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vulnerability assessment considering disrupted transportation access to 
critical facilities. Transportation network failure may lead to disruption 
of access to critical facilities in two different ways: (1) direct impact to 
the road elements in the neighborhood due to road failure, such as a 
bridge collapse, road inundation, or road closure/work zone; (2) indi
rect impact due to isolating effect. For example, failure of roads in other 
region can cut off the paths between investigating neighborhood and the 
critical facilities. Although the disruption of access to critical facilities 
may result from both direct and indirect impacts, the corresponding 
impacts and risk mitigation approaches are different. The first disrup
tion cause can be addressed by directly improving the physical infra
structure to mitigate the impact from the hazards, while the second 
disruption scenario requires a systematic understanding of the com
munities' risk profile. To do so, a network approach is needed to examine 
the vulnerability of different neighborhoods in terms of their accessi
bility to critical facilities in facing flood disruption. Dong, Yu, Far
ahmand, and Mostafavi (2019) proposed the robust component to 
evaluate network access to critical facilities in facing collective link 
failures, considering all possible paths. Given the disruption scenarios, 
vulnerability of different components of a network can be examined 
through a percolation network analysis approach (Dong, Mostafizi, 
Wang, Gao, & Li, 2020). Considering a network formed by links and 
nodes, percolation method refers to the process of removing a fraction of 
nodes and their connected links and then re-assessing the network 
functionality. This method enables a closer look at transportation 
vulnerability in terms of post-disaster access to critical facilities through 
a resilience lens. 

A network of infrastructures also relies on a network of plans to guide 
infrastructure development and address infrastructure vulnerability to 
ensure its healthy functioning in both normal conditions and when 
facing disaster disruptions. Here, a network of plans refers to a collection 
of local and regional plans that address or affect local vulnerability to 
hazards. As we cannot prevent weather-related hazards, investing re
sources into infrastructure development and planning is critical in 
enhancing resilience (Weilant et al., 2019). Prioritizing planning can 
improve community resilience by including policies that anticipate 
adaptation, recovery, and vulnerability reduction before and after a 
disruption (Berke, Malecha, Yu, Lee, & Masterson, 2019; Godschalk, 
2003; Lu & Stead, 2013). To improve the resilience of a transportation 
system, relevant agencies develop plans to guide investments such as 
retrofitting or rebuilding vulnerable assets in hazard zones to ensure the 
region's roadways are resilient to disruption (Hopkins & Knaap, 2018). 
However, plans are often developed independently, with each address
ing a specific issue(s) in the region (Kaza & Hopkins, 2012). Moreover, 
these plans can be fragmented and poorly integrated, and may even 
potentially increase community vulnerability to hazards (Berke et al., 
2015). For example, a hazard mitigation plan includes a policy that 
specifies avoidance of infrastructure investments in a floodplain (Li, 
Dong, & Mostafavi, 2019), but an infrastructure plan (road, or water/ 
sewer) proposes expansion of capacity that stimulates development in 
the same location. Failure to effectively integrate hazard mitigation and 
awareness throughout the network of local plans has become an inter
national policy (United Nations Office for Disaster Risk Reduction., 
2017) and national policy concern (FEMA, 2015). 

To address this issue, Berke et al. (2015) developed a resilience 
scorecard to evaluate the degree of coordination among local plans and 
their combined effect on vulnerability to flooding, considering both 
positive and adverse impacts of the plans. A Plan Integration for Resil
ience Scorecard (PIRS) analysis can provide insights on conflicts be
tween plan polices and can help local planners and emergency managers 
identify opportunities to align plans to reduce vulnerability in hazard- 
prone areas (Malecha, Masterson, Yu, & Berke, 2019). Although many 
plans have the overall goal of increasing community resilience, the focus 
of individual plans and their constituent policies may vary, such as 
retrofitting physical infrastructure or increasing green space (Afriyanie 
et al., 2020). Additionally, not all local plans will increase the resilience 

of the transportation system. 
There is a notable lack of understanding of the impacts of integrated 

resilience policy on enhancing network accessibility to critical facilities. 
To bridge this gap, an integrated infrastructure-plan analysis framework 
will be conducted to evaluate the extent to which local plans are inte
grated to improve post-disaster access to critical facilities—including 
grocery stores, pharmacies, and gas stations—using Hurricane Harvey's 
impact in Houston, Texas, as a scenario. Hurricane Harvey, a Category 4 
hurricane that ravaged coastal Texas and the Houston region in late 
August 2017, caused $190 billion in damage and revealed the com
munity's vulnerability in terms of the transportation network and policy 
deficiencies in addressing such vulnerability (Winfree, 2019). This 
research aims to examine the degree to which local plans are integrated 
in terms of increasing transportation network resilience by enhancing 
accessibility to critical facilities. 

1.2. Motivation and contribution 

This study is largely motivated by the fact that plan and policy making 
often focus on enhancing regional disaster resilience without sufficient 
consideration of communities' needs for and access to critical services, 
especially in the aftermath of a disaster (Mitsova, Sapat, Esnard, & 
Lamadrid, 2020). Understanding remains limited regarding the influence 
of policy on community vulnerability to post-disaster transportation 
network access to critical facilities, such as grocery stores, pharmacies, and 
gas stations (Lang, Chen, Chan, Yung, & Lee, 2019). Houston, Texas, the 
fourth-most populated city in the U.S., located in Harris county, is the only 
major city without zoning regulations in North America, and is well known 
for its modest land use controls. Compared with other cities, government- 
initiated urban development policies for land use regulations are limited in 
Houston, which is comprised of 88 “super neighborhoods” (City of Hous
ton, 2020). A super neighborhood is an area that is designated 
geographically, in which different entities such as residents, civic organi
zations, government, and different businesses cooperate and collaborate to 
identify and prioritize community needs, and plan for addressing them. 
Local planning typically focuses on economic growth, potentially con
flicting with efforts to enhance hazard mitigation and resilient infra
structure. Using the case of a set of super neighborhoods in western 
Houston (Fig. 2) during a flooding scenario, this study will examine 
whether local infrastructure-related plans and policies address community 
needs for access to critical facilities after flood inundation. This research 
will contribute to the evolving discourse on resilience enhancement by 
introducing an integrated framework on strategic infrastructure plan 
development for community vulnerability to access disruption analysis, 
enabling stakeholders to examine the existing resilience plans and prac
tices and identify gaps for resilience improvement in future plans. 

The remainder of the paper is organized as follows. Section 2 reviews 
recent research on post-disaster road network connectivity and access to 
critical facilities, and on resilience of community networks of plans. 
Section 3 shows the methodology of the adopted robust component and 
plan integration for resilience scorecard. Section 4 presents the experi
ment results from a road network analysis through a case study in 
Houston and Section 5 analyze the resilience scorecard evaluation re
sults of the local plans in the study area. Section 6 integrates the analysis 
results and discusses the discrepancy between the infrastructure 
vulnerability and planning endeavor on resilience enhancement. 
Finally, Section 7 presents a discussion on the results of this paper and 
Section 8 concludes the paper with major findings and limitations to 
address in future work. 

2. Literature review 

Community resilience can be defined as the ability of different or
ganizations and other community social units to mitigate the risk of 
hazards, cope with the impact of disasters that occur, and manage 
restoration and recovery efforts to minimize the adverse consequences 
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of disasters that cause social disruption (Bruneau et al., 2003). In
frastructures, as the backbones of community, support economic growth 
and prosperity by providing essential services (Ouyang, 2014). During 
an extreme event, the services provided by the infrastructure may be 
disrupted. As a consequence, users may be impacted by the disruption if 
the service afterwards does not meet their demands (Didier, Broccardo, 
Esposito, & Stojadinovic, 2018; Mitsova, Escaleras, Sapat, Esnard, & 
Lamadrid, 2019). Properly coping with such disruptions requires plans 
and policies that anticipate extreme events, reduce potential damages, 
and to enable rapid restoration of critical services and recovery (Berke, 
Song, & Stevens, 2009). 

Achievement of community resilience entails three steps. The first is 
to understand the response of infrastructures to disaster, the extent of 
functionality loss, and vulnerability given different hazard scenarios (W. 
Huang & Ling, 2018; Ouyang, 2017). This is often referred to as resil
ience modeling and analysis and has been widely investigated in the 
current body of knowledge (Erath, Birdsall, Axhausen, & Hajdin, 2009; 
D. Li, Zhang, Zio, Havlin, & Kang, 2015; Miller & Baker, 2016). The 
second is to determine the public investment priorities and design 
standards that are needed for hazard mitigation and disaster response 
and recovery (Miles, Burton, & Kang, 2019; Zhang, Wang, & Nicholson, 
2017). The third step is to apply information generated in the first two 
steps to devise and coordinate plan policies that aim to enhance com
munity resilience. In this regard, the ability of a community to coordi
nate the plans that guide the location, design and capacity of 
infrastructure development is imperative to gain and maintain resilience 
(Berke et al., 2015; Malecha, Brand, & Berke, 2018). Integrating the 
three steps discussed above is critical for enhancing community resil
ience. It can reveal the extent to which policies in the plans that influ
ence hazard mitigation and disaster recovery also address the needs and 
priorities that are reflected in the resilience analysis of infrastructures. 
This can help decision-makers identify gaps in community resilience 
planning and bridge them by incorporating policies into plans that 
target the infrastructure vulnerabilities, as well as helping them detect 
and remove conflicts between policies in the network of plans. 

Road network is the focus of this study. The American Association of 
State Highway and Transportation Officials (AASHTO) standing com
mittee on research generally defines road network resilience as “the 
ability of the system to recover and regain functionality after a major 
disruption or disaster” (U.S. Department of Transportation, 2014). 
Various tools and methods are developed for quantifying the resilience 
in transportation networks (Sun, Bocchini, & Davison, 2020; Wan, Yang, 
Zhang, Yan, & Fan, 2018). These transportation resilience assessment 
methods can be categorized into two groups: topological functionality 
metrics that focus on connectivity and centrality measures (Cheng, Lee, 
Lim, & Zhu, 2015; Zhang, Çetinkaya, & Sterbenz, 2013) and traffic 
related metrics that focus on travel time, throughput and congestion 
(Fotouhi, Moryadee, & Miller-Hooks, 2017; Hamad & Kikuchi, 2002). 
Different multi-dimensional methods have also been developed to pro
vide more comprehensive look of transportation resilience (Khaghani & 
Jazizadeh, 2020). Besides, concepts such as adaptive and restorative 
capacities have been used by researchers in order to determine the 
resilience in transportation networks (Vugrin, Warren, & Ehlen, 2011). 
Moreover, infrastructure functional interdependency has also been 
included in transportation network resilience measurement (Dong et al., 
2020; Kong, Simonovic, & Zhang, 2019; Ouyang, 2017). 

2.1. Physical community vulnerability assessment 

Infrastructure vulnerability assessment is the first step for an inte
grated infrastructure-plan assessment for resilience enhancement. 
Various studies attempt to formulate, quantify, and assess different as
pects of road network resilience such as connectivity vulnerability, 
restoration capacity. In this research, an essential component of trans
portation resilience can be understood in terms of the network vulner
ability considering the loss of access to critical facilities. Vulnerability 

incorporates both weaknesses and consequences of failures in the 
network (Taylor, Sekhar, & D'Este, 2006). Various approaches have 
been adopted to assess road network vulnerability (Coles, Yu, Wilby, 
Green, & Herring, 2017; Jenelius & Mattsson, 2015; Maltinti, Melis, & 
Annunziata, 2012). One common approach for measuring road network 
vulnerability is quantification of accessibility level in the network 
(Berdica, 2002). Road network accessibility can be represented using 
different measures such as connectivity loss, travel delay, and network 
flow capacity drop (Chang, Peng, Ouyang, Elnashai, & Spencer, 2012; 
Dong, Yu, et al., 2019; Sullivan, Novak, Aultman-Hall, & Scott, 2010). 

Accessibility analysis of road networks generally uses the propagation 
of network failure to determine the disruption on the network. The 
accessibility modeling approaches can be classified into two groups: 
mobility-based approaches and topology-based approaches. Mobility- 
based approaches employ traffic data, such as daily travel demand to 
model accessibility (Jenelius, 2009; Jenelius & Mattsson, 2015; Tahmasbi 
& Haghshenas, 2019). However, such data is often not reliable for anal
ysis in a disaster context, where the behavior of the system is considerably 
different from normal conditions. On the other hand, there are topology- 
based approaches that measure accessibility by simulating the failure 
propation on the network (Wang, Yang, Stanley, & Gao, 2019). There are 
many different methods for network failure modeling, such as percolation 
analysis (Bashan, Berezin, Buldyrev, & Havlin, 2013; Dong, Mostafizi, 
et al., 2020; Huang, Gao, Buldyrev, Havlin, & Stanley, 2011; Shao, 
Huang, Stanley, & Havlin, 2015), hybrid hydrological and agent-based 
modeing of tsunami inundation (Mostafizi, Dong, & Wang, 2017), and 
Bayesian network modeling of channel over-flow (Dong, Yu, et al., 2019). 
However, accessibility studies using statistical and spatial analysis tech
niques have limited capacity capturing the indirect impacts that can lead 
to disruption of access to critical facilities (Kocatepe et al., 2019; Ulak, 
Kocatepe, Ozguven, Horner, & Spainhour, 2017; Widener, Farber, Neu
tens, & Horner, 2015), percolation analysis enables a holistic look at post- 
disaster network access to critical facilities using a resilience lens. 

Considering a network formed by links and nodes, percolation 
analysis refers to the process of removing a fraction of nodes and their 
connected links and re-assessing the network functionality (Shao et al., 
2015). Percolation analysis has been widely applied to assess the con
nectivity and cascading failure analysis in infrastructure networks and 
interdependent infrastructure networks (Korkali, Veneman, Tivnan, 
Bagrow, & Hines, 2017; Ruj & Pal, 2014; Wang et al., 2019; Galvan & 
Agarwal, 2020). For example, Xiao and Yeh (2011) studied cascading 
link failures in power networks using a percolation approach. Percola
tion analysis has also been applied to investigate reliability of larg-scale 
communiation systems to better understand the network critical prop
erties (Anjum, Wang, & Fang, 2019). Different types of percolation 
transitions in multilayer interdependent networks have shown to have 
association to network failure pattern (Cao, Liu, Jia, & Wang, 2021; Liu, 
Eisenberg, Seager, & Lai, 2018). There are also various studies investi
gating percolation behavior in transportation networks. For instance, 
percolation analysis has been applied to study the road network failure 
patterns in urban road networks during local inundations caused during 
flood events (Wang et al., 2019). Road network robustness has been 
examined using percolation-based indexes in different disruption stra
tegies to understand the influence of network structure and failure 
pattern on network robustness (Casali & Heinimann, 2020). Integrated 
with multi-agent simulation analysis, percolation analysis has been 
applied to study the mobility impact of connected vehicles on the urban 
mobility (Mostafizi, Wang, Cox, Cramer, & Dong, 2017). 

After mapping failures to the network, different performance metrics 
can be employed to measure changes in network connectivity during a 
disaster event. The largest connected component, known as the giant 
component, is often adopted as the accessibility measure (Dong, Mos
tafizi, et al., 2020). The giant component reflects the network vulnera
bility well when general accessibility is sought. However, it neglects the 
importance of the network's access to important nodes – also referred to 
as critical facilities in this paper – which make it impratical in a real life 
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post-disaster network vulnerability assessment. Dong, Mostafizi, et al. 
(2020) proposed the robust component to evaluate network access to 
critical facilities based on a collective link failure scenario. The robust 
component essentially calculates the ratio of network nodes/edges that 
have access to critical facilities considering the propagation of road 
failures due to flood inundation. We adopted the robust component 
metric in this paper to examine the network's access to critical facilities 
considering the components' all possible paths during flood disruptions. 
The percolation simulation enables integration of different critical fa
cilities in various failure scenarios to investigate the network accessi
bility but requires a minimal amount of data. In this way, we can 
spatially map and visualize the network vulnerability in terms of the 
post-disaster access to critical facilities. 

2.2. Planning for resilience and policy integration 

Prioritizing planning and developing policies that anticipate adap
tation, recovery, and vulnerability reduction before and after a disrup
tion is critical for the enhancement of community resilience (Berke, 
Malecha, et al., 2019; Song et al., 2019; Sadiq and Noonan, 2015). 
Future land use and development patterns in a city or a neighborhood 
are guided by a network of plans (Berke et al., 2015; Berke, Malecha, et 
al, 2019). These plans are often developed by different agencies and 
groups and contain goals and policies to achieve their various interests 
(Laeni, van den Brink, & Arts, 2019), which may at times conflict 
(Hopkins & Knaap, 2018). Planning for hazard mitigation, especially, is 
often isolated from other planning processes, such as transportation 
planning and land use planning (Berke et al., 2015; Frazier, Walker, 
Kumari, & Thompson, 2013). Local plans often do not consider hazard 
mitigation implications, despite knowledge that having local plans that 
guide land use and development out of hazardous areas is critical in 
reducing future hazard vulnerability (Burby, 2006; Lyles, Berke, & 
Smith, 2016). The National Response Plan (NRP) also suggests planning 
to “… reduce the vulnerability to all natural and manmade hazards; and 
minimize the damage and assist in the recovery from any type of inci
dent that occurs” (National Response Plan, 2004). Mitigation strategies 
should be mapped directly to areas of vulnerability—either areas that 
have already experienced disasters or areas identified through a 
vulnerability assessment (Asam, Bhat, Dix, Bauer, & Gopalakrishna, 
2015). Community hazard mitigation plans are intended to identify 
vulnerability to hazards and propose actions to reduce the future impact 
of those hazards (Berke, Cooper, Salvesen, Spurlock, & Rausch, 2010; 
Godschalk, Beatley, Berke, Brower, & Kaiser, 1998; Horney et al., 2017). 
Hazard mitigation plans often lack a proper level of integration (Gra
fakos et al., 2020). If integrated with other plans, hazard mitigation 
plans can greatly enhance community resilience (Berke, Malecha, et al., 
2019). Moreover, coordination among organizations and agencies 
involved in planning leads to a less fragmented policy scheme, which 
can contribute to community resilience enhancement (Li et al., 2019). 
Similarly, coordinated and well-prioritized planning contributes to the 
reduction of vulnerability in infrastructures, which lead to mitigation of 
consequences of a disaster (Farahmand et al., 2020). 

The alarming rise in human and financial costs of natural hazards in 
recent decades prompted national (National Research Council, 2012) and 
international (United Nations General Assembly, 2015) calls for the 
development of guidance to help communities meet these challenges and 
adapt to changing conditions. Multiple “resilience scorecards” were 
produced in response, including the Resilient Communities Scorecard 
(Vermont Natural Resources Council, 2013), the Community Disaster 
Resilience Scorecard (Torrens Resilience Institute, 2015), and the 
Disaster Resilience Scorecard for Cities (United Nations Office for 
Disaster Risk Reduction, 2015). The Plan Integration for Resilience 
Scorecard (PIRS; also referred to hereafter as the “resilience scorecard”) 
method (Berke et al., 2015, Berke, Yu et al., 2019, Berke, Malecha et al., 
2019; Malecha et al., 2018; Yu, Brand, & Berke, 2020) was developed 
specifically to address the role of planning in this equation—in particular, 

the problem of isolated hazard mitigation plans and policies, and the 
potential for conflict with other community plan guidance. The method is 
used to evaluate the extent of integration among a community network of 
plans so as to better coordinate hazard mitigation. The resilience score
card helps researchers or community decision-makers “assess the degree 
of integration among plans that reduce vulnerability in different parts of 
a community, or in different planning districts” (Berke et al., 2015). In 
this method, vulnerability is defined as the susceptibility of people and 
the built environment to experience losses due to hazards that threaten 
the community (Berke, Malecha, et al., 2019). Using a resilience score
card, valuable information can be produced to enhance community 
resilience by allowing planners and policymakers to better understand 
conflicts in plans, prioritize policies to target the most vulnerable areas, 
identify neighborhoods with high levels of social and physical vulnera
bility, and better inform decision making (Berke, Malecha, et al., 2019; 
Berke, Yu, Malecha, & Cooper, 2019). These capabilities make the 
resilience scorecard a useful tool for analyzing plan integration with 
respect to urban infrastructure systems. In fact, the resilience scorecard 
can help evaluate the extent to which plans and policies addressing 
infrastructure vulnerability. However, there is a gap in knowledge 
regarding the specific attention to infrastructure vulnerability in the 
evaluation of a network of plans. In this study, we propose an integrated 
framework for the assessment of infrastructure-plan analysis for resil
ience enhancement, with a focus on the vulnerability of a loss of access to 
critical facilities during flood events. The details of the proposed frame
work are elaborated in the next section. 

3. Methodology 

The integrated infrastructure-plan network analysis framework 
contains two components (as shown in Fig. 1): (1) physical vulnerability 
analysis that examines the roadway network's access to critical facilities 
(e.g., grocery, pharmacy, gas) in different flooding scenarios, and (2) 
plan policy analysis that quantifies policies to build resilience across the 
study area. The physical vulnerability analysis mainly focuses on 
examining each roadway intersection's connectivity to critical facilities 
in a flood event. To do this, we conduct a percolation analysis on the 
study super neighborhoods and measure the robust component size to 
represent the different district's post-disaster accessibility to critical fa
cilities when facing direct and indirect network failures. Next, we 
perform the plan policy analysis, which is based on the “policy score” for 
each “district-hazard zone” (More details are explained in Section 3.2). 
Plan integration analysis is essentially quantifying the extent to which 
plans and policies are able to, both positively or negatively, affect 
accessibility to critical facilities. These two analyses combined together 
enable an integrated infrastructure-plan assessment framework. This 
integration is able to help identify critical areas where plans and policies 
fail to mitigate the infrastructure network vulnerability, whose failure 
would then lead to disruption of access to critical facilities. Three 
separate flood scenarios are investigated: a 100-year flood event and a 
500-year flood event (1% and 0.2% annual chance of flooding, respec
tively), as well as a flood event like that which occurred during Hurri
cane Harvey. 

The selected study area is comprised of a set of super neighborhoods 
in the western section of the City of Houston in Harris County, Tex
as—namely: Memorial, Eldridge/West Oaks, Briar Forest, and West
chase. A super neighborhood is a “geographically designated area where 
residents, civic organizations, institutions and businesses work together 
to identify, plan, and set priorities to address the needs and concerns of 
their community.” (City of Houston, 2020). Fig. 2 shows the study area 
and the location of critical facilities (grocery stores) in the vicinity in 
Harris County. 

Houston is one of the most flood-prone cities in the United States and 
has experienced multiple flood disasters in recent years (City of Hous
ton, 2018; Federal Emergency Management Agency, 2019). Over 90 
extreme weather events occurred in the U.S. from 2010 and 2017, and 
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