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ABSTRACT: In the field of polymer informatics, utilizing
machine learning (ML) techniques to evaluate the glass transition
temperature Tg and other properties of polymers has attracted
extensive attention. This data-centric approach is much more
efficient and practical than the laborious experimental measure-
ments when encountered a daunting number of polymer
structures. Various ML models are demonstrated to perform well
for Tg prediction. Nevertheless, they are trained on different data
sets, using different structure representations, and based on
different feature engineering methods. Thus, the critical question
arises on selecting a proper ML model to better handle the Tg
prediction with generalization ability. To provide a fair comparison of different ML techniques and examine the key factors that
affect the model performance, we carry out a systematic benchmark study by compiling 79 different ML models and training them
on a large and diverse data set. The three major components in setting up an ML model are structure representations, feature
representations, and ML algorithms. In terms of polymer structure representation, we consider the polymer monomer, repeat unit,
and oligomer with longer chain structure. Based on that feature, representation is calculated, including Morgan fingerprinting with or
without substructure frequency, RDKit descriptors, molecular embedding, molecular graph, etc. Afterward, the obtained feature
input is trained using different ML algorithms, such as deep neural networks, convolutional neural networks, random forest, support
vector machine, LASSO regression, and Gaussian process regression. We evaluate the performance of these ML models using a
holdout test set and an extra unlabeled data set from high-throughput molecular dynamics simulation. The ML model’s
generalization ability on an unlabeled data set is especially focused, and the model’s sensitivity to topology and the molecular weight
of polymers is also taken into consideration. This benchmark study provides not only a guideline for the Tg prediction task but also a
useful reference for other polymer informatics tasks.

1. INTRODUCTION
Polymer informatics that utilizes a data-driven approach to
evaluate the physical properties of polymers is an emerging
field in polymer science and engineering.1−3 A significant
challenge in polymer chemistry is investigating the almost
infinite chemical space of polymers, as polymer molecular
structures stem from wide varieties of chemical structures and
polymerization processes.4−6 In this context, traditional
experimental-driven approaches become impractical to search
or optimize the infinite polymer structures toward a set of
desired objective properties. As an exciting alternative, utilizing
machine learning (ML) techniques and the increasing amount
of polymer data sets offer a new opportunity to tackle the
challenge in the polymer field. Successful polymer informatics
attempts have touched upon the a number of property
predictions like polymers’ electronic bandgap,7,8 dielectric
constant,9 refractive index,10 etc., but a lot more attention has
been paid to the prediction of polymers’ glass transition
temperatures.8,11−23 This is primarily reflective of the facts that
(1) the glass transition temperature is an important property
controlling the phase transition and therefore the application

of polymers24 and (2) the glass transition temperature Tg is the
most reported experimental measurement in publicly acces-
sible databases like PoLyInfo,25 the Polymer Property
Predictor and Database (NIST),26 and the CROW Polymer
Properties Database.27

Currently, one of the largest databases, PolyInfo, contains
more than 13 000 homopolymers that are reported with
detailed structure and property information. This homopol-
ymer data set is the subject of our study. Among the 13 000
homopolymers, 6923 of them have been reported for measured
Tg (referred to as the labeled data, Data set_1 in the
manuscript) through either differential scanning calorimetry or
thermomechanical analysis, while for other 5690 polymers, no
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measured Tg have been reported (referred to as the unlabeled
data, Data set_2 in the manuscript). If we were to obtain the
Tg for all unlabeled polymer structures one by one through
experiments, it would be an intimidating and unsurmountable
task to complete considering the labor, cost, and time required.
Here, ML algorithms are especially suitable for this task. An
ML model can discover the structure−property correlation
within the labeled data (Data set_1) and then apply it to the
unlabeled data (Data set_2) to make predictions for their Tg.
Such a data-centric approach is a much more efficient
approach for the Tg estimation, in comparison to laborious
experiments or molecular simulations.28

Establishing an ML model for polymer informatics usually
involves three main steps: determining a suitable structure
representation for polymers, utilizing a appropriate feature
representation, and implementing a proper ML algorithm to fit
the data.
Step 1. Determining a proper structure representation. As

polymers are long-chain molecules that are difficult to be
represented completely, they are usually represented by their
monomeric counterpart or their repeat unit. A monomer is a
small organic molecule from which a polymer is synthesized,
while a repeat unit is the repeating part of the long polymer
chain. The main difference between the two is that the repeat
unit contains information about the bond connectivity
(polymerization point) along the polymer chain. Oligomers
corresponding to several repeat units chained together even
possess more substructures that cannot be found in a single
repeat unit. Different structure representations are therefore
denoted differently under the simplified molecular input line
entry system (SMILES) notation.29−31 For example, the
structure representation for poly(non-1-ene) could be its
monomer “CCCCCCCCC”, its repeat unit “*C(C*)-
CCCCCCC”, or its oligomers of three repeat units chained
together “CCCCCCCC(*)CC(CCCCCCC)CC(C*)-
CCCCCCC”. Note that the symbol “*” denotes the polymer-
ization or connecting point for the repeat unit.
Step 2. Utilizing a proper feature representation. When the

structure representation is determined, feature engineering
aims to extract structural features that are most relevant to
polymer properties. The most commonly used feature
representation is the Morgan fingerprint that detects all
substructures in the molecule.32 Descriptorsa different
feature representationcalculate constitutional, topological,
or geometrical indices for polymer structures.33 In addition,
molecular embedding34 and molecular graph35 are also able to
extract features in different ways.
Step 3. Implementing a proper ML algorithm to process the

data. ML algorithms range from linear regression methods like
least absolute shrinkage and selection operator (LASSO) to
nonlinear methods such as support vector machine (SVM),
feed-forward neural networks (FFNN), convolutional neural
networks (CNN), Gaussian process regression (GPR), random
forests (RF), etc. Various ML algorithms offer many options
for model building, and usually, a reasonable choice largely
relies on the researchers’ domain knowledge, experience, and
caution as well as available data.36

Extensive studies have been done for the Tg prediction of
polymers, and researchers have made different choices for
Steps 1−3. For example, Miccio et al.12,13,23 (1) focused on the
monomer structure of polymers (2) converted the monomer’s
SMILES into binary matrices with the one-hot encoding
algorithm;37 and (3) used the FFNN or CNN method to build

ML models. Their ML models showed a relative error of about
6% and observed a reasonable generalization ability on about
300 polymers from different classes. Not using monomers or
neural networks, Ramprasad et al.8,38−40 (1) represented
polymers by their repeat units; (2) calculated three hierarchical
levels of descriptors, including atomic level descriptors,
quantitative structure−property relationship (QSPR) descrip-
tors, and morphological descriptors; and (3) utilized the GPR
model in their Polymer Genome platform.8 Their model setup
led to a prediction performance of R2 = 0.92 for Tg prediction.
Very differently, Di  az et al.16 (1) modeled each polymer with a
trimeric structure that is composed of three repeating units
chained together; (2) calculated 12 descriptors including
surface area, volume, partition coefficient log P, refractivity,
polarizability, and mass, etc.; and (3) used a three layers FFNN
model. They achieved a good model performance of R2 =
0.964 on their data set of 88 high-molecular-weight polymers.
In addition to the ML models mentioned above, other

choices have also been investigated by researchers such as
SVM,20,41 recurrent neural networks (RNN),16,42 and RF,21

etc. Many models claim to be able to produce good Tg
predictions, and some of them have been compared together.
For example, Luo and co-workers43 (1) represented polymers
using a two-monomer structure (through which the bonding
information between neighboring monomers was also
included); (2) used different types of polymer representations
like Morgan fingerprint, molecular embedding, and molecular
graph; and (3) compared RF, SVM, and FFNN models in
terms of Tg prediction. Their best ML model was found to be
the SVM model using molecular embedding, with prediction
performance with R2 = 0.865. In our recent study,44 we (1)
used repeat unit containing bonding position to represent
polymers; (2) improved the Morgan fingerprint representation
to consider the number of each substructure in polymer
molecules, instead of only marking the presence or absence of
each substructure; and (3) compared LASSO, FFNN, and
CNN models on Morgan fingerprint, descriptor, 2D images,
and our improved Morgan fingerprint. Our FFNN model using
the improved Morgan fingerprint demonstrated a good
prediction and generalization ability. We obtained an R2 of
0.85/0.83 on training/test sets and further validated the
model’s generalization ability with extra data points from
experiments and molecular dynamics simulations.44

While various ML models have been formulated for
polymer’s Tg prediction, there are still questions that remain
to be answered regarding the choices in each step. (1) What
polymer representation is the most appropriate to use?
Researchers have represented polymers by monomer structure,
two-monomer structure, repeat unit, or trimeric structure
composed of three repeat units, etc. Their effect on the model
performance is not clear and is not easy to answer. (2) What
feature representation is the most appropriate one to utilize?
Carefully selected descriptors, circular Morgan fingerprint,
molecular embedding, molecular graph, etc. are all able to
serve as the input feature to the ML model, but there is no
direct comparison for all of them regarding their influence on
Tg prediction. (3) What ML algorithm is the most proper one
to implement? FFNN, CNN, RF, SVM, GPR, etc. have been
found to perform well for the Tg prediction. A fair model
comparison would be highly preferred so that we know which
algorithm can lead to the best Tg prediction with generalization
ability for unlabeled data set.
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In order to answer these important questions, this work
carries out a systematic benchmark study to evaluate the ML
model performance on Tg prediction. We assess different
polymer representations, feature representations, and ML
algorithms together following a supervised learning process,
as shown in Figure 1d. First, the labeled Data set_1 is split into
three groups: training, validation, and test sets. An ML model
is fitted on the training set to find the pattern and establish the
structure−property correlation. Second, as the fitting random-
ness and hyperparameters tuning affect the prediction
performance, the validation set serves to monitor the
prediction accuracy when optimizing a specific ML model.
Third, the ML model is further evaluated using the test set,
which has not been seen by the model during training and
tuning. Thus, a trustworthy model performance is obtained.
Furthermore, we evaluate the generalization ability of the
obtained ML model based on the high-throughput molecular
dynamics (MD) simulations of 566 selected polymers from the
unlabeled Data set_2 through the K-means clustering. After
comparing 79 model setups using 3 different polymer
representations, 7 feature representations, and 8 ML
algorithms, we reveal the pros and cons behind different

options. Such a systematic benchmark study provides valuable
guidance for the model selection in polymer’s Tg prediction,
and it would also benefit other polymer informatics tasks such
as mechanical, electronic, or optical properties.45−48

2. DATASETS, MODELS, AND METHODS

2.1. Data Sets. We have collected a large data set of
polymer molecules from the PoLyInfo database,25 as detailed
in our recent study.44 Both the Tg values and molecular
structures are known for 6,923 homopolymers, which make up
the labeled Data set_1. Its Tg ranges from −118 to +495 °C,
the distribution of which is presented in Figure 1b. Another
5675 homopolymers compose the unlabeled Data set_2,
whose Tg is not available or reported. The t-SNE plot in Figure
1a compares the chemical space occupied by Data set_1 and
Data set_2.44 It suggests that these two data sets share similar
chemical space. We adopted the K-means clustering (K = 600)
for data partition in Data set_2 for subsequently selecting 600
polymers for MD simulations to ensure that polymers for
which MD simulations are performed are well-scattered and
representative of the whole chemical space as well, as shown in
Figure 1a. Because of the complexity of some structures, the

Figure 1. Workflow for machine learning of polymer’s Tg prediction. (a) Chemical space visualization of Data set_1 (blue), 100 simulated
polymers from Data set_1 test set (blue with the red edge), Data set_2 (orange), and 566 MD simulated polymers from Data set_2 (orange with
the red edge) using the t-SNE algorithm. (b) Tg distribution of the labeled Data set_1, collected from the PolyInfo. Its Tg ranges from −118 to 495
°C. (c) Parity plot of MD simulated Tg vs experimental values for the 100 simulated polymers from Data set_1 test set. The comparison between
experimental values and MD simulations gives R2 = 0.90, MAE = 28.13, and RMSE = 34.28. (d) The labeled Data set_1 is used for ML model
training and evaluation, and the unlabeled Data set_2 is used as an extra data set for the further assessment of the ML model’s generalization ability.
ML model training is carried out with 5-fold cross-validation and a holdout test set is used to evaluate the trained model. MD simulations are
verified using the labeled Data set_1 and can validate the ML performance using the unlabled Data set_2.
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MD simulations for 566 structures out of 600 selected
polymers are successfully performed. The workflow in Figure
1d shows the roles of Data set_1 and Data set_2, respectively.
Note in addition to the typical training process using Data
set_1 and the prediction process using Data set_2, we use
high-throughput MD simulations as further evaluation of an
ML model’s generalization ability (for which K-means
clustering was peformed as mentioned above). To verify the
accuracy of MD simulations, we also select 100 polymers from
the test set of Data set_1 through the K-means clustering. Both
of their chemical structures and experimental Tg are known,
making them a suitable baseline to verify our MD simulations.
Figure 1a shows that the selected polymers are well-scattered
and representative of the whole chemical space. Figure 1c
demonstrates that the MD simulations agree well with the
experiments. Despite the uncertainties involved in MD
simulations, reasonable estimations are obtained with R2 =
0.90, MAE = 28.13, and RMSE = 34.28.
Unlike the small data sets of specific polymer classes, our

Data set_1 and Data set_2 cover large classes of polymers, as
demonstrated in Figure 2. The dominant polymer classes in
Data set_1 also constitute the majorities in Data set_2. For
example, more than one-third (37.65%) of the polymers in
Data set_1 belong to polyoxides/ethers/acetals, accounting for
about one-fifth (21.81%) of the polymers in Data set_2. The
proportions of the main classes in each data set are roughly the
same, making it possible to generalize an ML model from Data
set_1 to Datset_2. Besides, the use of large and diverse data
sets (22 polymer classes in total) is critical for pattern

recognition. Otherwise, the trained ML model can only apply
to certain classes of polymers in the local chemical space.23,49,50

To better understand the similarity or difference between
polymers in Data set_1 and Data set_2, we calculate the
structural similarity coefficientthe Tanimoto coefficient51
for each pair of polymers with the following steps: 1. The
repeat unit of each polymer in both Data sets is transformed
into Morgan fingerprint32 using radius 3 and 2048 bits through
RDKit.52 2. Tanimoto coefficient Tc51 is calculated pairwise by
comparing the fingerprints (substructures) of two polymers.
The coefficient is defined as the ratio of the number of
substructures common to two polymers to the total number of
substructures present in both of them (eq 1). Two polymers
are the same if Tc = 1 and totally different if Tc = 0. Figure 2
shows the pairwise similarity coefficient that is calculated (1)
between two polymers in Data set_1, (2) between two
polymers in Data set_2, and (3) between one polymer in Data
set_1 and one polymer in Data set_2. The summarized
histogram in Figure 2 indicates that the obtained Tc is around
0.2 for our collected polymers regardless of how we group
them into different data sets. Most polymers are found not
similar to each other, and this diversity is helpful for our ML
model training and validation. ML Models trained on diverse
data sets are more likely to have better generalization ability.53

A similar Dice coefficient is defined by eq 2, and a similar result
can be found in the Supporting Information, Figure S1.

c
a b c

Tanimoto coefficient Tc =
+ + (1)

Figure 2. Comparison of the Data set_1 and Data set_2. Both data sets contain common polymer classes. The dominant polymer classes in Data
set_1 also constitute the majorities in Data set_2. The pairwise Tanimoto similarity (Tc) between polymers is displayed in a matrix and a
histogram plot. Two polymers are the same if Tc = 1 and totally different if Tc = 0. The Tc between any two polymers is mostly concentrated
around 0.2 irrespective of how polymers are compared between 2 polymers in Data set_1, 2 polymers in Data set_2, or between 1 polymer in Data
set_1 and one polymer in Data set_2.
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c
a c b c

Dice coefficient Dc
2

( ) ( )
=

+ + + (2)

a is the count of bits “on” in polymer A’s fingerprint but not in
polymer B’s fingerprint. b is the count of bits “on” in polymer
B’s fingerprint but not in polymer A’s fingerprint. c is the count
of the bits “on” in both A’s and B’s fingerprints.
2.2. Structure Representations. Monomer and repeat

unit are two easy-to-use representations of polymers. As
aforementioned, monomer, repeat units, trimer, two-monomer
structures, etc. have been used in the literature as polymer
structure representations. In this study, we prepared repeat
unit structure, monomer structure, and structure correspond-
ing to multiple repeat units chained together for each polymer.
Figure 3 uses the structure of poly(non-1-ene) as schematic
diagrams in which its monomer “CCCCCCCCC”, repeat
unit “*C(C*)CCCCCCC”, and oligomer of 16 repeat units
chained together “CCCCCCCC(*)CC(CCCCCCC)CC-

(CCCCCCC)CC(CCCCCCC)CC(CCCCCCC)CC-
(CCCCCCC)CC(CCCCCCC)CC(CCCCCCC)CC-
(CCCCCCC)CC(CCCCCCC)CC(CCCCCCC)CC-
(CCCCCCC)CC(CCCCCCC)CC(CCCCCCC)CC-
(CCCCCCC)CC(CCCCCCC)CC(C*)CCCCCCC” are
listed together. It should be emphasized that the SMILES
strings for monomer, repeat unit, and oligomer are obtained by
carefully processing the molecular structure through RDKit.52

The simple repeating of strings does not comply with SMILES
rules for valid molecules. We should emphasize that (1)
Monomer is the reacting molecule in the polymerization
process. Its chemical structure is simple and clear, but the same
monomer can polymerize into different polymer structures via
different reactions, such as addition and condensation
polymerizations. For example, monomer buta-1,3-diene can
polymerize into polyethene or poly(but-1-ene) through
different addition polymerization reactions.25 (2) The repeat
unit structure is unique to each polymer, and it contains a

Figure 3. Three major steps for setting up a proper ML model for polymer’s Tg prediction. It shows the different options we have in each step, from
(1) structure representation to (2) feature representation and to (3) ML models. Going through the three steps leads us to a specific model setup.
For example, the path of “Monomer → Morgan Fingerprint → FFNN” means using monomer as the polymer structure representation, then
calculating the Morgan fingerprint from the monomer structure, and finally feeding the feature vector into a FFNN model for model training. A
total of 79 different paths (namely 79 different model setups) are investigated in this benchmark study.
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special “*” symbol to indicate the polymerization point. When
the repeat unit is cut out from the original polymer chain, the
substructures near the connecting “*” are not as complete as in
the original long-chain structure. (3) Chaining several repeat
units together may be a better way to represent polymers, as it
retains more substructures in the original long-chain structure,
especially the ones near connecting point. Determining the
proper structure representation is the first step in a polymer
informatics task.
2.3. Feature Representations. Once the appropriate

structure representation is determined, the next step is to
extract numerical features based on the structure representa-
tion and use it as the input to an ML model. There are mainly
seven different feature representations for polymer structures
as illustrated in Figure 3 (see Supporting Information, Section
S2 for more details of feature representations). (1) The
SMILES notation29 of the repeat unitas a string sequence
inputcan be processed and fed into a RNN model. (2) The
Morgan fingerprint (MF) algorithm identifies all the
substructures in a molecule and marks them in a bit vector
based on the existence of each substructure. This feature
representation is in a format of vectors that are flexible to be
fed into various ML models. (3) We improved the default
Morgan fingerprint to also consider the number of each
identified substructure as considering substructures’ frequency
of occurrence adds more information to the extracted feature
vector, which will be referred to as Morgan fingerprint with
frequency (MFF). (4) Molecular embedding (ME) learns
vector representations with continuous values based on
substructures. The sparseness of MF and MFF can be avoided
in the ME vector representation obtained using the package
Mol2Vec.34 (5) Descriptor calculations are supported in
RDKit for 200 descriptors (see Supporting Information,
Section S2 for the list of 200 RDKit descriptors utilized), or
supported in alvaDesc54 for more than 6000 descriptors.
Physical and chemical characteristics calculated from molecular
structures constitute a vector of feature representation. The
additional calculation for descriptors (such as quantum
chemistry informed descriptors) require more effort and time
than the Morgan fingerprint.33 (6) Molecular graph (MG)
manages the molecular structure as an undirected graph. The
vertices and edges of the graph correspond to the atoms and
chemical bonds. The MG representation is designed for graph
convolutional neural networks (GCNN) exclusively. (7) 2D
image representations can be obtained through the trans-
formation of SMILES notation. Based on a predefined
dictionary of SMILES characters, one-hot encoding algo-
rithm37 converts each polymer’s SMILES into a 2D binary
matrix. This representation serves as a practical fit for a 2D
CNN model similar to the image recognition problem.12,44

Besides, BigSMILES, a line notation that supports the
intrinsically stochastic nature of polymers on top of the
SMILES, has been proposed for the representation of polymers
as well.55 Nevertheless, BigSMILES is not yet supported by the
Cheminformatics packages, such as RDKit. Therefore, we did
not consider BigSMILES for the representation of polymers in
this benchmark study.
2.4. ML Models. Different feature representations are

suitable for one or several ML algorithms and it is up to
researchers to use their discretion in selecting the proper ML
algorithm. In the following, we give a brief overview of the
popular ML algorithms adopted in this study. We have

implemented all of them, and the parameter settings can be
found in the Supporting Information, Section S3.

2.4.1. Feed-Forward Neural Networks (FFNN). FFNN is
composed of a set of neurons connected layer by layer. Each
neuron works as a function to accept inputs and generate an
output, sometimes followed by a nonlinear activation function
like rectified linear unit (ReLU). Our FFNN architecture has
two hidden layers between the input and output layers. Each
layer contains eight neurons, and the ReLU activation function
is used, as discussed in our recent study.44 We implement the
FFNN model using the Keras package.56

2.4.2. Recurrent Neural Networks (RNN). RNN contains
neurons that accept sequential data such as characters or
words, whose original purpose in natural language processing is
to predict the next tokens in the sequence given past tokens. In
our case, we treat the SMILES notation of polymers as the
input sequence to the RNN model and then specify the Tg as
the output token to be predicted. Our RNN model is realized
and introduced in our recent study.57

2.4.3. Convolutional Neural Networks (CNN). CNN
architecture contains fully connected layers as in FFNN and
RNN, and also has convolutional layers.58 A filter matrix slides
over the input in convolutional layers and extracts features at
different levels. The shape of a filter matrix can be arbitrary so
that it can be applied to any input format such as 1D vectors, a
2D matrix, or even a 3D matrix. Our feature representations
like fingerprint, descriptors, and molecular embedding are in
the form of 1D vectors, making 1D CNN a good model option
to utilize. In our previous study, we have examined CNN on
polymer’s 2D images obtained through one-hot encoding, but
the 2D CNN model was found not to be performing well.44

Our CNN model is implemented using the Keras package.59

2.4.4. Graph Convolutional Neural Networks (GCNN).
GCNN is a generalization of the CNN model on undirected
graphs.60 It takes in a graph whose vertices and edges
correspond to atoms and chemical bonds. A filter is then
sliding over localized atoms and chemical bonds to aggregate
their attribution vectors together. When different filters slide
on different regions, the features at various levels are
aggregated and extracted. At last, the GCNN converts a
molecular graph into a feature vector that possesses complete
information about the molecule. We employ DeepChem
package61 to build the GCNN model on our data set.

2.4.5. LASSO Regression. LASSO is a linear regression
model that adds an L1-norm regularization on the
weights.62−64 It inclines to produce zero regression coefficients
and eliminate unimportant features from the model. We use
the LASSO algorithm to examine the linear structure−property
relationship, and the algorithm is implemented with the Scikit-
learn package.65

2.4.6. Support Vector Machine (SVM). SVM is different
from linear regression that minimizes the sum of squared error.
It has the flexibility to tolerant some errors and finds a proper
fitting function. The use of the kernel function supports
efficient data mapping to a higher dimension. Commonly used
kernel functions include linear kernel, polynomial kernel,
sigmoid kernel, etc. Our SVM uses a linear kernel in the Scikit-
learn package.65

2.4.7. Gaussian Process Regression (GPR). GPR is a
nonparametric approach that calculates the distribution over all
possible functions that fit the observed data. It measures the
similarity between points based on kernel functions to make
predictions for new data. Kernel functions can be Matern
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kernel, white kernel, radial bases function (RBF) kernel, etc.
We use a combination of white kernel and RBF kernel within
the Scikit-learn package.65

2.4.8. Random Forests (RF). RF uses the ensemble learning
method for regression. It combines results from multiple
decision tree regression. While each tree generates its
prediction, the prediction based on averaging n-different
trees has better accuracy than any single tree. We tune the
number of individual trees to be n = 100 in our RF model,
considering the balance of predictive accuracy and computa-
tional cost. The RF algorithm is implemented using the Scikit-
learn package.65 Other ensemble methods are also applicable
such as AdaBoost, LSBoost, or Gradient Boosted decision
trees. This study takes RF as the representative ensemble
model and did not test all methods, as we expect that these
ensemble methods will have similar performance.
2.5. Model Training and Evaluation. We have

introduced the three major steps for setting up a proper ML
model for a polymer’s Tg prediction. Figure 3 displays the
options we have in each step from (1) structure representation
to (2) feature representation and to (3) ML algorithms. Going
through the three steps leads us to a specific ML model setup.
For example, the path of “Monomer → Morgan Fingerprint →
FFNN” means using monomer as the polymer’s structure
representation, then calculating Morgan fingerprint from the
monomer structure, and finally fitting the feature vector with
FFNN algorithm for model training. In total, we investigate 79
different paths (namely 79 different model setups) in this

benchmark study. The training process for each model setup
follows the same predefined strategy using Data set_1. We first
split the data set into an 80% training set and a 20% test set.
Then, we further divide the training set into five subsets and
carry out 5-fold cross-validation to obtain a reliable evaluation
of the trained model. Finally, the test set is used to evaluate the
performance of the model on previously unseen data (see
Supporting Information, Section S4 for the examination of
model performance vs training set size). We compute three
measures to evaluate the predictive performance: determi-
nation coefficient R2, mean absolute error (MAE), and root-
mean-square error (RMSE). Generally a high R2 in our results
corresponds to lower MAE and RMSE. To make direct
comparison with others’ model in which R2 is usually reported,
we mainly use R2 in our following comparison.

2.6. Model Validation with MD Simulations. Because
Data set_2 contains polymers new to Data set_1, the
performance of the obtained ML model on Data set_2 is of
key interest. Toward that, we use predicted Tg values from 566
MD simulations for a subset of Data set_2 polymers as the
baseline to demonstrate the ML model’s generalization ability.
For each selected polymer, we first build a single chain having
∼2000 atoms for energy minimization. Then we construct an
amorphous cell consists of 20 polymer chains through the self-
avoiding random walks in space.66 The homogeneously packed
cubic cell has a dimension around 150 Å. Periodic boundary
conditions are applied, and the system is equilibrated first with
a 21-step molecular dynamics equilibration protocol67 using

Figure 4. Convergence of polymerization degree in terms of substructures and descriptors. There are 51 structures examined in the list [Monomer,
RepeatUnit, Polymerized_2, ..., Polymerized_50]. The substructure identifiers are given under each structure representation with their frequencies
of occurrence. The Tanimoto similarity and Dice similarity between neighboring structures are plotted. The value of the descriptor MaxEStateIndex
for each structure representation in the list is plotted as an example. A convergence pattern is noticed in each plot, and Polymerized_16 is
considered as a long enough oligomer in terms of substructures and descriptors.
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the PCFF force field.68−71 PCFF (polymer consistent force-
field) is a second-generation force field,72−76 which has been
parametrized against a wide range of experimental observables
for organic compounds containing H, C, N, O, S, P, halogen
atoms, and ions. PCFF has a broad coverage of organic
polymers in calculations of cohesive energies, mechanical
properties, compressibilities, heat capacities, elastic constants.
Thus, the PCFF force field is particularly suitable for the
molecular simulation of polymer’s Tg value.71 A cooling
process simulation generates the specific volume vs temper-
ature curve, from which rubbery phase and glassy phase are
identified, and their intersection gives the Tg value.

77−79 It is
acknowledged that MD conditions are not exactly consistent
with experiments such as the MD’s high cooling rate on the
nanosecond time scale.78,80−82 Nevertheless, a consistent trend
between MD simulated Tg and experimental observation has
been demonstrated by Afzal et al.83 over 315 common
polymers. To verify the reliability of our MD simulations, we
also selected 100 polymers in our Data set_1 test set for MD
simulations through K-means clustering (K = 100). We
obtained R2 = 0.90, MAE = 28.13, and RMSE = 34.28,
demonstrating that our MD simulated Tg agrees well with the
experimental values in the range of uncertainties, as given in
Figure 1c. With reliable MD simulation results, when
evaluating the performance of an ML model, we treat the
566 MD simulations on Data set_2 as the most important

reference to compare against. The model performance on Data
set_2 is more critical than on the test set and training set,
because a different data set can better validate the general-
ization ability of an ML model.

3. RESULTS AND DISCUSSION

3.1. Convergence of the Degree of Polymerization in
Structure Representation. We first examine the conver-
gence of the degree of polymerization using a repeat unit.
Monomers, repeat units, and oligomers corresponding to
several repeat units chained together are representatives of
long-chain polymers.11,16,43 Compared to monomers, the
repeat unit contains bonding information indicated by the
“*” symbol in their SMILES representation, which explicitly
suggests the polymerization point of a polymer. Chaining
several repeat units together incorporates more structure
information in the originally long-chain polymer, but whether
an oligomer is better than a monomer or a repeat unit remains
ambiguous. Therefore, we built a list of 51 structures for the
same polymer to examine their convergence.
Taking the poly(non-1-ene) as an example, a monomer, a

repeat unit, and an oligomer are represented in Figure 4. We
indicate the monomer as zero degree of polymerization on the
x axis. This small molecule is far away from being a long-chain
polymer. The single repeat unit is indicated as one degree of
polymerization. Similarly, the “Polymerized_16” indicates an

Figure 5. Performance of ML models. Models in the same row are using same structure representation, like RepeatUnit (top), Polymerized_16
(middle), and monomer (bottom). Models in the same column are based on same feature engineering, like MFF, MF, ME, and Descriptor. R2 for
training set, test set, and Data set_2 are plotted in blue, green, and orange, respectively. The best models are selected based on R2 on Data set_2
and are indicated by the red arrows.
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oligomer that corresponds to 16 repeat units chained together.
Comparing the structures of different polymerization degrees
give us a clear indication of convergence pattern in Figure 4. In
a list of [Monomer, RepeatUnit, Polymerized_2, ..., Poly-
merized_50] structures, we calculate the Tanimoto similarity
and Dice similarity between neighboring structures. We
observe that, after a polymerization degree of 16, the structure
does not change much in terms of substructures in their MF
representation. The identifier and the number of detected
substructures are listed for each representation in Figure 4. As
expected, more substructures are detected in Polymerized_16
than in monomer and RepeatUnit, with two connection
positions “*” (identifier#: 2342113506) are detected in both
RepeatUnit and Polymerized_16. When we calculate the
RDKit-based descriptors for the list of 51 structures, we
observe the convergence around polymerized_16 for such
descriptors as well. As an example, the value of the descriptor
MaxEStateIndex vs the degree of polymerization is plotted in
Figure 4 for reference. We examine the convergence of 20
different polymers that are randomly selected from Data set_1.
Polymerized_16 is found to be a long enough oligomer to get
converged feature values (see Supporting Information, Section
S5 for the convergence curves). In the following parts, we use
monomer, RepeatUnit, or Polymerized_16 as our three
molecular structure representation of polymers.
3.2. RepeatUnit as Polymer’s Structure Representa-

tion. The first group of 24 model setups is based on the
RepeatUnit structure representation (the top row in Figure 5).
Feature representations can be Morgan fingerprint with
frequency (MFF), Morgan fingerprint (MF), molecular
embedding (ME), or RDKIT-based descriptors. The options
for ML algorithms include GPR, LASSO, RF, SVM, FFNN,
and CNN. Figure 5 compares the performance of each model
in terms of R2 on Data set_2 (see their predictive R2, MAE,
and RMSE on training set, test set, and Data set_2 in the
Supporting Information, Section S6). We particularly place the
priority on the model performance on Data set_2 because we
are paying more attention to the generalization ability of the
obtained ML model. A well-trained model on Data set_1 does
not guarantee an excellent transferability to Data set_2.
Looking at the GPR model trained with MF, the training/
test set R2 reaches 0.92/0.86−a satisfactory prediction
performance, but its R2 on Data set_2 degrades to 0.55
significantly, although it is also at an acceptable level. The MF-
based model generally falls behind using other feature
representations, suggesting that the easy-to-use Morgan
fingerprint is not necessary for a proper feature representation.
From the perspective of ML algorithms, the best model of

each feature representation is indicated with arrows in Figure 5
(see Supporting Information, Section S7 for the detailed parity
plot showing the predicted Tg vs experimental Tg or MD
simulated Tg). The FFNN model trained on MFF outperforms
other models with an R2 of 0.65 on the Data set_2, and almost
the same performance comes from the CNN model based on
ME. Both FFNN and CNN models are highly nonlinear
models that are supposed to be more powerful in establishing
complex correlations, but they require distinct feature
representations for better Tg prediction. For example, if
changing the feature representation from MFF to MF, the
FFNN model’s R2 on Data set_2 changes from 0.65 to 0.50a
decrease of 23%. While changing the feature representation
from ME to MFF, the CNN model’s R2 on Data set_2 reduces
from 0.65 to 0.54a decrease of 17%. The interdependence of

the feature representation and ML algorithms affects the
model’s performance significantly.

3.3. Polymerized_16 as Polymer’s Structure Repre-
sentation. The second group of 24 model setups is based on
the Polymerized_16 structure representation (the middle row
in Figure 5). It is worth noting that the feature extraction here
takes more time due to the complexity of Polymerized_16
structures. Figure 4 has demonstrated the descriptor
convergence after using polymerized structure, but the
expensive calculation becomes an obvious shortcoming
compared to other feature engineering methods. It should be
noted that most of the Polymerized_16-based models do not
outperform the RepeatUnit-based models as shown in Figure
5. The performance of each model is listed in Supporting
Information, Section S6, based on which we notice 16/24
RepeatUnit-based models have better performance than the
corresponding Polymerized_16-based models. We realize that
the polymerized structure representation does not provide
much more information than a single repeat unit. The repeat
unit structure representation can be considered enough to
capture the bonding information and key substructures related
to polymer’s Tg. Considering Polymerized_16-based models
require expensive calculation when processing Polymerized_16
structures and they barely improve model performance
compared to RepeatUnit-based models, Polymerized_16
structure representation is found to be inferior to RepeatUnit
structure representation.
The best ML models based on Polymerized_16 are mainly

GPR and RF (see Supporting Information, Section S7 for their
R2 and parity plots). It is not surprising that GPR and RF
models are among the best models. GPR intrinsically searches
all accessible functions that best fit the training data; namely,
no constraints on the form of the fitting equation are applied.
Polymer Genome8 is a successful application of the GPR
model for polymer property predictions, including seven
properties such as bandgap, dielectric constant, refractive
index, atomization energy, Tg, solubility parameter, and
density. Compared to GPR, the RF model uses the advantage
of ensemble average for a better prediction. The training/test
R2 from RF models are always higher than those of the other
models due to its 100 individual decision trees working
together. RF model has demonstrated its excellence in the
predictive task of Tg for glasses as well.84 For our similar
noncrystalline polymer materials, the situation is essentially
observed to be the same.

3.4. Monomer as Polymer’s Structure Representa-
tion. The third group of 24 model setups is based on the
monomer structure representation (the bottom row in Figure
5). Their performances are generally slightly worse than the
previous two groups of models. A R2 around 0.85 and an MAE
around 30 using two-monomer structure representation were
reported in the literature for Tg prediction,

43 which is at the
same level as our single monomer-based models. Only through
the evaluation on Data set_2, it is realized that the model has a
relatively poor generalization ability. The use of monomer
structure may not be a significant issue when training on a
small group of data. Still, it possesses insufficient ability to
generalize if examined on a large extra data set. The feature
engineering of MFF, ME, and descriptors using monomer can
incorporate more structure information than the raw MF and
thus improve the model performance to some extent. Still, all
the monomer-based ML models are generally not as good as
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Figure 6. Performance of CNN models, RNN models, and GCNN models. The structure representation and feature input (Image or SMILES) are
illustrated on the top of each panel using poly(non-1-ene) as the example. (a) RepeatUnit-based CNN model using 2D Image. (b) Monomer-based
CNN model using 2D Image. (c) RepeatUnit-based RNN model using SMILES. (d) Monomer-based RNN model using SMILES. (e) RepeatUnit-
based GCNN model using MG. (f) Monomer-based GCNN model using MG. (g) Polymerized_16-based GCNN model using MG.
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the one using single repeat unit or polymerized oligomers, as
shown in Figure 5.
The best ML models based on monomer remain to be GPR

and RF (see Supporting Information, Section S7 for their R2

and parity plots), but their R2 on Data set_2 degrade around
10% compared to the best GPR and RF models using
RepeatUnit or Polymerized_16 structures. Monomer is found
to be deficient in representing long-chain polymers in the Tg
prediction task. One important missing piece of information is
the connecting point “*” that is essential for the polymerization
process of polymers and is observed to be crucial for more
accurate ML models. Without the “*”, the monomer’s SMILES
notation is like that of small organic molecules, leading to the
difficulty in differentiating the chemical structures between
polymers and small molecules. The other concern of using
monomers is that the same monomer structure may polymer-
ize into different polymers through different polymerization
pathways. Such one-to-many mapping brings confusion to the
ML model and makes it problematic to establish a clear
structure−property correlation.64

3.5. Special Treatments of Polymer Structure as 2D
Image, Character Sequence, or Molecular Graph. 2D
CNN model, RNN model, and GCNN model originate from
different subjects of image recognition, natural language
processing, and graph theory, respectively.85−87 In the
cheminformatics field, small molecular generations88−94 and
property prediction13,95−98 have used these techniques
extensively. We have implemented a 2D CNN model based
on images and revealed its poor generalization ability for Tg
prediction in the recent study.44 Besides this, we have also
implemented the RNN model that is purely linguistic-based
using the SMILES notation of a repeat unit as input.99 We re-
evaluate our previously trained models using the new 566 MD
simulations and compare them here with other models. Besides
using the RepeatUnit as polymer structure representation, we
build new CNN and RNN models based on monomer and
compare their performance in Figure 6a−d. The structure
representation Polymerized_16 can contain hundreds or
thousands of characters in a SMILES notation, making it not
applicable here for image processing or SMILES character
processing. For example, the maximum input length of the
SMILES string is prescribed as 120 (an optimized hyper-
parameter) for the RNN model.99 Such a shorter sequence
constraint can reduce the training difficulties to get a better
model performance. Similarly, the maximum size of the 2D
image is prescribed as 310 × 21 so that the obtained 2D matrix
is not too sparse while large enough to represent most
SMILES. But unfortunately, the long strings of Polymer-
ized_16 can easily break the SMILES length limit for the

established RNN and CNN architectures. The requirement on
the length of the SMILES is a limitation of RNN and CNN
models compared with others. Dimension reduction methods
like Principal Component Analysis (PCA), t-SNE, or even
Variational Autoencoder (VAE) are possible ways to address
the SMILES length issue for RNN and CNN models, but the
extra processing converts the SMILES representation to a
different feature representation with more complexity. To have
a fair comparison for this benchmark study, we do not apply
further processing on SMILES representation or other
representations, otherwise, it would become another topic to
address. Figure 6 illustrates the structure representation and
feature input on the top of each panel using poly(non-1-ene)
as the example. For the CNN model, the performance on the
training set and test set are acceptable using 2D images based
on either RepeatUnit or monomer. However, their general-
ization ability degrades significantly on Data set_2. The RNN
model avoids the step of feature engineering, establishing a
direct relationship between the SMILES sequence and Tg. Its
performance−especially on the Data set_2 is much better than
that of 2D CNN. The model performance is summarized in
Table 1.
The GCNN model using MG can also be applied to the

polymer’s Tg prediction. Figure 6e−g compares three GCNN
models based on monomer, RepeatUnit, and Polymerized_16,
respectively. The structures of poly(non-1-ene) are used as
schematic diagrams on the top of each panel. It illustrates the
conversion of the atoms and bonds into graph vertices and
edges. The more complex a graph is, the more time GCNN
needs to train the model. Judging by the obtained R2, the
RepeatUnit-based GCNN model performs slightly better than
the monomer-based GCNN model, but unexpectedly a more
complex GCNN from the Polymerized_16 structure results in
degraded performance. Polymerized_16 is a closer analog to
the long-chain polymer than monomer, as demonstrated by the
convergence pattern in terms of substructure similarity and
descriptor calculation (cf. Figure 4). Intuitively, the Poly-
merized_16-based model should outperform others, but
obviously, the GCNN model here does not favor the use of
such complex graph input. This is indicative of the fact that
although the Polymerized_16 graph has much higher complex-
ity, it remains void of other large polymeric chain attributes
such as excluded volume, chain flexibility, and interchain
interactions, all of which play a critical role in determining Tg.

3.6. Summary of 79 ML Models for Polymer’s Tg
Prediction. We have formulated 79 models using different
structure representations, feature representations, and ML
algorithms for polymer’s Tg prediction. By averaging the R

2 on
Data set_2 from different perspectives, we find the ranking of

Table 1. Performance of 2D CNN Models, RNN Models, and GCNN Models

RepeatUnit Monomer Polymerized_16

model matrix train test Data set_2 train test Data set_2 train test Data set_2

2D CNN R2 0.88 0.83 0.49 0.88 0.81 0.47 not applicable
MAE 25.60 35.28 60.45 25.60 35.28 62.32
RMSE 38.08 48.45 79.22 38.08 48.45 80.96

RNN R2 0.89 0.81 0.59 0.80 0.76 0.55 not applicable
MAE 26.94 32.21 54.28 36.37 40.05 56.89
RMSE 36.92 45.83 71.56 49.01 53.94 74.69

GCNN R2 0.94 0.88 0.56 0.91 0.83 0.54 0.86 0.83 0.49
MAE 18.92 27.10 56.22 24.25 32.46 57.38 30.72 32.88 59.89
RMSE 25.85 38.82 74.09 32.44 44.40 75.63 41.46 45.02 79.18
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the structure representation from the best to the worst is
RepeatUnit > Polymerized_16 > Monomer. We should
emphasize that the Polymerized_16 structures are not superior
to RepeatUnit_1, and using a single repeat unit is good enough
to incorporate key substructures related to polymer’s Tg.
Monomer contains less substructure information and ignores
the polymerization information “*”. Besides, the monomer
structure cannot map to a unique polymer. Thus, it is not
surprising that Monomer is the worst structure representation
for polymer informatics.
The ranking of the feature representation from the best to

the worst is MFF > SMILES > Descriptor > ME > MG > MF >
2D Image. The poor performance of using 2D images suggests
that converting a physical problem into an image-processing
problem is not a good idea, as we discussed before.44 When

structural features are implicitly represented by an image, it is
difficult for an ML algorithm to reveal a reliable structure−
property relationship. MF proves to be a poor feature
representation too, showing that only marking the presence
or absence of each substructure is not sufficient, particular, for
the Tg prediction.44 MFF, however, considers the occurring
frequency of each substructure and turns out to be the best
feature representation. Note that from the classical group
contribution theory,24 the polymer’s Tg can be reasonably
predicted by considering the contributions from different
chemical groups.100−102 Similarly, our MFF feature represen-
tation considers the chemical substructures and their occurring
frequencies of polymers, leading to a better prediction on Tg.
The ranking of the ML algorithms from the best to the worst

is RF > CNN > RNN > GPR > FFNN > GCNN > LASSO >

Figure 7. Qualitative examination of Tg prediction on different polystyrene architectures. (a) Tg of polystyrene is a function of molecular weight
and topology (cyclic,linear). The experimental Tg trend is based on the study by Grayson et al.108 (b) We evaluate the Tg of cyclic architecture
(blue curves) and linear architecture (orange curves) of polystyrene at different molecular weights by the obtained 79 models. The results of 24
models are displayed here, while the complete results of all 79 models can be found in Supporting Information, Section S8. Red boxes highlight
models whose predictions match with the experimental trend qualitatively. Black boxes highlight models that are completely insensitive to topology
and molecular weight.
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SVM > 2D CNN. The first six algorithms are highly nonlinear
ML models that are supposed to be more powerful than the
linear regression method, such as LASSO. RF model owns its
excellent performance to its ensemble attribution, and the
improved predictive accuracy outperforms all the other
models. A surprisingly good model is the RNN model that
only reads the SMILES and does not need any feature
processing. It demonstrates that the SMILES sequence may
contain several of the essential structural features (such as
different types of atoms and how they are topologically
connected) related to polymer’s Tg. The 2D CNN model
performs the worst due to the poor feature representation via
2D images, but 1D CNN models based on other feature
representations are better than most ML algorithms. There is a
strong interdependence of the feature representation and ML
algorithms to affect the model’s accuracy and generalization
ability significantly.
Among all the structure representation, feature representa-

tion, and ML algorithms, the best model setup is found to be
the RepeatUnit-based CNN model using ME. Its predictive
performance has a training/test R2 of 0.84/0.82 on Data set_1
and an R2 of 0.65 on Data set_2. The worst model setup is the
monomer-based SVM model using ME. Its predictive perform-
ance has a training/test R2 of 0.79/0.74 on Data set_1 and an
R2 of 0.44 on Data set_2. The best model improves the
predictive accuracy on Data set_2 by 47.73% compared to the
worst model. A proper ML model setup makes a big difference
in a certain task. Similar to other benchmark studies for specific
problems like molecule property predicitons,103−105 images

classifications,106 or text processing,107 etc., our benchmark
results are specifically for polymer’s Tg prediction, but the
revealed pros and cons behind different models are of great
interests for other polymer informatics tasks.

3.7. Sensitivity of the ML Model to Topology and
Molecular Weight of Polymer Chains. We train all the ML
models on the Data set_1 of homopolymers and then evaluate
their performances using the unlabeled homopolymers in Data
set_2. The model transferability from one data set to another
one has been carefully examined, but no topology or molecular
weight information has been explicitly taken into account
during model training. However, an experimental study of
polystyrene has demonstrated that the polymer’s Tg depends
on the topology and molecular weight of polymer chains.108

The polystyrene’s Tg dependence on molecular weight is also
empirically defined with Flory−Fox equation.109 When
polystyrene is in the form of a cyclic chain (ring polymer),
its Tg measurement is higher than its linear compartment.108

When polystyrene possesses higher molecular weight, its Tg
also increases accordingly. Such a qualitative trend is illustrated
in Figure 7a, where a longer chain polystyrene (with higher
molecular weight) is supposed to have a higher Tg than a short-
chain, and a cyclic chain is supposed to have a higher Tg than
its linear analog. Therefore, we use the polystyrene case as a
qualitative examination to check if our obtained 79 models can
handle the Tg dependence on topology and molecular weight
of polymer chains.
To consider molecular weight of polymer chain, we use

oligomers with increased chain length from Polymerized_2 to

Figure 8. Three-level hierarchical descriptors used by the Polymer Genome platform, and the model performance on Tg prediction considering
different types of fingerprints. (a) Three levels of hierarchical descriptors: atomic level descriptors, QSPR descriptors, and morphological
descriptors. Fingerprint dimensions are reduced by a recursive feature elimination (RFE) process. (b−d) Model performance improves by using
only atomic level descriptors, atomic level and QSPR descriptors, entire fingerprint components including morphological descriptors, and an RFE-
processed fingerprint. The figure is reprinted with permission from ref 8. Copyright 2018 American Chemical Society.
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Polymerized_10 as shown in Figure 7a for polystyrene.
Correspondingly, a longer SMILES contains more atoms to
be processed with feature engineering, taking into account a
higher molecular weight. The cyclic topological information is
considered in the SMILES by concatenating the structure’s
head and tail location indicated by the “*” symbol. Figure 7a
shows that the linear topologies are open-end chain structures
with head and tail “*”, while the cyclic topologies are cycle-like
structures with head and tail being concatenated. It is worth
noticing that our obtained 79 models are not trained for
handling different molecular weight or topology of polymer
chains. They are trained using either monomer, RepeatUnit, or
Polymerized_16 structure representations, and they are not
supposed to take a longer or cyclic structure representation for
Tg prediction. However, if a previous trained model is given a
longer or a cyclic chain, it is interesting to check whether the
model can at least qualitatively predict a higher Tg value. Such
a sensitivity check is only an extra examination of these
obtained models as an additional merit.
As long as the pattern of the obtained Tg prediction for a

longer or cyclic polymer chain matches with the experimental
observation, a model is considered as sensitive to topology and
molecular weight. Some qualified models are highlight by the
red boxes in Figure 7b. 14/79 models are found to comply
with the experimental pattern qualitatively, and the obtained
best modelRepeatUnit-based CNN model using MEis
one of them. Another consistent observation is that ML
models using MF feature representation are entirely insensitive
to topology and molecular weight (highlighted by the black
boxes in the first row of Figure 7b), as it does not consider the
occurring frequency of substructures. Whether the input
structure is cyclic or linear, and no matter the molecular
weight of the input structure is high or low, MF always
identifies the same presence (on)/absence (off) condition for
most substructures. The topology and molecular weight
differences cannot be recognized by MF feature engineering.
Therefore, ML models using MF generate the same Tg value
and are not able to match with the experimental Tg trend in
Figure 7a. On the contrary, ML models using MFF feature
representation are sensitivity to topology and molecular weight
(the second row of Figure 7b), although the trends are not
consistent with the monotonically increasing patterns in
experiments. MF feature engineering is demonstrated missing
important informations compared to MFF feature engineering,
or other feature engineerings like embedding or descriptor
shown in the third and fourth row of Figure 7b. The results for

all 79 models can be found in the Supporting Information,
Section S8.

3.8. Comparison between our ML Models vs Other
Successful Ones. One successful platform for polymer’s Tg
prediction is the Polymer Genome developed by Ramprasad
and co-workers.8 Figure 8 shows the three levels of hierarchical
descriptors used in the Polymer Genome platform: atomic
level descriptors, QSPR descriptors, and morphological
descriptors. For the atomic level descriptors, the occurrence
of a fixed set of fragments or motifs is tracked, such as one-fold
coordinated oxygen and 3-fold coordinated carbon. The QSPR
descriptors are similar to that of molecular descriptors in
RDKit, including the van der Waals surface area, the
topological polar surface area, the fraction of rotatable bonds,
etc. The morphological descriptors are designed to represent
the polymer chain features, such as the shortest topological
distance between rings, fraction of atoms that are part of side-
chains, and the length of the largest side-chain. Overall, there
are 953 components for each polymer’s fingerprint vector,
including 371 atomic level descriptors, 522 QSPR descriptors,
and 60 morphological descriptors. More details about the three
levels of hierarchical descriptors are given in the Polymer
Genome platform.102 Based on the three levels of hierarchical
descriptors, their optimized GPR model shown in Figure 8e
has a training/test R2 of 0.92/0.90−a satisfactory accuracy on
their data sets of 471 polymers (360 polymers for training and
91 polymers for test). We query the Tg prediction using the
Polymer Genome platform for our 566 MD simulated
polymers and obtain an R2 of 0.50, shown in Figure 9a. Figure
9c compares the performance of our 79 models with the
Polymer Genome platform, and a ∼30% difference in terms R2

of these models is observed. Overall, the predictions from the
Polymer Genome platform are comparable with our best ML
models, considering the smaller train/test (360/91) data sets
of this model.
The other successful platform for polymer’s property

prediction is Xenonpy, developed by Yoshida and co-
workers.110 They provide more than 140 000 pretrained neural
networks for researchers to carry out neural transfer, learning
from 12 properties of 133 805 small organic molecules in the
QM9 data set.111−114 First, a fully connected pyramid neural
network is trained using training instances from the
monomeric properties. Afterward, a subnetwork other than
the output layer is used as a feature extractor. It is repurposed
on a model of the polymer’s property, such as Tg values from
5917 unique homopolymers in PoLyInfo.25 On polymer’s Tg
prediction, there are 200 models pretrained and easy-to-use via

Figure 9. Model performance on Data set_2. (a) Parity plot obtained with the Polymer Genome platform. (b) Parity plot obtained with the
Xenonpy model. (c) Performance comparison of 79 models of this study, the Polymer Genome platform (orange) and the Xenonpy (green) model.
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their server API. We download one of their best models
#35249, which has three hidden layers and bases on 2048 bits
mixed fingerprints including RDKit fingperprint, ECFP,
MACCS, etc. Its training R2 reaches to 0.92 on their data
set. Similarly, we make Tg predictions using the Xenonpy
model for our 566 MD simulated structures. Its best predictive
ability reaches to an R2 of 0.52 after we retrain the model using
our data set based on MF, shown in Figure 9b. Figure 9c
demonstrates a comparable performance for the Xenonpy
model and other models. Comparing our obtained model to
these two successful platforms, we find that their carefully
tuned models can generate reasonable predictions on the Tg
values of unlabeled Data set_2. However, further optimizations
are still possible if using different structure representations,
feature representation, or ML algorithms.
The comparisons between the Polymer Genome model, the

Xenonpy model, and our ML models demonstrate their good
generalization abilities on new structures, using the true Tg
values from MD simulations. However, using new structures
with experimental Tg is more desired to verify the general-
ization ability of ML models. Therefore, we collected an
experimental database of conjugated polymers.27,115 Con-
jugated polymers possess promising optical and electronic
properties, and their aromatic backbone and alkyl side chain
chemistry differs drastically. There are 62 conjugated polymers
that are new to our Data set_1 and Data set_2, which is an
ideal experimental data set to examine these ML models.
Simillary, our models demonstrate a comparable performance
as Polymer Genome models and Xenonpy models (see
Supporting Information, Section S9, for detailed results).
Thus, the two successful platforms and our ML models are
demonstrated able to generalize on a certain class of polymer.

4. CONCLUSION
Polymer’s Tg prediction is a vital polymer informatics task that
requires a combined knowledge of polymer structures, feature
engineering, and ML algorithms. Using the right polymer
structure representations, generating suitable feature represen-
tations, and implementing proper ML algorithms are key steps
to formulate a reliable ML model with satisfying accuracy and
generalization ability. Here we carry out a systematic
benchmark study to investigate the performance of different
model setups, using our collected large data sets of
homopolymers. The model training process involves 5-fold
cross-validation and test set evaluation using 6923 homopol-
ymers in Data set_1. As we focus more on the generalization
ability of the obtained model, our most crucial evaluation
metric of the model performance is the predictive R2 on the
MD simulated 566 structures from the unlabeled Data set_2.
We investigate three structure representations like monomer,
RepeatUnit, or Polymerized_16. Based on each structure
representation, we consider seven feature representations such
as MFF, MF, ME, Descriptors, SMILES, Image, and MG. Then
we implemented eight ML algorithms, including GPR, LASSO,
RF, SVM, FFNN, RNN, CNN, and GCNN. In total, we
develop 79 models to investigate the pros and cons behind
different model setups.
Based on our obtained results, important findings and

observations are as follows. (1) Polymerized_16the
oligomer corresponding to 16 repeat units chained togeth-
eris a long enough analog to represent long-chain polymer
due to it is convergence in terms of substructures and
descriptors. It retains the bonding information “*” and most

substructures as in the original long-chain structure, but some
models do not prefer the use of polymerized structure over a
single repeat unit. In most circumstances, using one repeat unit
is sufficient to capture the main structure information related
to polymer’s Tg. Furthermore, the monomer structure contains
much less substructure information and ignores the bonding
information between adjacent repeating units completely. We
consistently observe that the monomer-based models are not
as good as those using single repeat or polymerized oligomers.
We find the ranking of the structure representation from the
best to the worst is RepeatUnit > Polymerized_16 > monomer.
(2) The ranking of the feature representation from the best to
the worst is MFF > SMILES > Descriptor > ME > MG > MF >
2D Image. The easy-to-use Morgan fingerprint that only marks
the existence (on)/absence (off) of each substructure is not
necessary as a suitable feature representation compared to
other options. On the contrary, MFF, which considers the
frequency of occurrence for each substructure, turns out to be
the best feature representation. Moreover, it is worth noticing
that 2D images prove to be not ideal as a feature representation
of polymers, as the patterns of 2D images cannot retain
important chemical structural information on polymers. (3)
Based on the average model performance, the ranking of the
ML methods for Tg prediction from the best to the worst is RF
> CNN > RNN > GPR > FFNN > GCNN > LASSO > SVM >
2D CNN. Thanks to the ensemble attribution, the RF
algorithm demonstrates excellent performance, while GPR
uses its nonparametric approach and kernel trick to be among
the best models. CNN, RNN, and FFNN are highly nonlinear
models that are more powerful than linear models like LASSO
and SVM. Although GCNN has an advantage of learnable
featurizations,35,103,116,117 its performance for Tg prediction is
not demonstrated to be superior to others. (4) A high training/
test R2 on Data set_1 does not necessarily guarantee a good
generalization ability to the unlabeled Data set_2. Thus,
models that have good transferability to Data set_2 are
considered better ones. Among our formulated 79 models, the
best model is the RepeatUnit-based CNN model using ME. Its
predictive performance has a training/test R2 of 0.84/0.82 on
Data set_1 and an R2 of 0.65 on Data set_2. All models’
sensitivity to topology and molecular weight are checked
qualitatively using the cyclic/linear structure of polystyrene.
Fourteen of 79 models comply with the experimental trend,
and the obtained best modelthe RepeatUnit-based CNN
model using MEis also among them. When compared with
successful platforms like Polymer Genome and Xenonpy, our
models demonstrate a comparable performance based on Data
set_2 or an experimental database of conjugated polymers.
Good generalization abilities are observed in our formulated
models.
In summary, our benchmark study investigates the synergy

of structure representations, feature representations, and ML
algorithms on the polymer’s Tg prediction, by taking advantage
of large and diverse data sets and high-throughput MD
simulations for model training and validation. The revealed
pros and cons behind different model setups provide useful
guidance to better address the polymer’s Tg prediction task and
also a good reference for other polymer informatics tasks.
Data and Software Availability. Homopolymers and their

corresponding Tg values and SMILES notations were collected
from PolyInfo, which is freely available (https://polymer.nims.
go.jp/en/). Machine learning models are freely available on
GitHub (https://github.com/figotj/Tg_Benchmarking). CSV

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01031
J. Chem. Inf. Model. 2021, 61, 5395−5413

5409

https://polymer.nims.go.jp/en/
https://polymer.nims.go.jp/en/
https://github.com/figotj/Tg_Benchmarking
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


files containing MD simulated polymers along with their
SMILES and predicted Tg are provided in the Supporting
Information. The MD simulations are carried out using the
open source program LAMMPS (https://www.lammps.org/).
The machine learning models are built with open source
python libraries Tensorflow (https://www.tensorflow.org/)
and Scikit-learn (https://scikit-learn.org/stable/). The package
versions are provided on GitHub (https://github.com/figotj/
Tg_Benchmarking).
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