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The number of catastrophic events such as extreme rainfalls and hurricanes has been growing. These events pose
a major threat to the life safety and economic prosperity of urban regions. Flood control networks play a pivotal
role in mitigating the risk associated with the stormwater generated by extreme rainfalls and hurricanes. The

Vulnerability objective of this study is to propose a framework to examine the vulnerability in flood control infrastructure
Flood control network . . X e
Flood networks. This framework applies graph theory concepts and tools to define a vulnerability index for flood

control network components (e.g., channels and rivers). The topological attributes of flood control networks are
used to determine the vulnerability index based on structural attributes of flood control networks. First, a flood
control network is modeled as a directed graph and storage facilities are incorporated into the network. Second,
co-location exposure, upstream channel susceptibility, and discharge redundancy are characterized as important
vulnerability attributes of a channel in flood control network. Then, these three characteristics are formulized
based on the topological attributes of the network and characteristics of channels. The vulnerability index is then
determined based on the three vulnerability characteristics. The proposed vulnerability index can be used to
evaluate the impact of different risk reduction policies on flood control network vulnerability and determine the
optimal mitigation strategies aiming at flood risk reduction, such as widening vulnerable channels, placement of
storage facilities in the network or increasing the redundancy of the network. The framework is implemented on
two watersheds in Harris County (Texas, USA) and the results' implications for decision-making in infrastructure
management and hazard mitigation planning are discussed. The results highlight the capability of the proposed
graph-based framework to inform flood risk reduction through evaluation of the vulnerability of infrastructure
networks.

1. Introduction Jetten, 2017). Flood control infrastructure networks play a pivotal

function in coping with flood risk in urban areas (Forsee & Ahmad,

Floods have caused a significant proportion of disaster-related eco-
nomic and human losses (RE, 2017) and pose a significant risk to urban
infrastructure and community well-being in flood-prone regions (Dong,
Esmalian, Farahmand, & Mostafavi, 2020; Jonkman, 2005). It is pro-
jected that flood risk is intensified due to climate change-induced
extreme weather events in the future (Aerts et al., 2018; Ford et al.,
2019; Hirabayashi et al., 2013; Milly, Wetherald, Dunne, Nature, & U.,
2002; Mukherjee, Aadhar, Stone, & Mishra, 2018). In addition, rapid
urbanization exacerbates flood risk by increasing the proportion of
impermeable surfaces, which leads to higher peak and volume of runoff
following an extreme rainfall (Berke, Larsen, & Ruch, 1984; Cunha,
Zeferino, Simoes, & Saldarriaga, 2016; Pérez-Molina, Sliuzas, Flacke, &
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2011). Hence. proper functioning of flood control networks can sub-
stantially reduce flood risk and impacts (Shariat, Roozbahani, & Ebra-
himian, 2019). Flood control infrastructure includes different
components such as dams and levees, reservoirs and basins, pumps and
flood gates, and channel network. Flood control networks also include
rivers, bayous, and ditches (all referred to as channels in this paper)
whose function is draining stormwater runoff. The standard way of
assessing the urban flood risk is using Hydraulic and Hydrologic models
(H&H models) (Gori, Blessing, Juan, Brody, & Bedient, 2019; Grimaldi,
Schumann, Shokri, Walker, & Pauwels, 2019). These models enable
estimating the volume of runoff generated by different scenario rainfalls
(such as 100-year and 500-year floods) and simulating the flood

Received 29 December 2019; Received in revised form 26 May 2021; Accepted 29 May 2021

Available online 14 June 2021
0198-9715/© 2021 Elsevier Ltd. All rights reserved.


mailto:hamedfarahmand@tamu.edu
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2021.101663
https://doi.org/10.1016/j.compenvurbsys.2021.101663
https://doi.org/10.1016/j.compenvurbsys.2021.101663
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2021.101663&domain=pdf

H. Farahmand et al.

inundation in nearby neighborhoods (Itoh, Ikeda, Nagayama, & Miz-
uyama, 2018; Merwade, Cook, & Coonrod, 2008). However, H&H
models have two major limitations in terms of informing about the
vulnerability of flood control networks. First, components of a flood
control network have different levels of vulnerability to disruption
during a flooding event. To account for interdependencies in flood
control infrastructure, prioritization of flood risk reduction investments
would require analysis of the topology of flood control networks to
identify the most vulnerable components. Second, hydrodynamic
models allow the representation of the flooded depth and the extent of
the flooding areas. However, the translation of such outputs for flood
control infrastructure vulnerability assessment is rather limited. For
example, the spatio-topological configuration of the channel network as
a system property can significantly affect flood control performance.
The existing H&H models, however, provide limited insights in per-
forming system-level flood control network vulnerability assessment
and identifying the vulnerable infrastructure components for prioriti-
zation of risk reduction investments. To address this gap, this paper
proposes a new graph-based methodology for vulnerability assessment
of flood control networks. Through the use of the graph-based meth-
odology, a channel vulnerability index is defined as a combination of
three influencing characteristics: (1) co-location exposure, (2) upstream
channel susceptibility, and (3) discharge redundancy. Each attribute is
determined using graph-based network measures. Accordingly, the
output of the proposed methodology identifies vulnerable channels for
flood control infrastructure enhancement to inform hazard mitigation
and resilience management plans for flood risk reduction prioritization.

The remainder of the paper is organized as follows. Section 2 pro-
vides a literature review on related flood control network vulnerability
analysis. Section 3 introduces the conceptualization of flood control
network vulnerability and describes the modeling approach for assess-
ment of the vulnerability of channels using graph theory. Section 4 il-
lustrates the application of the proposed framework in two watersheds
located in Harris County (Texas, USA) and discusses the implications of
the results for policy-making in flood risk reduction. Section 5 summa-
rizes the conclusions and contribution of the study and discusses the
limitations and future research directions.

2. Literature review

Flood risk reduction strategies are categorized into four main groups
including resistance, avoidance, acceptance, and awareness strategies
(Brody & Atoba, 2018). Conventionally, urban areas rely on resistance
strategies in which protective structures such as levees and dams are
built to limit the inundation of downstream regions. However, recent
trends show that solely relying on resistance strategies is not effective for
flood risk mitigation (Kundzewicz, Hegger, Matczak, & Driessen, 2018).
It is generally argued that using a diverse set of strategies increases the
redundancy of the flood mitigation portfolios and leads to optimal risk
reduction (Hegger et al., 2016). In this regard, researchers and practi-
tioners advocate the effectiveness of avoidance strategies in which the
objective is to remove development or steer it away from the most
vulnerable areas and acceptance strategies, which allow flooding in
specific areas or under certain conditions to protect the other areas and
provide a relief valve when the volume of stormwater runoff is extensive
(Brody & Atoba, 2018). Awareness strategies also focus on enhancing
the knowledge among citizens and decision-makers using tools such as
social media outlets, education and training programs, and workshops.

Flood control infrastructure networks play a pivotal role in devising
and implementing avoidance and acceptance strategies for flood risk
reduction. In flood control networks, improving the performance of the
channel network by increasing the discharge capacity of channels is a
standard avoidance strategy for flood risk reduction (Mugume & Butler,
2017). Moreover, flood acceptance is often achieved through the con-
struction of storage facilities or dedicating open spaces for stormwater
retention (Ellis, 2013). Therefore, proper management of flood control
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networks can be achieved by focusing on both performance improve-
ment of channel network and development and maintenance of storage
facilities that absorb the excessive stormwater, which consequently re-
duces flood risks at the urban scale.

Performance of flood control networks is a function of the charac-
teristics of different infrastructure components such as reservoirs, dams,
channels, and floodgates (Ogie, Dunn, Holderness, & Turpin, 2017;
Ogie, Holderness, Dunn, & Turpin, 2018), as well as interdependencies
between the functionality of these different components (Dong, Yu,
Farahmand, & Mostafavi, 2019; Dong, Yu, Farahmand, & Mostafavi,
2020b; Dong, Yu, Farahmand, & Mostafavi, 2020c; Rinaldi, Peer-
enboom, & Kelly, 2001). Hence, vulnerability assessment of flood con-
trol networks would require identifying the components that need to be
prioritized to enhance the performance of the network from a system
perspective. For example, prioritizing channels for enhancement or
constructing new storage facilities should not be done based on the
impact of the enhancement project on the component itself, it should
rather consider the changes of vulnerability in other interdependent
components of the system. The standard flood risk assessment is often
conducted using H&H models (Al-Sabhan, Mulligan, & Blackburn, 2003;
Itoh et al., 2018). In these models, flow rates are estimated based on
employing rainfall-runoff and streamflow projecting models (Gori et al.,
2019; Lii et al., 2013), as well as soil properties and topological structure
of the flood control network (Amezquita-Sanchez, Valtierra-Rodriguez,
& Adeli, 2017). However, H&H models provide limited insights from
an infrastructure risk management and vulnerability assessment
perspective. First, H&H models do not capture the interdependencies in
the flood control network (Dong et al., 2019). Interdependence is a
system-level phenomenon in which the extent to which a component is
vulnerable due to the potential negative impacts of other interconnected
components is characterized. Second, flood control networks have
complex network configurations in which the network attributes such as
topology of the network is a determinant of the system vulnerability
(Tejedor et al., 2017; Tejedor, Longjas, Zaliapin, & Foufoula-Georgiou,
2015a). Hence, network attributes of flood control infrastructure
should be considered in the assessment of vulnerability. Third, although
H&H models can identify the high flood risk regions, the resultant flood
risk maps provide limited insights for infrastructure vulnerability
reduction. These flood maps often cannot inform the infrastructure
network vulnerability reduction decisions and help to devise proper
strategies to reduce vulnerability from a system perspective. Infra-
structure network vulnerability reduction requires identification of the
most susceptible channel components and also ones that contribute to
the vulnerability of the system as a whole (Lu et al., 2018). Thus, there is
a need for system-level vulnerability assessment in the flood control
network (Dong et al., 2019) to complement standard H&H models for
infrastructure prioritization towards flood risk reduction at the urban
scale.

Modeling infrastructure network as a graph where individual infra-
structure components are represented as links or nodes has been shown
as a powerful tool to analyze system attributes and interdependencies
affecting vulnerability (Latora & Marchiori, 2005). Network analysis has
been successfully applied to analyze vulnerability in various in-
frastructures such as water, wastewater, road, and drainage networks
(Dong, Wang, Mostafizi, & Song, 2020; Jenelius & Mattsson, 2015;
Maltinti, Melis, & Annunziata, 2012; Meng, Fu, Farmani, Sweetapple, &
Butler, 2018). A limited number of studies have employed network
analysis to examine flood control networks. For example, in the context
of artificial drainage networks, using network properties such as
between-centrality, network analysis has been used to identify sub-
networks that can be independently managed (Benjamin, Jonathan, &
Patrick, 2008). In another example, the application of network analysis
has been shown for finding the optimal location of sensors that are used
to manage and control hydrologic infrastructures located on a flood
control network. In this regard, network properties are used to find the
combination of sensors with maximum network coverage (Ogie, Shukla,
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Sedlar, & Holderness, 2017). Network theory and optimization would
also help to select the location and size of retention basins in a water-
shed, which results in the most cost-effective basin configuration that is
also capable of controlling flood optimally (Travis & Mays, 2008). For
pump operation management in retention basins and evaluating the
effect of capacity expansion on the resilience of the drainage network,
the analysis of network topology has been shown to be informative (Lee,
Lee, Joo, Jung, & Kim, 2017).

In another stream of research, several studies have focused on the
application of network analysis for assessment of vulnerability in the
natural and artificial waterway systems. For example, network analysis
has been used for vulnerability assessment of deltaic systems (Tejedor
et al., 2015a), where different topological attributes of the network have
been employed to measure the complex and dynamic characteristics of
delta networks such as structural overlapping and entropy-based
complexity (Tejedor, Longjas, Zaliapin, & Foufoula-Georgiou, 2015b).
Also, based on the analysis of topological attributes in a network of
channels, Ogie et al. (Ogie, Perez, Win, & Michael, 2018) developed a
methodology to quantify the vulnerability of hydrological in-
frastructures such as pump stations and floodgates that are located in a
network of waterways (Ogie, Holderness, Dunbar, & Turpin, 2017; Ogie,
Perez, et al., 2018). Probabilistic network models such as Bayesian
network analysis has also been applied for the flood vulnerability
assessment. In the methodology developed by Wu et al. (Wu, Xu, Fengt,
Palaiahnakote, & Lu, 2018), a Bayesian network analysis approach was
used to model temporal flow rates (Wu et al., 2018).

The review of the literature shows that network analysis can provide
valuable insights for the assessment of vulnerability in interconnected
infrastructure that consists of a network of components (such as chan-
nels and waterways). Despite the growing use of network analysis for
examining infrastructure systems and their interdependencies, vulner-
ability, and resilience, the existing literature lacks a graph-based
methodology and relevant measures for analyzing vulnerability in
flood control networks to inform infrastructure prioritization for urban-
scale flood risk reduction. Due to the specific characteristics of flood
control networks (e.g., the need for consideration of flow and relation-
ship between upstream and downstream components), the existing
graph-based methodologies (mainly based on percolation theory)
cannot be used for vulnerability assessment of flood control infrastruc-
ture. Hence, there is a need for a graph-based methodology that can
capture the characteristics of flood control infrastructure and help to
identify the components contributing to the vulnerability of the systems.
To address this methodological gap, this paper presents a new graph-
based methodology to assess flood control network vulnerability. In
the proposed methodology, the vulnerability of channels in flood control
networks is characterized based on the susceptibility and exposure levels
from the upstream channels and upstream storage facilities, as well as
the redundancy of the channel to discharge the stormwater runoff. Three
network-based measures are devised and examined to capture and
represent the vulnerability of each channel in the network. The resulting
vulnerability index can be used for characterizing the spatial distribu-
tion of highly vulnerable channels to inform flood risk reduction and
infrastructure improvement programs. Besides, the results of the pro-
posed methodology would identify regions that are hotspots of vulner-
ability and could be a candidate for the construction of storage facilities
in immediate downstream based on consideration of land availability
(Ogie, Shukla, et al., 2017). Accordingly, the proposed graph-based
methodology and measures can complement the existing H&H models
for assessment of the risk of flooding in urban areas.

3. Methodology
3.1. Vulnerability in flood control networks

Different definitions and measures have been proposed for assessing
vulnerability in infrastructure systems (Batouli & Mostafavi, 2018;
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Murray & Grubesic, 2007; Rasoulkhani & Mostafavi, 2018; Wang, Hong,
& Chen, 2012). According to Balica et al. (Balica, Wright, & van der
Meulen, 2012a), in case of flooding, the vulnerability of the system is the
encapsulation of its susceptibility to hazard disruption along with its
capability to cope with, recover, and/or adapt to the hazard. Vulnera-
bility of a system component, in this definition, should capture three
essential attributes: (1) exposure: the extent to which a component is
exposed to hazard (such as intense flow rate); (2) susceptibility: the extent
to which a component is susceptible to failure, disruption, or other
predefined adverse condition (such as overflow); and (3) redundancy: to
what extent a component has buffer (such as local retention) to avoid
failure.

In case of flood control network vulnerability assessment, the
inherent characteristics of each channel (component), as well as the
spatio-topological properties of the network need to be examined. This
study considers the discharge capacity as the most significant inherent
characteristic of channels in the assessment of vulnerability. The anal-
ysis of vulnerability also considers three attributes of channels that are
derived from the position of the channel in the network topology. A
combination of these three attributes along with the discharge capacity
can be used for characterizing the vulnerability of a channel. In this
context, the exposure and susceptibility of channels are attributed to the
volume of stormwater in the upstream of the channel. However, there
are three inherently different sources of hazard-causing exposure and
susceptibility for a channel as explained below.

3.1.1. Susceptibility

Stormwater runoff in the channels in the upstream of a channel pose
a risk to the downstream channel. The stormwater runoff from the up-
stream can potentially cause an overflow in the downstream channel
and surrounding neighborhoods (Tejedor et al., 2015a; Tejedor et al.,
2015b). The greater the volume of stormwater in the upstream channels,
the greater the exposure to the flood risk in the channel. In addition, the
higher relative capacity of a downstream channel compared to channels
in upstream means that the channel is less susceptible to the increased
flow in the upstream channels.

3.1.2. Exposure

Stormwater runoff stored in storage facilities (such as retention ba-
sins or reservoirs) in the upstream of a channel exposes the channel to a
significant surcharge of stormwater if the generated stormwater runoff
exceeds the capacity of the facility. In other words, the channel is also at
risk of overflow in case of an exceedance of stormwater runoff from the
capacity of storage facilities in the upstream. Hence, exposure is a
function of proximity to the storage facility in the upstream and the risk
of overflow in the facility. The risk of overflow is also a function of the
volume of stormwater that the storage facility is designed to absorb (i.e.,
stormwater runoff in the upstream of the facility), as well as the capacity
of the storage facility to store stormwater runoff.

While exposure and susceptibility increase the vulnerability, there is
another attribute (i.e., redundancy) that reduces the vulnerability of a
channel. Redundancy is a positive attribute of a component or a system
capturing the extent of buffer in case of a disruption. For the case of the
flood control network, redundancy is characterized as follows:

3.1.3. Redundancy

Redundancy refers to the ability of a channel to properly discharge
the stormwater runoff flow to the downstream (Ogie, Holderness, et al.,
2018). The redundancy is a function of (1) the number of alternative
paths that the channel relies on to discharge the runoff and (2) the
possibility of blockage in stormwater discharge (If a channel is close to a
sink node such as a storage facility or an outlet, the channel is subject to
less flood risk due to the blockage in the downstream channels). In other
words, building a storage facility in the downstream increases the
redundancy of channels in the upstream by absorbing the risk of
blockage in the downstream channels.
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Fig. 1. Modeling a network of channels as a Directed Acyclic Graph (DAG)
consist of channels with different capacities and different types of nodes.

3.2. Modeling flood control network using graph theory

In modeling the flood control network as a directed graph, each el-
ements of vulnerability can be formulated based on the definitions
provided in the previous section and utilizing channel characteristics
and network topology. A flood control network consists of a set of
spatially connected channels that drain stormwater runoff generated by
extreme rainfalls to the outlet(s) (which are either naturally existed or
artificially built to prevent inundation and overflow in the neighbor-
hoods). Considering each channel as an edge, a flood control network
can be modeled as a graph G = (V, E), in which channels are the links E C
{ejj e € VZ}, and nodes V = {v1,Vy,...,v,} are the joints connecting the
channels or storage facilities. In addition, there is generally no loop in
gravity-based flood control systems. Hence, a flood control network can
be modeled as a Directed Acyclic Graph (DAG). Fig. 1 shows a schematic
representation of the DAG model of a flood control network. In the DAG
model, edges are the channels and the discharge capacity of edges can be
attributed to the weight of edges. For example, in Fig. 1, where channel
weights are shown on the channels, the discharge capacity of channel bc
(0.2) is twice more than the discharge capacity of channel ab (0.1).
Nodes in the DAG model of channel networks can have different attri-
butes. For example, nodes can represent transition points where channel
capacities changes, channel intersections, basins, or outlets. In the DAG
model of the flood control network, edges have different attributes such
as length and flow capacity that can be used to characterize vulnera-
bility. Flow capacity is the maximum rate of discharge that a channel
can provide.

For calculation of vulnerability attributes, we applied topological
ordering in the DAG model of channels. For graph G = (V, E),an ordered
list of nodes Q = {v1,vs,...,up} is called a topological ordering if for all
edges vij € Q, then i < j. Algorithm 1 can be used to perform topological
ordering in a DAG and generate a sorted listed of nodes in a graph (Koller
& Friedman, 2009). A sorted list of a directed graph can ease
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determining the set of channels and storage facilities in the upstream
and downstream of a channel and facilitates the calculation of attributes
that are defined to characterize vulnerability in flood control networks
in this study. In the following sub-section, we formulate the vulnera-
bility attributes described in Section 3.1, and then, combine these three
attributes to devise a channel vulnerability index.

Algorithm 1. Topological Sorting of Graph G

3.3. Formulization of channel vulnerability in flood control network

3.3.1. Co-location exposure

Overflow risk exposure in co-located storage facilities in the up-
stream can contribute to a channel's vulnerability (Tung, 2018). In this
framework, we consider the overflow risk of a storage facility based on
the ratio of the stormwater volume in its upstream to its storage capacity
as follows:

r,— Exposure, a
Cap,

Where I'p represents overflow risk of a storage facility b, Exposurey is
the volume of stormwater that can be stored in the channels in the up-
stream of facility b, and Capy, is the capacity of facility b. The lower the
ratio, the more capable the facility to absorb the upstream stormwater
and prevent overflow in the downstream channels. From a flood control
perspective, storage facilities such as retention basins can be designed
and constructed to reduce the risk of overflow in the downstream by
collecting the runoff generated in the upstream. In case the runoff inflow
exceeds the design capacity of the facility, the downstream channels are
exposed to risk of excessive flow that could cause overflow. Therefore, to
characterize the exposure for a channel, we need to know (1) the storage
facilities in its upstream and the distance between them, which impacts
the exposure risk, and (2) the exposure risk of the facilities that con-
tributes to the vulnerability of the channel. Considering these two fac-
tors, we designed Algorithm 2 for quantifying the co-location exposure
risk of each channel.

Algorithm 2 presents the procedure for calculating Co-Location
Exposure (CLE) in each channel. The procedure can be divided into
three steps. First, the overflow exposure for each storage facility is
calculated (sub-algorithm 2.1) by summing up the storage capacity of all
the upstream channels, which for each channel is the volume of
stormwater that can be stored in the channel. For example, in the
channel network in Fig. 1, exposure for storage facility b is equal to the
storage capacity of channel ab that equals the length of channel ab
multiplied by the area of the channel cross-section. For storage facility [,
all the channels in its upstream contribute to the exposure of the facility,
which include all channels in the network except channel ab and
channels km and Im. Then, for each channel, the storage facilities located
in the upstream of the channel are identified (sub-algorithm 2.2).
Finally, the CLE of a channel is calculated given the overflow exposure of
its upstream storage facilities and the distance between the channel and
the storage facility (dis; ), by summing over all upstream facilities (sub-

Algorithm 1. Topological Sorting of Graph G

Procedure Topological Sort

Input: G(V, E) #G is a directed graph, and d is the ordered set of node indexes of G

set all nodes to be unindexed
fori = 1,...,n

select any unindexed node v that all its parents are unindexed

Mark v

1
2
3
4 d)«i
5
6 Return: (d)
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algorithm 2.3). for example, in Fig. 1, both facilities b and [ contribute to
the CLE of channel Im, while only facility b is considered for calculation
of C = the CLE of channel ci, and there is no facility contributing to the
CLE of channels in the upstream of node h. It should be noted that for the
calculation of overflow risk for a facility, only the channels that are
located between the facility and facilities in the upstream are calculated.
The assumption is that each storage facility absorbs the stormwater
runoff for all channels in its upstream, and therefore, no risk exposure
would be transferred to the other storage facilities in downstream.
However, it should be noted that this assumption does not consider cases
that multiple storage facilities may fail concurrently and overflow in the
upstream facility can impact the facility in downstream. Integration of
concurrent failure risk should be addressed in the future research.
Algorithm 2. CLE Calculation for Graph y

3.3.2. Upstream channel susceptibility

Flow dynamics of flow transport is one of the factors greatly influ-
ence the vulnerability of the channels in flood control networks. H&H
models quantify flow transport dynamics using the differential equa-
tions as well as hydrology and surface characteristic inputs. In this study,
we adopted the approach developed by Tejedor et al. (2015a) to
consider the transport dynamics in graph-based analysis of river and
channel networks. To do so, we developed Upstream Channel Suscep-
tibility (UCS) index that examines the extent to which a change in flow
of upstream channels can impact the flow of a channel by aggregating
impacts that the flow from all its upstream channels inflict on the
channel of interest. Algorithm 3 shows the calculation procedure. To
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calculate the UCS value for each channel, first, a fixed percentage of
increase in the flow of the channel is considered (p). The influence of
upstream channel u on the susceptibility of channel i is denoted by 74,
which shows the ratio of increase in flow of channel u that leads to in-
crease in flow of channel i in the downstream of u by ratio p. In this
calculation, it is assumed that the flow of channel i is influenced by
channels that are in the upstream of channel i but not in the upstream of
any storage facility that channel i is exposed to. In fact, the influence of
channels in the upstream of any storage facility that channel i is exposed
to considered to be absorbed by the facility and the risk of overflow is
reflected in the calculation of CLE. For example, in Fig. 1, the flow in the
channel ci is influenced by the changes in the flow of channels bc and dc,
and the influence of channel ab is considered in the CLE of the channel
that considers the overflow risk of facility b.

A high UCS value means that a channel is susceptibility to the in-
crease in flow of channels in the upstream. A high UCS value can be due
to: (1) lower capacity of a channel compared to the channels in the
upstream and (2) the channel being linked to a large number of channels
in the upstream. To reduce the UCS, additional storage facilities can be
added in the upstream of the channel to reduce the number of channels
in the upstream whose flows lead to the downstream channel. Increasing
the downstream channel capacity can also reduce its susceptibility.
Thus, the UCS measure also captures the extent to which an increase of
discharge capacity in a channel leads to an increase in the vulnerability
of other channels in the downstream. Accordingly, the UCS measure
informs infrastructure enhancement decisions considering the system-
level impacts of the decision rather than focusing on the regional
consequence of an enhancement project.

Algorithm 2. CLE Calculation for Graph y

Procedure: CLE Calculation
Input: x(V,E,[,A),BcV . d

# B includes storage facilities, and d is topological-sorted of y, | includes

lengths of channels, and A includes areas of cross-section of channels

# sub-algorithm 2.1: calculating exposure of each facility

1 for hind

2 if bisinB

3 Upstream (b) = [| #Upstream includes all channels in the upstream of channel b
4 Upstream (b) « all edges in upstream C E

5 Exposure (b) <sum over A X [ for edges in Upstream (b)

6 remove Upstream (b) from E

# sub-algorithm 2.2: assign storage facilities of each channel

7 foriinE

8  SF(i) « storage facilities in upstream of i #SF contains storage facilities in upstream of the channel

# sub-algorithm 2.3: calculate CLE for each channel
9 foriinE
10 for b in SF (i)

11 dis;,, < node distance between i and b #dis; ;, is the topological distance between channel and the

storage facility
12 CLE (D+= —x (1 +

Exposure (b))
dis;p

Cap (b)
13 Return: x

Algorithm 3. UCS Calculation for Graph y

Procedure: UCS Calculation

Input: x(V,E,[,A),BcV ,d,p #Bincludes storage facilities, and d is topological-sorted of ¥,
includes lengths of channels, and A includes areas of cross-section of channels

foreinE

SF(e) « storage facilities in upstream of FN(e) # FN (e) is the start node of the channel e
P « Reversed (d) #reversed of the topological ordered list of nodes in the channel network
Upstream (e) « edge in i that is in Upstream FN(e) and not in U jcsp)(Upstream (j))

increased (u) = (1+ p) X Capacity (e)

reduceCap (u) = min (sum (Capacity(adjacents (w)),0.9 x Capacity(neighbor(u))))

(increased (w)— reduceCap (w))

1
2
3
4
5 for uin Upstream (e)
6
7
8

UCS (e) +=
9 Return: x

increased (u)




H. Farahmand et al.

Table 1
Characteristics of Brays bayou and Greens bayou Watersheds (C. of Houston,
2017).

Characteristic Watershed

Brays bayou Greens bayou

Drainage Area (sq. Miles) 127 212
Open Streams (Miles) 12 308
Population (2010 U.S. Census) 717,198 528,720

Primary Streams Brays bayou
Keegans bayou

Willow Waterhole bayou

Garners bayou
Greens bayou
Halls bayou
Reinhardt bayou

Algorithm 3. UCS Calculation for Graph y

3.3.3. Discharge redundancy

Discharge Redundancy (DR) of a channel depends on the number of
sink nodes that the channel can drain to (i.e., outlets and basins in the
downstream). DR captures the redundancy of the channel to discharge
stormwater runoff in case of a disruption in the downstream. Any
disruption in the downstream of a channel influences the stormwater
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flow in the channel and can cause runoff propagation into the neigh-
borhood. For example, blockage of channels in the downstream due to
sediment or debris accumulation could lead to overflow in upstream
channels. Two factors could impact the redundancy of a channel. First,
the higher number of paths to sink nodes increases the discharge
redundancy since, in case of blockage in a path, an alternative path can
discharge the stormwater flows downstream. Second, discharge redun-
dancy is influenced by the distance between a channel and sink nodes. In
this regard, any downstream blockage could cause runoff back-
propagation. The risk of blockage is associated with the length and size
of the channels that connect the channel to the sink node. A longer and
larger channel poses higher risk of blockage (Aerts et al., 2018). DL is
calculated by assigning weights to different paths between channels and
sink nodes, where path's weights are functions of the distance between
the channel and the sink node. Thus, discharge redundancy is calculated
by assigning weights to different paths between channels and sink
nodes, where a path's weights is a function of the distance between the
channel and the sink node. The summation of the weighed paths, then,
determines the discharge redundancy of a channel.
Algorithm 4. DR Calculation

Algorithm 4. DR Calculation

Procedure: DR Calculation

Input: x(V,E,l,A),B €V, #B includes storage facilities, and d is topological-sorted of y, l includes
lengths of channels, and A includes areas of cross-section of channels
1 Sink « x.outlets, B #Sink includes the outlet of the channel network (node with outdegree equal

zero)
2 foreinE
3 forsinSink

If haspath (3, TN (e), s) # TN (e) is the end node of the channel e

DR(e) += w(d) # w(d) is the weighted value of d

4
5 d = |path(TN(e), s)| #d is the topological length of path between the channel and the outlet
6
7

Return: x
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¥
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|
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2
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Fig. 2. Overview of the proposed framework.
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Fig. 4. Study area and topology of flood control network.

Table 2
Characteristics of Bains in Brays Bayou watershed.

Major Retention Basin Capacity (gal x 10%)

Brays bayou watershed

Old Westheimer 200
Eldridge 1500
Willow Waterhole 600
Arthur Story Park 1100
Greens bayou watershed

Kuykendahl 757.6
Glen Forest 291.3
Cutten 300*
Halls Park 231
Antoine 538
Lauder 391
Aldine Westfield 407.3
Verde Forest 1360
Lower Greens bayou 765.4

* estimated (no data available).

3.3.4. Channel vulnerability index

The vulnerability of a channel is a function of CLE, UCS, and DR. CLE
and UCS would increase the channel vulnerability while DR would
reduce its vulnerability. Accordingly, we characterize the channel
vulnerability index ¢ using Eq. (2) (Balica, Wright, & van der Meulen,

2012b).

¢, = J(CLE,. UCS,,DR,) = e X UCS @
DR,

The channel vulnerability index calculated using Eq. (2) evaluates
the vulnerability of channels from a system-level perspective consid-
ering the structural and topological characteristics of the channel
network, as well as characteristics of each channel that impact its ability
to discharge stormwater without an occurrence of overflow in the
neighborhood of the channel. It should be noted that the proposed
approach for vulnerability assessment is based on characteristics of
physical infrastructure and does not consider rainfall scenarios. In fact,
the vulnerability assessment framework presented here aims at identi-
fying the channels and areas in the network that need to be prioritized
for channel improvement or basin construction projects that reduces the
risk of inundation in the area regardless of the extent of hazards such as
rainfall duration and peak value, as well as distribution of rainfall.

4. Flood control network vulnerability in Harris County

The application of the proposed methodology and measures was
demonstrated in two major watersheds in Harris County, Texas (USA).
Harris County is the third-largest county in the United States and has
more than 4023 km of channels in its flood control network. It comprises
22 watersheds, all of which drains into Galveston Bay. The flood control



H. Farahmand et al.

Computers, Environment and Urban Systems 89 (2021) 101663

0 1 2 4 6 8

Miles

Legend
Exposure

— 1.000
—— 1.000

- Low
- 1.133 -
1.133-1.333 -
1.333 - 1.503 -
1.503 - 2.098 -

Medium Low
Medium
Medium High
High

(@)

1 2 4 6 8
I W Miles

(®)

Exposure
1.000 - Low
1.000 - 1.32.
1323 -

- Medium Low
- Medium

- Medium High
- High

Fig. 5. CLE Map for two watersheds' channels; (a) Brays bayou and (b) Greens bayou.

system in Harris County performs well under normal rainfall. Extreme
weather events such as hurricane Harvey, however, can pose a great risk
to the county and cause urban flooding. Using the proposed graph-based
method and measures, we examined the flood control network vulner-
ability in two major watersheds in Harris County: Brays bayou and
Greens bayou watersheds. Both of these watersheds experienced
extensive floods over the past decade including Tax Day Flood (2016),
Memorial Day Flood (2016), and Hurricane Harvey (2017). Table 1
shows the characteristics of the studied watersheds.

4.1. Analysis procedure

To demonstrate the application of the graph-based methodology and
measures in the two watersheds in Harris County, we use the procedure
presented in Fig. 2. First, we collected and processed the GIS data of the
flood control networks in the watersheds. Flow capacity of channels as
well as location and storage capacity of the storage facilities were esti-
mated. Then, the network of channels was constructed using the GIS
data of the network. The network was modified in order to remove er-
rors such as incorrect flow directions, disconnected polylines, and

mismatched intersections. Storage facilities were incorporated in the
network model, and then, different attributes of vulnerability as well as
the vulnerability index were calculated for each channel using the al-
gorithms elaborated in the previous section. Finally, the results were
mapped and examined in order to assess the vulnerability of the flood
control network in the study area form a system-level perspective, and
the implications of results for infrastructure vulnerability reduction
were identified.

4.2. Data collection and network modeling

The capacities of channels were estimated using the Manning equa-
tion (Eq. (3)):

2
3

O
O

x (Sy) 3

Where (Q.); is the flow capacity of channel ij, a is a constant, n; is
manning coefficient for channel ij, A; is the area of cross-section of
channel ij, Ry is the hydraulic radius of channel ij, and S;; is the slope of
the channel ij. For the channels with missing data, the capacity of

(Qe); = g x (Ay)" % (Ry)

y
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Fig. 6. UCS Map for two watersheds' channels; (a) Brays bayou and (b) Greens bayou.

adjacent channels was used to estimate the discharge capacity. Fig. 3
schematically shows the distribution of channel capacities in two
watersheds.

Fig. 4 shows the map of the flood control network and the storage
facilities in the study area. Flood control network data of the two studied
watersheds in Harris County is provided by Harris County Flood Control
District (HCFCD) (C. of Houston, 2017), including channel characteris-
tics, the geographic location of each channel, as well as the connection
of channels. In addition, the storage facility data were collected through
organizational websites and reports. We mapped the information to its
closest node in the network (C. of Houston, 2017). The storage capacity
of the facilities was also gathered from the official documents (sum-
marized in Table 2). For the missing data, the capacity was estimated
based on the area of the facility. Based on abstracting the flood control
network and modeling it as a DAG, there are 224 nodes and 223 edges in
Brays bayou watershed and 692 nodes and 691 edges in Greens bayou
watershed.

4.3. Flood control network vulnerability assessment

In this section, the results related to implementing the proposed

framework for vulnerability assessment of flood control network in the
study area are presented. The three attributes of vulnerability are
calculated for all channels in the study area, results are mapped, and
discussed. Moreover, the implications of the results for decision-making
in infrastructure vulnerability reduction are discussed.

4.3.1. Co-location exposure mapping

Fig. 5 shows CLE for channels in Brays bayou and Greens bayou
watersheds. In Brays bayou watershed, it can be seen that the channels
that flow to the bayou have low CLE (box a). The result indicates that the
storage facilities are located in this region are capable of absorbing the
stormwater runoff in the upstream. In the Waterhole bayou, however,
there are channels with medium CLE located in the downstream of the
storage facility (box b). It indicates that the facility requires more ca-
pacity to absorb the upstream runoff in case of a flood. In addition, in the
Central part of Brays bayou and in the downstream of the Aurthr Story
Park basin (box c) the CLE is relatively high. Although the basin may be
able to properly absorb the low-intensity rainfall, however, the high CLE
shows that the downstream of the basin are vulnerable due to the
overflow of the basin in case of extreme rainfalls. In the Greens bayou
watershed, high CLE can be observed in the downstream, specifically, in
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Fig. 7. Vulnerability for flood control channels in (a) Brays bayou, and (b) Greens bayou.

the neighborhood of the Lower Green bayou basin (box d). The high
value of CLE is due to the high overflow risk from the co-located basin.
Also, CLE in the downstream of the basin located in Halls bayou is high,
and consequently, the CLE for the channels in the downstream of the
intersection of the Garners bayou and Halls bayou is impacted by the co-
location effect between the two bayous (box e). This result shows an
example of the impact of network topology on the vulnerability of
channels.

4.3.2. Upstream channel susceptibility mapping

In the next step, we calculated the upstream channel susceptibility
(UCS). Fig. 6 shows the UCS map of the study area. As shown in Fig. 6
(a), the UCS in Brays bayou is significantly higher in the mainstream of
Brays bayou (box a) compared to the other channels that flow into the
mainstream. This result shows the extent to which the susceptibility of
each channel is affected by its position in the network topology. In the
case of Brays bayou, the construction of basins would be a proper policy
to absorb the impact of upstream channels. However, the space limita-
tion for the construction of large basins often leads to reliance on

10

channel enhancement and widening. Such projects currently form a
majority of flood risk reduction projects in Brays bayou watershed
(Project Brays, 2019). It is also worth noting that the presence of storage
facilities, which are responsible for absorbing the influence of upstream
channels' susceptibility leads to low UCS in the Northwest of the
watershed (box b).

Fig. 6 (b) shows the UCS map for the Greens bayou watershed. As
opposed to Brays bayou, Greens bayou is formed by smaller sub-network
of channels that converge in the downstream of the watershed. There-
fore, the distribution of UCS is sparser throughout the watershed.
However, the mainstream of Greens bayou and Halls bayou have
channels with high UCS (box c). The topology of the sub-network, which
has a similar structure as Brays bayou watershed and lack of any storage
facility contributes to the high UCS in this mainstream. Also, the
Northwest of the watershed (box d) has generally low UCS due to the
presence of storage facilities that can control the increase of flow in the
upstream channels.
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4.3.3. Discharging redundancy calculation

Discharge redundancy was also calculated for channels in the
network. Channels in the Northwest part of Brays bayou watershed have
generally higher DR, however, channels in the upstream of the main
branch of Brays bayou have generally less redundancy. This is due to the
fact that these channels have high distance from the outlet and there is
no alternative sink node in their downstream. In the Greens bayou
watershed, considering the impact of storage facilities and the outlet, the
DR for a majority of channels in Greens bayou is high, while in the
contrary, channels in Halls bayou and Garners bayou have lower
redundancy. Generally, the flood control network in Brays bayou and
Greens bayou are tree-like; therefore, the number of different paths to
sink nodes is one, which reduces the discharge redundancy of channels.

4.3.4. Flood control network vulnerability index

Combining the impacts of co-location exposure, upstream channel
susceptibility, and discharge redundancy, the vulnerability index
created in this study can represent the overall vulnerability of channels.
Fig. 7 shows the channel vulnerability index for Brays bayou and Greens
bayou watersheds. The results show that in the Northwest of Brays
bayou watershed (box a), the vulnerability index is low, which is due to
the presence of well-distributed storage facilities with sufficient capacity
to absorb the upstream stormwater runoff (providing discharge redun-
dancy for the channels in the upstream). The channel sections in the
mainstream of the Brays bayou are highly vulnerable. In the region close
to the intersection of Keegan bayou and Brays bayou (box b), the main
cause of the vulnerability is the high distance to sinks and the presence
of a basin with high overflow risk in the vicinity. Although these impacts
are reduced in the downstream channels, the absence of any storage
facility increases UCS. A common approach for vulnerability reduction
in such cases would be enhancing channel flow capacity. However, any
increase in the flow capacity of channels in the upstream would increase
the susceptibility of channels in the downstream. In this case, upstream
channels would be able to collect a high volume of stormwater runoff,
however, the downstream would not be able to drain the excessive
volume of runoff collected by the upstream channels, and therefore,
overflow would be expected. Consequently, any enhancement project
needs to consider the impact of network topology on the vulnerability in
the network instead of focusing on increasing flow capacity in a specific
region.

A similar pattern can be seen in the Greens Bayou watershed (Fig. 7
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(b)). The proper distribution of basins with sufficient storage capacity
led to a low vulnerability in the Northwest of the watershed (box c). On
the contrary, the lack of storage facilities as well as the configuration of
channels in the Southwest part (box d) led to the formation of clusters of
vulnerable channels. A similar situation is observed in the Northeast part
of the Greens bayou watershed (box e). The presence of Lower Green
bayou and Verde Forest basins that are capable of absorbing excessive
runoff has reduced the vulnerability in the middle part of the Garners
bayou (box f).

4.4. System-level flood risk reduction implications

System vulnerability results from its intrinsic characteristics and the
decisions made by managers and operators. Proper vulnerability
assessment should (1) help practitioners and decision makers to better
understand the causes and profile of vulnerability in the system and (2)
enable evaluating the impacts of different policies on the vulnerability
reduction. The proposed framework achieves both criteria by examining
vulnerability from a system perspective. For example, we discussed the
potential of enhancing channels and construction of storage facilities as
a structural solution for vulnerability reduction in the flood control
network. However, construction of storage facilities often requires
availability of open land, which might not be feasible in metropolitan
areas due to limited spaces. Hence, prior to recommending construction
of retention basins, we may need to assess limitations for policy imple-
mentation. In this paper, we used road density as an indicator of open
space availability to assess the feasibility of storage facilities in a
watershed. The association between road density and urban expansion
(Hirabayashi et al., 2013) proves that road density is a proper structural
indicator for land use transition, as a higher density of road network
indicates a lower open space availability (Shams, Ahmadi, & Smith,
2002). To examine the feasibility of retention basin development for
reducing upstream susceptibility, we overlaid the vulnerability map of
flood control network in Greens bayou watershed with the road density
map (aggregated in census tract level), measures in Miles/Sq. Miles unit,
as shown in Fig. 8. It can be seen that, although the construction of a
storage facility can reduce the vulnerability of channels in the down-
stream of Halls bayou (box a), it is practically infeasible due to the un-
availability of open spaces. On the contrary, the channels located in the
downstream of the intersection of the Garners bayou and Greens bayou
(box b) have low vulnerability, which is due to the presence of storage
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facilities. The road density map shows that the construction of these
facilities was a feasible option in these areas. Similarly, in the Southwest
of the watershed, the construction of storage facilities may reduce the
vulnerability of channels since the map shows that there should be
sufficient open spaces in the region.

5. Concluding remarks

This paper presents a graph-based methodology and measures for
analyzing and characterizing vulnerability in flood control infrastruc-
ture (e.g., channels and rivers). The proposed methodology departs from
the existing H&H models for analyzing urban-scale flood risk due to: (1)
its focus on flood control systems to inform infrastructure prioritization;
(2) its capability to capture structural topology and interdependencies
among different channels in assessment of vulnerability; (3) its charac-
terization of vulnerability based on three fundamental attributes: Co-
Location Exposure (CLE), Upstream Channel Susceptibility (UCS), and
Discharge Redundancy (DR); (4) its ability to examine system-level ef-
fects of risk reduction measures; and (5) its ability to evaluate channel
vulnerability without the need for extensive data and computational
resources and efforts (as usually required in H&H modeling).

The application of the proposed methodology and measures in two
watersheds in Harris County shows the capability of the proposed
vulnerability characterization framework and index in identifying the
vulnerable channel components. The results of the case study show that,
other than the properties of channels and network structure, storage
capacity can significantly impact the spatial patterns of vulnerability in
the flood control network. For example, the Northwestern region of
Greens bayou watershed presents lower vulnerability due to the pres-
ence of distributed storage facilities. In the downstream of the Garners
bayou, the abundance of open spaces for storage of runoff contributes to
the low vulnerability of channels in this region. In densely urbanized
areas such as the downstream of Halls bayou where the construction of
storage facilities in not feasible, channel enhancement would be a more
feasible infrastructural solution. However, the impact of channel ca-
pacity increase on downstream channels should be considered.

H&H models provide valuable insight for the determination of
inundated areas and assessment of damages. However, from the infra-
structure management and hazard mitigation perspective, there is a
critical need for identifying the causes of such vulnerabilities in flood
control network. In fact, the results of the H&H models enable accu-
rately determining the expected inundation maps and estimating flood
damages, which help preventing damages by avoiding further urban
developments in areas with higher risk of inundation and preparing
emergency response needs for areas with high risk of inundation and
damage. However, from flood control infrastructure perspective, prac-
titioners need to have a better understanding regarding why a specific
area has risk of inundation and how flood control network can be
improved in order to reduce the risk. The proposed framework enables
vulnerability assessment and cause identification and helps policy
feasibility evaluation for risk reduction (e.g., development prioritiza-
tion, channels widening, storage facilities placement, storage capacity
expansion, and redundancy building). This all attributes to the proposed
graph-based vulnerability index that encapsulates the impact of network
topology and storage facility on flood control network vulnerability.
Hence, the proposed method and measures can provide useful tools for
decision-makers to effectively allocation limit resources to infrastruc-
ture investments that systemically reduce vulnerability in different
watersheds (or systems of watersheds).

The proposed framework and this study present multiple avenues for
further development in future research. First, land characteristics such
as the proportion of impervious surface, land slope, and development
pattern of each channel can be included in determining the overflow risk
calculation. This study aimed to assess the vulnerability for channels
from a system-level perspective considering topological network prop-
erties, and therefore, it does not consider any specific rainfall scenario
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for the analysis. The outcomes of the H&H models can be integrated
with the proposed vulnerability assessment framework to examine the
vulnerability in channels given different flooding scenarios (under
different rainfall intensities). In addition, a probabilistic scheme for
considering flow change in each channel can be included to encapsulate
the flow dynamics of the flood control network. Moreover, future
research can consider the flow impact from hydrological factors, as well
as the risk of overflow. For example, type of the channel (i.e.,
meandering or straight) can greatly impacts the flow rate (C. of Houston,
2017). Hence, future research can examine the impact of such factors on
the vulnerability quantification. Finally, a system-level vulnerability
assessment can provide insight for decision makers to identify vulner-
able components that exacerbate the vulnerability of the whole system.
However, prioritization of corresponding mitigation actions requires a
thorough understanding of the potential impacts (e.g., losses related to
population, environmental impacts) of different flood scenarios.
Therefore, a combined system-level vulnerability assessment and flood
impact analysis will be conducted in our future research to enable the
identification of targeted mitigation actions based on their contribution
to the reduction of flood impact.
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