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inundation in nearby neighborhoods (Itoh, Ikeda, Nagayama, & Miz
uyama, 2018; Merwade, Cook, & Coonrod, 2008). However, H&H 
models have two major limitations in terms of informing about the 
vulnerability of flood control networks. First, components of a flood 
control network have different levels of vulnerability to disruption 
during a flooding event. To account for interdependencies in flood 
control infrastructure, prioritization of flood risk reduction investments 
would require analysis of the topology of flood control networks to 
identify the most vulnerable components. Second, hydrodynamic 
models allow the representation of the flooded depth and the extent of 
the flooding areas. However, the translation of such outputs for flood 
control infrastructure vulnerability assessment is rather limited. For 
example, the spatio-topological configuration of the channel network as 
a system property can significantly affect flood control performance. 
The existing H&H models, however, provide limited insights in per
forming system-level flood control network vulnerability assessment 
and identifying the vulnerable infrastructure components for prioriti
zation of risk reduction investments. To address this gap, this paper 
proposes a new graph-based methodology for vulnerability assessment 
of flood control networks. Through the use of the graph-based meth
odology, a channel vulnerability index is defined as a combination of 
three influencing characteristics: (1) co-location exposure, (2) upstream 
channel susceptibility, and (3) discharge redundancy. Each attribute is 
determined using graph-based network measures. Accordingly, the 
output of the proposed methodology identifies vulnerable channels for 
flood control infrastructure enhancement to inform hazard mitigation 
and resilience management plans for flood risk reduction prioritization. 

The remainder of the paper is organized as follows. Section 2 pro
vides a literature review on related flood control network vulnerability 
analysis. Section 3 introduces the conceptualization of flood control 
network vulnerability and describes the modeling approach for assess
ment of the vulnerability of channels using graph theory. Section 4 il
lustrates the application of the proposed framework in two watersheds 
located in Harris County (Texas, USA) and discusses the implications of 
the results for policy-making in flood risk reduction. Section 5 summa
rizes the conclusions and contribution of the study and discusses the 
limitations and future research directions. 

2. Literature review 

Flood risk reduction strategies are categorized into four main groups 
including resistance, avoidance, acceptance, and awareness strategies 
(Brody & Atoba, 2018). Conventionally, urban areas rely on resistance 
strategies in which protective structures such as levees and dams are 
built to limit the inundation of downstream regions. However, recent 
trends show that solely relying on resistance strategies is not effective for 
flood risk mitigation (Kundzewicz, Hegger, Matczak, & Driessen, 2018). 
It is generally argued that using a diverse set of strategies increases the 
redundancy of the flood mitigation portfolios and leads to optimal risk 
reduction (Hegger et al., 2016). In this regard, researchers and practi
tioners advocate the effectiveness of avoidance strategies in which the 
objective is to remove development or steer it away from the most 
vulnerable areas and acceptance strategies, which allow flooding in 
specific areas or under certain conditions to protect the other areas and 
provide a relief valve when the volume of stormwater runoff is extensive 
(Brody & Atoba, 2018). Awareness strategies also focus on enhancing 
the knowledge among citizens and decision-makers using tools such as 
social media outlets, education and training programs, and workshops. 

Flood control infrastructure networks play a pivotal role in devising 
and implementing avoidance and acceptance strategies for flood risk 
reduction. In flood control networks, improving the performance of the 
channel network by increasing the discharge capacity of channels is a 
standard avoidance strategy for flood risk reduction (Mugume & Butler, 
2017). Moreover, flood acceptance is often achieved through the con
struction of storage facilities or dedicating open spaces for stormwater 
retention (Ellis, 2013). Therefore, proper management of flood control 

networks can be achieved by focusing on both performance improve
ment of channel network and development and maintenance of storage 
facilities that absorb the excessive stormwater, which consequently re
duces flood risks at the urban scale. 

Performance of flood control networks is a function of the charac
teristics of different infrastructure components such as reservoirs, dams, 
channels, and floodgates (Ogie, Dunn, Holderness, & Turpin, 2017; 
Ogie, Holderness, Dunn, & Turpin, 2018), as well as interdependencies 
between the functionality of these different components (Dong, Yu, 
Farahmand, & Mostafavi, 2019; Dong, Yu, Farahmand, & Mostafavi, 
2020b; Dong, Yu, Farahmand, & Mostafavi, 2020c; Rinaldi, Peer
enboom, & Kelly, 2001). Hence, vulnerability assessment of flood con
trol networks would require identifying the components that need to be 
prioritized to enhance the performance of the network from a system 
perspective. For example, prioritizing channels for enhancement or 
constructing new storage facilities should not be done based on the 
impact of the enhancement project on the component itself, it should 
rather consider the changes of vulnerability in other interdependent 
components of the system. The standard flood risk assessment is often 
conducted using H&H models (Al-Sabhan, Mulligan, & Blackburn, 2003; 
Itoh et al., 2018). In these models, flow rates are estimated based on 
employing rainfall-runoff and streamflow projecting models (Gori et al., 
2019; Lü et al., 2013), as well as soil properties and topological structure 
of the flood control network (Amezquita-Sanchez, Valtierra-Rodriguez, 
& Adeli, 2017). However, H&H models provide limited insights from 
an infrastructure risk management and vulnerability assessment 
perspective. First, H&H models do not capture the interdependencies in 
the flood control network (Dong et al., 2019). Interdependence is a 
system-level phenomenon in which the extent to which a component is 
vulnerable due to the potential negative impacts of other interconnected 
components is characterized. Second, flood control networks have 
complex network configurations in which the network attributes such as 
topology of the network is a determinant of the system vulnerability 
(Tejedor et al., 2017; Tejedor, Longjas, Zaliapin, & Foufoula-Georgiou, 
2015a). Hence, network attributes of flood control infrastructure 
should be considered in the assessment of vulnerability. Third, although 
H&H models can identify the high flood risk regions, the resultant flood 
risk maps provide limited insights for infrastructure vulnerability 
reduction. These flood maps often cannot inform the infrastructure 
network vulnerability reduction decisions and help to devise proper 
strategies to reduce vulnerability from a system perspective. Infra
structure network vulnerability reduction requires identification of the 
most susceptible channel components and also ones that contribute to 
the vulnerability of the system as a whole (Lu et al., 2018). Thus, there is 
a need for system-level vulnerability assessment in the flood control 
network (Dong et al., 2019) to complement standard H&H models for 
infrastructure prioritization towards flood risk reduction at the urban 
scale. 

Modeling infrastructure network as a graph where individual infra
structure components are represented as links or nodes has been shown 
as a powerful tool to analyze system attributes and interdependencies 
affecting vulnerability (Latora & Marchiori, 2005). Network analysis has 
been successfully applied to analyze vulnerability in various in
frastructures such as water, wastewater, road, and drainage networks 
(Dong, Wang, Mostafizi, & Song, 2020; Jenelius & Mattsson, 2015; 
Maltinti, Melis, & Annunziata, 2012; Meng, Fu, Farmani, Sweetapple, & 
Butler, 2018). A limited number of studies have employed network 
analysis to examine flood control networks. For example, in the context 
of artificial drainage networks, using network properties such as 
between-centrality, network analysis has been used to identify sub- 
networks that can be independently managed (Benjamin, Jonathan, & 
Patrick, 2008). In another example, the application of network analysis 
has been shown for finding the optimal location of sensors that are used 
to manage and control hydrologic infrastructures located on a flood 
control network. In this regard, network properties are used to find the 
combination of sensors with maximum network coverage (Ogie, Shukla, 
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Sedlar, & Holderness, 2017). Network theory and optimization would 
also help to select the location and size of retention basins in a water
shed, which results in the most cost-effective basin configuration that is 
also capable of controlling flood optimally (Travis & Mays, 2008). For 
pump operation management in retention basins and evaluating the 
effect of capacity expansion on the resilience of the drainage network, 
the analysis of network topology has been shown to be informative (Lee, 
Lee, Joo, Jung, & Kim, 2017). 

In another stream of research, several studies have focused on the 
application of network analysis for assessment of vulnerability in the 
natural and artificial waterway systems. For example, network analysis 
has been used for vulnerability assessment of deltaic systems (Tejedor 
et al., 2015a), where different topological attributes of the network have 
been employed to measure the complex and dynamic characteristics of 
delta networks such as structural overlapping and entropy-based 
complexity (Tejedor, Longjas, Zaliapin, & Foufoula-Georgiou, 2015b). 
Also, based on the analysis of topological attributes in a network of 
channels, Ogie et al. (Ogie, Perez, Win, & Michael, 2018) developed a 
methodology to quantify the vulnerability of hydrological in
frastructures such as pump stations and floodgates that are located in a 
network of waterways (Ogie, Holderness, Dunbar, & Turpin, 2017; Ogie, 
Perez, et al., 2018). Probabilistic network models such as Bayesian 
network analysis has also been applied for the flood vulnerability 
assessment. In the methodology developed by Wu et al. (Wu, Xu, Fengt, 
Palaiahnakote, & Lu, 2018), a Bayesian network analysis approach was 
used to model temporal flow rates (Wu et al., 2018). 

The review of the literature shows that network analysis can provide 
valuable insights for the assessment of vulnerability in interconnected 
infrastructure that consists of a network of components (such as chan
nels and waterways). Despite the growing use of network analysis for 
examining infrastructure systems and their interdependencies, vulner
ability, and resilience, the existing literature lacks a graph-based 
methodology and relevant measures for analyzing vulnerability in 
flood control networks to inform infrastructure prioritization for urban- 
scale flood risk reduction. Due to the specific characteristics of flood 
control networks (e.g., the need for consideration of flow and relation
ship between upstream and downstream components), the existing 
graph-based methodologies (mainly based on percolation theory) 
cannot be used for vulnerability assessment of flood control infrastruc
ture. Hence, there is a need for a graph-based methodology that can 
capture the characteristics of flood control infrastructure and help to 
identify the components contributing to the vulnerability of the systems. 
To address this methodological gap, this paper presents a new graph- 
based methodology to assess flood control network vulnerability. In 
the proposed methodology, the vulnerability of channels in flood control 
networks is characterized based on the susceptibility and exposure levels 
from the upstream channels and upstream storage facilities, as well as 
the redundancy of the channel to discharge the stormwater runoff. Three 
network-based measures are devised and examined to capture and 
represent the vulnerability of each channel in the network. The resulting 
vulnerability index can be used for characterizing the spatial distribu
tion of highly vulnerable channels to inform flood risk reduction and 
infrastructure improvement programs. Besides, the results of the pro
posed methodology would identify regions that are hotspots of vulner
ability and could be a candidate for the construction of storage facilities 
in immediate downstream based on consideration of land availability 
(Ogie, Shukla, et al., 2017). Accordingly, the proposed graph-based 
methodology and measures can complement the existing H&H models 
for assessment of the risk of flooding in urban areas. 

3. Methodology 

3.1. Vulnerability in flood control networks 

Different definitions and measures have been proposed for assessing 
vulnerability in infrastructure systems (Batouli & Mostafavi, 2018; 

Murray & Grubesic, 2007; Rasoulkhani & Mostafavi, 2018; Wang, Hong, 
& Chen, 2012). According to Balica et al. (Balica, Wright, & van der 
Meulen, 2012a), in case of flooding, the vulnerability of the system is the 
encapsulation of its susceptibility to hazard disruption along with its 
capability to cope with, recover, and/or adapt to the hazard. Vulnera
bility of a system component, in this definition, should capture three 
essential attributes: (1) exposure: the extent to which a component is 
exposed to hazard (such as intense flow rate); (2) susceptibility: the extent 
to which a component is susceptible to failure, disruption, or other 
predefined adverse condition (such as overflow); and (3) redundancy: to 
what extent a component has buffer (such as local retention) to avoid 
failure. 

In case of flood control network vulnerability assessment, the 
inherent characteristics of each channel (component), as well as the 
spatio-topological properties of the network need to be examined. This 
study considers the discharge capacity as the most significant inherent 
characteristic of channels in the assessment of vulnerability. The anal
ysis of vulnerability also considers three attributes of channels that are 
derived from the position of the channel in the network topology. A 
combination of these three attributes along with the discharge capacity 
can be used for characterizing the vulnerability of a channel. In this 
context, the exposure and susceptibility of channels are attributed to the 
volume of stormwater in the upstream of the channel. However, there 
are three inherently different sources of hazard-causing exposure and 
susceptibility for a channel as explained below. 

3.1.1. Susceptibility 
Stormwater runoff in the channels in the upstream of a channel pose 

a risk to the downstream channel. The stormwater runoff from the up
stream can potentially cause an overflow in the downstream channel 
and surrounding neighborhoods (Tejedor et al., 2015a; Tejedor et al., 
2015b). The greater the volume of stormwater in the upstream channels, 
the greater the exposure to the flood risk in the channel. In addition, the 
higher relative capacity of a downstream channel compared to channels 
in upstream means that the channel is less susceptible to the increased 
flow in the upstream channels. 

3.1.2. Exposure 
Stormwater runoff stored in storage facilities (such as retention ba

sins or reservoirs) in the upstream of a channel exposes the channel to a 
significant surcharge of stormwater if the generated stormwater runoff 
exceeds the capacity of the facility. In other words, the channel is also at 
risk of overflow in case of an exceedance of stormwater runoff from the 
capacity of storage facilities in the upstream. Hence, exposure is a 
function of proximity to the storage facility in the upstream and the risk 
of overflow in the facility. The risk of overflow is also a function of the 
volume of stormwater that the storage facility is designed to absorb (i.e., 
stormwater runoff in the upstream of the facility), as well as the capacity 
of the storage facility to store stormwater runoff. 

While exposure and susceptibility increase the vulnerability, there is 
another attribute (i.e., redundancy) that reduces the vulnerability of a 
channel. Redundancy is a positive attribute of a component or a system 
capturing the extent of buffer in case of a disruption. For the case of the 
flood control network, redundancy is characterized as follows: 

3.1.3. Redundancy 
Redundancy refers to the ability of a channel to properly discharge 

the stormwater runoff flow to the downstream (Ogie, Holderness, et al., 
2018). The redundancy is a function of (1) the number of alternative 
paths that the channel relies on to discharge the runoff and (2) the 
possibility of blockage in stormwater discharge (If a channel is close to a 
sink node such as a storage facility or an outlet, the channel is subject to 
less flood risk due to the blockage in the downstream channels). In other 
words, building a storage facility in the downstream increases the 
redundancy of channels in the upstream by absorbing the risk of 
blockage in the downstream channels. 
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3.2. Modeling flood control network using graph theory 

In modeling the flood control network as a directed graph, each el
ements of vulnerability can be formulated based on the definitions 
provided in the previous section and utilizing channel characteristics 
and network topology. A flood control network consists of a set of 
spatially connected channels that drain stormwater runoff generated by 
extreme rainfalls to the outlet(s) (which are either naturally existed or 
artificially built to prevent inundation and overflow in the neighbor
hoods). Considering each channel as an edge, a flood control network 
can be modeled as a graph G = (V,E), in which channels are the links E ⊆ 
{eij|eij ∈ V2}, and nodes V = {v1,v2,…,vn} are the joints connecting the 
channels or storage facilities. In addition, there is generally no loop in 
gravity-based flood control systems. Hence, a flood control network can 
be modeled as a Directed Acyclic Graph (DAG). Fig. 1 shows a schematic 
representation of the DAG model of a flood control network. In the DAG 
model, edges are the channels and the discharge capacity of edges can be 
attributed to the weight of edges. For example, in Fig. 1, where channel 
weights are shown on the channels, the discharge capacity of channel bc 
(0.2) is twice more than the discharge capacity of channel ab (0.1). 
Nodes in the DAG model of channel networks can have different attri
butes. For example, nodes can represent transition points where channel 
capacities changes, channel intersections, basins, or outlets. In the DAG 
model of the flood control network, edges have different attributes such 
as length and flow capacity that can be used to characterize vulnera
bility. Flow capacity is the maximum rate of discharge that a channel 
can provide. 

For calculation of vulnerability attributes, we applied topological 
ordering in the DAG model of channels. For graph G = (V,E),an ordered 
list of nodes Ω = {ν1,ν2,…,νn} is called a topological ordering if for all 
edges νiνj ∈ Ω, then i < j. Algorithm 1 can be used to perform topological 
ordering in a DAG and generate a sorted listed of nodes in a graph (Koller 
& Friedman, 2009). A sorted list of a directed graph can ease 

determining the set of channels and storage facilities in the upstream 
and downstream of a channel and facilitates the calculation of attributes 
that are defined to characterize vulnerability in flood control networks 
in this study. In the following sub-section, we formulate the vulnera
bility attributes described in Section 3.1, and then, combine these three 
attributes to devise a channel vulnerability index. 

Algorithm 1. Topological Sorting of Graph G   

3.3. Formulization of channel vulnerability in flood control network 

3.3.1. Co-location exposure 
Overflow risk exposure in co-located storage facilities in the up

stream can contribute to a channel's vulnerability (Tung, 2018). In this 
framework, we consider the overflow risk of a storage facility based on 
the ratio of the stormwater volume in its upstream to its storage capacity 
as follows: 

Гb =
Exposureb

Capb
(1) 

Where Гb represents overflow risk of a storage facility b, Exposureb is 
the volume of stormwater that can be stored in the channels in the up
stream of facility b, and Capb is the capacity of facility b. The lower the 
ratio, the more capable the facility to absorb the upstream stormwater 
and prevent overflow in the downstream channels. From a flood control 
perspective, storage facilities such as retention basins can be designed 
and constructed to reduce the risk of overflow in the downstream by 
collecting the runoff generated in the upstream. In case the runoff inflow 
exceeds the design capacity of the facility, the downstream channels are 
exposed to risk of excessive flow that could cause overflow. Therefore, to 
characterize the exposure for a channel, we need to know (1) the storage 
facilities in its upstream and the distance between them, which impacts 
the exposure risk, and (2) the exposure risk of the facilities that con
tributes to the vulnerability of the channel. Considering these two fac
tors, we designed Algorithm 2 for quantifying the co-location exposure 
risk of each channel. 

Algorithm 2 presents the procedure for calculating Co-Location 
Exposure (CLE) in each channel. The procedure can be divided into 
three steps. First, the overflow exposure for each storage facility is 
calculated (sub-algorithm 2.1) by summing up the storage capacity of all 
the upstream channels, which for each channel is the volume of 
stormwater that can be stored in the channel. For example, in the 
channel network in Fig. 1, exposure for storage facility b is equal to the 
storage capacity of channel ab that equals the length of channel ab 
multiplied by the area of the channel cross-section. For storage facility l, 
all the channels in its upstream contribute to the exposure of the facility, 
which include all channels in the network except channel ab and 
channels km and lm. Then, for each channel, the storage facilities located 
in the upstream of the channel are identified (sub-algorithm 2.2). 
Finally, the CLE of a channel is calculated given the overflow exposure of 
its upstream storage facilities and the distance between the channel and 
the storage facility (disi, b), by summing over all upstream facilities (sub- 

Fig. 1. Modeling a network of channels as a Directed Acyclic Graph (DAG) 
consist of channels with different capacities and different types of nodes. 
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algorithm 2.3). for example, in Fig. 1, both facilities b and l contribute to 
the CLE of channel lm, while only facility b is considered for calculation 
of C = the CLE of channel ci, and there is no facility contributing to the 
CLE of channels in the upstream of node h. It should be noted that for the 
calculation of overflow risk for a facility, only the channels that are 
located between the facility and facilities in the upstream are calculated. 
The assumption is that each storage facility absorbs the stormwater 
runoff for all channels in its upstream, and therefore, no risk exposure 
would be transferred to the other storage facilities in downstream. 
However, it should be noted that this assumption does not consider cases 
that multiple storage facilities may fail concurrently and overflow in the 
upstream facility can impact the facility in downstream. Integration of 
concurrent failure risk should be addressed in the future research. 

Algorithm 2. CLE Calculation for Graph χ  

3.3.2. Upstream channel susceptibility 
Flow dynamics of flow transport is one of the factors greatly influ

ence the vulnerability of the channels in flood control networks. H&H 
models quantify flow transport dynamics using the differential equa
tions as well as hydrology and surface characteristic inputs. In this study, 
we adopted the approach developed by Tejedor et al. (2015a) to 
consider the transport dynamics in graph-based analysis of river and 
channel networks. To do so, we developed Upstream Channel Suscep
tibility (UCS) index that examines the extent to which a change in flow 
of upstream channels can impact the flow of a channel by aggregating 
impacts that the flow from all its upstream channels inflict on the 
channel of interest. Algorithm 3 shows the calculation procedure. To 

calculate the UCS value for each channel, first, a fixed percentage of 
increase in the flow of the channel is considered (ρ). The influence of 
upstream channel u on the susceptibility of channel i is denoted by ηiu

ρ , 
which shows the ratio of increase in flow of channel u that leads to in
crease in flow of channel i in the downstream of u by ratio ρ. In this 
calculation, it is assumed that the flow of channel i is influenced by 
channels that are in the upstream of channel i but not in the upstream of 
any storage facility that channel i is exposed to. In fact, the influence of 
channels in the upstream of any storage facility that channel i is exposed 
to considered to be absorbed by the facility and the risk of overflow is 
reflected in the calculation of CLE. For example, in Fig. 1, the flow in the 
channel ci is influenced by the changes in the flow of channels bc and dc, 
and the influence of channel ab is considered in the CLE of the channel 
that considers the overflow risk of facility b. 

A high UCS value means that a channel is susceptibility to the in
crease in flow of channels in the upstream. A high UCS value can be due 
to: (1) lower capacity of a channel compared to the channels in the 
upstream and (2) the channel being linked to a large number of channels 
in the upstream. To reduce the UCS, additional storage facilities can be 
added in the upstream of the channel to reduce the number of channels 
in the upstream whose flows lead to the downstream channel. Increasing 
the downstream channel capacity can also reduce its susceptibility. 
Thus, the UCS measure also captures the extent to which an increase of 
discharge capacity in a channel leads to an increase in the vulnerability 
of other channels in the downstream. Accordingly, the UCS measure 
informs infrastructure enhancement decisions considering the system- 
level impacts of the decision rather than focusing on the regional 
consequence of an enhancement project. 
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Algorithm 3. UCS Calculation for Graph χ  

3.3.3. Discharge redundancy 
Discharge Redundancy (DR) of a channel depends on the number of 

sink nodes that the channel can drain to (i.e., outlets and basins in the 
downstream). DR captures the redundancy of the channel to discharge 
stormwater runoff in case of a disruption in the downstream. Any 
disruption in the downstream of a channel influences the stormwater 

flow in the channel and can cause runoff propagation into the neigh
borhood. For example, blockage of channels in the downstream due to 
sediment or debris accumulation could lead to overflow in upstream 
channels. Two factors could impact the redundancy of a channel. First, 
the higher number of paths to sink nodes increases the discharge 
redundancy since, in case of blockage in a path, an alternative path can 
discharge the stormwater flows downstream. Second, discharge redun
dancy is influenced by the distance between a channel and sink nodes. In 
this regard, any downstream blockage could cause runoff back
propagation. The risk of blockage is associated with the length and size 
of the channels that connect the channel to the sink node. A longer and 
larger channel poses higher risk of blockage (Aerts et al., 2018). DL is 
calculated by assigning weights to different paths between channels and 
sink nodes, where path's weights are functions of the distance between 
the channel and the sink node. Thus, discharge redundancy is calculated 
by assigning weights to different paths between channels and sink 
nodes, where a path's weights is a function of the distance between the 
channel and the sink node. The summation of the weighed paths, then, 
determines the discharge redundancy of a channel. 

Algorithm 4. DR Calculation  

Table 1 
Characteristics of Brays bayou and Greens bayou Watersheds (C. of Houston, 
2017).  

Characteristic Watershed 

Brays bayou Greens bayou 

Drainage Area (sq. Miles) 127 212 
Open Streams (Miles) 12 308 
Population (2010 U.S. Census) 717,198 528,720 
Primary Streams Brays bayou 

Keegans bayou 
Willow Waterhole bayou 

Garners bayou 
Greens bayou 
Halls bayou 
Reinhardt bayou  

Fig. 2. Overview of the proposed framework.  
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facilities. The road density map shows that the construction of these 
facilities was a feasible option in these areas. Similarly, in the Southwest 
of the watershed, the construction of storage facilities may reduce the 
vulnerability of channels since the map shows that there should be 
sufficient open spaces in the region. 

5. Concluding remarks 

This paper presents a graph-based methodology and measures for 
analyzing and characterizing vulnerability in flood control infrastruc
ture (e.g., channels and rivers). The proposed methodology departs from 
the existing H&H models for analyzing urban-scale flood risk due to: (1) 
its focus on flood control systems to inform infrastructure prioritization; 
(2) its capability to capture structural topology and interdependencies 
among different channels in assessment of vulnerability; (3) its charac
terization of vulnerability based on three fundamental attributes: Co- 
Location Exposure (CLE), Upstream Channel Susceptibility (UCS), and 
Discharge Redundancy (DR); (4) its ability to examine system-level ef
fects of risk reduction measures; and (5) its ability to evaluate channel 
vulnerability without the need for extensive data and computational 
resources and efforts (as usually required in H&H modeling). 

The application of the proposed methodology and measures in two 
watersheds in Harris County shows the capability of the proposed 
vulnerability characterization framework and index in identifying the 
vulnerable channel components. The results of the case study show that, 
other than the properties of channels and network structure, storage 
capacity can significantly impact the spatial patterns of vulnerability in 
the flood control network. For example, the Northwestern region of 
Greens bayou watershed presents lower vulnerability due to the pres
ence of distributed storage facilities. In the downstream of the Garners 
bayou, the abundance of open spaces for storage of runoff contributes to 
the low vulnerability of channels in this region. In densely urbanized 
areas such as the downstream of Halls bayou where the construction of 
storage facilities in not feasible, channel enhancement would be a more 
feasible infrastructural solution. However, the impact of channel ca
pacity increase on downstream channels should be considered. 

H&H models provide valuable insight for the determination of 
inundated areas and assessment of damages. However, from the infra
structure management and hazard mitigation perspective, there is a 
critical need for identifying the causes of such vulnerabilities in flood 
control network. In fact, the results of the H&H models enable accu
rately determining the expected inundation maps and estimating flood 
damages, which help preventing damages by avoiding further urban 
developments in areas with higher risk of inundation and preparing 
emergency response needs for areas with high risk of inundation and 
damage. However, from flood control infrastructure perspective, prac
titioners need to have a better understanding regarding why a specific 
area has risk of inundation and how flood control network can be 
improved in order to reduce the risk. The proposed framework enables 
vulnerability assessment and cause identification and helps policy 
feasibility evaluation for risk reduction (e.g., development prioritiza
tion, channels widening, storage facilities placement, storage capacity 
expansion, and redundancy building). This all attributes to the proposed 
graph-based vulnerability index that encapsulates the impact of network 
topology and storage facility on flood control network vulnerability. 
Hence, the proposed method and measures can provide useful tools for 
decision-makers to effectively allocation limit resources to infrastruc
ture investments that systemically reduce vulnerability in different 
watersheds (or systems of watersheds). 

The proposed framework and this study present multiple avenues for 
further development in future research. First, land characteristics such 
as the proportion of impervious surface, land slope, and development 
pattern of each channel can be included in determining the overflow risk 
calculation. This study aimed to assess the vulnerability for channels 
from a system-level perspective considering topological network prop
erties, and therefore, it does not consider any specific rainfall scenario 

for the analysis. The outcomes of the H&H models can be integrated 
with the proposed vulnerability assessment framework to examine the 
vulnerability in channels given different flooding scenarios (under 
different rainfall intensities). In addition, a probabilistic scheme for 
considering flow change in each channel can be included to encapsulate 
the flow dynamics of the flood control network. Moreover, future 
research can consider the flow impact from hydrological factors, as well 
as the risk of overflow. For example, type of the channel (i.e., 
meandering or straight) can greatly impacts the flow rate (C. of Houston, 
2017). Hence, future research can examine the impact of such factors on 
the vulnerability quantification. Finally, a system-level vulnerability 
assessment can provide insight for decision makers to identify vulner
able components that exacerbate the vulnerability of the whole system. 
However, prioritization of corresponding mitigation actions requires a 
thorough understanding of the potential impacts (e.g., losses related to 
population, environmental impacts) of different flood scenarios. 
Therefore, a combined system-level vulnerability assessment and flood 
impact analysis will be conducted in our future research to enable the 
identification of targeted mitigation actions based on their contribution 
to the reduction of flood impact. 
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