Patterns

Machine learning discovery of high-temperature

polymers

Graphical abstract

* *

RAR R LS

* *
Wal *
/NC o

* *

. )

Ao

@ 1 * *
T Y L4 e

* * \ * *
_ Tg screening with DNN model based on fingerprints of polymers .
Tg >200°C ~65,000 new candidates
Polymers
12000
Dataset-3 me— (
Dataset-2 b Q@ OO
10000 Dataset-1 =
436.92(406.88) 432.09(401.68)
8000 / 5
b
. & % Loy
g 6000 406.73(379.76) 401.52(394.29)
o
4000 or )g,«
2000 200.17 (227.70)
~2,000 known candidates
———
0 0 260 400 QYO\(
To k) BeARl o\
212.58 (205.39)
Predicted (True)

e Large datasets for polymer’s glass transition temperature are
collected

e Transferability of ML models depends on feature
representations

e Molecular dynamics models and experimental results
validate the formulated ML model

e Extensive promising candidates for high-temperature
polymers are screened by ML model

Tao et al., 2021, Patterns 2, 100225
April 9, 2021 © 2021 The Author(s).
https://doi.org/10.1016/j.patter.2021.100225

uuuuuuu

Authors
Lei Tao, Guang Chen, Ying Li

Correspondence
yingli@engr.uconn.edu

In brief

Polymers with outstanding high-
temperature properties have been
identified as promising materials for
aerospace, electronics, and automotive
applications. However, the current design
and development of high-temperature
polymers has been an experimentally
driven and trial-and-error process guided
by experience, intuition, and conceptual
insights. Therefore, we formulate a
machine learning model that can
quantitatively predict the glass transition
temperature of a polymer from its
chemical structure, such that more
promising high-temperature polymers
can be efficiently filtered out through
high-throughput screening.
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THE BIGGER PICTURE The design and development of high-temperature polymers has been an experi-
mentally driven and trial-and-error process guided by experience, intuition, and conceptual insights. How-
ever, such an Edisonian approach is often costly, slow, biased toward certain chemical space domains, and
limited to relatively small-scale studies, which may easily miss promising compounds. To overcome this
challenge, we formulate a data-driven machine learning (ML) approach, integrated with high-fidelity molec-
ular dynamics simulations, for quantitatively predicting the glass transition temperature of a polymer from
its chemical structure and rapid screening of promising candidates for high-temperature polymers. Our
work demonstrates that ML is a powerful method for the prediction and rapid screening of high-temperature
polymers, particularly with growing large sets of experimental and computational data for polymeric ma-
terials.

0:000

Proof-of-concept Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

To formulate a machine learning (ML) model to establish the polymer’s structure-property correlation for
glass transition temperature Ty, we collect a diverse set of nearly 13,000 real homopolymers from the largest
polymer database, PoLylnfo. We train the deep neural network (DNN) model with 6,923 experimental T
values using Morgan fingerprint representations of chemical structures for these polymers. Interestingly,
the trained DNN model can reasonably predict the unknown T, values of polymers with distinct molecular
structures, in comparison with molecular dynamics simulations and experimental results. With the validated
transferability and generalization ability, the ML model is utilized for high-throughput screening of nearly one
million hypothetical polymers. We identify more than 65,000 promising candidates with T, > 200°C, which is
30 times more than existing known high-temperature polymers (~2,000 from PoLyInfo). The discovery of this
large number of promising candidates will be of significant interest in the development and design of high-
temperature polymers.

INTRODUCTION

Lightweight and high-strength polymers with outstanding high-
temperature properties have been identified as promising mate-
rials for aerospace, electronics, and automotive applications.'™
These high-temperature polymers are expected to have long-
term durability at high temperatures, high thermal decomposi-
tion temperatures, or high glass transition temperature T,. For
example, polytetrafluoroethylene is a synthetic fluoropolymer
of tetrafluoroethylene with a maximum service temperature

Gheck for
Updates

>260°C, which has been widely used for non-stick coatings
and insulations.* The other successful high-temperature poly-
mers are perfluoroalkoxy alkanes, polyether ether ketone
(PEEK), and fluorinated ethylene propylene. The high-tempera-
ture properties of these polymers are realized through the het-
eroatoms in the polymer chain of thermoplastics.””” However,
the molecular engineering and design of hydrocarbon polymers
and other polymers with high-temperature properties remain to
be explored. The current design and development of high-tem-
perature polymers have been an experimentally driven and
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trial-and-error process guided by experience, intuition, and con-
ceptual insights. For example, different experimental strategies
have been developed to synthesize high-temperature hydrocar-
bon polymers, such as (1) enhancement of the tacticity of the
polymer chains,®° (2) introduction of bulky pendant groups into
the side chain,'®'? and (3) incorporation of cyclic structures
into the backbone chain.”®'® Nevertheless, this Edisonian
approach is often costly, slow, biased toward certain chemical
space domains, and limited to relatively small-scale studies,
which may easily miss promising compounds.'® Thus, a robust
and reliable high-throughput screening method is essential for
the discovery and design of high-temperature polymers.'”

For high-temperature polymers, a critical property is the
Tg,'%"%"* which determines the polymer’s phase transition be-
tween a rubbery state and a glassy state, yielding orders of
magnitude difference in elastic modulus.'® Until now, Ty is well
known to be related to many factors, including molecular
weight,'® chain stiffness,”° side groups,®' additives,?* regular-
ity.>®> Considering these aspects, researchers have proposed
theoretical correlations between the chemical structure and the
T4 of polymers. These empirical methods are built upon the
assumption that the chemical groups in the repeating units of
the polymer chain contribute to the T, additively with different
weighting factors.?*=2° For example, Van Krevelen and Te Nijen-
huis'® and Hoftyzer and colleagues®® have proposed the “Molar
Glass Transition Function,” based on nearly 600 experimental Ty
values of polymers, with different group contributions and struc-
tural corrections to T,. This approach provides an effective way
for molecular interpretation of T4. However, this additive method
is only applicable to the polymers containing previously investi-
gated chemical structures.'® Later, Dudowicz et al.”” formulated
an analytic theory to estimate T, of polymer melts as a function of
the relative rigidities of the chain backbone and side groups,
monomer structure, polymer mass, and pressure, based on
the generalized Lindemann criteria. This analytical theory can
explain the general trends in the variation of T, related to the
microstructure of the polymer, e.g., influences of side-chain
length, and relative rigidities between side groups and chain’s
backbone. Nevertheless, it cannot be used to directly predict
the Ty of the polymer based on its chemical structure. Very
recently, Xie et al.”® established a relationship between T, and
molecular structure of 32 conjugated polymers with a single
adjustable parameter ¢. { is an effective mobility value, deter-
mined by assigned atomic mobility for the repeating unit of con-
jugated polymers. The experimental results confirm that ¢ is
strongly correlated to the T, of conjugated polymers, although
they differ drastically in aromatic backbone and alkyl side-chain
chemistry. Yet, quantitatively predicting a polymer’s T, from its
chemical structure remains a significant challenge. We still lack
a universal model that connect a polymer’s T, to its repeating
unit and molecular structure.

With advancements in molecular simulation and high-perfor-
mance computing, all-atom molecular dynamics (MD) simula-
tions can reasonably predict a polymer’s Tg,29 despite the
limitations of computational cost, cooling rate, and uncer-
tainty.®°">° Nevertheless, it is not feasible to use these expensive
MD simulations to explore the vast chemical space of polymers,
defined by the almost infinite combinations of their chemical ele-
ments and molecular structures. With the growing amount of
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polymer database, '®*°® data-driven methods are emerging to
build correlations between chemical structure and the T, of poly-
mers, including quantitative structure-property relationships
(QSPR) method®**® and machine learning (ML).*"° For the
QSPR method, a large array of molecular descriptors are ex-
tracted from the polymer’s repeating unit, which applies to any
chemical structure.’® For example, Katritzky et al. have extracted
more than 400 constitutional, topological, geometrical, and
quantum chemical descriptors for the repeating unit of the poly-
mer.*° Subsequently, a multi-step linear regression analysis is
adopted to train these descriptors, leading to a good match be-
tween predicted and experimental T,values for 88 homopoly-
mers. Wu et al.*’ encoded a descriptor vector of seven different
fingerprints, such as standard, extended, hybridization, maccs.
And their Bayesian linear model reported an R value of 0.916
for T4 prediction. Liu and Cao”? have adopted the artificial neural
network to predict the T, for 113 polyacrylates and polystyrenes,
as afunction of four molecular descriptors: the molecular average
polarizability, the energy of the highest occupied molecular
orbital, the total thermal energy, and the total entropy. Later,
Cai et al.*® have combined a support vector regression with par-
ticle swarm optimization, using six quantum chemical descrip-
tors as inputs, to predict T, values for 32 methacrylate polymers.
However, the QSPR method suffers two major drawbacks: (1) it is
expensive to quantify a large array of molecular descriptors, such
as quantum chemical descriptors, which require the time-
consuming density-functional theory calculations; (2) the QSPR
method might generate many parameters that are challenging
to physically interpret, such as topological bond connectivity
and Kier shape index.*°

Considering these aspects, several ML models have been es-
tablished to predict a polymer’s Ty directly from its chemical
structure. For instance, Ramprasad and co-workers®’ 3944 uti-
lized three hierarchical levels of descriptors, including atomic
level, QSPR, and morphological descriptors, for feature repre-
sentation of polymers. They fitted their datasets of 451-1,321
polymers with the Gaussian process regression model in the
polymer genome platform.*®*>~*¢ When using 1,321 polymers
for training, their ML model reported a root-mean-square error
of 27 K and R? of 0.92.%° In addition to molecular descriptors
as feature representation, ML models, such as convolutional
neural networks (CNNs) with image-based input, have also
been examined. For example, Miccio et al.***° converted the
Simplified Molecular Input Line Entry System (SMILES) notations
of 331 polymers into a two-dimensional (2D) matrix (binary im-
ages) by the presence or absence of composing characters in
the SMILES formulation. This approach can be used to predict
the unknown T, of polymers with average relative errors as low
as 6%, particularly without time-consuming calculations of mo-
lecular descriptors. Table 1 summarizes the database, feature
representation, models, and prediction metrics from these theo-
retical, QSPR and ML studies.

Despite these extensive studies, we are still facing several sig-
nificant challenges in creating ML models to directly predict a
polymer’s T, based on its chemical structure.'® Firstly, most of
these data-driven models are built upon a small dataset of poly-
mer Tg4 values with less than 1,000 data points, focusing on a
certain category of polymers, such as polyacrylates and polysty-
renes. It is very difficult to generalize these models for other
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Table 1. Summary of theoretical, QSPR, and machine learning (ML) models investigated in the literature

Database Features Model R? Ref.
600 chemical groups group contributions approach N/A? 18
32 an effective mobility value single adjustable parameter N/AP 28
113 quantum chemical descriptors artificial neural networks 0.955° 42
37 quantum chemical descriptors support vector regression 0.97 43
251 Descriptors computational neural networks 0.96 51
389 descriptors support vector regression 0.78 52
133 descriptors random forest N/AC 53
88 descriptors multi-layer perceptron neural network 0.96 o4
77 descriptors support vector machine (SVM) 0.92 2
54 descriptors artificial neural network 0.91 56
52 descriptors artificial neural network 0.978° 7
451 hierarchy fingerprint Gaussian process regression 0.94 38
751 hierarchy fingerprint Gaussian process regression 0.87 s7
1,321 hierarchy fingerprint Gaussian process regression 0.92 39
5,917 combined fingerprint Bayesian linear model 0.916' 1
331 SMILES-based binary images convolutional neural network N/A® 49
234 SMILES-based binary images fully connected neural networks N/A" 20
6,923 + 5,690 + descriptors lasso regression 0.80 this work
1 million Morgan fingerprint deep neural network 0.85
SMILES-based binary images convolutional neural network 0.87

N/A, not applicable.

#About 80% of the calculated T, values differed less than 20 K from the experimental values.
Only root-mean-square error of 13°C was reported for all 32 alkylated conjugated polymers.

°R = 0.955 was reported for the prediction set.

90nly root-mean-square error of 4.76 K was reported for the test set of the model.

°R = 0. 978 was reported for the test set.
R = 0. 916 was reported for the test set.
9The model performance was evaluated by relative error of 3%-8%.

"The model performance was evaluated by average relative errors of ~3%.

classes of polymers due to the limited range of chemical space.
Secondly, it is challenging to choose appropriate feature repre-
sentations to describe the chemical structures of polymers. Mo-
lecular descriptors, fingerprints, and images have been adopted
to represent the chemical structures of polymers. It is not clear
which feature representation is the most appropriate, leading
to a predictive ML model for exploring a large chemical space
of polymers. Finally, it is not straightforward to associate ML pre-
dictions on a polymer’s T, with physically meaningful quantities.
Since most ML models are highly nonlinear with complicated ar-
chitectures, it is difficult to pinpoint a specific set of physical
quantities or chemical groups that are important in the prediction
and design of a polymer’s Tg.

To overcome the above challenges, we manually collected
about 13,000 homopolymers structures from the largest polymer
database, PoLylnfo.°® Copolymers that are formed by two types
of monomers are not collected here as the effect of their different
components on T, requires extra consideration,”®®° and poly-
mer composites are not included either when their T, is affected
by polymers interplaying with nanomaterials.®’®” Focusing on
homopolymers allows us to put our focus mainly on revealing
the correlation of a polymer’s chemical structure and its Ty.
Among the around 13,000 homopolymers, 6,923 experimental
Ty values are available, which form dataset-1, as shown in

Figure 1. The remaining 5,690 polymers without reported Ty
values form dataset-2. Also, a benchmark database, named
PI1M®2, with nearly one million hypothetical polymers generated
by a recurrent neural network (RNN) model, is taken as dataset-
3, while the corresponding T, values are unknown. Note that
dataset-3 covers a similar chemical space as dataset-1 and da-
taset-2 because the RNN models are also trained on the PoLy-
Info database, but significantly populate regions where Polylnfo
data are sparse.®® Such a large and diverse dataset allows us to
develop four representative ML models based on dataset-1,
namely Lasso_Descriptor, Lasso_Fingerprint, DNN_Fingerprint,
and CNN_Image, by using the molecular descriptors, Morgan
fingerprints, or images as inputs, and Lasso (least absolute
shrinkage and selection operator), DNN (deep neural network)
or CNN as the ML models. The predictivity and transferability
of these ML models are tested on dataset-2 with distinct chem-
ical substructures (Figure 1), in comparison with MD simulations
and experimental results. Interestingly, our study reveals that the
DNN_Fingerprint model can reasonably predict the T, values of
polymers from dataset-2, as the Morgan fingerprinting method®”
can take into account the chemical connectivity and appearance
of different substructures of a polymer’s repeating unit. More
importantly, we use these ML models to identify key molecular
descriptors and chemical substructures that can significantly
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6,923 polymers 04
(w/ Tg)

Dataset-2
5,690 polymers
(w/o Tg)

Dataset-3
1 million polymers ¢ J
(w/o Tg)

affect the polymer’s Ty, providing physical insights into the pre-
diction and design of the T, for polymeric materials. We further
examine the chemical functional groups of high-/low-T, poly-
mers and their common characteristics through Checkmol.®®
We also identify strong correlations between these common
functional groups with the key chemical substructures revealed
by our ML models. Eventually, we apply the validated DNN_Fin-
gerprint model for rapid screening of one million hypothetical
polymers in PI1M (dataset-3), and identify more than 65,000
promising candidates for high-temperature polymers with Ty >
200°C. We then use MD simulations to validate the predicted
T4 values of the top four high-temperature polymers, which are
previously unexplored and have not been tested to date. Thus,
our study demonstrates that ML is a powerful method for the pre-
diction and rapid screening of high-temperature polymers,
particularly with growing large sets of experimental and compu-
tational data for polymeric materials. The key molecular descrip-
tors and chemical substructures informed by ML models,
combined with identified chemical functional groups, are impor-
tant design motifs for the molecular engineering of high-temper-
ature polymers.

RESULTS AND DISCUSSION

Dataset, feature representation, and chemical space

To formulate robust and predictable ML models for diverse poly-
mers, we need to consider a larger dataset in contrast to previ-
ous studies (cf. Table 1). Dataset-1 contains 6,923 polymers
from the largest polymer database, PoLylnfo,’® as listed in Table
2. They are real polymers with experimentally measured
Tyvalues reported in literature. Thus, it is ideal to use dataset-1

4 Patterns 2, 100225, April 9, 2021

Patterns

Figure 1. Chemical space visualization of
dataset-1, dataset-2, and dataset-3

(A) 2D visualization based on descriptors and fin-
PN gerprints using the t-SNE algorithm. Dataset-1 has
% reported Ty values, and each data point is colored
based on the corresponding T, value. Dataset-2
and dataset-3 do not have reported Ty values,
kY colored with yellow and red, respectively.

\Y (B) Set diagram showing representative sub-
‘\‘ structures in dataset-1 (green circle), dataset-2
\ (yellow circle), and dataset-3 (red circle) based on
'|| Morgan fingerprint. Some substructures are com-
i
1
1
1
1
1

Dataset-1
substructures

mon for all datasets, while some others are unique
to certain datasets.

as a labeled dataset for ML model training.
For experimentally measured T, values,
they depend on conditions, such as the
cooling or heating rate, or even curing pro-
cess and moisture content, thus there
cannot be an exact value for T,.°5%°
A Although there are variations in experi-
mental measurements, the reported T,
with a common experiment practice can
be considered characteristic only of the
polymer and not of the measuring
method.”® If measurement conditions are
so extreme that the obtained Ty is not a
proper representative of the real value, such records will mislead
all analysis, including ML model training.

A total of 5,690 real polymers of dataset-2 were collected from
the same data source as dataset-1, but their Ty values were not
previously reported. Dataset-3 is based on an ML-generated
database PI1M®® with approximately one million hypothetical
polymers. Note that PI1M is enumerated using a generative ML
model, RNN, based on Polylnfo (dataset-1 plus dataset-2).
These three datasets are regarded as similar to each other in
terms of chemical space.®® The collected three datasets in Table
2 are more than one order of magnitude of most datasets from
the kinds of literature in Table 1, making up a broader range of
chemical space involving various categories of polymers. The
challenge of having ML models that can be generalized to all cat-
egories of polymers then becomes straightforward to address
with the collected large datasets.

All polymers’ chemical formulas and structures are repre-
sented by the SMILES notation,”’ which is a line notation for
describing the structure of chemical species using short ASCII
strings. For example, “*C(C*)C” represents the repeating
unit for “poly(prop-1-ene).” It is worth noting that a special sym-
bol “*” is used to indicate the polymerization points for the
repeating unit. From the same molecular block, such as
“CCC,” the polymerization positions in *C(C*)C take into account
the bonding information between repeating units, and determine
the spatial structure of the polymer chain. The chemical species
contained in these three datasets include C, O, N, CI, F, Br, |, S,
Si, B, P, Sn, Fe, Na, Li, Ge, Se, K, Co, Ni, Ca, Cd, Pb, Zn, and Te.

One challenge when creating ML models for evaluation of a
polymer’s Ty is choosing appropriate feature representation to
describe the chemical structures being studied. Representation

Dataset-3
substructures
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Table 2. Comparison of three datasets

Dataset No. of polymers Ty (°C) Source

Dataset-1 6,923 —118~495 real polymers from PoLyInfo>®
Dataset-2 5,690 unknown real polymers from PoLyInfo>®
Dataset-3 1 million unknown hypothetical polymers from PI1M®®

options include descriptors, fingerprints, molecular graph, mo-
lecular embedding, quantum chemical quantities, images, etc.
The effect of using different representations on T, estimation
has been demonstrated through systematic representation eval-
uation’? or separate model development.3’3942:43:50-57 |4 aqdi-
tion, the development of new representations remains critical for
the development of high-performance ML models. To carry out a
thorough study considering different types of representations,
we explore three types of feature representation based on the
SMILES notation of each polymer: molecular descriptors, Mor-
gan fingerprints, and images, as presented in Figure 2. In terms
of molecular descriptors, the feature-generating engine alva-
Desc’® supports the calculation of about 5,305 descriptors
within 32 categories, ranging from constitutional indices and
ring descriptors to chirality descriptors.”*”* The ensemble of de-
scriptors represents the physical and chemical characteristics of
polymers/molecules being studied, which have been widely
adopted in the QSPR and ML models (Table 1). Thus, these mo-
lecular descriptors can provide physical information regarding
charges, topological indices, functional groups, etc., of poly-
mers. Among these 5,305 descriptors, 3,579 descriptors are all
available for real polymers in dataset-1 and dataset-2. However,
not all 3,579 descriptors are available to the one million hypothet-
ical polymers in dataset-3. Around 5% of hypothetical polymers
in dataset-3 cannot be processed using the alvaDesc. But it
does not affect too much the chemical space visualization based
on molecular descriptors for dataset-3. We should emphasize
that the alvaDesc cannot process the * symbol in the SMILES no-
tation and, thus, it misses the chemical connectivity of the
repeating units.

In addition to molecular descriptors, we also choose the
fingerprinting method (extended connectivity fingerprinting
[ECFP])®* to numerically represent the chemical connectivity in
a repeating unit of the polymer. Specifically, the fingerprinting
method has a significant advantage over the traditional group
contribution and molecular descriptor methods, where all the

[632.88, 7.911, 80.3268, 54.5686, 89.8954,1.004085, 0.682107, 1.123692,

0.04862, 80 ... 0.5, 0.333333, 0.5, 0.8, 1.0, 0.333333, 0.0, 0.495238, 0.166, 0.5]

Descriptor f

*N1C(=0)c2¢(C1=0)cc(cc2)Oct chc(C(=O)N(C\‘
2=0)c2c(cce(c2)C(c2cec(c(cc2)OCc2cec(ce(c2)0 :

C2)(C)C)C)OCCN(c2cce(cc2)C=CC2=CC(=C(C :
#N)C#N)CC(C2)(C)C)C))(C(F)(F)F)C(F)(F)F)O !
Cc2cc(cc(c2)OCCN(c2cec(cc2)C=CC2=CC(=C( 1
C#N)C#N)CC(C2)(C)C)C)OCCN(c2cce(ce2)C= |
CC2=CC(=C(C#N)C#N)CC(C2)(C)C)C)ec1 1

2

&y
Sor?

CCN(c2cee(ce2)C=CC2=CC(=C(C#N)CHN)CC( ! Image

possible build blocks and molecule descriptors have to be
defined a priori and remain static. However, the fingerprinting
method is more dynamic, and it can evolve to include new chem-
ical structures and connectivities.®* Essentially, to derive the
ECFP of the repeating unit, we need to: (1) assign each atom
with an identifier, (2) update each atom’s identifiers based on
its neighbors, (3) remove duplicates, and (4) fold list of identifiers
into a 2,048-bit vector (a Morgan fingerprint). In this case, we
transform each polymer’s SMILES notation into a binary “finger-
print,” by using the Daylight-like fingerprinting algorithm as im-
plemented in RDKit’® with radius 3 and 2,048 bits. Note that
radius 3 is large enough to identify/encode large fragments of
the chemical structure, with more than 45,000 distinct substruc-
tures detected from all datasets. Such a topological-based
approach analyzes the various substructures of a molecule
within a certain number of chemical bonds (here it is 3), and
then hashes each substructure into a 2,048-bit vector, as shown
in Figure 2. If the 45,000 distinct substructures are hashed into
2,048 buckets, collisions are inevitable. Then, the 1/0 (on/off)
bit of a bucket does not indicate the occurrence of a specific
substructure but represents the occurrence of several substruc-
tures. Besides, the number of occurrences for a substructure is
not recorded through these buckets. To avoid the drawbacks of
using buckets, we directly record each substructure and its num-
ber of occurrences. This dictionary of substructures is further
used for the training of our ML models. We should emphasize
that our fingerprinting method is different from previous studies
using the ECFP and Morgan fingerprinting,”’""®"" as we need
to consider the number of occurrences for certain substructures
in the training of ML models, to be discussed in the following
section.

Based on the SMILES notation of polymers, we further define
an ordered list of SMILES characters as a dictionary [“c”, “n”,
“o”, “C”, “N”, “F”, *“ =", “0”, “(, 9, “, “[', 177, “17, “2”,
“37, “#7, “ClI”, “/7, “S”, “Br”]. This dictionary creates a binary
column for each character, with which one-hot encoding

[c,n,0,C,...Cl,/, S, Br]

Figure 2. Three types of feature representa-
tion calculated based on the polymer’s
SMILES notation for ML models: molecular
descriptor, Morgan fingerprint, and image

S e—Qou—~Q=z *
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Table 3. Four ML models trained on dataset-1

Name ML model

Lasso_Descriptor Lasso regression model

Lasso_Fingerprint Lasso regression model
DNN_Fingerprint

CNN_Image

deep neural network
convolutional neural network

Features R? (train/test)
3,579 descriptors 0.80/0.71
2,048 fingerprints 0.74/0.73
2,048 fingerprints 0.85/0.83
310 x 21 binary images 0.87/0.80

algorithm”® transforms each polymer’s SMILES into a sparse
matrix (a 2D binary image in Figure 2). The dimensions of all im-
ages are 21 (the number of characters in the dictionary) x 310
(the length of the longest SMILES code in the dataset). The key
points of the one-hot encoding algorithm are: (1) defining a
reasonable dictionary is the premise of a good model; (2) simple
polymers (represented by a short SMILES code) return much
sparser matrices than complex polymers (represented by a
long SMILES code). Obviously, any change of dataset could
lead to changes in the dictionary and corresponding images,
significantly influencing the performance of a CNN model.

In view of the molecular descriptors and Morgan fingerprints,
similarities between different datasets can be compared from
their chemical space. To better visualize this space, the high-
dimensional chemical spaces are reduced to a low-dimensional
representation. By t-distributed stochastic neighbor embed-
ding,”® the chemical spaces can be shown in 2D plots as shown
in Figure 1A. The top row of Figure 1A is for dataset-1, whose T,
values are marked with a color bar. The middle and bottom rows
are for dataset-2 and dataset-3, respectively. We can see that,
on both descriptor and fingerprint space, dataset-1 and data-
set-2 distribute randomly on similar regions. The random distri-
bution suggests that dataset-1 and dataset-2 are across similar
chemical spaces. Dataset-3 is also found filling up a similar
chemical space but significantly populate regions where PoLy-
Info data (dataset-1 plus dataset-2) are sparse. Although Fig-
ure 1A shows similarities between dataset-1, dataset-2, and
dataset-3, disparities still exist. For example, using Morgan fin-
gerprints, we show some substructures of these polymers in da-
taset-1, dataset-2, and dataset-3 (Figure 1B). Besides the
shared substructures enclosed in the overlapped area of the cir-
cles, all three datasets have their own unique substructures. As
ML models are trained based on dataset-1, when they encounter
a polymer in other datasets with new substructures, it is difficult
to make an accurate prediction. Compared with the perfor-
mance on dataset-1, whether the ML model can be well trans-
ferred to new dataset-2 and dataset-3 is more worthy of
concern. ML models with good transferability and generalization
ability are of significant importance for the discovery and design
of high-temperature polymers.

ML models for the chemistry-T, relation of polymers

Four ML models trained on dataset-1 (listed in Table 3) involve
the Lasso model, the DNN model, and the CNN model. Lasso
is a least-squares regression model with a shrinkage penalty,
through which it performs variable selection by forcing the coef-
ficients of trivial variables to become zero. Thus, the variables
that are strongly associated with the output are identified in a
variable selection process. DNN consists of connected units
called nodes or neurons. Each node receives signals and
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triggers a process function to output new signals. Several nodes
are grouped into layers and constructed into a complicated
network architecture, which is processed between the input
and output layers. DNN is capable of learning complex relation-
ships between input and output. CNN is distinguished from DNN
by its superior performance on image input. The convolutional
layers with filters or kernels are the core building blocks of
CNN. The optimized weights and biases in convolutional layers
can identify the presence of various features in the input,
showing an advanced performance, particularly in image pro-
cessing. Although the ML algorithms are applicable for various
kinds of problems, such as video recognition, image analysis,
or natural language processing, their suitability and reliability
are actually highly domain dependent. For the task of estimating
apolymer’s T, based on structure features, ML models require a
proper feature representation that depicts polymer physics and
chemistry to the greatest extent.

Here, descriptors or fingerprints are used as the input features
for Lasso regression models or DNN models. They have clear
chemical or physical meanings for an organic molecule, but
the time-consuming calculation is usually required considering
a very large database of polymers. When representing polymers
from the perspective of 2D images, the input is much easier to
calculate.*>*° Therefore, a CNN model using images is also
investigated for comparison. Through these ML models, we
aim to discover critical physical and chemical features affecting
T4, and to establish a reliable model for T, screening of high-tem-
perature polymers. Lasso regression is suitable for feature selec-
tion, while DNN and CNN models are more powerful to establish
a correlation between chemical structure and Ty of polymers.”®

The performances of these four ML models are illustrated by
parity plots in Figures 3A-3D (see the supplemental experimental
procedures Figures S1-S3 for model training details). Based on
dataset-1, they all show good performances. The best one is the
CNN_Image model, which produces an R2of 0.87/0.80 for
training/test sets. It indicates that, although there is no explicit
physical meaning in the image representation, the CNN model
is still able to establish a correlation between the image input
and the physical property T4 of polymers. The DNN and Lasso
models also lead to high R? values of 0.74-0.87. Their perfor-
mances are satisfactory, considering the large chemical diversity
of 6,923 polymers involved in dataset-1.

To examine the transferability of ML models on new polymers,
these four ML models are applied to dataset-2 to predict their
Tyvalues. The prediction accuracy of ML models is further vali-
dated with MD simulations (see Figure S4 and Table S2 for the
MD simulation details and results). Twenty polymers are
randomly selected from dataset-2. Their MD-simulated T4 and
ML-predicted T, values are compared in Figure 3E. Four ML
models show different prediction performances on these
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polymers of dataset-2 (see Table S3 in the supplemental exper-
imental procedures). The performances of CNN_Image model
and Lasso_Descriptor model degrade remarkably to R? of
—0.52 and 0.39, respectively, indicating poor transferability
from dataset-1 to dataset-2. These two previously well-trained
ML models on dataset-1 are found to be no longer accurate
when giving a new and different dataset. Due to their worse
generalization capabilities, the CNN_Image model and Lasso_-
Descriptor model are not considered for high-temperature poly-
mer screening in the following sections.

On the contrary, the Lasso_Fingerprint and the DNN_Finger-
print models demonstrate good performance on these randomly
selected polymers, with R?of 0.63 and 0.53, respectively. Their
small changes of R? from dataset-1 to dataset-2 suggest good
transferability. Although with a little degradation, the prediction
performances are still satisfactory considering: (1) dataset-2 is
not exactly the same as dataset-1 in terms of substructures
(cf. Figure 1), and (2) uncertainties may exist as the reference

gerprint model is found to be degrading
on this new experimental dataset. Accord-
ing to these results, we find that the
DNN_Fingerprint model has a consistent performance on
different datasets with excellent transferability through the vali-
dations by MD simulations and experimental results. Also, Mor-
gan fingerprints are identified to be more appropriate as feature
representation for the ML model of polymer T4 in comparison
with molecular descriptors and images.

As mentioned above, both molecular descriptors and images
are representations of all the possible building blocks of a poly-
mer’s repeating unit, which must be defined a priori and remain
static. However, Morgan fingerprints are an inherent more
dynamic representation, as they can evolve to include new
chemical substructures once encountered. Also, according to
the previous theoretical models on Ty values of polymers,'® we
know that the number of occurrences for these substructures
also plays an important role. Therefore, our Morgan fingerprints
explicitly consider more than 45,000 distinct substructures and
their frequency of occurrence, which allows us to study the ef-
fects of various substructures and their linkages on polymer Ty
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Table 4. The top 10 physical descriptors and their absolute weight ratio from the Lasso model

Name Description Block Ratio

AVS_B(i) average vertex sum from Burden matrix 2D matrix-based descriptors 0.0684
weighted by ionization potential

NssCH2 number of atoms of type ssCH2 atom-type E-state indices 0.0272

FO2[C-N] frequency of C-NA topological distance 2 2D atom pairs 0.0181

nHM number of heavy atoms constitutional indices 0.0145

BIC2 bond information content index information indices 0.0138
(neighborhood symmetry of 2-order)

NsCH3 number of atoms of type sCH3 atom-type E-state indices 0.0137

BO3[F-F] presence/absence of F-F at topological 2D atom pairs 0.0120
distance 3

nCq number of total quaternary C(sp3) functional group counts 0.0113

nCrs number of ring secondary C(sp3) functional group counts 0.0098

C-006 CH2RX atom-centered fragments 0.0097

values. Combined with the powerful and transferable DNN
model,?’ the DNN_Fingerprint model trained from dataset-1
demonstrates the best performance on dataset-2 and a new
experimental dataset of 32 conjugated polymers. We should
emphasize that, if we only derive the Morgan fingerprints by
hashing all the substructures into 2,048-bits, without considering
their number of occurrences, the trained DNN model cannot
reasonably predict the T, values of these 32 conjugated poly-
mers (see Figure S6 the supplemental experimental procedures
for detailed results). Extensive studies using molecular descrip-
tors, fingerprints, or images alone (Table 1) lead to well-trained
ML models that are applicable for a certain category of polymers,
but how well these models are suitable to predict other polymers
is not getting much attention. Here, we demonstrate an appro-
priate feature representation through large dataset training, MD
simulations, and experimental dataset verification, particularly
from a perspective of the model’s good transferability and gener-
alization. The Morgan fingerprints with their number of occur-
rences are found most suitable in terms of T, prediction, due
to the encoded information of substructures and polymerization.

Machine learns physical rules for polymer T, values

One of the challenges in using ML models for property predic-
tions of organic molecules and polymers is correlating these pre-
dictions with meaningful physical quantities.'®®® This is the
major driving force of current research activities in interpretable
artificial intelligence and ML methods.®*%® Although our
DNN_Fingerprint model demonstrates the best predictivity and
transferability, it uses the fingerprinting representation of poly-
mers, leading to the difficulty of pinpointing a specific set of
physical quantities that are important in the prediction of a
polymer’s Ty. On the contrary, the performances of Lasso_De-
scriptor and Lasso_Fingerprint models are not as ideal as
DNN_models, but they are still useful to establish reasonable
correlations between a polymer’s chemical structure and Ty
with R? > 0.7 (cf. Figure 3). Furthermore, the Lasso method has
an advantage for feature selection and extraction.”®®” By
applying L1-norm regularization on the weights, unimportant
features are shrunk, and only important features are left. The
feature importance is directly indicated by the obtained weight
for each feature.®”-%®
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Focusing on molecular descriptors, the Lasso_Descriptor
model finds 444 descriptors having non-zero weights. More
than 50% of the total absolute weight is contributed by 61 fea-
tures. These features are considered important in determining
Ty. The top 10 physical descriptors are listed in Table 4 (see
the full list in Table S1 of the supplemental experimental proced-
ures). Descriptors, such as “frequency of C-N at topological dis-
tance 2,” “number of heavy atoms,” “number of total quaternary
C(sp3),” etc., are revealed to be principle features associated
with the Ty of polymers. These structural and chemical parame-
ters are expected to be the essential constituents of polymers in
terms of Ty,.

Several topological descriptors, such as FO2[C-N] and BO3[F-
F], appear in the discovered top features as they encode the
spatial relationship of the polymer backbone, such as the molec-
ular size and free volume. Using topological descriptors alone is
considered to be enough for a Typrediction model when dealing
with a very limited dataset of 251 polymers.** However, our Las-
so_Descriptor model, dealing with a larger dataset, indicates the
same level of importance as other factors, such as the functional
group counts. Eleven functional groups (see the full list in Table
S1 of the supplemental experimental procedures), such as
“number of ring secondary C(sp3),” “number of hydroxyl
groups,” and “number of primary amines (aromatic)” are identi-
fied key factors affecting the Ty of polymers. They demonstrate
no less significance than topological descriptors, and some crit-
ical functional groups are found to be good indicators to identify
high-T, or low-Tgpolymers as shown later.

Focusing on Morgan fingerprints, the Lasso_Fingerprint model
examines local substructures in a similar way. Among the 124
most common substructures found in dataset-1, 85 substruc-
tures have non-zero weights, and 18 substructures contribute
more than 50% of the total absolute weight. These 18 substruc-
tures with the highest absolute weight are presented in Figure 4.
These substructures also provide us physical insights into the Ty
of polymers, including the importance of aromatic compounds®’
(substructures 16406, 24417, 17135, 17618, 11337, 11881, and
4916) and functional groups containing oxygen and nitrogen
atoms (substructures 16406, 17748, 426, 24417, 770, 11337,
23586, 11881, 4916, 7305, and 24993), which indicates the pos-
itive influence of hydrogen bonds on Tg.90 Also, some of these
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substructures are highly related to the important physical de-
scriptors shown in Table 4, providing cross-validations between
these two ML models.

Besides the physical insights revealed by the Lasso regression
models, critical functional groups can also be identified for their
contributions to polymer T, values as a posteriori analysis. Here,
we can examine the polymers with high/low T, values and their
common characteristics (functional groups), and thereby gain in-
sights into what physical quantities are important for enhancing/
reducing their Ty values. We process all the polymers in dataset-
1 through the Checkmol®® package, and identify the functional
groups only occurring in high-Ty (>200°C) and low-T, (<50°C)
polymers. These functional groups are listed in Table 5, where
each functional group’s key atom is highlighted in the red circle.
For high-T, polymers, we find that the functional groups, such as
oxohetarene, lactam, amine, and enamine, play critical roles in
their high-temperature property. In contrast, the functional
groups, such as disulfide, phosphoric acid, and acetal, are
only shown in the low-T4 polymers. These observations are
consistent with the key substructures discovered from the
fingerprint (Figure 4). For example, the substructures with oxy-
gen “O” atom are revealed to be highly correlated to a polymer’s
T4, and the most exclusive functional groups also involve the ox-
ygen O atom in either high-T, or low-T, polymers, highlighting its
important contribution to the T4. Therefore, it is evident that the
ML models indeed capture the critical features affecting a poly-
mer’s Tg.

These key features not only provide physical insights into un-
derstanding how the molecular structures influence a polymer’s
T4, but also are design motifs that are important in the inverse
molecular design of high-temperature polymers. For instance,
the generative ML models, such as variational autoencoders
(VAE)*"%? and generative adversarial networks (GAN),%*%
when integrated with reinforcement learning (RL),°>° can take
into account the importance of these physical and chemical fea-
tures. Such a strategy of combining the predictive ML model and
generative ML model has been utilized in the inverse molecular
design of small-drug-like molecules and organic molecules.®” %
Successful examples include the chemical VAE,”® ReleaSE
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Figure 4. Substructures with the highest ab-
solute weight based on Morgan fingerprint
and Lasso ML model

\ The central atom of the substructures is highlighted
in blue. Aromatic atoms are highlighted in yellow.

22566 Connectivity of Atoms is highlighted in light gray.

N (reinforcement learning for structural evo-
lution),’®® and ORGANIC (objective-rein-
forced generative adversarial network for
inverse-design chemistry).'®" The genera-
tive ML model serves as an agent in gener-
ating molecules, while the predictive
model acts as an external world to monitor
the generation action taken by the agent.
According to the feedback, either a reward
or penalty can be assigned. Through
training, the agent or the generative model
learns to make good sequences of deci-
sions in molecular generation toward a maximum reward. There-
fore, our predictive ML model demonstrates its potential to be
integrated with an inverse molecular design framework for
high-temperature polymers or polymers with tailored T4 values.

11362

25398

High-throughput screening of high-temperature
polymers

Since the DNN_Fingerprint model demonstrates the best trans-
ferability from dataset-1 to dataset-2 and to a new experimental
dataset (32 conjugated polymers), we adopt this ML model for
high-throughput screening to identify promising candidates for
high-temperature polymers. Dataset-1, with 6,923 real poly-
mers, has nearly 2,000 polymers with T, larger than 200°C, as
shown in Figure 5. These polymers have the great potential to
be used in a harsh environment with high temperatures, but
more candidates are still desired as many of these 2,000 poly-
mers might not be easily synthesized and processed.' Data-
set-2 and dataset-3, with 5,690 real polymers and one million
hypothetical polymers, respectively, form a promising candidate
pool for the screening of high-T, polymers. Here, we aim to iden-
tify the polymers with T, values larger than 200°C, because the
T, for high-temperature PEEK polymer is about 143°C.'%?
Almost all predicted Ty values for dataset-2 and dataset-3
remain in the same range of dataset-1 (—118°C to 495°C), as
shown in Figure 5. Excitingly, the population of potential prom-
ising candidates has been significantly increased. For example,
dataset-1 has about 2,000 known polymers with T, > 200°C.
Through our DNN_Fingerprint model, we find an additional
1,000 and 65,000 new candidates in dataset-2 and dataset-3
with Ty, > 200°C, respectively. Thus, through this high-
throughput screening, we find 30 times more promising candi-
dates for high-temperature polymers, in comparison with the
2,000 known high-temperature polymers in dataset-1. If we
consider a harsher environment with required T, > 300°C (com-
parable with melting temperature of lead, 328°C), dataset-1, da-
taset-2, and dataset-3 have 309, 249, and 3,567 polymers,
respectively, that can potentially satisfy this requirement.” Again,
our high-throughput screening method identifies 11 times more
promising candidates from dataset-2 and dataset-3 compared
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Table 5. Important functional groups recognized using the Checkmol package

Within low-T, polymers (<50°C)

Within high-T, polymers (>200°C)

Orthocarboxylic acid derivative

X X R = H, alkyl, aryl
X = OH, alkoxy, aryloxy,
R X (substituted) amino, etc.
Disulfide
, R? R = alkyl, aryl
R R2 = alkyl, aryl

Phosphoric acid derivative

(0]
X,Y,Z =0, N, Hal residue

X z
Y

Phosphoric acid ester

(o]
P or
Y

Phosphoric acid amide

R = alkyl, aryl
X, Y =any O, N, Hal residue

(0]
R1
X N/ 1 2
Y I, R', Rz = H, alkyl, aryl
R X, Y =any O, N, Hal residue
Acetal
R0 oRrR* R'=H, alkyl, aryl
R2 = H, alkyl, aryl
R’ R? R3 = alkyl, aryl
R?* = alkyl, aryl

Oxohetarene
)
N (0]
l R =H, alkyl, aryl
ST
Lactam
(e}
N
R =H, alkyl, aryl
Tertiary arom_amine
R® R = aryl
/@ R2 = aryl
R R? R3 =aryl

Secondary aromatic amine
O

Secondary mixed amine (aryl alkyl)

R =aryl
R2 = aryl

é R = alkyl
R’ R? R2=aryl
Enamine
RA_ _R'
N7 R' = H, acyl, alkyl, aryl
] R2 =H, acyl, alkyl, aryl
R 3 R3 = H, acyl, alkyl, aryl
R = H, acyl, alkyl, aryl
R? RS = H, acyl, alkyl, aryl

with dataset-1. The ML high-throughput screening for high-tem-
perature polymers overcomes the challenges from theoretical
analysis or MD simulations. Theoretical equations derived using
small groups of polymers have difficulties in handling polymers
of different categories, and are therefore not applicable to all
data points of the vast chemical space. MD simulations,
although capable of computing T vaues of various kinds of poly-
mers, are restricted by the computational cost considering the
vast amount of candidates to be screened. However, our high-
throughput screening method processes the one million hypo-
thetical polymers efficiently with proven reliability for Tg4
estimation.

We then focus our attention on the top four high-tempera-
ture polymers, with ML-predicted T4 > 400°C. These four poly-
mers are unknown and hypothetical, although they share
similar chemical structures as the other known high-tempera-
ture polymers, e.g., aromatic rings, sulfone groups, oxygen
linkages, and amine groups. Each of these groups is high-
lighted during our analysis of the ML models as being related
to the high-temperature properties of polymers (Figure 4; Ta-
ble 5). Without making any assumptions or premises for the
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ML model, it is observed that the structures of the screened
top four high-temperature polymers well follow the general
rule controlling the T, of polymers. The backbone structure
with rigid benzene rings contributes to the stiffness of the
chain, which is known to play a major role in determining the
T, of a polymer.>% %319 Also, there are no long alkyl chains
that lead to lower glass transition.’®® Although the similar sul-
fur-containing polyimides, such as poly[(2,8-dimethyl-5,5-di-
oxodibenzothiophene-3,7-diamine)-alt-(biphenyl-3,3":4,4'-tet-
racarboxylic dianhydride)] (polymer ID: P130369 in PolLyinfo),
have been tested with T, values as high as 490°C,"%° the T,
values of these hypothetical polymers have not yet been re-
ported. We take advantage of MD simulations to build all-
atom molecular models for these hypothetical polymers and
predict their T, values (more details are given in the supple-
mental experimental procedures). As shown in Figure 5, our
physics-based MD simulations confirm that these hypothetical
polymers indeed have ultra-high Ty values. Furthermore, we
find that the MD-predicted and ML-predicted T, values are
in relatively good agreement with each other (within the error
of the prediction), indicating that the ML model could be
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Figure 5. High-throughput screening of high T, polymers with the DNN_Fingerprint model

The Ty, distribution of the dataset-1, dataset-2, and dataset-3 are plotted in green, yellow, and red, respectively. The polymer samples on the right are following by
their predicated T, and true T, values. For the sample in dataset-1 (green box), true Ty is the collected experimental value. For the samples in dataset-2 (yellow
box) and dataset-3 (red box), true Ty is the MD-simulated value. More than 1,000 real polymers and 65,000 hypothetical polymers were discovered with T,

> 200°C.

used as a predictive tool for screening of previously unex-
plored chemical spaces for high-temperature polymers.

The key substructures (Figure 4) and functional groups (Table
5) related to the high-Ty polymers are revealed based on data-
set-1. Their important roles are further confirmed on the identi-
fied high-T, polymers with ML-predicted T, > 200°C from
dataset-2 and dataset-3. The key substructures of high-T, poly-
mers in dataset-1 (2,268 polymers), dataset-2 (1,155 polymers),
and dataset-3 (65,283 polymers) are compared in Figure 6A
(more details are given in Table S5 of the supplemental experi-
mental procedures). For example, the substructure "16406" (a
center carbon connected to aromatic compounds and oxygen)
is recognized with percentages of 15.04%, 16.54%, and
27.55% of high-Tgpolymers in dataset-1, dataset-2, and data-
set-3, respectively. This indicates that the contributions of this
substructure to the high-Tgpolymers are similar across these
different datasets. As mentioned above, one of the most impor-
tant contributions comes from substructure "23586" —a single
oxygen side chain, which consists of 53.40%, 53.16%, and
76.05% high-T, polymers in dataset-1, dataset-2, and dataset-
3, respectively. Overall, most of these 18 key substructures’
contributions in different datasets are quite similar. Their

comparable influences also explain the good transferability of
the ML model based on the Morgan fingerprints. The frequency
of occurrence is also an important aspect because of the prob-
ability of a substructure emerging during the inverse molecular
design of high-T4 polymers. In terms of the functional groups,
the six key functional groups exclusive to high-T4 polymers are
compared in Figure 6B in a similar manner (also see Table S6
for detailed results). Interestingly, the six recognized functional
groups are special ones only found in a few high-T4 polymers.
For instance, the secondary aromatic amine functional group is
identified in about 0.13% of the high-T, polymers in dataset-1,
while 3.32% of the high-Ty polymers in dataset-3 are found to
have this functional group. Although training dataset-1 shows a
quite negligible 0.13% of this functional group, its importance
is successfully captured by the ML model using Morgan finger-
prints and then demonstrated in dataset-3. In addition, we
generally observe that polymers containing amine groups, oxy-
gen along the backbone, and/or nitrogen rings, demonstrate
high-temperature properties.” In short, our ML models for the
chemistry-Ty, relation of polymers seems to pinpoint meaningful
physical-chemistry insights that can be used to enhance high-
temperature performance and may be further utilized in the
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Figure 6. Comparison of key substructures
- and functional groups in high-T,(>200°C)
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(A) Comparison of the 18 substructures recognized
o in Figure 4.

(B) Comparison of the six high-Tg-related functional
groups recognized in Table 5.

descriptors, e.g., stereoregularity, polarity,
and chain length, the DNN_Fingerprint
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the T4 values of unknown polymers from
dataset-2 and dataset-3. As we have dis-
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mains an open question in the ML field,
which is also highly dependent on the spe-
cific application,'®7+48:83

Our ML approaches are designed with
the specific goal to quickly predict a poly-
mer’s Ty from an extremely large set of
known (dataset-2) and hypothetical (data-
set-3) polymers. Such a high-throughput
screening allows us to perform posterior
correlations between high-T, polymers
with  common functional groups and
chemical substructures. These observa-

, beyl, alkyl, aryl
, eyl, alkyl, aryl

,facyl, alkyl, aryl

0.000

Oxohetarene Lactam tert. Arom_amine sec. aromat. Amine

Functional Group

inverse molecular design of high-T, polymers that have not been
experimentally studied.

Concluding remarks

Quantitatively predicting a polymer’s T, from its chemical struc-
ture is a significant challenge in material science and engineer-
ing, chemistry, and polymer science fields. Here, we use an
ML-based approach to correlate a polymer’s chemical structure
with its Ty, taking advantage of a large and diverse dataset
collected from PoLylInfo. The transferability and generalization
ability of ML models are particularly focused and demonstrated
by utilizing a large dataset of different categories of polymers.
We consider three different feature representations of polymer’s
repeating unit, such as molecular descriptors, Morgan finger-
prints, and images, and three different ML models, e.g., Lasso,
DNN, and CNN. All of these ML models demonstrate compara-
ble performances in training and testing on the experimentally
available dataset-1. However, only the DNN_Fingerprint model
exhibits the best transferability to dataset-2 with distinct
substructures from dataset-1. We find that this excellent trans-
ferability is attributed to the dynamic representation of Morgan
fingerprints, as they can evolve to include new substructures
encountered. Furthermore, our Morgan fingerprints take into ac-
count the chemical connectivity between neighboring repeating
units and the frequency of occurrence of different substructures,
which play important roles in determining a polymer’s Tg.
Although Morgan fingerprints ignore all high-order polymer
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sec. mixed amine (aryl alkyl)

u tions allow us to quantify physical quanti-
remne ties that are important in determining a
polymer’'s T4. For instance, our Lasso
regression models reveal principal
T,-related features, including 61 molecular descriptors and 18
chemical substructures. Also, the functional groups exclusive
to high-Tg4 (>200°C) or low-T4 (<50°C) polymers are further iden-
tified, which can cross-validate our Lasso regression models. It
allows us to determine which chemical elements and molecular
structures are worth experimental studies in molecular engi-
neering and design of high-temperature polymers, leading to
a molecular understanding of a polymer's T,. With the
DNN_Fingerprint model for high-throughput screening of nearly
one million hypothetical polymers, we find more than 65,000
promising candidates with Ty > 200°C, which is 30 times
more than existing known high-temperature polymers (~2,000
from dataset-1). The discovery of this large number of prom-
ising candidates will be of significant interest in the develop-
ment and design of high-temperature polymers. The same
task is very difficult to accomplish by screening with either theo-
retical equations or MD simulation due to their limitations in
dealing with such large and diverse datasets. In summary, our
study demonstrates that ML is a powerful method for the pre-
diction and rapid screening of high-temperature polymers,
particularly with growing large sets of experimental and compu-
tational data for polymeric materials. The key molecular de-
scriptors and chemical substructures informed by ML models,
combined with identified chemical functional groups, are impor-
tant design motifs for the molecular engineering of high-temper-
ature or high-performance polymers in an inverse materials
design task.
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