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Abstract—Exploratory graph analytics helps maximize the
informational value from a graph. However, increasing graph
sizes makes it impossible for existing popular exploratory data
analysis tools to handle dozens of terabytes or even larger data
sets in the memory of a common laptop/personal computer.
Arkouda is a framework under early development that brings
together the productivity of Python at the user-side with the
high performance of Chapel at the server-side. In this paper,
we present our initial work on overcoming the memory limit
and high-performance computing coding roadblocks for high-
level Python users to perform large graph analyses. Based
on a simple and succinct graph data structure, a high-level
Chapel-based graph algorithm, Breadth-First Search (BFS), is
presented to show the scalable and parallel graph algorithm
development method in a productive way through Arkouda.
The reverse Cuthill-McKee (RCM) algorithm is implemented
in Chapel to relabel the vertices of a graph as a preprocessing
step to improve the performance of BFS and one low-level BFS
algorithm is also developed to compare with the performance
of high-level method. Both synthetic graphs and typical graph
benchmarks are used to evaluate the performance of the provided
graph algorithms. The experimental results show that, based on
the proposed high-level algorithm framework, the performance
of BFS can be improved significantly and easily by simply
selecting suitable Chapel high-level data structures and parallel
constructs. Our code is open source and available from GitHub
(https://github.com/Bader-Research/arkouda).

Index Terms—Exploratory graph analysis, Parallel graph al-
gorithms, Breadth-First Search, High-Performance Computing

I. INTRODUCTION

A graph is a well-defined mathematical model used to
express the relationship between different objects and is widely
used in many fields such as social sciences, biological systems,
and information systems. The edge distributions of many
large-scale real-world problems follow a power-law distribu-
tion [2], [11], [21]. Dense graph data structures and algorithms
consume too much memory to efficiently analyze very large
sparse graphs. Therefore, parallel algorithms for sparse graphs
[18] has become an important research topic.

Exploratory data analysis (EDA) [5], [12], [14] was pro-
posed by Tukey [22] and his associates in the early 1960s.
The basic idea of EDA is observing the data in as many
ways as possible until a succinct story of the data is apparent.
Tukey linked EDA with “detective work™ to summarize the
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main characteristics of data sets. Instead of checking a given
hypothesis with data, EDA primarily is for seeing what the
data can tell us beyond the formal modeling or hypotheses
testing task. In this way, EDA tries to maximize the value of
data in example use cases such as COVID-19 and Twitter [9]
[15].

Popular EDA methods and tools, which often run on laptops
or common personal computers, cannot hold terabyte or even
larger sparse graph data sets. Arkouda [16], [19] is an EDA
framework under early development that combines the pro-
ductivity of Python with world-class high-performance com-
puting. Arkouda allows data scientists to make use of the ad-
vantages of both laptop computing and cloud/supercomputing
together. Until now, Arkouda did not support graph analysis.

In this work, we provide a preliminary solution for integrat-
ing sparse graphs and their methods into Arkouda. The major
contributions are as follows.

1) A distributed parallel Breadth-First Search (BFS) graph
algorithm is developed using the high-level parallel
language Chapel. High productivity in algorithm design
and quick optimization in performance improvement are
the two major advantages of our Chapel based graph
algorithm development methodology.

2) The reverse Cuthill-McKee (RCM) algorithm, working
as a preprocessing step, is developed to further improve
the performance of the proposed BFS algorithm.

3) Experimental results show that the proposed method can
enable Arkouda to handle graph analytics problems at
scale. Based on the same algorithm framework, quick
and small tuning in high-level data structure and par-
allel construct selection can achieve more than 8 times
speedup.

II. ARKOUDA FRAMEWORK FOR DATA SCIENCE

As a high-level exploratory data analysis framework, Ark-
ouda aims to support not only flexible but also high-
performance large-scale data analysis. Python [20] is an inter-
preted, high-level and general-purpose programming language.
Python consistently ranks as one of the most popular program-
ming languages and has an ever-growing community. Python
has become a very powerful EDA tool. However, performance
and very large-scale data processing are two challenges of
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Python. Chapel [7] is a high-level programming language
designed for productive parallel computing at scale with the
portability and open-source nature of Python.

Arkouda integrates its front-end Python with its back-end
Chapel with a middle, communicative part ZeroMQ [13]. Ze-
roMQ is used for the data and instruction exchanges between
Python users and back-end services.

To break the data volume limit of Python, Arkouda provides
a virtual data view for its Python users. However, the real or
raw data is stored in Chapel on the back-end supercomputer.
Python users can use the metadata to access the actual big
data sets at the back-end. From the view of the Python
programmers, all data is directly available just like on their
local laptop device. This is why Arkouda can break the local
memory capacity limit, while at the same time bring traditional
laptop users powerful computing capabilities that could only
be provided by supercomputers.

III. DISTRIBUTED AND PARALLEL BFS ALGORITHM
A. Graph Data Structure

We borrow the basic idea of existing data structures and
propose our Double-Index (DI) , edge index and vertex index,
sparse graph data structure to enable directly locating vertices
from a given edge or locating edges from a given vertex. DI
has been described in detail in our other work [10] and here
we give a brief introduction.

DI has two important features: (1) significant memory
savings for large sparse graphs; (2) supporting easy and high-
level array operators.

The compressed sparse row (CSR) or compressed row stor-
age (CRS) or Yale format has been widely used to represent
a sparse matrix with much smaller space. Our double-index
data structure has some similarities with CSR. The major
differences between CSR and DI are as follows. (1) CSR
is a vertex-oriented data structure but DI is an edge-vertex
combined data structure. CSR cannot support edge ID-based
searching and edge-based graph partition efficiently. However,
our DI data structure can. Many real-world graphs follow
power-law distributions and their degrees are highly skewed.
Vertex-based graph partitions will cause serious load balancing
problems. Using the DI data structure, we can support edge-
based graph partitions to avoid the load balancing problem and
support quick edge ID-based searching to improve the analysis
performance. (2) In order to reduce the space cost as much as
possible, CSR introduces irregularity and ambiguity in its data
structure. DI is a balanced design and keeps its regularity and
semantic clarity with only a small additional space cost. To
save space, CSR assigns its row index array with two roles: a)
indicating the first non-zero value position in the value array
for a given row, and b) indicating the number of neighbors
of the giving row. The multiple roles of the CSR index array
will make the parallel programming codes hard to understand
and cause a performance problem. In the DI data structure,
we introduce an additional neighbor index array to explicitly
express the number of neighbors of a given vertex v. In this
way, we can make our vertex index array have a clear and
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unique meaning. The regularity and semantic clarity of the DI
data structure allows it to support the standard array or array
section-based parallel operators easily and efficiently.

B. High-Level Multi-Locale BFS Algorithm

We select one typical graph algorithm, Breadth-First Search,
to show how we can implement exploratory large graph ana-
Iytics in Arkouda. Two significant features of our parallel BFS
algorithm design are different from the existing BFS algorithm
design: (1) Our BFS algorithm can exploit parallelism in graph
search easily and efficiently based on the proposed DI graph
data structure. (2) We employ the high-level parallel language
Chapel to develop the BFS algorithm so we can significantly
improve the productivity of parallel algorithm design.

Very large graphs cannot be held in one shared memory
computer; however, they can be handled with distributed
memory computers, such as compute clusters to execute the
BFS in parallel. In Chapel, the locale type refers to a unit of the
machine resources on which one’s program is running. Locales
have the capability to store variables and to run Chapel tasks.
In practice for a standard distributed memory architecture, a
single multicore/SMP node is typically considered a locale.
Shared memory architectures are typically considered a single
locale.

The standard level by level BFS algorithm works as follows.
For each vertex at the current level or frontier, we will search
its unvisited next level vertices. When all the vertices at the
current level have been expanded, we will switch the next
level vertices to the current level and repeat the search until
no vertices can be expanded in the current level.

The basic idea of our algorithm is that we take advantage of
the multi-locale feature of Chapel to handle very large graphs
in distributed memory. The distributed data are processed at
their locales or their local memory. Furthermore, each shared
memory computing node can process its owned data also
in parallel. Our multi-locale BFS algorithm can exploit the
following features. (1) The edges of the DI graph data have
been distributed evenly onto the distributed memory to balance
the load. (2) Each distributed node only expands the vertices
it owns in the current frontier. This can be done in distributed
memory in parallel.

Our algorithm, shown in Alg. 1, uses high-level structures in
Chapel to implement a parallel breadth-first search algorithm.
The DistBag data structure can be used to hold the current and
the next frontier set easily and efficiently. At the same time, the
coforall and forall parallel constructs can express the parallel
expansion in a very efficient way. In line 8 multiple locales
can execute the search in parallel. In line 10 different vertices
in the current frontier can be expanded in parallel. In line 13,
different expanded vertices can be added into the next frontier
in parallel. We can exploit the parallelism in a hierarchical
way to improve the total performance.

In line 8, we use coforall instead of forall to implement
distributed parallel computing on each distributed memory
computing node. In line 11, we just select the vertices owned
by the current locale. In this way, we can increase the access
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Algorithm 1: high-level Chapel based parallel BFS for
distributed memory supercomputers

Input: A graph G and the starting vertex root
Output: An array depth to show the different visiting
level for each vertex
1 depth = —1 // initialize the visiting level of all the
vertices
2 depth[root] = 0 // set starting vertex’s level is 0
3 cur_level = 0 //set current level
4 SetCurF = new DistBag(int, Locales) // allocate a
distributed bag to hold vertices in the current frontier
5 SetNextF = new DistBag(int, Locales) // allocate
another bag to hold vertices in the next frontier
6 SetCurF.add(root) //insert the starting vertex into the
current vertices bag
7 while !SetCurF.isEmpty() do

8 coforall loc in Locales do

9 /I parallel search on each locale

10 forall ;i in SerCurF do

11 if i is on current locale then

12 SetNeighbor = Uk, k is a neighbor of ¢
13 forall j in SetNeighbor do

14 if depth[j] == —1 then

15 SetNextF.add(j)

16 depth|[j] = current_level + 1
17 end

18 end

19 end

20 end

21 end

22 SetCurF <=> SetNextF // exchange values

23 SetNextF.clear()

24 current_level+ =1
25 end

26 return depth

locality and avoid expanding the same edges on multiple
locales. Yet, we cannot avoid idle threads when the current
locale spawns a thread for the vertex owned by other locales.

IV. OPTIMIZATION AND COMPARISON

In this section, we introduce the reverse Cuthill-McKee
(RCM) method [3], [8] that is taken as a preprocessing
procedure to improve the locality of BFS. At the same time,
based on the same algorithm framework, we replace the
high-level Chapel data structure implementation with a low-
level implementation to compare the performance of the two
versions. In this way, we can show the efficiency of the Chapel
high-level data structures.

A. RCM Preprocessing

Many sparse matrix computations can be accelerated by
reordering the matrix to reduce its bandwidth. So, reordering
vertices of a graph can minimize data size, maximize data
locality and improve the performance of graph algorithms.
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However, optimal reordering with a minimal bandwidth is NP-
complete [17]. Hence, heuristic reordering algorithms are used
in practice.

The Cuthill-McKee algorithm (CM) is a heuristic algorithm
which permutes a sparse matrix that has a symmetric sparsity
pattern into a band matrix form with a small bandwidth. Given
a symmetric n X n adjacency matrix, the Cuthill-McKee algo-
rithm relabels the vertices of the graph to reduce the bandwidth
of the adjacency matrix. The reverse Cuthill-McKee algorithm
(RCM) is the same algorithm but with the resulting index
numbers reversed. In practice, this generally results in less fill-
in than the CM ordering when Gaussian elimination is applied.
So RCM is widely used in practical applications.

In this paper, we employ the RCM method as a preprocess-
ing step to relabel the vertices. In this way. we can improve
the BFS performance.

The basic idea of our heuristic RCM algorithm is as follows.
(1) Start from a vertex with the smallest degree and push the
vertex into a stack; (2) Search the vertices level by level using
the same method as in Alg. 1 and push the vertices in the next
frontier into the stack in increasing order of their degrees; (3)
Pop all the vertices from the stack to an RCM array and relabel
all the vertices using the RCM array’s index.

B. Low Level Multi-Locale BFS Algorithm

In the high-level BFS algorithm, we use two DistBag
classes to store all the vertices in the current frontier and the
next frontier. The communication between different locales is
implicit. This makes our parallel program simple and easy. To
evaluate the performance of such high-level data structures
in Chapel, we directly use arrays to hold the vertices in
the current and next frontiers and explicitly implement the
corresponding communication between different locales. In
this way, we can check if the high-level data structure DistBag
introduces significant performance overhead.

To optimize the performance, we use a distributed array
curFAry to clearly distinguish the frontier elements owned by
different locales. We also use a distributed array recvAry to
hold the expanded vertices from different locales. In this way,
we can exploit the locality and optimize the communication
during the graph search. The low-level algorithm is given in
Alg. 2.

From line 1 to line 6, the low-level BFS algorithm is just like
the high-level BES algorithm except that we replace SetCurF
with curFAry and replace SetNextF with recvAry. From line
7 to line 37 we implement an optimized breadth-first search
procedure. The basic algorithm structure is similar to Alg.
1. From lines 8 to 32, we will complete one level vertex
expansion. A set data structure SetNextFLocal is created to
hold the expanded elements owned by the current locale (line
9) and the elements can be added in parallel. If the expanded
elements do not belong to the current locale, we create another
set data structure SetNextFRemote to hold such elements (line
10). Instead of parallel search on all the current frontier
vertices, in the low-level version, each locale will first get its
owned vertices (line 11). Then, each locale uses the parallel
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construct coforall to expand the next frontier in parallel (line
12). The difference with Alg. 1 is that we put the expanded
elements into different sets. If they are local, we put them
into the SetNextFLocal set in parallel (from line 16 to line
18). If they are not owned by the current locale, we will put
them into SetNextFRemote (from lines 19 to 21). After the
vertex expansion at each level, each locale will scatter the
next frontier elements in the SefNextFRemote to their owners
(lines 26 to 28). At the same time, the elements of the next
frontier owned by the current locale SetNextFLocal will be
merged into the distributed array curFAry (lines 29 to 31). All
the above vertex operations can be done in parallel without
data races. The parallel construct coforall has an implicit
synchronization mechanism. So, after line 32, we can make
sure that all data communication has been completed, and we
can safely use the data in recvAry. From lines 33 to 35, each
locale will combine the next frontier elements generated by the
current locale and the other locales to form the current frontier.
The low-level BFS algorithm can exploit locality, avoid idle
parallel threads, and use an aggregation method to optimize
the communication performance. However, we have to take
care of the data distribution and data communication.

V. EXPERIMENTS
A. Experimental Setup

To evaluate the results of the proposed integrated solution,
we used two kinds of graphs. The first is the R-MAT method
[6] to generate the synthetic graphs. The other kinds of graphs
are from standard benchmarks. We develop a simple bsf.py
Python testing program to drive the experiments.

For the R-MAT graphs, we set the vertices count of four
different graphs as the following values: 32768, 65536,131072,
and 262144. The possibility of the dense edges area is set as
0.75. All other three parts’ possibilities share the remainder
0.25 equally. The average number of edges per vertex is two
so we will generate 65536, 131072, 262144, and 524288 edges
for different R-MAT graphs. We will generate both directed
and undirected R-MAT graphs.

The graph benchmarks utilized for testing include the
Delaunay, Kronecker (notation as KRON in the following
part), and Random Geometric graphs (notation as RGG in
the following part) from the 10th DIMACS Implementation
Challenge [4]. The number of edges and vertices will be
approximately doubled to reach the next graph in the same
benchmark series.

Testing of the methods was conducted in an environment
composed of a 32 node cluster with an FDR Infiniband
between the nodes in the cluster. Each node has two 10-
core Intel Xeon ES5-2650 v3 @ 2.30GHz and 512GB DDR4
memory. Infiniband connections between nodes are commonly
found in high-performing computers. Due to Arkodua being
designed primarily for data analysis in an HPC setting, an
architecture setup that aptly fits an HPC scenario was chosen
for testing.

For R-MAT, Delaunay, KRON, and RGG graphs, we will
first build the graphs into distributed memory based on our
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Algorithm 2: Low level parallel BFS for distributed
memory supercomputers

Input: A graph G and the starting vertex root
Output: An array depth to show the different visiting
level for each vertex
depth = —1 // initialize the visiting level of all the
vertices

2 depth[root] = 0 // set starting vertex’s level is 0
3 cur_level = 0 //set current level
4 Create distributed array curFAry to hold current
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frontier of each locale

Create distributed array recvAry to receive expanded
vertices from other locales

put root into curFAry

while ! curFAry.isEmpty() do

coforall loc in Locales do

create SetNextFLocal to hold expanded vertices
owned by current locale

create SetNextFRemote to hold expanded
vertices owned by other locales

myCurF < current locale’s frontier in curFAry
and then clear curFAry

coforall i in myCurF do

SetNeighbor = Uk, k is a neighbor of ¢

forall j in SetNeighbor do

if depth[j] == —1 then

if j is local then
‘ SetNextFLocal.add(j)

end

else
‘ SetNextFRemote.add(j)

end

depth[j] = current_level + 1

end

end

end

if | SetNextFRemote.isEmpty() then

scatter elements in SetNextRemote to
recvAry

end
if ! SetNextFLocal.isEmpty() then

‘ move elements in SetNextLocal to curFAry
end

end
coforall [oc in Locales do
‘ curFAry < collect elements from recvAry
end
current level+ =1

end
return depth




partition method and then execute the parallel BFS algorithm
with different numbers of locales to check their performance
(we will cancel some tests if the execution time is too long).
For R-MAT graphs, we implement the R-MAT algorithm to
generate the R-MAT graph in parallel each time. For the
benchmark graphs, each locale will read the graph file in
parallel using Chapel file IO and just select the data that
should be stored at its locale. After the graph data are ready in
memory, we will sort the edges and organize the graph based
on our DI data structure. Furthermore, for the high-level multi-
locale algorithm, we will show how a simple replacement
in the data structure and parallel construct can affect the
performance significantly.

B. Experimental Results

1) Graph Building: The experimental results from Fig. 1 to
Fig. 8 show the graph building time and the building efficiency
for different graphs in Arkouda. We can see that for Fig. 5 and
Fig. 7, the building time will increase linearly with the number
of edges, no matter how many locales are used. However,
it will take more time when handling the same number of
edges with more locales. The reason lies in the data movement
overhead among locales. More locales means that more data
movement between distributed memories will be needed. The
building efficiency in Fig. 6 and Fig. 8 also have perfect flat
lines. The flat line means that each core will have the same
efficiency no matter how many edges or how many cores
are used. Our experiments show that the best construction
efficiency of the RGG graph is 1736 edges/second/core. The
lowest building efficiency is 255 edges/second/core for the
largest R-MAT graph because the R-MAT graph will need
additional time to generate the graph.
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We model the graph building time with the following
multivariate nonlinear equation. Let E be the number of edges
in the graph and L be the number of locales that will be used
to build the graph. The building time will be

T(E,L)=axE/L+bx ExL+c

This model means that we assume that the computing time
will increase linearly with E//L and the communication time
will increase linearly with the product E x L. Table I gives
the regression results based on our experimental data.

For all the results, the Root Mean Square Error (RMSE)
is less than 390 and the R-squared value is larger than
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0.79 which means more than 79% of the observed varia-
tion can be explained by the model’s inputs. We can use
the models to do some predictions. For example, for the
com-friendster.ungraph.txt graph [1] which has 1,806,067,135
edges, the predicted building time on 2 locales will be 8.31
hours if we use the RGG data. In reality it takes 8.5 hours to
build the graph in memory and the predicted value is very close
to the practical value. However, if we use the data of Delaunay
and KRON that have less edges, the predicted building time
will be much longer. The experimental results in Fig. 1 and
Fig. 3 can help us see what happens for different graphs. We
can see in Fig. 1, locales with 8 and 16 have a good linear
growth trend. However, the curve with locale 4 will increase
very fast when the number of edges becomes larger although
the total number of edges is less than the number in the KRON
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ARKOUDA LARGE GRAPH BUILDING REGRESSION MODEL.

Regression Model

Benchmark | Delaunay KRON RGG

T(E, L)=_| 1.07e-04 /L + 1.22¢-06 *E'L -6.47¢+01 | 5.24¢-05 *E/L +1.43¢-06 "E*L +1.21e+02 | 2.76¢-05 *E/L +134¢-06 *E*L+ 1.52¢+02
T(E2=_| 55905 'E 29005 *E+ 121e+02 165¢-05 *E + 1.50¢+02

3.16-05 18805 *E + 121e+02

23105 T:80¢-05 *E + 1.21e+02

26105 *E -6.47e+01 261605 °E + 121e402

1.23e-05 *E + 1.52e+02
1.42¢-05 *E + 1.52¢+02
231e-05 *E + 1.52¢+02

TEA)=
TES=
TE16)=
RMSE__| 201.22 390.72 36249
R-squared_| 090 0.79 083
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and RGG benchmarks. The major reason is that compared with
the benchmark method, the R-MAT graph building method
will have additional graph generation time. When a graph
touches the limit of its computing resources or the heavy
workload watermark, it cannot maintain a linear trend. A heavy
load will reduce the core’s performance and efficiency. For
Fig. 3, the Delaunay graph’s building time with 2 locales will
also increase fast when the number of edges is larger than
25,165,784. The reason is that Delaunay graphs have much
more vertices than the other benchmarks. Therefore, for the
same number of edges, the Delaunay benchmark will need
more computation and memory. When the graph touches the
suitable resource limit, the lack of hardware resources will also
cause a loss in performance and efficiency. Going beyond the
resource bound is the major reason why the graph building
efficiency will decrease in Fig. 2 and Fig. 4. From all the
graphs, we can conclude that the graph building efficiency
curve will first increase, then stay almost the same, and finally
reduce when the graph workload touches the computing or
memory limit of the given platform.

2) BFS Performance: In this part, we will focus on the
performance comparison of different BFS implementations. So
we will use deterministic graph benchmarks instead of R-MAT
graphs that can lead to different performance with the same
method because of the randomness in the graphs.

We use four different Delaunay benchmark graphs to show
the performance of our BFS algorithms. We use Fig. 9 as
an example to explain the meaning of different algorithm
implementations. On the z axis, M means the result of our
manually optimized low-level Alg. 2. BagL is the result of
high-level multi-locale Alg. 1. BagG means that we will
remove line 11 of Alg. 1 and all locales will search on the
whole frontier instead of the vertices owned by itself. SetL
is the case that we just replace the high-level data structure
DistBag with Set in Alg. 1. Except for using the Ser data
structure, SetG is similar to BagG. DomL and DomG are
similar with SerL and SetG except we will replace DistBag
with Domain. In our high-level multi-locale BFS algorithm
framework, DistBag, Set and Domain can provide the same
function to store the current frontier and the next frontier
elements. At the same time, they also have the same or similar
methods to use the data structure. For example, they all have
the add function to add element into DistBag, Set or Domain.

For all the high-level multi-locale BFS methods in Fig. 9
to Fig. 12, the legend ForAll means we will use forall parallel
construct to expand the vertex at line 10 in Alg. 1. The legend
CoForAll means that we will use the coforall parallel construct
to expand the vertices. However, for the manually optimized
low-level method, the legend CoForall means that we will use
the coforall parallel construct to expand the owned vertices by
each locale at line 12 in Alg. 2. The legend ForAll means that
we will use the forall parallel construct to expand the owned
vertices by each locale.

From the experimental results in Fig. 9 to Fig. 12, we
have the following observations: (1) For all the data structures
DistBag, Set and Domain, the performance of distributed
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parallel computing version (BagL, SetL and DomlL) will be
better than the shared computing version (BagG, SetG and
DomG). It is easy to understand that the shared computing
will have a significant amount of duplicated computations
and the distributed resources cannot be used efficiently. (2)
For most of the distributed parallel computing versions, the
performance of the forall parallel construct is better than
the coforall parallel construct. The reason is that the size
of our frontier (from hundreds to thousands and beyond) is
relatively larger than the parallel units (20 in our system).
The coforall construct will generate many parallel threads
but they cannot be run immediately. So the forall parallel
construct that only generates the same number of threads as
the maximum cores will be more efficient. However, for our
manually optimized low-level version, the coforall parallel
construct implementation has better performance when the
graph size is small. The performance of forall will catch up
when the graph size become larger (see Fig. 12). The reason
is that our low-level implementation can avoid idle threads
and the number of parallel threads created by coforall is less
than the high-level implementation (about 1/numLocales of
the size of the current frontier). (3) For different high-level
data structures (DistBag, Set, and Domain), their optimized
forall parallel performance is very close to each other. The
major operation in our algorithm is to add an element into a set
in parallel. Surprisingly, DistBag has not shown any obvious
advantage in our preliminary tests. (4) Our manually optimized
low-level algorithm cannot have better performance than the
high-level algorithms. This means that Chapel’s high-level data
structures (DistBag, Set, and Domain) can implement the data
insertion into a set and the communication among different
locales with high performance.

The major advantage of our manually optimized low level
implementation is that we can extend the vertices owned
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by different locales independently to get the next frontier
without generating any idle threads. However, for the high-
level method, we have to create the same number of threads
on each locale to check if the element is owned by the local
locale. If a vertex is not owned by the current locale, this
thread will become idle. The disadvantage of our low-level
method is that we have to create two additional sets to keep the
local elements and remotes. And we need to send the remote
elements to their owners. We will incur additional costs for
such operations.

In Table IT we present the experimental results without and
with RCM preprocessing results. In the column of “RCM”,
“N” means without RCM preprocessing, and “Y” means with
RCM preprocessing. We can see that the RCM method can
substantially improve the performance in almost all cases. The
best performance can be improved by about 1.24 fold for the
four different benchmarks. Please note that these times are not
inclusive of the preprocessing time.

TABLE I

EXECUTION TIME OF DIFFERENT BFS IMPLEMENTATIONS.
Graph Parallel Construct | RCM M Bagl | BagG SetL SetG DomL | DomG
CoForall N 22.20 1687 | 32.28 18.84 | 33.05 17.18 | 32.06
delaunay_n17 Y 14.90 14.77 | 26.68 16.94 | 29.11 14.42 | 26.65
- Forall N 6342 | 1428 [ 4414 | 13.97 | 2699 | 1420 [ 27.02
Y 2428 | 10.85 [ 3375 [ 12.02 | 21.85 | 12.16 | 21.85
CoForAll N 48.57 | 3376 | 6458 [ 43.08 [ 70.55 | 34.25 | 63.84
delaunay_n18 Y 31.08 | 3091 55.62 | 47.10 | 70.52 | 32.51 55.58
- ForAll N 15539 | 2837 [ 87.79 | 27.59 | 53.58 | 28.26 | 54.07
Y 37.56 | 2337 | 7345 25.28 | 43.52 | 25.58 | 44.05
CoForAll N 11093 | 68.72 | 131.04 | 102.32 | 156.55 | 69.08 | 128.39
delaunay_n19 Y 63.77 | 63.83 | 114.82 [ 114.05 | 159.83 | 62.55 | 109.56
o ForAll N 45323 | 56.54 | 17588 | 55.62 | 107.17 | 56.49 | 107.56
Y 69.90 | 46.23 | 141.92 | 49.65 86.68 | 50.27 | 86.50
CoForAll N 259.44 | 139.16 | 265.08 | 255.28 | 361.99 | 138.98 | 258.44
delaunay_n20 Y 126.62 | 127.22 | 231.47 | 286.72 | 386.11 | 133.12 | 229.45
- ForAll N[ 305.01 [ 125.89 | 387.61 | 120.19 | 236.20 | 123.91 [ 236.66
Y 172.16 | 92.87 | 293.59 | 99.46 | 176.49 | 101.05 | 176.03

The performance results show that for the same algorithm
framework, we can select suitable data structures and parallel
constructs to achieve much better performance in Chapel
programming. So we can quickly optimize the performance
and this is the basic reason why we can develop parallel graph
algorithms in Chapel in a productive and efficient way.

VI. CONCLUSION

This work shows that Arkouda is a promising framework
to support large-scale graph analytics. Of course, the reported
work is the first step to evaluate the feasibility and performance
of Arkouda based large graph analytics. In future work, we
will provide more graph algorithms and further optimize the
performance of our algorithms in Arkouda. At the same time,
we will compare our method with other approaches.
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