz

2 (1 − q2)
nz , where nz denotes the number of nonzero entries in that

vector. In this sense, q2 will be referred to as the edge inclusion probability for unrealistic
vectors.

The hyperparameter M , which determines the density (number of nonzeros) of a realistic
vector, will be referred to as the realistic model cutoff size. Models where the number of
nonzero entries in at least one column is larger than M will be referred to as unrealistically

large models. Note that if q2 < q1, then we are additionally penalizing unrealistically large
models, that is, models where the number of nonzero entries in at least one column is larger
than M .

In fact, many recent papers with related priors distributions in the context of simple lin-
ear regression and covariance estimation (see Cao, Khare and Ghosh (2020), Narisetty and
He (2014), Shin, Bhattacharya and Johnson (2018)) use a similar structure as the prior dis-
tribution in (14). In particular, they choose M = O(n/ logp) and make the extreme choice
q2 = 0.
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The Bayesian hierarchical model defined by (13) and (14) can be used to infer the activity
graph as follows: by Bayes’ rule, and straightforward computations, the (marginal) pseudo-
posterior graph selection probabilities are given by

πpseudo(G |Y)

∝ π(G)

∫ ∫
Lpseudo(�,�ε | yi, i = 1, . . . , p)π

(
�|G,σ 2)d�

p∏

i=1

π
(
σ 2

i

)
dσ 2

i(15)

∝
p∏

i=1

q
νi(G)
νi(G) (1 − qνi(G))

dp−νi(G)

(
1

τ
√

n

)νi(G)∣∣∣∣
X′

iXi

n
+ Iνi

nτ 2

∣∣∣∣
−1/2(

Si + βi

n

)−( n
2 +αi)

,

where

qνi(G) =
{
q1 if νi(G) < M,

q2 if νi(G) ≥ M,

Si := y′
iyi

n
− y′

iXi

n

(
X′

iXi

n
+ Iνi

nτ 2

)−1 X′
iyi

n

The pseudo-posterior density πpseudo(G |Y) is derived in Section S2 of the Supplementary
Material (Ghosh, Khare and Michailidis (2021)). Note that the pseudo-posterior probabilities
πpseudo(G |Y) can in principle be used to select the graph by computing the posterior mode

defined by Ĝ := arg maxG πpseudo(G |Y). However, there are 2dp2
possible activity graphs,

and searching over such a large space becomes prohibitively expensive. However, standard
stochastic search ideas combined with a good starting point can be used to perform a targeted
and computationally effective search, as described in detail in Section 5.

4. Theoretical results. In this section, we provide our main consistency result for the
pseudo-likelihood based Bayesian model specified in (13) and (14). As previously mentioned,
we let the dimension p = pn of the VAR model vary with n, so that our results are relevant
in high-dimensional settings. We assume that our data come from the following true VAR
model: for every, n ≥ 1, let Yn := (Xn,0, . . . ,Xn,n+d−1) be the set of observations for sam-
ple size n, which satisfy Xn,k =∑d

i=1 Ai,0nX
n,k−i + εn,k for d ≤ k ≤ n + d − 1. The errors

{εn,k}n+d−1
k=d are i.i.d. Npn(0,�ε,0n). Further, {�0n}n≥1 denotes the sequence of the true coef-

ficient matrices given by �′
0n := [A1,0nA2,0n · · ·Ad,0n], and {�ε,0n}n≥1 denotes the sequence

of the true error covariance matrices. Let P0 denote the probability measure underlying the
true model described above, and G0 =G0,n the true underlying activity graph for the sparse
coefficient matrix �0. The quantities μmin(Ã), μmax(Ã) and CX are as defined in Section 2
with �0n and �ε,0n as the underlying parameter values. The maximum number of nonnull
entries within the columns of �0n and its minimum signal strength are defined respectively
by

kn := max
1≤i≤p

νi + 1

and sn := inf
(i,j):φ̃ij �=0 |φ̃ij |. The total number of nonzero entries in �0n is denoted by δn, that

is, δn =∑p
i=1 νi . For ease of exposition, we will henceforth denote �0n as �0, and �ε,0n as

�ε,0, and highlight their dependence on n as needed.
Assumptions for establishing posterior selection consistency: We impose the following

regularity assumptions regarding the parameters of the true model.

ASSUMPTION A1. 1+μmax(Ã)

μmin(Ã)

√
kn logdp

n
= o(1).
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ASSUMPTION A2 (Bounded eigenvalues). There exist 0 < λ1 < λ2 < ∞ and 0 < σmin <

σmax < ∞ not depending on n such that λ1 < λmin(CX), the maximum eigenvalue of any
principal submatrix of CX of dimension at most kn is uniformly bounded by λ2, and σmin <

λmin(�ε,0) ≤ λmax(�ε,0) < σmax.

For ease of exposition, we denote 4πλmax(�ε,0)
1+μmax(Ã)

μmin(Ã)
by Bn, and let c be the univer-

sal constant appearing in the Hanson–Wright inequality of Vershynin (2018), Theorem 6.2.1.
For the Gaussian case, it can be shown by routine computations that the choice c = 1/256
works.

ASSUMPTION A3 (Rate of decay of edge probability). The realistic model cutoff size

is given by Mn = min(σmin/4,1)min(λ2
1/4,1)c

16B2
n

n
logdp

, and the edge inclusion probabilities satisfy

q1,n = (dp2)
− 8B2

nkn
σminλ1 and q2,n = q

(logn)3/2

1,n for large enough n, in model prior (14).

ASSUMPTION A4 (Minimum signal strength). B2
nkn logdp+logn

ns2
n

→ 0.

Note that for our analysis, the slab variance τ 2 is taken to be a fixed positive constant
which does not vary with the sample size n. Next, we briefly comment on the assumptions
and contrast them with relevant assumptions in Basu and Michailidis (2015) and Ghosh,
Khare and Michailidis (2019a).

• Assumption A1 states that p can increase at an appropriate subexponential rate as com-
pared to n. This is a much faster rate than the assumption p = o(n) or p = o(n/ logn) in
Ghosh, Khare and Michailidis (2019a). Note that we assume that the true parameter �0 is
sparse and kn, the maximum number (column-wise) of nonzero entries in �0 plays a role
in determining the rate at which p can increase with n. In Ghosh, Khare and Michailidis
(2019a), no sparsity is assumed for �0, and assumptions bounding the singular values of
�0 are needed to establish (estimation) consistency of the posterior distribution of the co-
efficient matrix �. Assumption A1 also ensures that the true VAR process is well behaved
(stability) and the part regarding μmin(Ã) and μmax(Ã) allows us to leverage crucial con-
centration inequalities in Ghosh, Khare and Michailidis (2019a) to control the behavior
of X′E and X′X. Also note that the rate at which p increases with n is asymptotically
equivalent to the lasso-rate established in Proposition 4.1 of Basu and Michailidis (2015).

• Assumption A2 is standard in the literature and allows us to bound the minimum and
maximum eigenvalues of the matrix X′X/n away from zero and infinity, respectively, with
high probability. This assumption corresponds to Assumption B3 in Ghosh, Khare and
Michailidis (2019a).

• Assumption A3 provides the realistic model cutoff size Mn as a multiple of n
B2

n logp
. This

is very similar to the cutoff sizes used in the context of simple linear regression (e.g.,
Narisetty and He (2014), Shin, Bhattacharya and Johnson (2018)), wherein the realistic
model cutoff sizes are multiples of n

logp
. In our more complex setting, the extra factor

of B2
n arises due to the effect of temporal dependence. The rate of decay of the edge

inclusion probability q1,n is assumed to be an appropriate power of p. This is again similar
to corresponding assumptions in the context of linear regression (Narisetty and He (2014),
Shin, Bhattacharya and Johnson (2018)). Again, the power of p contains an extra factor of
B2

n, which is needed to tackle the temporal dependence in the more complex VAR setting.
• Assumption A4 is again a standard assumption and provides a lower bound for the min-

imum signal strength, that is, the smallest entry (in absolute value) of �0. Note that we
allow the minimum signal strength to converge to zero as n → ∞.



1276 S. GHOSH, K. KHARE AND G. MICHAILIDIS

Next, we establish the main posterior consistency result. In particular, we show that the
posterior mass assigned to the true activity graph G0 converges to 1 in probability (under the
true model). This notion of consistency is quite powerful and is referred to as strong selection
consistency (see Narisetty and He (2014)).

THEOREM 4.1 (Strong selection consistency). For any centered VAR(d) model (2) with

prior (14) on �,G,�ε satisfying Assumptions A1–A4, the following holds:

πpseudo(G =G0 |Y)
P0→ 1 as n → ∞,

that is, the probability mass placed by the pseudo-posterior on the true activity graph G0
converges to 1 as n → ∞. In particular, the true activity graphG0 is the mode of the posterior

distribution with probability tending to 1 as n → ∞.

The above model selection consistency result can be immediately leveraged to obtain the
following estimation consistency result.

THEOREM 4.2 (Estimation consistency rate). For any centered VAR(d) model (2) with

prior (14) on �,G,�ε satisfying Assumptions A1–A4, there exists a constant K (not de-

pending on n) such that

E0

[
�pseudo

(
‖� − �0‖F > K

1 + μmax(Ã)

μmin(Ã)

√
δn logdp

n

∣∣∣∣Y
)]

→ 0 as n → ∞.

The estimation rate of 1+μmax(Ã)

μmin(Ã)

√
δn logdp

n
in the above result is the same as that of the

lasso based estimation rate obtained by Basu and Michailidis (2015). However, there is a
difference in the assumptions needed to obtain the two results. We allow p to grow at a faster
rate (smaller order than en/(B2

nkn)) as compared to Basu and Michailidis (2015) (smaller order
than en/(B2

nδn)). Note that δn is the total number of nonzero entries in �0, which can be much
larger than kn (the maximum number of entries in any column of �0). For example, if �0
is banded and d = 1, then δn = pkn. On the other hand, Basu and Michailidis (2015) obtain
estimation consistency rates for the VAR lasso directly (without establishing model selection
consistency) and do not need any assumptions on the minimum signal size analogous to
Assumption A4.

REMARK 4.3. Based on a reviewer’s comment, we explored the possibility of directly
obtaining estimation consistency rates without any assumptions on the minimum signal size
for our Bayesian procedure. After some additional work, we were indeed able to directly

establish estimation consistency rates for � only under Assumptions A1–A3. However, the
trade-off for removing Assumption A4 is that the estimation consistency rate in Theorem 4.4
grows by a factor of

√
kn, compared to the rate in Theorem 4.2. As stated earlier, in many set-

tings, the total number of nonzero entries in �0 grows with n, but kn (the maximum number
of nonzero entries in any column) remains bounded. In these settings, the estimation con-
sistency rate in Theorem 4.4 is the same as the lasso rate. Note that the rate of growth of p

in Theorem 4.4 is always faster than the rate of growth of p for the VAR lasso in Basu and
Michailidis (2015).

THEOREM 4.4 (Estimation consistency rate without minimum signal size assumption).
For any centered VAR(d) model (2) with prior (14) on �,G,�ε satisfying Assumptions A1–

A3, there exists a constant K (not depending on n) such that

E0

[
�pseudo

(
‖� − �0‖F > K

1 + μmax(Ã)

μmin(Ã)

√
δnkn logdp

n

∣∣∣∣Y
)]

→ 0 as n → ∞.
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The proof of the main technical results is provided in the Appendix. Next, we provide a
brief roadmap of the proof, and compare and contrast it with recent strong selection consis-
tency proofs for linear regression in Narisetty and He (2014), and covariance estimation in
Cao, Khare and Ghosh (2019). The proof strategy first bounds the Bayes factor of any non-
true activity graph with respect to the true activity graph G0 by a product of p terms, each
corresponding to one of the p variables. Each of these terms is a product of a “prior part”
(depending exclusively on q1 and q2) and a “data part” (depending exclusively on Y). The
high level conceptual plan of attack for the next step is similar to Narisetty and He (2014) and
Cao, Khare and Ghosh (2019): (a) consider three different cases depending on whether the
nontrue model (restricted to each specific variable) is contained in the true model, contains
the true model or neither of the two, and (b) for each case obtain a uniform bound for the
corresponding Bayes factor term over all the variables.

The crucial difference, however lies in the mathematical analysis for implementing this
plan. Note that (11) expresses the observations for the ith variable in the VAR in a linear
regression setup. The vector of observations for the ith variable in the directed acyclic graph
model in Cao, Khare and Ghosh (2019), and all the observations in the simple linear re-
gression model in Narisetty and He (2014), can be similarly expressed in a linear regression
setup, albeit with different design matrices, coefficients and errors. The regression models
corresponding to Cao, Khare and Ghosh (2019), Narisetty and He (2014) either have a non-
random design matrix or a design matrix with i.i.d. sub-Gaussian rows, and the design matrix
is independent of the error vector. On the other hand, the VAR design matrix Xi in (11) has
dependencies across both its rows and columns, and also shares dependencies with the er-
ror vector ξ i in (11). These dependencies significantly complicate the analysis of the “data
part” for all the terms in the Bayes factor, and require a more detailed and involved treat-
ment.

Finally, we show that the sum of bounds over all the nontrue activity graph Bayes fac-
tors converges to zero in probability under the true model, which implies strong selec-
tion consistency. Note that we choose q2,n > 0, and do not need to only consider activ-
ity graphs wherein the number of active parameters is bounded by an appropriate func-
tion of n. Such restrictions have been imposed for the strong selection consistency proofs
in Cao, Khare and Ghosh (2019), Narisetty and He (2014), Shin, Bhattacharya and Johnson
(2018).

5. Estimation of model parameters. The estimation of the graph G and the parameter
matrix � is a two-step procedure. We first estimateG using the mode of the (pseudo) posterior
distribution on the activity graphs, that is,

Ĝ := arg max
G

πpseudo(G |Y).

Note that the space of activity graphs has 2dp2
elements, each one corresponding to a can-

didate model. To find the model with the highest (pseudo) posterior probability is compu-
tationally challenging for large p. Although MCMC techniques based on the Gibbs sam-
pler are available (Narisetty and He (2014), George and McCulloch (1997)), we prefer to
use Shotgun Stochastic Search (Hans, Dobra and West (2007)). This is because πpseudo(G |
Y) is available in closed form and extensive parallel computation (Step 1 of the algo-
rithm stated below) significantly reduces the run time compared to a slow mixing Markov
chain. A brief description of the Bayesian Stochastic Search (Bayesian SSS) algorithm fol-
lows.

VAR Shotgun Stochastic Search (VAR-SSS): Given a graph G of cardinality k, let nbd(G)
denote the neighborhood containing the following three elements {G+,G0,G−}, where G+
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is a set containing neighboring models of dimension k + 1; G0 contains models of dimension
k and G− is a set containing neighboring models of dimension k − 1. We define the score of
a graph G to be its posterior probability without the normalizing constant; that is, S(G) :∼
logπpseudo(G|Y). At the t th iteration, we undertake the following steps:

Step 1 Compute in parallel all S(G) for all G ∈ nbd(G[t]), construct {G+,G0,G−}.
Step 2 Sample {G+

∗ ,G0
∗ ,G−

∗ } from {G+,G0,G−} with probabilities proportional to
S(G), normalized within each set.

Step 3 Sample G[t+1] from {G+
∗ ,G0

∗ ,G−
∗ } probabilities proportional to S(G).

Once an estimate of G is obtained, parameter φ̃j which is the nonzero component of

the j th column of � can easily be estimated using the corresponding posterior mean φ̂j :=
(X′

j Xj + Iνj

τ 2 )−1X′
jyj . This is because

(16) φ̃j |G, σ 2
j ,Y ∼ Nνj

(
φ̂j , σ

2
j

(
X′

j Xj +
Iνj

τ 2

)−1)
.

Note that φ̂j does not depend on σ 2
j , and hence the unconditional mean of φ̃j (given the

data Y and the graph G) is the same as φ̂j . In addition, the distribution of φ̃j | G,Y is
available in closed form and given by

φ̂j |G,Y

∼ tn+2αj

(
location = φ̂j , scale mat. �̂j =

y′
j (I − Pj )yj + βj

n + 2αj

(
X′

j Xj +
Iνj

τ 2

)−1)
,

where Pj := Xj (X
′
j Xj + Iνj

τ 2 )−1X′
j , and αj , βj are as in (14). Thus, posterior credible in-

tervals can easily be constructed using direct sampling from the noncentral matrix variate t

distribution.

6. Performance evaluation. In this section, we evaluate the finite sample performance
of our Bayesian modeling framework. The results in Section 4 provide rigorous justifica-
tion for uncertainty quantification through posterior credible intervals in high-dimensional
settings. To the best of our knowledge, asymptotic validity of post-selection inference (con-
fidence intervals) for lasso based estimates has not been established in the high-dimensional
VAR setting.

We consider a p = 50 dimensional VAR model of lag d = 1. The true parameter A1 has
spectral radius max1≤i≤50 |λi(A1)| = 0.95 with entries generated from U(−10,10) and edge
density 1

p
making it sparse with high signal strength. The error covariance matrix used is

�ε = σ 2Ip and adjusted so that the signal-to-noise ratio SNR = ‖A1‖F

σ
= 2. The following

is a 11 × 6 submatrix (which we denote by A1 within a parenthesis) of the complete true
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transition matrix A1,

(A1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.38 1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −0.99 2 0 0

0 0 −1.86 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 −0.96 4

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 −0.33 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The 5 circled entries— 1 through 5 —from submatrix (A1) are selected for subsequent
consideration; that is, calculating their posterior mean, confidence intervals (based on reg-
ularized estimation) and so forth. Next, we generate n = 100 observations from the above
model and first estimate the activity graph G associated with A1 by the Bayesian SSS algo-
rithm with q1 = q2 = 1

p
and τ 2 = logn

2 . These two choices are discussed later in this section.
The nonzero entries are then estimated via their posterior means, as discussed in Section 5
above. We repeat this process 500 times. In one of 500 repetitions, the estimated Â1 by the
posterior mean is given by

(̂A1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.318 1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −1.007 2 0 0

0 0 −1.853 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 −0.978 4

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 −0.336 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be seen that the estimates are very close to the true ones. Next, the average estimation
error (‖Â1 − A1‖), specificity and sensitivity are reported in the comparison table (Table 1),
based on these 500 replicates.

TABLE 1
Performance comparison between VAR-SSS and �1-LL

VAR-SSS �1-LL

Est. Error 0.77 0.81
Sensitivity 0.98 0.97
Specificity 0.99 0.97
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TABLE 2
95% coverage of confidence and credible interval

Coef. serial no. C.I. Credible region

1 83.5 88
2 91 95.5
3 90 96.5
4 88.5 90.5
5 91 94

Sensitivity (SN) = True Positive (TP)

TP + False Negative (FN)
,

Specificity (SP) = True Negative (TN)

TN + False Positive (FP)
.

From the above table, it is quite clear that the VAR Shotgun Stochastic Search algorithm
performs better than the frequentist �1-LL in terms of support recovery and the posterior
mean is more accurate than the �1 penalized estimate of Â1. The �1 penalized log-likelihood
estimation (�1-LL) (Lin and Michailidis (2017)) of � is given by

arg min
1

n

∥∥�̂ε
−1/2

(Y − X�)
∥∥2
F + λn

∥∥vec(�)
∥∥

1.

This gives the maximum likelihood estimate of �, based on an estimated sparse �ε , the
latter obtained using the graphical lasso algorithm. The regularization parameter λn for both
the �1-LS and �1-LL methods is chosen based on the BIC criterion.

Next, we examine posterior credible intervals for the 6 circled entries, together with fre-
quentist confidence intervals obtained from an �1-penalized likelihood. Since the error pro-
cess in this setting has covariance �ε = σ 2Ip estimation of the VAR parameters can be
obtained by running p separate regressions (see Lin and Michailidis (2017)) of the form
yj = Xφj + ξj ,1 ≤ j ≤ p, where yj and φj are the j -th columns of the response matrix Y

and parameter matrix �, respectively. The confidence intervals are computed based on the
recent paper by Taylor and Tibshirani (2015) in the context of linear regression using their
R-package selectiveInference. Note that as previously mentioned, the exact form
of such confidence intervals for temporally dependent data is not yet available in the liter-
ature, but nevertheless provide some rough guidance about uncertainty of the VAR model
parameters. We randomly select 4 instances out of 500 iterations and the coverage of both
the credible and confidence intervals for the 5-circled entries (95%) is depicted in Figure 1.
It can be seen that the true parameters are very close to the center of the credible interval
for 4 coefficients and only fail to cover one of them. This is not the case for the confidence
intervals, which in addition fail to cover 2 of the coefficients. The upshot is that with current
technology, the obtained credible intervals offer a good measure of quantifying uncertainty in
sparse high-dimensional VAR models. In the following table (Table 2), we report 95-coverage
percentage (i.e., % of how many times the corresponding interval contains the true parameter)
using 500 replications.

The results in Table 2 indicate that posterior credible region has significantly better cover-
age percentage compared to debiased confidence intervals in the VAR setting.

Finally, before proceeding to study the performance of VAR-SSS in detail, we investi-
gate the scalability and computational speed of the algorithm. One of the attractive features
of shotgun stochastic search procedure is that Step 1 of the algorithm can be extensively
parallelized and there is no sampling involved from conditional distribution. Both of which
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FIG. 1. Comparison between posterior credible and confidence intervals of the 5 circled VAR coefficients. The

true values are denoted by the red dot.

will reduce total runtime significantly. In Table 3, we report computational times (averaged
over 10 iterations) for both the cases when Step 1 has been executed with parallelization (6
cores) and without parallelization, using the Ubuntu 18.04 OS operating system on a machine
equipped with a 2.9 GHz Intel Core i7 8750H processor and 16 GB of total memory.

Model selection performance. Next, we turn our attention to model selection and esti-
mation accuracy of the developed Bayesian procedure. We consider 4 different size VAR
models: Small VAR, Medium VAR, Big VAR and Large VAR corresponding to p =
100,250,500,750, and lag d = 1, and p = 50,125,250,400 with lag d = 2, respectively.
For each setting, motivated by the Erdős–Rényi example in the Supplementary Material,
Section S6, we generate transition matrices A1 and A2 with nonzero entries drawn from
Unif(0,10) ∪ Unif(−10,0) and rescaled to ensure that the process is stable with SNR = 2.
The spectral radii of the Ai’s are set to 0.90. Further, for each p-dimensional VAR model

TABLE 3
Average runtime of VAR-SSS in minutes

No parallelization With parallelization

p = 50 0.12 0.04
p = 100 0.44 0.13
p = 250 2.81 1.08
p = 500 11.23 3.59
p = 750 26.74 11.83
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TABLE 4
Sample sizes n1, n2 and n3 for each VAR models

Sample sizes

Dimension p n1 n2 n3

Small VAR 100 25 50 75
Medium VAR 250 30 75 200
Big VAR 500 50 150 300
Large VAR 750 75 200 400

(with lag d = 1,2) the true transition matrices A1 and A2 have 3 different edge densities—
e1 = 1/10p, e2 = 1/8p, e3 = 1/6p. Next, we generate samples with 3 different sample sizes

from the model Xt+1 = A1X
t + εt where εt i.i.d∼ Np(0,�ε) with �ε = Toep(ρ = 0.50). The

sample sizes n1, n2 and n3 corresponding to different VAR models are given in Table 4.
For the VAR-SSS algorithm, the initial activity graph G0 is selected based on an �1 penal-

ized least squares estimate (�1-LS) which does not use �ε and is given by

arg min
1

n
‖Y − X�‖2

F + λn

∥∥vec(�)
∥∥

1.

Note that the Bayesian SS algorithm has several hyperparameters—τ 2, q , αi and βi for
1 ≤ i ≤ p. Throughout this analysis, we set the slab variance to τ 2 = logn

2 and αi = 1, βi =
2∀i. The prior edge probability q is set to 1

p
. This particular choice is not optimized for any

given problem, but it does reasonably well and intuitively follows the assumption regarding
the magnitude of q that is needed for theoretical guarantees.

We finally compare the performance of VAR-SSS to the �1-LL (penalized log-likelihood
estimation as described earlier). All results reported in the subsequent tables are based on
200 replications. We use sensitivity (SN), specificity (SP) and relative error as the criteria to
evaluate the performance of the support recovery and estimation quality of transition matrices
Ai . Since the exact contemporaneous dependence is not of primary concern, we omit the
numerical results for �ε . The results in Table 5 illustrate the selection performance between
the VAR-SSS and �1-LL methods with a contemporaneous correlated error structure.

It can be seen that the VAR-SSS algorithm matches the performance of the maximum
likelihood method (�1-LL) across all settings. Further, as the sample size increases both the
sensitivity and specificity metrics improve. Finally, the estimates of lag d = 2 parameters are
slightly worse than those of the lag d = 1 parameters for both methods.

Estimation consistency. In Table 6, we present the estimation error in Frobenius norm,
that is, ‖�0 − �̂1‖F for both the VAR-SSS (posterior mean) and �1-LL estimates.

It can be seen that the estimation error decreases with an increase in the number of time
points (sample size) n; further, its values are significantly larger in big and large size VAR
models than in small VAR ones. Regarding the level of sparsity in the true transition matrices,
the results show that for fixed n and p, the more true nonzero entries in A1, the less accurate
the posterior mean and �1-LL estimate become. However, both of them perform equally well.
Next, similar to Tables 5 and 6, we present model selection and estimation performance of the
VAR-SSS by making the spectral radius (of the true transition matrices A1 and A2) smaller
and setting it equal to 0.70.

With reduced spectral radius the entries in A1 and A2 are of smaller magnitude, and thus
in Tables 7 and 8 the performance of both the VAR-SSS and �1-LL deteriorates compared to
the results depicted in Tables 5 and 6 in terms of model selection and estimation accuracy.
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TABLE 5
Sensitivity and Specificity in VAR(d = 1,2) with �ε = Toep(ρ = 0.80)

VAR-SSS �1-LL

n1 n2 n3 n1 n2 n3

Density SN SP SN SP SN SP SN SP SN SP SN SP

lag d = 1
Small VAR e1 0.93 0.93 0.93 0.95 0.93 0.96 0.90 0.94 0.92 0.93 0.93 0.96

e2 0.93 0.92 0.93 0.92 0.94 0.95 0.91 0.92 0.93 0.92 0.93 0.93
e3 0.91 0.92 0.93 0.93 0.93 0.95 0.90 0.92 0.93 0.93 0.93 0.95

Medium VAR e1 0.972 0.92 0.93 0.92 0.96 0.96 0.93 0.93 0.91 0.93 0.94 0.95
e2 0.92 0.93 0.91 0.92 0.94 0.93 0.91 0.92 0.93 0.92 0.94 0.95
e3 0.91 0.92 0.93 0.93 0.94 0.95 0.92 0.92 0.93 0.93 0.93 0.96

Big VAR e1 0.91 0.93 0.91 0.93 0.92 0.95 0.91 0.93 0.90 0.93 0.92 0.96
e2 0.90 0.92 0.91 0.92 0.94 0.93 0.89 0.92 0.91 0.92 0.91 0.95
e3 0.90 0.93 0.90 0.93 0.93 0.94 0.89 0.92 0.90 0.93 0.91 0.95

Large VAR e1 0.91 0.93 0.92 0.93 0.93 0.96 0.90 0.93 0.91 0.93 0.93 0.94
e2 0.91 0.92 0.92 0.92 0.94 0.95 0.90 0.92 0.91 0.92 0.93 0.93
e3 0.89 0.91 0.90 0.93 0.92 0.95 0.91 0.92 0.91 0.93 0.92 0.93

lag d = 2
Small VAR e1 0.93 0.93 0.93 0.94 0.94 1 0.92 0.93 0.92 0.93 0.93 0.96

e2 0.92 0.92 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92 0.93 0.93
e3 0.92 0.91 0.93 0.93 0.92 0.95 0.93 0.92 0.92 0.92 0.91 0.95

Medium VAR e1 0.92 0.92 0.93 0.98 0.90 0.95 0.93 0.98 0.90 0.93 0.99 0.95
e2 0.92 0.93 0.92 0.92 0.92 0.93 0.96 0.92 0.98 0.92 0.98 0.95
e3 0.91 0.92 0.93 0.93 0.93 0.94 0.92 0.91 0.98 0.98 0.91 0.94

Big VAR e1 0.91 0.93 0.91 0.92 0.92 0.95 0.90 0.92 0.91 0.92 0.91 0.95
e2 0.90 0.92 0.91 0.92 0.94 0.96 0.90 0.92 0.91 0.92 0.90 0.96
e3 0.90 0.93 0.90 0.93 0.95 0.94 0.89 0.92 0.90 0.92 0.91 0.95

Large VAR e1 0.91 0.93 0.92 0.93 0.93 0.96 0.90 0.93 0.91 0.92 0.93 0.95
e2 0.90 0.92 0.92 0.92 0.95 0.95 0.90 0.92 0.91 0.92 0.93 0.93
e3 0.89 0.91 0.89 0.93 0.92 0.95 0.90 0.92 0.91 0.93 0.92 0.93

7. Extension to stochastic linear regression. In this section, we consider a linear re-
gression setting where both the predictors and the errors exhibit temporal dependence and
are generated by a stationary Gaussian process, but remain independent of each other. We
employ our pseudo-likelihood based methodology to derive high-dimensional consistency
results in this setting. Suppose we have data on n time points, each consisting of p = pn

regressors {x1,i, x2,i, . . . , xp,i} and a response yi , i = 1,2, . . . n. The n × 1 response vector y

is modeled as

y = Xβ + ε where ε ∼Nn(0,�ε),(17)

with X being the n × p design matrix whose ith row Xi = (x1,i, x2,i, . . . , xp,i)
′ contains the

predictors for the ith observation, β = (β1, . . . , βp)′ is the vector of corresponding regression
coefficients and ε = (εi)

n
i=1 is the vector of error terms. We assume that the vectors {Xi}

come from a p-variate covariance-stationary Gaussian process with finite spectral density
fX(θ), that is, the predictors are identically (but not necessarily independently) distributed.
Further, we assume the error process {εi} to be a univariate centered, covariance-stationary
Gaussian process, with finite spectral density fε(θ). In addition, the errors are assumed to be
independent of the predictors.
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TABLE 6
Estimation error: ‖�̂ − �0‖F in VAR (d = 1,2) with �ε = Toep(ρ = 0.80)

VAR-SSS �1-LL

Density n1 n2 n3 n1 n2 n3

Lag d = 1
Small VAR (p = 100) e1 0.88 0.79 0.7 0.88 0.78 0.7

e2 0.9 0.8 0.7 0.91 0.81 0.71
e3 0.95 0.85 0.76 0.96 0.86 0.75

Medium VAR (p = 250) e1 0.9 0.81 0.71 0.91 0.81 0.71
e2 0.93 0.84 0.75 0.92 0.83 0.73
e3 1.1 1 0.89 1.1 1 0.9

Big VAR (p = 500) e1 0.95 0.85 0.77 0.96 0.86 0.75
e2 1.1 1 0.91 1.1 1.01 0.9
e3 1.79 1.7 1.58 1.77 1.67 1.56

Large VAR (p = 750) e1 0.93 0.84 0.74 0.92 0.81 0.73
e2 1.32 1.23 1.11 1.29 1.19 1.08
e3 1.92 1.82 1.72 1.9 1.8 1.69

Lag d = 2
Small VAR (p = 50) e1 0.91 0.82 0.73 0.90 0.8 0.72

e2 0.93 0.84 0.74 0.94 0.84 0.75
e3 0.98 0.88 0.79 0.99 0.9 0.79

Medium VAR (p = 125) e1 0.93 0.85 0.75 0.94 0.84 0.74
e2 0.96 0.87 0.78 0.94 0.85 0.75
e3 1.13 1.03 0.93 1.13 1.04 0.94

Big VAR (p = 250) e1 0.98 0.89 0.8 0.99 0.89 0.79
e2 1.13 1.03 0.94 1.13 1.04 0.93
e3 1.81 1.73 1.61 1.79 1.7 1.59

Large VAR (p = 400) e1 0.96 0.88 0.77 0.94 0.84 0.75
e2 1.34 1.25 1.13 1.31 1.21 1.11
e3 1.95 1.86 1.76 1.92 1.82 1.72

We now consider a high-dimensional setting for this linear regression model, where p � n.
Let γi indicate whether the ith covariate is active in the model or not, that is, γi = 1(βi �= 0).
The vector γ indicates which covariates are important in predicting the response, and we
refer to it as the active covariate vector. Our goal is to identify the nonzero coefficients to
learn about the active covariates, using the Gaussian likelihood

L(β,�ε | yi, i = 1, . . . , n) := 1
√

2π |�ε |n
exp
(
−1

2
(y − Xβ)′�−1

ε (y − Xβ)

)
.(18)

The parameter of interest is the regression coefficient β and we treat the error covariance
matrix �ε as an unknown nuisance parameter. Note that all the diagonals of �ε are the
same and denoted by σ 2

ε . As in the case of the VAR model, we construct the following
pseudo-likelihood by assuming �ε is diagonal (with all diagonal entries equal to σ 2

ε due
to stationarity of the error process):

Lpseudo(β,�ε | yi, i = 1, . . . , n) = 1
√

2πσ 2
ε

n exp

(
− 1

2σ 2
ε

n∑

i=1

(
yi − X′

iβ
)2
)
.(19)

The function Lpseudo in (19) has a much simpler form than the likelihood function L and
only involves σ 2

ε (the diagonal entry of �ε). Let νγ denote the number of nonzero entries in
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TABLE 7
Sensitivity and Specificity in VAR(d = 1,2) with �ε = Toep(ρ = 0.80)

VAR-SSS �1-LL

n1 n2 n3 n1 n2 n3

Density SN SP SN SP SN SP SN SP SN SP SN SP

lag d = 1
Small VAR e1 0.96 0.98 0.97 0.99 0.98 1 0.97 0.96 0.97 0.97 0.98 1

e2 0.96 0.97 0.97 0.98 0.98 1 0.96 0.96 0.97 0.97 0.98 0.98
e3 0.94 0.95 0.95 0.96 0.96 0.98 0.96 0.96 0.97 0.97 0.98 0.99

Medium VAR e1 0.96 0.97 0.97 0.98 0.98 1 0.96 0.96 0.97 0.97 0.98 1
e2 0.95 0.97 0.96 0.99 0.97 1 0.96 0.97 0.98 0.98 1 0.99
e3 0.94 0.95 0.95 0.97 0.96 0.99 0.96 0.96 0.97 0.97 0.98 0.99

Big VAR e1 0.94 0.95 0.95 0.96 0.96 0.97 0.95 0.95 0.96 0.96 0.97 0.97
e2 0.94 0.95 0.95 0.96 0.96 0.97 0.95 0.95 0.96 0.96 0.98 0.98
e3 0.94 0.93 0.95 0.94 0.96 0.96 0.96 0.95 0.96 0.96 0.97 0.97

Large VAR e1 0.95 0.97 0.96 0.99 0.97 1 0.95 0.96 0.97 0.97 0.99 0.98
e2 0.93 0.93 0.94 0.95 0.96 0.97 0.95 0.95 0.96 0.96 0.97 0.97
e3 0.92 0.91 0.93 0.93 0.94 0.94 0.94 0.93 0.94 0.94 0.95 0.95

lag d = 2
Small VAR e1 0.92 0.95 0.93 0.96 0.94 0.97 0.93 0.91 0.92 0.92 0.93 0.93

e2 0.92 0.94 0.93 0.95 0.94 0.97 0.92 0.91 0.92 0.92 0.93 0.94
e3 0.9 0.92 0.91 0.93 0.92 0.95 0.92 0.91 0.92 0.92 0.93 0.94

Medium VAR e1 0.92 0.94 0.93 0.95 0.94 0.97 0.92 0.91 0.92 0.92 0.93 0.94
e2 0.91 0.94 0.92 0.96 0.93 0.98 0.92 0.92 0.93 0.93 0.95 0.94
e3 0.9 0.92 0.91 0.94 0.93 0.96 0.92 0.91 0.92 0.92 0.93 0.94

Big VAR e1 0.91 0.93 0.92 0.94 0.93 0.95 0.91 0.92 0.93 0.93 0.94 0.94
e2 0.91 0.93 0.92 0.94 0.93 0.95 0.91 0.92 0.93 0.93 0.95 0.95
e3 0.91 0.91 0.92 0.92 0.93 0.94 0.92 0.92 0.93 0.93 0.94 0.94

Large VAR e1 0.92 0.95 0.93 0.97 0.95 0.99 0.91 0.93 0.94 0.94 0.96 0.95
e2 0.9 0.91 0.91 0.93 0.93 0.95 0.91 0.92 0.93 0.93 0.94 0.94
e3 0.89 0.89 0.90 0.91 0.92 0.92 0.90 0.90 0.91 0.91 0.93 0.92

γ . We impose the following prior on β, σ 2
ε and γ :

βj | γ , σ 2
ε ∼ (1 − γj )1βj=0 + γjN

(
0, σ 2

ε τ 2) independently for j = 1,2, . . . , p,

π(γ ) ∝ q
νγ

1 (1 − q1)
p−νγ 1{νγ <M} + q

νγ

2 (1 − q2)
p−νγ 1{νγ ≥M},(20)

σ 2
ε ∼ Inv. Gamma(α,β/2).

Similar to the Bayesian VAR model, we refer to M as the realistic model cutoff size, and
(q1, q2) as the edge inclusion probabilities. Based on the pseudo-likelihood in (19) and the
prior in (20), the pseudo-posterior can easily be calculated and is available in closed form:

(21) πpseudo(γ |Y) ∝ (1 − qνγ )p−νγ

(
qνγ

τ
√

n

)νγ
∣∣∣∣
X′

γ Xγ

n
+

Iνγ

nτ 2

∣∣∣∣
−1/2(

Sγ + β

n

)−( n
2 +α)

,

where qνγ = q1 if νγ ≤ M , and q2 if νγ > M . Xγ represents the sub-matrix of X including

columns corresponding to the active indices in γ , Sγ := y′y
n

− y′Xγ

n
(

X′
γ Xγ

n
+ Iνγ

nτ 2 )−1 X′
γ y

n
. The

posterior probabilities πpseudo(γ |Y) can be used to select the active covariates by computing
the posterior mode defined by γ̂ := arg maxγ πpseudo(γ |Y).
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TABLE 8
Estimation error: ‖�̂ − �0‖F in VAR (d = 1,2) with �ε = Toep(ρ = 0.80)

VAR-SSS �1-LL

Density n1 n2 n3 n1 n2 n3

Lag d = 1
Small VAR (p = 100) e1 0.89 0.8 0.71 0.9 0.8 0.72

e2 0.92 0.82 0.72 0.93 0.83 0.74
e3 0.97 0.86 0.78 0.99 0.89 0.78

Medium VAR (p = 250) e1 0.92 0.82 0.73 0.93 0.83 0.73
e2 0.94 0.86 0.76 0.94 0.85 0.75
e3 1.12 1.01 0.91 1.12 1.02 0.92

Big VAR (p = 500) e1 0.97 0.87 0.78 0.99 0.89 0.78
e2 1.12 1.01 0.92 1.12 1.02 0.91
e3 1.8 1.71 1.59 1.78 1.68 1.58

Large VAR (p = 750) e1 0.94 0.86 0.75 0.94 0.83 0.75
e2 1.34 1.24 1.13 1.31 1.21 1.1
e3 1.93 1.83 1.73 1.92 1.81 1.71

Lag d = 2
Small VAR (p = 50) e1 0.91 0.82 0.73 0.91 0.82 0.74

e2 0.94 0.84 0.74 0.95 0.84 0.75
e3 0.99 0.88 0.8 1 0.9 0.79

Medium VAR (p = 125) e1 0.94 0.84 0.75 0.95 0.84 0.74
e2 0.96 0.88 0.78 0.96 0.87 0.77
e3 1.14 1.03 0.93 1.13 1.04 0.93

Big VAR (p = 250) e1 0.99 0.89 0.8 1 0.9 0.79
e2 1.14 1.03 0.94 1.13 1.04 0.93
e3 1.82 1.73 1.61 1.8 1.7 1.59

Large VAR (p = 400) e1 0.96 0.88 0.77 0.96 0.85 0.76
e2 1.36 1.26 1.15 1.32 1.22 1.12
e3 1.95 1.85 1.75 1.93 1.83 1.72

Next, we examine the selection and estimation consistency for the pseudo-likelihood based
approach described above in a high-dimensional setting and allow p = pn to grow with n. For
each n, the data yn = (yi,n)

n
i=1 is assumed to be generated from a true model with regression

coefficient vector β0 = β0,n, and corresponding active covariate vector γ 0 such that

yn = Xnβ0,n + εn, εn ∼Nn(0,�ε,0).

The rows of X = Xn are generated from a p-variate covariance-stationary Gaussian process
with spectral density fX(θ), and the entries of εn are generated from a centered univariate
stationary Gaussian process with spectral density fε(θ). Let ν0 = ‖β0,n‖0 (i.e., the number
of nonnull entries in β0,n) and the minimum signal strength is represented respectively by
sn := infi:β0i

�=0 |β0i
|. Let �0,n denote the common covariance matrix of the rows of Xn, and

σ 2
0,n denote the common variance of each coordinate of the stationary error process εn. For

ease of exposition, we will refer to yn, Xn, β0,n, εn, �0,n, σ 2
0,n as y, X, β0, ε, �0, σ 2

0 ,
respectively.

High-dimensional consistency results for the lasso for linear regression with dependent
errors and predictors have been recently established in Basu and Michailidis (2015). To the
best of our knowledge, existing work on high-dimensional selection consistency in Bayesian
linear regression with spike-and-slab priors (George and McCulloch (1997), Ishwaran and
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Rao (2005)), Narisetty and He (2014)) assumes the errors (and also the predictors) to be
independent and identically distributed. We consider a more general setting by allowing both

the predictors and the errors to be drawn from a temporally dependent process. We provide
the main consistency results for stochastic regression below. The proofs of these results are
delegated to Supplementary Material, Section S8.

THEOREM 7.1 (Strong selection consistency). For a centered stochastic linear regres-

sion model (17) with prior (20) on β,γ , σ 2
ε satisfying Assumptions B1–B5 (provided in Sup-

plementary Material, Section S7), the following holds:

πpseudo(γ = γ 0 |Y)
P0→ 1 as n → ∞.

In particular, the true active covariate vector γ 0 is the mode of the (pseudo) posterior
distribution with probability tending to 1 as n → ∞.

THEOREM 7.2 (Estimation consistency rate without minimum signal size assumption).
For a centered linear stochastic regression model (17) with prior (20) on β,γ ,�ε satisfying

Assumptions B1–B4 (provided in Supplementary Material, Section S7), there exists a constant

K (not depending on n) such that

E0

[
�pseudo

(
‖β − β0‖2 > K

√
(
1 +M(fε)

)ν0 logp

n

∣∣∣∣Y
)]

→ 0

as n → ∞.

REMARK 7.3. The estimation consistency rate for stochastic regression (in Theorem 7.2)
is of the order of

√
(1 +M(fε))ν0 logp/n. In other words, the radius of the neighbor-

hood around β0 on which the posterior asymptotically places all of its mass is of the or-
der of

√
(1 +M(fε))ν0 logp/n, which only includes the stability measure M(fε) of the

error process, and does not include the stability measure M(fX) of the predictor process.
However, from the proof of Theorem 7.2, it follows that the speed with which the pos-
terior probability of this neighborhood approaches 1 depends on this stability measure.
Nevertheless, Theorem 7.2 is a stronger result than Theorem 4.2, the corresponding es-
timation consistency result for the VAR model; in the latter, the estimation consistency
rate involves the stability measures of the underlying true VAR process (which are con-
nected to the stability of the predictor process in the regression interpretation of the VAR
in (11)).

Note that in the stochastic regression model (17) the error process and the predictor pro-
cess are independent of each other, while in the VAR model (11) the error process and the
predictor process are dependent. This is the key reason for the stronger results that can be
obtained for the stochastic regression model under weaker assumptions. We illustrate this by
focusing on one of the important steps in the estimation consistency proof, which involves
bounding ‖ε′Xt‖/n. Using the independence of ε and Xt in the stochastic regression model,
the term ε′Xt (X

′
tXt )

−1X′
tε can be bounded by an appropriate χ2 random variable, and this

can be used to show that ‖ε′Xt‖/n = o(
√
M(fε)ν0 logp/n). On the other hand, the lack

of independence of the error process and the predictor process in the VAR model necessi-
tates the use of more complex concentration inequalities to bound the analogous quantity

‖ξ ′
iXi‖/n. it can be shown that ‖ξ ′

iXi‖/n = O(
1+μmax(Ã)

μmin(Ã)

√
νi logdp

n
) (see equation (22) in the

Appendix).
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APPENDIX: PROOFS FOR THEOREMS 4.1, 4.2 AND 4.4

Throughout the proof, for ease of presentation we denote πpseudo(· |Y) and �pseudo(· |Y)

by π(· |Y) and �(· |Y), respectively. Before presenting the proof of the theorems, we first
introduce notation needed in subsequent developments:

• Let t i = {j1, . . . , jνti
} ⊂ {1, . . . , dp} be the set of column indices from X corresponding to

the nonzero positions of �0n,.i in the true model and it represents the neighbors of i in the
true activity graph G0.

• Similarly, mi = {i1, . . . , iνmi
} represents the same for any candidate model (distinct from

the true model). Given two activity graphs G0 and Gm, t i = mi implies the neighbors of i

are identical in both of the graphs (i.e., G0 and Gm have the same ith column).

G0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t i

· · ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

1
...

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

dp×p

, Gm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mi

· · ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0
...

1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

dp×p

• Let us define d(mi, t i) := Card({t i ∪mi} \ {t i ∩mi})—number of disagreements in the ith
column between Gm and G0.

• Total number of disagreements is denoted by D(m, t) and is equal to
∑p

i=1 d(mi, t i).

Let qν,n := q11{ν<Mn} + q21{ν≥Mn}. Given the true activity graph G0 and another arbitrary
graph Gm, we have

π(Gm |Y)

π(G0 |Y)

=
p∏

i=1

(
1

τ
√

n

)(νmi
−νti

) q
νmi
νmi

(1 − qνmi
)dp−νmi

q
νti
νti

(1 − qνti
)dp−νti

|X′
mi

Xmi

n
+ Iνmi

nτ 2 |−1/2

|X′
ti

Xti

n
+ Iνti

nτ 2 |−1/2

(Sνmi
+ βi

n

Sνti
+ βi

n

)−( n
2 +αi)

.

Since dp2q1 → 0 as n → ∞, it follows that
(

1 − q2

1 − q1

)dp2

≤ (1 − q1)
−dp2 ≤ e

dp2 q1
1−q1 ≤ 2

for large enough n. Note that νti ≤ kn < Mn for large enough n, and q2 < q1. Hence,

1

2

π(Gm |Y)

π(G0 |Y)

≤
p∏

i=1

(2qνmi

τ
√

n

)(νmi
−νti

) |X′
mi

Xmi

n
+ Iνmi

nτ 2 |−1/2

|X′
ti

Xti

n
+ Iνti

nτ 2 |−1/2

( Sνti
+ βi

n

Sνmi
+ βi

n

)( n
2 +αi)

(*)

=:
p∏

i=1

B(mi, t i)

for large enough n. Here, the inequality follows from the fact that q1 → 0 and q2 → 0 as
n → ∞ and hence for all large n, 1

1−q1
and 1

1−q2
are bounded below by 1

2 . Note that for
t i = mi , B(mi, t i) = 1. Recall that for any m ⊆ {1,2, . . . , dp}, Xm denotes the submatrix of
the columns of X corresponding to the indices in m.
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Before proving the main result (Theorem 4.1)—a straightforward application of Corol-
lary A.4—first note that by Assumption A2 there exist 0 < σmin ≤ σmax < ∞ and 0 <

λ1 ≤ λ2 < ∞ not depending on n such that σmin < λmin(�ε,0) ≤ λmax(�ε,0) < σmax,
λ1 < λmin(CX) and the maximum eigenvalue of any principal submatrix of CX of dimension

at most kn is bounded above by λ2. For ease of presentation, denote 4πλmax(�ε,0)
1+μmax(Ã)

μmin(Ã)

by Bn. Define next the following events:

G1,n :=
{∥∥∥∥

X′X

n
− CX

∥∥∥∥
max

≤Bn

√
2 logdp

n

}
,

G2,n :=
{∥∥∥∥

X′E

n

∥∥∥∥
max

≤Bn

√
logdp2

n

}
,

�1,n :=
p⋂

i=1

{
7σmin

8
≤ ξ ′

iξ i

n
≤ 3σmax

2

}
and

�2,n :=
⋂

m:1≤|m|<2Mn

{∥∥∥∥
X′

mXm

n
− CXm

∥∥∥∥
2
≤ 4Bn

√
νm logdp

cn

}
,

where Pm denotes the projection matrix for the column space of Xm, and c is a constant that
does not depend on n.

Let �n := �1,n ∩ �2,n. We argue below that

P(G1,n ∩ G2,n ∩ �n) → 1 as n → ∞.(22)

Note that by Lemma B2, Proposition B1 and Proposition B3 of Ghosh, Khare and Michailidis
(2019b), with u = ei and v = ej —the ith and j th unit vector in Rdp , respectively, there exists
c (not depending on n) such that

P
(

sup
1≤i,j≤dp

∣∣∣∣e
′
i

(
X′X

n
− CX

)
ej

∣∣∣∣>
λmax(�ε)

μmin(Ã)
η

)

≤ 2 exp
(
−cnmin

{
η2

4
,
η

2

}
+ 2 logdp

)
,

and again by taking unit vectors u = ei ∈ Rdp and v = ej ∈ Rp

P
(

sup
1≤i≤dp,
1≤j≤p

∣∣∣∣e
′
i

X′E

n
ej

∣∣∣∣> 2πλmax(�ε)

[
1 + 1 + μmax(Ã)

μmin(Ã)

]
η

)

≤ 6 exp
(
−cnmin

{
η2

4
,
η

2

}
+ logdp2

)
.

Next, by setting an appropriate η ∼
√

logdp2

cn
and under Assumption A1 we have P(G1,n) → 1

and P(G2,n) → 1 as n → ∞.
Let σ 2

i,0 denote the ith diagonal entry of the true error covariance matrix �ε,0n. Since
ξ i/σ0,i ∼ Nn(0, In), by applying the Hanson–Wright inequality of Rudelson and Vershynin
(2013) there exists K such that

P
(∣∣∣∣

ξ ′
iξ i

nσ 2
0,i

− 1
∣∣∣∣>

1

8

)
≤ 2e−cn/64K4

.
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That is,
7σ 2

0,i

8 ≤ ξ ′
iξ i

n
≤ 3σ 2

0,i

2 happens with probability at least 1 − 2e−cn/64K4
. By the union-

sum inequality and Assumption B.1, we get P(�1,n) ≥ 1 − 2pe−cn/64k4 → 1 as n → ∞.
Note that for every m such that 1 ≤ |m| ≤ 2Mn, by Lemma B2 and Proposition B1 of

Ghosh, Khare and Michailidis (2019b), there exists c (not depending on n) such that

P
(∥∥∥∥

X′
mXm

n
− CXm

∥∥∥∥
2
≥ 4Bn

√
νm logdp

cn

)
≤ e−4νm logdp+2νm log 21 ≤ (dp)−3νm(23)

for large enough p. It follows by the union-sum inequality that

P
(
�c

2,n

)
≤

∑

m:1<|m|<2Mn

(dp)−3νm

=
2Mn∑

j=1

(
dp

j

)
(dp)−3j

≤
∞∑

j=1

(dp)−2j

= (dp)−2

1 − (dp)−2

= 1

(dp)2 − 1
→ 0 as n → ∞

Hence, P(�2,n) → 1 as n → ∞.
From now on (unless otherwise mentioned), we restrict attention to the event G1,n ∩G2,n ∩

�n and for ease of exposition we omit n from the notation of these sets. Next, we analyze the
behavior of B(mi, t i) under different scenarios in a sequence of lemmas (Lemmas A.1–A.3).
Lemma A.1 studies the scenario where the true active neighbors of i (t i) fully contain the
neighbors in the candidate model (mi ).

LEMMA A.1. If mi ⊂ t i then there exists N1 (not depending on i and Gm) such that for

all n ≥ N1 we have B(mi, t i) ≤ q1,n
(νti

−νmi
)/2.

Lemma A.2 deals with the case when the true active neighbors of i (t i) are fully contained
in the neighbors of the candidate model (mi ).

LEMMA A.2. If t i ⊂ mi then there exists N2 (not depending on i and Gm) such that for

all n ≥ N2 we have B(mi, t i) ≤ q
(νmi

−νti
)/2

1,n .

LEMMA A.3. If Gm is such that

t i �= mi,

t i �mi,

t i �mi,

then there exists N6 (not depending on Gm and i) such that for all n ≥ N6, B(mi, t i) ≤
q

νmi
−νti

/2
1,n if νmi

> νti , and B(mi, t i) ≤ q
1/2
1,n if νmi

≤ νti .

The proofs of the above lemmas are given in Section S3 of the Supplementary Material.
Next, we employ these results to provide a bound on the ratio of the posterior probability for
a nontrue activity graph Gm and the true activity graph G0.
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COROLLARY A.4. For any centered Gaussian stable VAR(d) model (11) with prior (14)
on �,G,�ε satisfying Assumptions A1–A4, for any “nontrue” activity graph Gm with n

sufficiently large the following holds:

πpseudo(Gm |Y)

πpseudo(G0 |Y)
≤
(
dp2)−2D(m,t)

.

Here, D(m, t) denotes the total number of disagreements between the two activity graphs,
that is, D(m, t) =∑p

i=1 d(mi, t i), and d(mi, t i) denotes the number of disagreements be-

tween mi and t i .

PROOF. Note that d(mi, t i) ≤ 2kn(νmi
− νti ) for νmi

> νti , and d(mi, t i) ≤ 2kn for
νmi

≤ νti . We will assume without loss of generality that the constants σmin and λ1 in Assump-
tion A2 are bounded above by 1. It follows by Lemmas A.1–A.3 and Assumption A3 that if
we restrict to the event G1,n ∩ G2,n ∩ �n and t i �= mi then for every n ≥ max{N1, . . . ,N6}

B(mi, t i) ≤
(
dp2)−2d(mi ,t i).

As noted earlier for t i = mi we have B(mi, t i) = 1. Hence, for all sufficiently large n,

1

2

π(Gm |Y)

π(G0 |Y)
≤

p∏

i=1

B(mi, t i) =
∏

t i=mi

B(mi, t i)
∏

t i �=mi

B(mi, t i) ≤
(
dp2)−2D(m,t)

.
�

A.1. Proof of Theorem 4.1. The proof is a straightforward application of the above
corollary. Given the true activity graph G0, the total number of graphs Gm such that it

differs from G0 in exactly j places is

(
dp2

j

)
. This is because

(
dp2

j

)
can be written as

∑
k

(
j

k

)(
dp2 − j

j − k

)
. Now for all sufficiently large n,

1 − π(G0 |Y)

π(G0 |Y)
=

∑

Gm �=G0

π(Gm |Y)

π(G0 |Y)

=
dp2∑

j=1

∑

Gm �=G0

π(Gm |Y)

π(G0 |Y)
1{D(m,t)=j}

≤
dp2∑

j=1

(
dp2

j

)
(
dp2)−2j

≤
dp2∑

j=1

(
dp2)−j

≤ (dp2)−1

1 − (dp2)−1

= 1

dp2 − 1
.

It follows that 1−π(G0|Y)
π(G0|Y)

→ 0 as n → ∞. �
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A.2. Proof of Theorem 4.2. For notational convenience, denote by �pseudo and πpseudo,
�n and πn, respectively. For any n×s submatrix Xs of X, Pνs stands for the projection matrix
Xs(X

′
sXs)

−1X′
s onto C(Xs) and by P̃νs is defined to be Xs(X

′
sXs + Is

τ 2 )
−1X′

s . First, note that
for any η > 0,

E0
(
�n

{
‖� − �0‖F ≥ Kη |Y

})

=
∑

G

E0
(
�n

{
‖� − �0‖F ≥ Kη |Y,G

}
πn(G |Y)

)

≤ E0
(
�n

{
‖� − �0‖F ≥ Kη |Y,G0

})
+E0�n(G �=G0 |Y)

By Theorem 4.1, it is enough to prove that E0(�n{‖� − �0‖F ≥ Kη |Y,G0}) → 0 as n →
∞. Henceforth all the analysis is restricted to the true activity graph G0. Thus for ease of
exposition we shall use Xi, νi and P̃i to denote Xti , νti and P̃νti

, respectively. Next, under the
prior on �,G and �ε in (14) we have

φ̃i |G0, σ
2
i ,Y∼Nνi

(
φ̂i, σ

2
i

(
X′

iXi + Iνi

τ 2

)−1)
,

σ 2
i |G0,Y∼Inv. Gamma

(
n

2
+ αi,

y′
i(Iνi

− P̃νi
)yi + βi

2

)
.

(24)

Also note that

E0

(
�n

{
‖� − �0‖F ≥ K

1 + μmax(Ã)

μmin(Ã)

√
δn logdp

n

∣∣∣∣Y,G0

})

= E0

(
�n

{
‖� − �0‖2

F ≥ K2
(

1 + μmax(Ã)

μmin(Ã)

)2∑p
i=1 νi logdp

n

∣∣∣∣Y,G0

})

= E0

(
�n

{ p∑

i=1

‖φ̃i − φ̃0i
‖2

2 ≥
p∑

i=1

K2
(

1 + μmax(Ã)

μmin(Ã)

)2 νi logdp

n

∣∣∣∣Y,G0

})

≤ p max
1≤i≤p

E0

(
�n

{
‖φ̃i − φ̃0i

‖2 ≥ K
1 + μmax(Ã)

μmin(Ã)

√
νi logdp

n

∣∣∣∣Y,G0

})
.

The proof will conclude by establishing

max
1≤i≤p

E0

(
�n

{
‖φ̃i − φ̃0i

‖2 ≥ K
1 + μmax(Ã)

μmin(Ã)

√
νi logdp

n

∣∣∣∣Y,G0

})
≤ 5e−2 logdp.

For ease of exposition, we denote 1+μmax(Ã)

μmin(Ã)

√
νi logdp

n
by ηn,i . since we are only dealing with

nonzero components of φi in the true model we simplify further the notation of φ̃i and φ̃0i
,

respectively, by φi and φ0i
. In order to prove the above claim, we first note that

E0�n

(
‖φi − φ0i

‖ ≥ Kηn,i |Y,G0
)

≤ E0�n

(
‖φi − φ̂i‖ ≥ Kηn,i

2

∣∣∣∣Y,G0

)
+ P0

(
‖φ̂i − φ0i

‖ ≥ Kηn,i

2

∣∣∣∣Y,G0

)(25)

First, note that

‖φi − φ̂i‖ =
∥∥∥∥σi

(
X′

iXi + Iνi

τ 2

)−1/2 (X′
iXi + Iνi

τ 2 )1/2(φi − φ̂i)

σi

∥∥∥∥

≤ σi√
λmin(X

′
iXi)

‖z‖,
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where z is νi × 1 standard normal random vector and the last step follows from (24). Thus,
for any M∗ > 0,

E0�n

(
‖φi − φ̂i‖ ≥ Kηn,i

2

∣∣∣∣Y
)

≤ P
(
λmin

(
X′

iXi

n

)
<

λ1

2

)
+ P

(
‖z‖ >

√
nηn,iK

√
λ1

8(M∗)2

)

+E0�n

(
σi > M∗ |Y

)
.

(26)

From (23), there exists n1 such that for all n ≥ n1 the first term above is upper bounded by
e−2 logdp . For the third term, recall from the distribution of σ 2

i |G0,Y in (16) that (n
2 +αi) ∼ n

and for an appropriate constant c0 > 0,

y′
i(In − P̃νi

)yi + βi

2n

(i)
≤ y′

i(In − Pi)yi + βi

2n
+ c0

2n

(ii)= ξ ′
i(In − Pi)ξ i

2n
+

φ′
0i

Xi(In − Pi)X
′
iφ0i

2n
+

2φ′
0i

Xi(In − Pi)ξ i

2n
+ βi

2n
+ c0

2n

= ξ ′
i(In − Pi)ξ i

2n
+ βi

2n
+ c0

2n

≤ ξ ′
iξ i

2n
+ βi

2n
+ c0

2n

≤ 3σmax,

where (i) is a direct application of Lemma S1.3 and (S4) in the Supplementary Material; (ii)
is obtained by substituting the true model yi = Xiφ0i

+ ξ i . Therefore, the scale parameter
y′

i(In−P̃νi
)yi+βi

2 in the distribution of σ 2
i |G0,Y is of order n. By choosing M∗ properly (see

Remark S1.1), we can make E0�n(σi > M∗ |Y) ≤ e−2 logdp for all large n. As for the second
term in (26), first we define z to be a νi × 1 vector with entries i.i.d. N(0,1). It follows from
(Vershynin (2012) Corollary 5.35) and Assumption A1 that the second term goes to 0 as
n → ∞. This is due to the fact that for any t > 0,

P
(‖z‖√

n
>

√
νi

n
+ t√

n
+ 1√

n

)
≤ e−t2/2.

Set t2 = 4 logdp. Thus, we can select n3 so that for all n ≥ n3 we get ‖z‖√
n

≥ ηn,iK
√

λ1
2(M∗)2

with probability at most e−2 logdp for a large enough choice of K . Moving onto the second
term in (25), we use the following inequalities:

‖φ̂i − φ0i
‖ =

∥∥∥∥
(

X′
iXi + Iνi

τ 2

)−1
X′

iyi − φ0i

∥∥∥∥

≤
∥∥∥∥
(

X′
iXi + Iνi

τ 2

)−1∥∥∥∥
∥∥∥∥X

′
iXiφ0i

+ X′
iξ i − X′

iXiφ0i
−

φ0i

nτ 2

∥∥∥∥

≤ 1

λmin(X
′
iXi/n)

(‖X′
iξ i‖
n

+
‖φ0i

‖
nτ 2

)
.
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Therefore,

P0

(
‖φ̂i − φ0i

‖ >
Kηn,i

2

)

≤ P0

[
1

λmin(X
′
iXi/n)

(‖X′
iξ i‖
n

+
‖φ0i

‖
nτ 2

)
≥ Kηn,i

2

]

≤ P0

[
λmin

(
X′

iXi

n

)
<

λ1

2

]
+ P0

(‖X′
iξ i‖
n

+
‖φ0i

‖
nτ 2 >

Kηn,i

4

)
.

(27)

First, we claim that any column of the true parameter matrix �0 is bounded in �2 norm by a
constant not depending on n. This follows from the stationarity and stability of the underlying
process {Xt }. More precisely,

Xt = �′
0X̃

t + εt where X̃t :=
[(

Xt−1)′ · · ·
(
Xt−d)′]′ =⇒ �X(0) = �′

0CX�0 + �ε,0.

By pre- and post-multiplication by the unit vector ei and using Assumption A2 the claim is

now established. This implies
‖φ0i

‖
nτ 2 = o(ηn,i) because

‖φ0i
‖

nτ 2
× 1

ηn,i

=
‖φ0i

‖
nτ 2

× 1

Bn

√
n

νi logdp
≤

‖φ0i
‖

τ 2Bn

√
n logdp

= o(1).

From (23) and by Assumption A1, there exists n4 such that both the probabilities in (27) are
at most e−2 logp for a large enough choice of K . Hence, for appropriate choice of K > 0, we
have

E0�n

(
‖φi − φ0i

‖ ≥ Kηn,i |Y
)

≤ E0�n

(
‖φi − φ̂i‖ ≥ Kηn,i

2

∣∣∣∣Y
)

+ P0

(
‖φ̂i − φ0i

‖ ≥ Kηn,i

2

∣∣∣∣Y
)

≤ 3e−2 logdp + 2e−2 logdp

= 5

d2p2
.

This completes the proof. �

A.3. Proof of Theorem 4.4. Throughout this proof, we will restrict ourselves to the
event G1,n ∩ G2,n ∩ �n. For notational convenience, let us denote �pseudo and πpseudo, re-
spectively, by �n and πn. For any n × s submatrix Xs of X, Pνs stands for the projection
matrix Xs(X

′
sXs)

−1X′
s onto C(Xs) and by P̃νs is defined to be Xs(X

′
sXs + Is

τ 2 )−1X′
s . Note

that

�n

{
‖� − �0‖F > K

1 + μmax(Ã)

μmin(Ã)

√
δnkn logdp

n

∣∣∣∣Y
}

= �n

{
‖� − �0‖2

F > K2
(

1 + μmax(Ã)

μmin(Ã)

)2∑p
i=1 νtikn logdp

n

∣∣∣∣Y
}

= �n

{ p∑

i=1

‖φi − φ0i
‖2

2 >

p∑

i=1

K2
(

1 + μmax(Ã)

μmin(Ã)

)2 νtikn logdp2

n

∣∣∣∣Y
}

≤ p max
1≤i≤p:νti

>0
�n

{
‖φi − φ0i

‖2 > K
1 + μmax(Ã)

μmin(Ã)

√
νtikn logdp

n

∣∣∣∣Y
}
.
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For ease of exposition, we denote 1+μmax(Ã)

μmin(Ã)

√
νti

kn logdp

n
by ηti . Let Gi denote the ith column

of the activity graph G, for 1 ≤ i ≤ p. It follows by (15) that G1,G2, . . . ,Gp are mutually
independent given Y, and

πn

(
Gi |Y

)
∝
(

qνi(G)

τ
√

n(1 − qνi(G))

)νi(G)∣∣∣∣
X′

iXi

n
+ Iνi

nτ 2

∣∣∣∣
−1/2(

Si + βi

n

)−( n
2 +αi)

.

By the arguments preceding (*), we obtain

1

2

πn(G
i = mi |Y)

πn(Gi = t i |Y)
≤ B(mi, t i).

Note that the proofs of Lemma A.2 and the part of Lemma A.3 for νmi
> νti , only use As-

sumptions A1–A3. Since d(mi, t i) ≤ 2kn(νmi
− νti ) for νmi

> νti , It follows that

1

2

πn(G
i = mi |Y)

πn(Gi = t i |Y)
≤
(
dp2)−2d(mi ,t i)

νmi
> νti .

Next, we focus on the case when νmi
≤ νti , with mi �= t i . By using arguments at the end

of the proof of Lemma A.1 and in the proof of Case III of Lemma A.3 (without Assumption
A4 and the bound ‖φti∩mc

i
‖ ≥ νti∩mc

i
s2
n), we get

1

2

πn(G
i = mi |Y)

πn(Gi = t i |Y)
≤ B(mi, t i)

≤ e
− logq1,nνti∩mc

i e
−C1n‖φti∩mc

i
‖2

≤ e
C2nη2

ti
−C1n‖φti∩mc

i
‖2

for appropriate constants C1 > 0 and C2 > 0. It follows that if ‖φti∩mc
i
‖ > C̃ηti , where C̃ =√

C2
C1

+ 4, then

1

2

πn(G
i = mi |Y)

πn(Gi = t i |Y)
≤ e−4nη2

ti ≤ (dp)−4νti
kn ≤ dp−4kn .

Hence, we get

�n

{
‖φi − φ0i

‖2 > Kηti |Y
}

= E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi})

=
∑

mi :νmi
≤νti

E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi = mi

})
πn

(
Gi = mi

)

+
∑

mi :νmi
>νti

E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi = mi

})
πn

(
Gi = mi

)

≤ max
mi :νmi

≤νti
,‖φti∩mc

i
‖≤C̃ηti

E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi = mi

})

+ πn

(
Gi = t i

)( ∑

mi :νmi
>νti

πn(G
i = mi)

πn(Gi = t i)
+

∑

mi :νmi
≤νti

,‖φti∩mc
i
‖>C̃ηti

πn(G
i = mi)

πn(Gi = t i)

)

≤ max
mi :νmi

≤νti
,‖φti∩mc

i
‖≤C̃ηti

E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi = mi

})



1296 S. GHOSH, K. KHARE AND G. MICHAILIDIS

+
dp∑

j=1

(
dp

j

)(
dp2)−2j + 2(dp)νti (dp)−4kn

≤ max
mi :νmi

≤νti
,‖φti∩mc

i
‖≤C̃ηti

E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi = mi

})

+ (dp2)−1

1 − (dp2)−1 +
(
dp2)−1

.

Next, we show that there exists N such that for every n ≥ N , we have

max
1≤i≤p

max
mi :νmi

≤νti
,‖φ0,ti∩mc

i
‖≤C̃ηti

E0
(
�n

{
‖φi − φ0i

‖2 > Kηti |Y,Gi = mi

})
≤ 2e−2 logdp.

Fix i and mi such that νmi
≤ νti , ‖φti∩mc

i
‖ ≤ C̃ηti arbitrarily. Let

φ̂mi
=
(

X′
mi

Xmi
+

Iνmi

τ 2

)−1
X′

mi
yi .

Using ‖φ0,ti∩mc
i
‖ ≤ C̃ηti and K > 6C̃, it follows that

E0�n

(
‖φi − φ0i

‖ ≥ Kηti |Y,Gi = mi

)

≤ E0�n

(
‖φ̃i − φ̂mi

‖ ≥ Kηti

2

∣∣∣∣Y,Gi = mi

)

+ P0

(
‖φ̂mi

− φ0mi
‖ + ‖φ0,ti∩mc

i
‖ ≥ Kηti

2

∣∣∣∣Y,Gi = mi

)

= E0�n

(
‖φ̃i − φ̂mi

‖ ≥ Kηti

2

∣∣∣∣Y,Gi = mi

)
+ 1

{‖φ̂mi
−φ0mi

‖≥Kηti
3 }

.

(28)

Next, we analyze the terms in (28) separately. For the first term, we note that

‖φ̃i − φ̂mi
‖ =

∥∥∥∥σi

(
X′

mi
Xmi

+
Iνmi

τ 2

)−1/2 (X′
mi

Xmi
+ Iνmi

τ 2 )1/2(φ̃i − φ̂i)

σi

∥∥∥∥

≤ σi√
λmin(X′

mi
Xmi

)
‖z‖,

where z is νmi
× 1 standard normal random vector and the last step follows from (16). Note

that νmi
≤ νti ≤ kn. By Assumption A1, for large enough n, we have that on �2,n,

∥∥∥∥
X′

mi
Xmi

n
− CXmi

∥∥∥∥
2
≤Bn

√
2νmi

logdp

n
≤ λ1

2
.

Using νmi
≤ νti , it follows that for any M∗ > 0,

E0�n

(
‖φ̃i − φ̂mi

‖ ≥ Kηti

2
|Y,Gi = mi

)

≤ P
(
‖z‖ >

√
nηmi

K

√
λ1

8(M∗)2

)
+E0�n

(
σi > M∗ |Y

)
.

(29)

First, we claim that any column of the true parameter matrix �0 is bounded in �2 norm by a
constant not depending on n. This follows from the stationarity and stability of the underlying
process {Xt }. More precisely,

Xt = �′
0X̃

t + εt where X̃t :=
[(

Xt−1)′ · · ·
(
Xt−d)′]′ =⇒ �X(0) = �′

0CX�0 + �ε,0.
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By pre- and post-multiplication by the unit vector ei and using Assumption A2, the claim
is now established. Note that the distribution of σ 2

i | Y,Gi = mi is Inverse-Gamma with

shape parameter (n
2 + αi) ∼ n and scale parameter

y′
i(In−P̃νmi

)yi+βi

2 . Hence,

y′
i(In − P̃νmi

)yi + βi

2

≤ y′
iyi + βi

2

(i)= ξ ′
iξ i + φ̃

′
0ti

X′
ti

Xti φ̃0ti
+ βi

2
(ii)
≤ 3nσmax

2
+ 2nλ2‖φ̃0ti

‖2
2 + βi

2

for large enough n. Note that (i) is obtained by substituting the true model yi = Xiφ0i
+ ξ i ,

and (ii) follows by restricting to the event G1,n ∩ G2,n ∩ �n. Therefore, the scale parameter
y′

i(In−P̃νi
)yi+βi

2 in the distribution of σ 2
i |Y,Gi = mi is bounded by a constant multiple of n.

Hence, by Remark S1.1 in the Supplementary Material, there exists a constant M∗ such that
E0�n(σi > M∗ |Y) ≤ e−2 logdp for all large n.

As for the first term in (29), note that z is a νmi
× 1 vector with i.i.d. N(0,1) entries. It

follows from Vershynin (2012), Corollary 5.35, that for any t > 0,

P
(‖z‖√

n
>

√
νti

n
+ t√

n
+ 1√

n

)
≤ e−t2/2.

By setting t2 = 4 logdp, it follows that ‖z‖√
n

≥ ηtiK
√

λ1
8(M∗)2 with probability at most

e−2 logdp for a large enough choice of K .
Moving onto the second term in (28), note that

‖φ̂mi
− φ0mi

‖ =
∥∥∥∥
(

X′
mi

Xmi
+

Iνmi

τ 2

)−1
Xmi

yi − φ0mi

∥∥∥∥

≤
∥∥∥∥
(

X′
mi

Xmi
+

Iνmi

τ 2

)−1∥∥∥∥
∥∥∥∥X

′
mi

Xtiφ0ti
+ X′

mi
ξ i − X′

mi
Xmi

φ0mi
−

φ0mi

nτ 2

∥∥∥∥.

Since φ0,tci ∩mi
= 0, ‖φti∩mc

i
‖ ≤ C̃ηti , ‖φ0mi

‖ is uniformly bounded in n, νmi
≤ νti , and we

are restricting to the event G1,n ∩ G2,n ∩ �n, it follows that

‖φ̂mi
− φ0mi

‖ ≤ 2

λ1

(‖X′
mi

Xti∩mc
i
φti∩mc

i
‖

n
+

‖X′
mi

ξ i‖
n

+
‖φ0mi

‖
nτ 2

)

≤ 2

λ1

(
2λ2‖φti∩mc

i
‖ + 2Bn

√
νti logdp

n

)

≤ C̃1ηti

for an appropriate constant C̃1. Hence for K > 6 max(C̃, C̃1), we have

1
{‖φ̂mi

−φ0mi
‖≥Kηti

3 }
= 0.

This completes the proof.
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