2102.11503v3 [cs.LG] 28 Oct 2021

arxiv

Two Sides of Meta-Learning Evaluation:
In vs. Out of Distribution

Amrith Setlur'* Oscar Li%* Virginia Smith?
asetlur@cs.cmu.edu oscarli@cmu.edu smithv@cmu.edu
1anguage Technologies Institute ?Machine Learning Department

School of Computer Science, Carnegie Mellon University

Abstract

We categorize meta-learning evaluation into two settings: in-distribution [ID],
in which the train and test tasks are sampled iid from the same underlying task
distribution, and out-of-distribution [OOD], in which they are not. While most meta-
learning theory and some FSL applications follow the ID setting, we identify that
most existing few-shot classification benchmarks instead reflect OOD evaluation,
as they use disjoint sets of train (base) and test (novel) classes for task generation.
This discrepancy is problematic because—as we show on numerous benchmarks—
meta-learning methods that perform better on existing OOD datasets may perform
significantly worse in the ID setting. In addition, in the OOD setting, even though
current FSL benchmarks seem befitting, our study highlights concerns in 1) reliably
performing model selection for a given meta-learning method, and 2) consistently
comparing the performance of different methods. To address these concerns,
we provide suggestions on how to construct FSL benchmarks to allow for ID
evaluation as well as more reliable OOD evaluation. Our work™ aims to inform
the meta-learning community about the importance and distinction of ID vs. OOD
evaluation, as well as the subtleties of OOD evaluation with current benchmarks.

1 Introduction

Meta-learning considers learning algorithms that can perform well over a distribution of tasks [19, 37].
To do so, a meta-learning method first learns from a set of tasks sampled from a training task
distribution (meta-training), and then evaluates the quality of the learned algorithm using tasks from
a test task distribution (meta-testing). The test task distribution can be the same as the training
task distribution (a scenario we term in-distribution generalization evaluation or ID evaluation) or a
different task distribution (out-of-distribution generalization evaluation or OOD evaluation).

In this work, we argue that there is a need to carefully consider current meta-learning practices
in light of this ID vs. OOD categorization. In particular, meta-learning is commonly evaluated
on few-shot learning (FSL) benchmarks, which aim to evaluate meta-learning methods’ ability to
learn sample-efficient algorithms. Current benchmarks primarily focus on image classification and
provide training tasks constructed from a set of train (base) classes that are completely disjoint and
sometimes extremely different from the test (novel) classes used for test tasks. As we discuss in
Section 3, this design choice imposes a natural shift in the train and test task distribution that makes
current benchmarks reflective of OOD generalization. However, there are a number of reasons to
also consider the distinct setting of ID evaluation. First, whether in terms of methodology or theory,
many works motivate and analyze meta-learning under the assumption that train and test tasks are
sampled iid from the same distribution (see Section 2). Second, we identify a growing number of
applications, such as federated learning, where there is in fact a need for sample-efficient algorithms

* Authors contributed equally to this paper.
TCode available at https://github.com/ars22/meta-learning-eval-id-vs-ood.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/ars22/meta-learning-eval-id-vs-ood

that can perform ID generalization. Crucially, we show across numerous benchmarks that methods
that perform well OOD may perform significantly worse in ID settings. Our results highlight that it is
critical to clearly define which setting a researcher is targeting when developing new meta-learning
methods, and we provide tools for modifying existing benchmarks to reflect both scenarios.

Beyond this, we also re-examine current OOD FSL benchmarks and analyze how the shift in the train
and test task distributions may impact the reliability of OOD evaluations. We point out two concerns
which we believe are not widely considered in the meta-learning community. First, unlike areas
such as domain generalization where model selection challenges are more widely discussed [18, 23],
we conduct to the best of our knowledge the first rigorous study demonstrating the difficulty of
model selection due to the shift in the validation and test task distributions in FSL benchmarks.
Second, because the OOD scenario in meta-learning does not assume a specific test task distribution,
there is room for different test distributions to be used for evaluation. We show that comparing
which meta-learning method performs better can be unreliable not only over different OOD FSL
benchmarks, but also within a single benchmark depending on the number of novel classes.

Our main contributions are: i) We clearly outline both ID and OOD FSL evaluation scenarios and
explain why most popular FSL benchmarks target OOD evaluation (Section 3). ii) We provide realistic
examples of the ID scenario and show that the performance of popular meta-learning methods can
drastically differ in ID vs. OOD scenarios (Section 4). iii) For existing OOD FSL benchmarks,
we highlight concerns with a) current model selection strategies for meta-learning methods, and
b) the reliability of meta-learning method comparisons (Section 5). iv) To remedy these concerns,
we suggest suitable modifications to the current FSL benchmarks to allow for ID evaluation, and
explain how to construct FSL benchmarks to provide more reliable OOD evaluation. Our hope in
highlighting these evaluation concerns is for future researchers to consider them when evaluating
newly proposed meta-learning methods or designing new FSL benchmarks.

2 Related Work

Current FSL benchmarks. A plethora of few-shot image classification benchmarks (e.g., mini-
ImageNet (mini in short) [42], CIFAR-FS [4]) have been developed for FSL evaluation. These
benchmarks typically provide three disjoint sets of classes (base, validation, novel) taken from
standard classification datasets, e.g., ImageNet or CIFAR-100 [36, 32, 42]. Training, val, and test
tasks are then constructed from these classes respectively, which, as we discuss in Section 3, can
induce a shift in their corresponding task distributions. Distribution mismatch can be particularly large
with non-random splits created at the super class level, e.g., FC-100 [30], or dataset level, e.g., Meta-
Dataset [40]. Recently, Arnold and Sha [2] propose an automated approach to construct different class
splits from the same dataset to allow for varying degrees of task distribution shifts; Triantafillou et al.
[41] separate the distribution shifts on Meta-Dataset into weak vs. strong generalization depending
on whether the novel classes are taken from the used training datasets or not. Both works find that the
meta-learning methods that perform better in one distribution shift scenario might perform worse in
another, providing further evidence to our OOD performance comparison inconsistency argument in
Section 5.2. Beyond these canonical ways of task construction through a set of classes, Ren et al.
[35] propose new benchmarks in a new flexible few-shot learning (FFSL) setting, where the aim is
to classify examples into a context instead of an object class. During testing, they perform OOD
evaluation on unseen contexts. Inspired by their approach, we also provide an FSL benchmark where
tasks are specified by contexts (Section 4), though we differ by exploring ID evaluation.

Mismatch between meta-learning theory/methodology and evaluation. Despite theoretical works
which analyze meta-learning OOD generalization [11, 13], there are many theoretical meta-learning
works [e.g., 1, 3, 8, 22] that first assume the train and test tasks are iid sampled from the same
distribution despite validating their analyses on OOD FSL benchmarks. Additionally, several popular
meta-learning methods [25, 16, 31] that are motivated in the ID scenario are largely evaluated on
OOD benchmarks (see Appendix A). Prior work of Lee et al. [24] explores ID vs. OOD; however
they treat the FSL setup as ID when the disjoint base and novel classes are from the same dataset and
OOD only when they are not (e.g., base from ImageNet, novel from CUB). We emphasize that even
the disjointedness of base and novel from the same dataset can create a task distribution shift and
hence unlike [24] we do not consider current FSL benchmarks (like mini) to be ID (Section 3).

FSL ID evaluation. We are unaware of any FSL classification benchmarks that are explicitly
advertised for ID evaluation. As we discuss in Section 4, a growing number of works [7, 12, 20, 22, 27]

use meta-learning for personalized federated learning, but do not clearly discuss the in-distribution
nature of these benchmarks nor how they differ from standard FSL benchmarks. In recent work, Chen
et al. [10] extend current FSL benchmarks to evaluate their proposed method both ID and OOD, but
only to further improve OOD performance on the original FSL benchmark’s novel classes. Our work
uses a similar setup for constructing ID evaluations with current OOD FSL benchmarks, but focuses
on showing that certain meta-learning methods/design choices can improve OOD performance at
the cost of ID performance. Prior work [17, 34] on incremental few-shot/low-shot learning also
explores performance on both base and novel classes simultaneously. However, they differ in their
methodology, as they use supervised learning (not meta-learning) to classify over the base classes.

OOD evaluation in other fields. Train and test distribution shifts are also found in domain gener-
alization [5, 29] where the goal is to find a model that works well for a different test environment.
Due to this shift, Gulrajani and Lopez-Paz [18] specifically discuss difficulties in performing model
selection in domain generalization benchmarks. They argue that it is the responsibility of the method
designer (not benchmark designer) to determine model selection strategies for their method, and
propose several model selection methods, mainly targeting hyperparameter selection. Unlike domain
generalization, FSL benchmarks often have a pre-determined disjoint set of validation classes to
construct validation tasks, so the need for developing model selection methods may be less obvious.
In Section 5, motivated by [18], we explore strategies for model selection for meta-learning. However,
in contrast to [18], we focus on algorithm snapshot selection for meta-learning, which is required by
hyperparameter selection as a subroutine (exact definitions see Section 5).

3 FSL benchmarks: Background & Focus on OOD evaluation

Background and notation. In this work, we employ a general definition of a meta-learning FSL
task: a task 7 is a distribution over the space of support and query dataset pairs (S, @), where S, Q
are two sets of examples from an example space X’ x). The support set S is used by an algorithm to
produce an adapted model which is then evaluated by the corresponding query set). Each time we
interact with a task 7, an (S, Q) pair is sampled iid from T, the mechanism for which depends on the
specific application; we provide multiple examples below. As discussed in Section 1, meta-learning
aims to learn an algorithm over a distribution of tasks P(7"). During meta-training, we assume access
to N pairs of {(S;, Qi) }ie(n] sampled from a training task distribution* Py, (T) in the following
way: first, N tasks are sampled iid from the training task 7; ~ P, (7); then, for each task T;, a
support query pair (S;, Q;) ~ 7T; is sampled iid. During meta-testing, we assume there is a test task
distribution Py (T') where fresh (S, Q) samples are similarly sampled based on Py (7). We define a
learning scenario to be in-distribution (ID) if Py, = P¢, and out-of-distribution (OOD) if Py, # Pie.
Whenever Py, = Py, the induced train and test marginal distributions of (.5,)) are also identical.

Construction of (S, () pairs in FSL. Most popular FSL benchmarks share a similar structure: they
provide three disjoint sets of classes: base classes Cg, validation classes Cy/, and novel classes Cy,
where any class c in these sets specifies a distribution P, over the example space X'. An n-way
k-shot g-query task 7. in these benchmarks is specified by a length n non-repeated class tuple
c=(c1,...,cn) Where c € [C"] :={(d1,...,dn) €C" : d; # d;,Vi # j}. T generates random
(S, Q) pairs in the following way: For every class c;, k support examples S; ~ (P,)* and g query
examples Q; ~ (P.,)? are sampled. The support and query set is formed by the union of such
labelled examples from each class: S = U, {(x,7),Vz € S;}, Q = U {(x,7),Vz € Q;}. By
specifying the base and novel classes, the FSL benchmark has provided a collection of tasks for
training {7, : ¢ € [C}]} and test {7¢ : ¢ € [C}]}. These sets can be extremely large. For example,

in mini, which has 64 base classes, the total number of 5-way training tasks is (&fif’s)! ~ 9.1 x 108.

However, it is not explicitly specified what underlying task distribution P(7") generates these sets
of tasks. We believe this may have led prior work to discuss FSL benchmarks in the context of ID
evaluation [e.g., 1, 3, 8], contrary to what we outline below.

Current FSL benchmarks target OOD evaluation. We now informally discuss our reasoning for
arguing that current FSL benchmarks reflect OOD evaluation (we provide a more formal proof by
contradiction in Appendix B). In particular, if the training and test tasks in FSL benchmarks are
indeed iid sampled from the same underlying task distribution, then this underlying distribution must
be induced by a distribution over class tuples of an even larger class set Cr, (Cr, 2 (Cp U Cy UCn)).

*We note that “training task distribution” here refers to the true underlying distribution of training tasks, not
the empirical distribution supported over the finite set of sampled training tasks.

We consider the following dichotomy:

i) when |Cr| = O(nN): In this case, the total number of classes nN covered by the sampled tasks
(counting repetition) is greater than the number of underlying classes. Then with high probability,
both the training and test tasks would each cover a significant portion of all the classes in Cy,
making it extremely unlikely to have an empty intersection as in the current FSL benchmarks.

ii) when |Cr| = Q(nN): In this alternative case, the total number of classes (even counting
repetitions) used by sampled tasks is still smaller than the number of underlying classes |Cy|.
Thus the sampled tasks cannot cover all the underlying classes. Under this regime, the number
of classes covered by the training tasks alone would scale linearly with NV, as repeating an
already-seen class in a new task sample is relatively rare. Since FSL benchmarks typically use
a large number of training tasks during meta-training (N > 10%), it is improbable that all the
training tasks would together only cover a very low number of classes (64 in the case of mini).

Randomized class partitions do not imply randomized task partitions. Another issue that may
cause some to view the current FSL benchmarks as performing ID evaluation is that in some of these
benchmarks, the base, val, novel classes are random partitions of iid drawn classes from a class level
distribution (specifically minilmageNet, CIFAR-FS; but not FC-100, tieredImageNet as the classes
are not partitioned randomly). The logic here is that in standard machine learning practice, randomly
partitioning iid sampled data points into train and test guarantees that the train and test samples are
drawn iid from the same underlying distribution. However, it is important to notice that the first class
citizen in common FSL benchmarks is not a class, but a task (represented by a class tuple). So, only a
randomized partition of iid sampled class tuples would guarantee in-distribution sampling.

How can we view P;,., P;. in common FSL benchmarks? Based on the discussion above, we need
to view train and test tasks in current FSL benchmarks as coming from different distributions, i.e.,
P, # Pie. In order to ensure that both sets of tasks are still sampled iid from their respective
distributions, it is convenient to view the train/test tasks as being iid sampled from a uniform
distribution over all possible train/test class tuples induced by Cp /Cy i.e., Py, = Pey = Unif({7e :
c € [CE]}) and test Py, = P¢,, :== Unif({7. : ¢ € [C}]}) — a view which we will adopt in the rest
of the paper.

4 Evaluating In-Distribution Performance

Although (as discussed in Section 3) current FSL benchmarks target OOD evaluation, we now explore
example applications where ID generalization is instead required, and provide easily constructible
benchmarks mirroring these scenarios. As we will show, this distinction is important because
meta-learning methods may perform markedly different in ID vs OOD scenarios.

Example 1 (Federated Learning): Multiple works [7, 12, 20, 22, 27] have considered applying meta-
learning methods in federated learning, in which the goal is to learn across a distributed network of
devices [28, 26]. Meta-learning can produce personalized models for unseen devices/users, improving
over a single globally-learned model’s performance. In this setting, a popular benchmark is the
FEMNIST [6] handwriting recognition dataset. For FEMNIST, we assume there exists a distribution
of writers P(id) in a federated network where each writer (with a unique id) is associated with a
few-shot classification problem to recognize over the different character classes the writer has written
for. We associate each writer id with a task 7;4 which randomly generates a support set with one
random example per class and a query set with varying number of random examples per class.

ID evaluation on FEMNIST. We are given a total of ~ 3500 writers sampled iid from P(id) and we
randomly partition them into a 2509/538 /538 split for training, validation, and test tasks, following
similar practices used in prior FL work [20, 7]. Note that this random split is performed at the
task/id level. As such, we can treat the training and test tasks as being sampled iid from the same
task distribution, unlike current FSL benchmarks.

Example 2 (Online Recommendation): Ren et al. [35] propose the use of Zappos [43] dataset as a
meta-learning benchmark where each task is a binary classification of shoe images into an attribute
context. This mimics an online shopping recommendation problem, where each user has different
shoe preferences based on specific shoe attributes (hence a single global predictive model would not
perform well), and the recommendation system must quickly learn a user’s likes/dislikes through
a few interactions. In this simplified setup, we fix a universal set of shoe attributes .4, and each
user’s preference is represented by a specific pair of unique attributes a = (a1, az), a; # as. A task
Ta representing a user with attribute preference a generates 2-way k-shot g-query (S, Q) pair by
iid sampling k 4 g examples both from the set of images that carry both attributes in a (positive

Table 1: Ranking in () of meta-algorithms’ test performance on i) ID benchmarks FEMNIST, Zappos-ID (with
either 1000 or 50 training tasks); and ii) OOD FSL benchmark minilmageNet.

Dataset / FEMNIST Zappos-1D minilmageNet
Method *wls 2w10s 2wSs (1000 train tasks) | 2wSs (50 train tasks) S5w5s
PN 1)94.72 £ 0.41% | 188.40+0.13% | 186.58 £0.15% | 177.67+0.17% || ®)76.22 + 0.14%
Ridge W94.71 +£0.42% | (¥88.01 £ 0.14% | ®85.56 £ 0.16% | P74.75+0.16% || ®77.20 +0.15%
SVM (3)94.22 +£0.45% | ¥87.75 £0.14% | ®85.124+0.16% | ¥74.06 £0.17% || M 77.72+0.15%
FO-MAML N/A (4)81.90 £0.14% | 980.144+0.15% | ¥69.85 + 0.18% || ¥ 75.96 + 0.17%

examples) and from the set that does not (negative examples). Our task distribution is a uniform
distribution over tasks of all attribute pairs P 4(7") = Unif({7, : a € [A?])}.

ID evaluation on Zappos. Unlike in [35], where Zappos is used to measure OOD performance by
having disjoint train and test attributes A, N Ay = ¢, in this work we use Zappos for ID evaluations
by iid sampling both meta-train and meta-test tasks from the same distribution P 4 (7). Through
this modification of Ren et al.’s setup, we sample 1000 / 50 attribute pairs from an attribute set
|A| = 36 to construct 1000 / 50 training tasks (each with a randomly sampled (.5, Q)) and evaluate
ID performance on another 25000 test tasks sampled in the same way. Our evaluation setup captures
a realistic setting where the goal is to learn an algorithm that can generalize to the entire online
shopper population despite being trained only on a randomly chosen subset of shoppers.

Remark. Even with ID evaluation it is possible to encounter unseen classes/attributes in meta-test
tasks, specifically when the number of meta-train tasks is smaller than the number of underlying
classes/attributes (Section 3). However, a suitable number of iid sampled meta-train tasks is needed
to ensure good performance, which would naturally encompass a larger set of meta-train classes than
those considered by OOD FSL benchmarks. For example, there are still 16 attribute pairs from the
test tasks that are unseen in the 1000 training tasks on Zappos-ID, but the dataset is still in-distribution
since the sampling distributions of train and test attribute pairs (and thus of tasks) are identical.

ID benchmark results. We evaluate the ID performance of four popular meta-learning methods:
Prototypical Networks (PN) [39], MetaOptNet-SVM (svM) [25], MetaOptNet-Ridge Regression
(RR) [25, 4] and FOMAML [15] on our identified ID FSL benchmarks (Table 1). Since FEMNIST’s
tasks have varying number of ways, FOMAML cannot be directly used due to the logit layer shape
mismatch. We note that the performance order of the four methods are consistent on all three ID
benchmarks yet surprisingly almost completely opposite to the performance order observed on the
OOD benchmark mini (except for FOMAML). In terms of the actual performance differences, we
notice that the ID performance advantage of PN over SVM becomes particularly large (> 3%) when
we reduce of the number of training tasks for Zappos-ID to 50; in contrast, on the OOD benchmark
mini, SVM instead outperforms PN by 1.5% (a significant number as many newly proposed meta-
learning methods often only report improvements over previous methods by 1.5% or less). These
performance differences make it clear that the performance ranking flips between ID and OOD indeed
exist, and as a result, these common OOD FSL benchmarks (like mini) cannot be used to compare
ID performance without modifications, giving further evidence to the danger of such practices (see
Section 2). To further understand this phenomenon, we propose a way to also enable ID performance
evaluation over these common OOD FSL benchmarks and see if there still exists a difference in ID,
OOD performance orders.

Modifying OOD FSL benchmarks for ID evaluation. From our previous discussion, we have
shown that we can think of FSL training tasks as being sampled iid from the task distribution
P, = Unif({7. : ¢ € [C}]}). To conduct an in-distribution evaluation, we need to sample fresh
test tasks iid from P¢ . For a freshly sampled 7. ~ P, we also need to iid sample a fresh support
query pair (S, Q) ~ T.. To ensure independent sampling from the already seen meta-training (.5, Q)
pairs, we need to introduce new examples from P, for each class ¢ € Cp. Thus we construct slightly
modified versions of four common FSL benchmarks i) minilmageNet-Mod (mini-M) [42], in which
we find (= 700) unused examples (from ImageNet) for each base class and use them to evaluate the
performance over [P¢,,. Here the original 600 examples of each base class are still only used for meta-
training. ii) CIFAR-FS-Mod (cifar-M) [30], FC-100-Mod (FC-M) [4], and tieredIlmageNet-Mod
(tiered-M) [33]: As we don’t have additional samples for base classes, we randomly partition each
base class’s current examples into an approximate 80/20 split where the training tasks are constructed
using the former and the latter is reserved for ID evaluation.

ID vs. OOD conflicts still exist. In addition to evaluating the four aforementioned meta-learning
methods, we also consider two supervised pretraining methods: the supervised learning baseline (SB)

95.5 81 83 95.5 86

95.0 95.0 -&77.0

945 92.0 945 745 955

s 80 o5 82 040 720 95.0 85

93.5 ® PN . c @ PN 93.5 O _@ PN5wss c @ PNML
$93.0 795 @ ridee o010 818 ® Ridge 5930 67.0 §x e 20uss G 945 848 X PNFixML
0925 O @ swm %] 9O @ swm 0925 64.59¢@ romamLir=se3 Q 94.0 O @ RidgemL
& 92.0 789 @ romamL 9905 ¢ @ romam Zo20 62.0 % roMAMLIr=le2 0 QX Ridge FixML
B915 el MB & 802 mB So15 59.53 8935 832 @ swm

91.0 77 ® s8 90.0 ® s8 91.0 57.0 X SVM FixML

90.5 79 90.5 54.5 93.0 82

90.0 76 89.5 90.0 52.0 925

89.5 89.5 49.5 :

89.01 75 89.0 78 89. 47.0 92. 81

(a) mini-M 5w5s (Best Val) (b) tiered-M 5w5s (Best Val) (c) Hyper-param Choice (Best Val) (d) cifar-M 5w5s (Best Val)

Figure 1: We show the BaseGen and NovelGen performance tradeoff (for best validation snapshots): over the
choice of a set of four meta-learning and two supervised pre-training methods on mini-M (a) and tiered-M (b);
over the number of ways to train PN on mini-M and different learning rates to train FOMAML on FC-M (c); over
the use of FIX-ML (S, Q) generation strategy or not (ML) with SVM, RR and PN on cifar-M in (d).

[9] and Meta-Baseline (MB) [10]. Both of these methods have been shown to outperform many meta-
learning methods on the current OOD FSL benchmarks. For succintness, we call the generalization
performance over the training task distribution P¢, BaseGen and performance over Pc,, NovelGen
(we will refer to performance on validation tasks from P¢,, ValGen in a later section). We plot
the BaseGen and NovelGen performances of the aforementioned methods on minilmageNet-Mod
and tieredlmageNet-Mod in Figure 1(a)(b) (other datasets see Appendix E Figure 4(a)(b)), with a
dotted line connecting BaseGen and NovelGen value of same learned algorithm snapshot of a meta-
learning method. We see that the ID/OOD performance order flips still exist within current FSL
benchmarks themselves (the dotted lines of different methods cross each other frequently), showing
that the issue of improving OOD at the expense of ID is a common realistic phenomenon for
multiple benchmarks. In addition, despite outperforming all meta-learning methods on NovelGen,
the non-meta-learning methods SB and MB cannot beat the best meta-learning methods on BaseGen,
which demonstrates their restrictive advantage only in the OOD setting. More broadly speaking,
these OOD FSL datasets are constructed with a belief that there exists a commonality between the
training and test task distributions so that an algorithm capturing this commonality using the training
distribution alone would also generalize to the test tasks. Thus the phenomenon of improving OOD
while sacrificing ID means the algorithm has in some sense failed to learn the essence/commonality
from the given training tasks. Additionally, we see that the BaseGen ranking of the four meta-learning
methods over these common FSL bechmarks are exactly the same as the ranking over our two newly
proposed ID benchmarks in Table 1. We suggest that researchers who want to also test on their
proposed methods’ ID generalization performance can perform BaseGen evaluation method in our
proposed way as it is a simple addition to their existing NovelGen evaluation setup.

Certain OOD training choices might harm ID generalization. In addition to checking the dis-
crepancy of ID vs OOD generalization comparison of different meta-learning methods, we now ask,
for a given meta-learning method, whether the meta-training choices found to be most effective on
NovelGen would still be optimal for BaseGen.

i) Meta-training hyperparameters: In Figure 1(c) we see that a higher learning rate when training
FOMAML finds algorithms that have higher BaseGen, whereas lower learning rates are better for
NovelGen. Additionally, we see that the proposed technique of training with more ways for PN in
[39] can lead to better NovelGen performance but worse BaseGen performance than the 5-way
trained PN whose training and test task configurations match.

ii) Meta-training (.5, Q) generation alternatives: It was found in [38] that always using the same
support examples for every base class when constructing .S (FIX-ML) can improve NovelGen
performance for several meta-learning methods over multiple OOD FSL benchmarks. However,
restricting the training (.S, @Q)’s diversity sampled from P¢,, seems counter-intuitive and we
wouldn’t expect to improve the in-distribution generalization BaseGen. In Figure 1(d), we indeed
see that FIX-ML only improves NovelGen performance at the expense of BaseGen by training
over a much less diverse set of tasks.

These two observations above caution us that some training techniques to boost test accuracy on
FSL benchmarks might only work for the OOD scenario but not the ID scenario.

5 Challenges With Out-of-Distribution Evaluation

After identifying some example benchmarks for ID evaluation, we come back to the current OOD FSL
benchmarks to further examine some subtle challenges in OOD evaluation. Here, instead of focusing
on the distinction between ID vs. OOD, we now look at some reliability and inconsistency problems

mirgé‘lmagenet-Mod PN 64w 4 tieredimagenet-Mod PN 20w 95CIFAR—FS—Mod SVM

-~ Supervised (IC)
90
EY — BaseGen 0.7 - PN 90 —— BaseGen
> ValGen 0.6 Ridge >85 > ValGen
3 85 —— NovelGen 0.5 = SVM I Q8 —— NovelGen
5 80 Q. 5 80 5 a0
¢ po g g
X5 0.3 g S
—— BaseGen
70 . 70
02 —— NovelGen 70
0.1

0 10 20 30 40 50 60 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epochs ' mini-M tiered-M cifar-M FC-M Zappos-ID Epochs Epochs

(a) (b) ©) (d)
Figure 2: We plot the (Base, Val, Novel)Gen progression of 64(max)-way trained PN on mini-M in (a) and
of SVM trained on cifar-M in (d). In (b) we compute the Kendall rank correlation coefficient (p) between the
validation and test rankings of model snapshots for IC (trained on cifar) and algorithm snapshots for PN, SVM,
RR on OOD datasets mini-M (last 40 epochs), cifar-M (last 40), FC-M (last 10), tiered-M (last 20) and ID dataset
Zappos-1D (last 30); in (c) we show the BaseGen tracking NovelGen for 20-way trained PN on tiered-M.

within the OOD evaluation itself. In particular, we highlight two concerns: 1) Despite providing a
validation set of classes for task construction during meta-validation, it is not clear whether this is a
reliable way to perform model selection. 2) As there is no requirement on how similar the training
and test task distributions need to be in the OOD setting, there can be inconsistencies in method
comparisons when the evaluation setup is slightly modified.

5.1 Model Selection

To compare a set of meta-learning methods on the OOD test task distribution, one needs to select a
representative algorithm learned by each method to be evaluated on the test task distribution. To do
s0, one should first decide what set of hyperparameter configurations to choose from for a given meta-
learning method (we define the entire set of all hyperparameters for a training run as a hyperparameter
config). For each such considered config, after its training is completed, we need to choose one of the
algorithm snapshots saved during training to represent it (which we call snapshot selection). Then
the set of hyperparameter configs are compared based on their respectively selected snapshots, and a
single config is then chosen among them (which we term hyperparameter selection). This config’s
selected snapshot will represent the given meta-learning method to be finally evaluated on the test
tasks. We refer to the combined problem of hyperparameter and snapshot selection as model selection.
(See Appendix F.1 for a simplified example of snapshot and hyperparameter selection; see F.2 for the
distinction between the commonly used technique early-stopping and snapshot selection.)

Snapshot vs Hyperparameter selection. If the snapshot selection strategy cannot reliably identify
a snapshot with good test performance, it is possible that some hyperparameter configs will be
unfairly represented by a mischosen snapshot, leading to erroneous hyperparameter selection. Thus
we believe snapshot selection is a more fundamental problem and we focus our analyses on it (more
on hyperparameter selection in Appendix F.5). In OOD FSL benchmarks, a reserved set of validation
classes (disjoint from the set of novel classes) is provided, which as we have argued, provides tasks
which are not sampled iid from the test task distribution. As a result, we ask: is performing validation
on the given validation tasks reliable, and, if not, are there other options? In contrast, there is
typically no need for such concerns in standard ID supervised learning, where the validation set is
sampled iid from the test distribution.

5.1.1 Option 1: Snapshot selection tradition using ValGen.

By providing a set of validation classes, it has become the default practice for meta-learning methods
to use ValGen performance for snapshot selection. However, because P¢,, and P¢,, are different
tasks distributions, it is not clear whether a higher ValGen performance is strongly correlated with a
higher NovelGen performance. In Figure 2(a), we plot the progression of ValGen and NovelGen of a
64-way trained PN on minilmageNet-Mod 5w5s tasks. We notice that ValGen is consistently higher
than NovelGen, indicating that meta-val performance is not an accurate estimator of NovelGen. More
importantly, we see trendwise that while ValGen is generally non-decreasing, NovelGen starts to
decrease after epoch 30. Thus the snapshot selected according to the best ValGen is not the snapshot
with the best possible meta-test performance. In fact, this loss of NovelGen performance due to
choosing the best ValGen model instead of the actual best NovelGen model can be particularly
large, with values being 1.1% for SVM, 1.2% for RR, 0.7% for PN, and 0.9% for FOMAML on the
FC-100 dataset. These performances losses for each method are especially concerning considering
the differences among the best possible NovelGen performance of these different methods are often
smaller than 1.5%.

Ranking similarity analysis. In light of the above observation, we ask a more general quantitative
question: How similar is the ranking of the training snapshots using meta-val performance (ValGen)
to the ranking using the meta-test performance (NovelGen)? To answer this, we compute the
Kendall rank correlation coefficient® p [21] between the ValGen and NovelGen rankings of algorithm
snapshots trained on four OOD FSL benchmarks (Figure 2(b)) and our ID benchmark Zappos-ID
whose validation and test tasks come from the same distribution P 4. More concretely, for each meta-
learning method and dataset combination, we save the algorithm snapshots (one from each epoch)
throughout meta-training and rank these algorithm snapshots according to their ValGen and NovelGen
value respectively. Then p is computed between these two rankings for this specific (meta-learning
method,dataset) combination. For snapshot selection through ValGen to work reliably, we need p to
be close to 1. For context, we also compute p for a standard supervised image classification problem
(IC), where train, val and test examples are sampled from the same example-level distribution.

Unreliabity of ValGen snapshot selection. From Figure 2(b), we see that when using validation
samples generated iid from the test distribution (Zappos-ID and supervised learning IC), the value of
p is consistently higher than the OOD benchmarks, indicating the validation performance can more
reliably track the trend of test performance in the ID setting than on the OOD FSL benchmarks. In
particular, for the cifar-M and FC-M datasets, the ValGen ranking of algorithm snapshots seems to
be only weakly correlated with the true meta-test ranking for all the meta-learning methods. In fact,
the meta-val and meta-test rankings of the most useful snapshots can sometimes even be negatively
correlated (p ~ —0.12 < 0 over all snapshots after epoch 30 in the training scenario shown in
Figure 2(a)). These results show that on the OOD FSL benchmarks, snapshot selection using the
pre-assigned validation tasks can sometimes be unreliable/unable to identify a snapshot candidate
with top-tier meta-test performance among all the snapshots.

5.1.2 Option 2: Snapshot selection alternative using BaseGen.

Beyond using OOD validation tasks for snapshot selection, inspired by the domain generalization
community [23, 18], we can alternatively also consider using the ID performance over the training
task distribution for snapshot selection. Perhaps due to the lack of an ID evaluation setup in common
FSL benchmarks, this possibility has not been widely considered. Enabled by our modifications
of current FSL benchmarks, we can now evaluate the ID generalization performance (BaseGen)
throughout training in addition to ValGen.

We plot how BaseGen and NovelGen progress for meta-learning methods trained on two different
datasets in 2(c)(d). Here we see that on tiered-M, the BaseGen and NovelGen of PN both increase
fairly consistently; thus picking the algorithm snapshot with the highest BaseGen performance
(roughly the end-of-training snapshot) would also give close-to-best NovelGen. However, on cifar-M,
after the learning rate drop at epoch 20, SVM’s BaseGen keeps improving while NovelGen starts
deteriorating. In this case, selecting snapshots according to the best BaseGen would pick a much
worse snapshot than picking according to the best ValGen. (For concrete numbers of how much
snapshot selection through BaseGen vs. ValGen could impact the chosen snapshot’s NovelGen
performance in each of these two cases, see Appendix F.3.) This ambiguity of whether ID or OOD
Validation snapshot selection is better has also been documented in domain generalization, where
Gulrajani and Lopez-Paz [18] find ID model selection can perform better in some settings while
Koh et al. [23] find OOD validation model selection is better in others. Despite this ambiguity, we
believe the commonly neglected in-distribution (BaseGen) snapshot selection approach should
be considered by users of OOD FSL benchmarks as a viable alternative to the default ValGen
selection approach in proper settings.

5.2 Inconsistencies in Meta-learning Method Performance Comparisons

After discussing concerns regarding OOD model selection for a given meta-learning method, we now
analyze the reliability and consistency of conclusions drawn from comparing different meta-learning
methods’ OOD performance on these benchmarks. In particular, we focus on two cases:

Inconsistency example 1: Limited number of novel classes in a single benchmark. Since in
OOD FSL we specifically care about the learned algorithms’ ability to quickly learn many unseen
concepts, we should not be satisfied with an algorithm performing well only on tasks constructed
from a small number of pre-selected novel classes. However, for many widely-used FSL benchmarks

¥p e [—1,1], p &= 0 means no correlation, while p = 1/p = —1 means exactly same/opposite rankings.

€ [Cpl|Cy|ICL| CF IE0.5%

Dataset ZAPPOS-OOD mini-OOD

10 = 0.5%|100 imgs/class| 3% 1% Methods 2w10s 2w5s Sw5s
1,20 Random 20 novel classes chosen as . @) [Z]0.5%| 64 20 120[{15% 25% ~ PN || (D80.51 | (D74.67 | (3 76.22
1.00 (ii) § 0.5%| 64 20 552|120% 24% +0.13% +0.14% +0.14%
o } (i) | ~|1.0%| 64 20 552|10% 12% Ridge || (V)80.51 | (®)73.50 | (2)77.20
0.60 - +0.13% +0.14% +0.15%
(iv) 20.5% 64 20 552(20% 23% SVM B)79.70 | B 72.84 | V77 72
040 (v) ||0.5%| 64 160 552| 0% 7% +0.13% | +0.14%| +0.15%
0,15 === = (vi) § 0.5%|351 20 552{9% 15% M‘F(R/I (4)72.89 |(4eg.12 | (4 75.96
PO oot sk e T 1 vii)|5]0.5%| 351 160 552|0% 1% AMLI| 16 149% | +0.15%| +0.17%

() - A (C

(a) (b) (c)
Figure 3: In (a), we show the CDF plot of Ay, (Cnx) — Ag, (Cn) over 100 randomly chosen sets of Cy with
20 (out of total |Cr,|=120) novel classes each. In (b), for different values of true performance difference € and
values of underlying class size |Cy |, training class size (|Cz|), and evaluation class size (|Cx|); we show the
percentage of conclusion flips (CF) and improvement exaggerations (IE) with § = 0.5% computed over 100
evaluations. In (c), we demonstrate the inconsistencies in performance rankings for PN, SVM, RR, and FOMAML
on two OOD benchmarks: Zappos-OOD and mini-OOD.

(minilmageNet, CIFAR-FS, FC-100), only 20 novel classes are used for meta-testing. Ideally, even if
we don’t measure it, we would hope that our learned algorithm would also generalize to tasks made
by other sets of classes different from the fixed small set of novel classes.

Formal setup. We suppose the existence of a much larger collection of classes Cy, where the
novel classes C used for meta-testing is a small random subset with each element class sampled
uniformly and non-repeatedly from Cj, and fixed thereafter for NovelGen evaluation. Ideally, our
goal is to evaluate an algorithm snapshot ¢ on the task distribution P¢, (denote this performance
by A,(Cr)), yet during evaluation we only have access to the novel classes in Cx and thus we can
only compute the performance A,4(Cy). It is easy to see that when we randomize over different
choices of Cy, the expected performance over the sampled novel classes would match the true
performance: E¢, [A4(Cn)] = A(Cr). However, when using a single randomly sampled novel set,
the estimator A,(Cx) can have high variance (see Appendix F.6). Instead of relying on A,(Cn) to
directly estimate A,(Cy,), we ask a more relaxed question: for a pair of algorithms A,;, and Ay,
(given by two meta-learning methods), if the true performance Ay, (Cr.) — Ag,(Cr) = € > 0, how
frequently will we observe an opposite conclusion i.e., P(Ay, (Cn) < Ay, (Cn)) over a randomly
sampled C (we call this event conclusion flip)? Additionally, it is also possible that the observed
performance difference on Cy is greater than the true difference ¢ by some amount § > 0. In this
case, the NovelGen observation would make the algorithm snapshot ¢, look better than ¢» more than
it actually is on Cy,.. Thus we also ask what is the probability of P(Ay, (Cn) — Ag, (Cn) > €+)
and we call such events improvement exaggerations. To answer both these questions empirically,
we first suggest some larger class sets Cy, for mini and tiered. For both we select unused classes
from ImageNet disjoint from the base and validation classes. For tiered, we use all the remaining
1000 — 351 (base) —97 (novel) = 552 classes as Cy, while for mini, we randomly choose 120 or 552
(to match |Cy| in fiered) unused classes. We fix these Cy, choices in the following analysis.

Checking the frequency of conclusion flips and exaggerations. Figure 3(a) shows the empirical
CDF of the performance differences Ay, (Cn) — Ag,(Cn) computed over 100 randomly sampled
size-20 novel class sets C for a fixed pair of PN and RR algorithm snapshots whose true performance
difference over the larger 120 classes Cy, is € = 0.5%. In 15% of the cases the performance order
is flipped from the true order, while in 25% of them improvements are exaggerated by more than
0.5% (total difference greater than 1%). Moreover, for some of the performance order flips, the
observed performance difference can be quite negative < —0.5% thus significantly opposite to the
true performance order. (Here for each run we evaluate both methods on 20,000 tasks sampled from
P¢, in order to significantly reduce the randomness in estimating the true Ay, (Cn), Ay, (Cn).)

Comparison to supervised learning. We check for the conclusion flip and improvement exagger-
ation frequency when only a random subset of the full test set (100 randomly drawn test images
from each base class in mini-M) is used to compare two supervised learning image classification
models with the same full test set performance difference of € = 0.5 (row (IC) in Table 3(b)). Here
we see that compared to supervised learning, the chances of getting an incorrect performance
comparison (row (i) in Table 3(b)) is much higher for the meta-learning OOD FSL benchmarks
when evaluating only on 20 randomly chosen novel classes (as done in several FSL benchmarks).

Larger |C.| makes it even less reliable but larger € helps. If we were to care about an even larger
set of underlying classes (|Cr,| = 552) despite still using only 20 random novel classes for evaluation

comparison, the conclusions are even less reliable (Table 3(b) (i) vs (ii)). On the other hand, we do
see that the performance comparison becomes comparatively more consistent if the true performance
difference ¢ is higher (1% in (iii) compared to 0.5% in (ii)), despite that there still exists a statistically
significant chance (10%) of getting an opposite conclusion.

OOD evaluations in current FSL benchmarks. In practice, because 1) we never specify exactly
what and how big the underlying set of classes that we care about is, and 2) some of the recent
meta-learning methods (SVM vs PN on cifar in Table 2 of [25], R2-D2 vs GNN on mini in Table 1 of
[4], FIX-ML [38]) sometimes only improve over the prior works by < 1%, we believe researchers
should be aware of the possibility of getting a performance conclusion that is inconsistent over
a single randomly chosen and fixed set of 20 novel classes used by some of these benchmarks.

Actionable suggestions. Since the size of the unknown underlying larger class set Cr, and the true
performance difference € might not be something one can directly control when designing the OOD
benchmark, we now discuss two actionable choices that can reduce the chances of conclusion flips:

i) Use more novel classes in the evaluation: By comparing (iv) vs (v) and (vi) vs (vii) in Table 3,
we see that the frequency of conclusion flips and improvement exaggerations are much lower
when 160 novel classes are used as opposed to 20 when |Cy| is the same.

ii) Train on more base classes: The tiered dataset has more base classes (351 compared to 64 for
mini) to train on. When comparing PN and RR snapshots trained on a modified version of tiered
with fewer (randomly sampled 64 out of 351 to match mini) base classes, we see that the CF
frequency is twice as high compared to when 351 base classes are used (Table 3(b)(iv) vs (vi)).

Based on these two trends, for more reliable comparisons of meta-learning methods’ OOD perfor-
mance we suggest using datasets like tieredlmageNet and MetaDataset (both with much larger set of
base and novel classes) in addition to the smaller benchmarks like minilmageNet, CIFAR-FS, and
FC-100, which some recent works [e.g., 30, 4] still solely rely upon.

Inconsistency example 2: Inconsistency across multiple OOD FSL benchmarks. Unlike the ID
scenario where the training and test task distribution are the same, the similarity between training
and test distributions in the OOD FSL benchmarks can vary significantly. Ideally, we want a meta-
learning method to be consistently better on multiple OOD benchmarks with different type/degree of
distribution shifts. Since Ren et al. [35] originally use the Zappos dataset for OOD evaluation, we
also perform a similar evaluation on new attribute pairs based on their setup. At test time, we use an
attribute set A’ disjoint from the one used in the Zappos-ID setup A, and sample attribute pairs from
A’ only. This induces a test task distribution P 4. different from the training task distribution P 4.
We evaluate different meta-learning methods on these Zappos-OOD tasks to see if the performance
order is consistent with other OOD FSL benchmarks (Table 3(c)). Here we see that despite SVM
outperforming RR and PN on mini NovelGen, the performance order of these three methods are
completely flipped on Zappos-OOD. Similar observations can be made from TADAM underper-
forming PN in Table 2 of [35] despite TADAM being shown to outperform PN on the other more
commonly-used FSL benchmarks. This inconsistency over different types of OOD FSL benchmarks
is in stark contrast to the consistency of performance rankings over the 6 different ID benchmarks
(FEMNIST, Zappos-ID, and the BaseGen results of the 4 current FSL benchmarks (Section 4)).
Based on these findings, we caution meta-learning researchers to be aware of such conclusion
inconsistencies over different OOD FSL scenarios and reason carefully about the generality of
their empirical findings when using only specific types of OOD datasets.

6 Conclusion

In this paper, we categorize meta few-shot learning evaluation into two settings: in-distribution
(ID) and out-of-distribution (OOD). After explaining why common FSL benchmarks reflect OOD
evaluation, we identify realistic needs for ID FSL evaluation and provide new benchmarks as well as
suggestions on how to modify existing OOD FSL benchmarks to allow for ID evaluation. Through
experiments performed on these ID benchmarks, we demonstrate a surprising phenomenon that
many meta-learning methods/training techniques improve OOD performance while sacrificing ID
performance. Beyond this, through quantitative analyses, we show that even in the OOD scenario,
current FSL benchmarks may present subtle challenges with both model selection for a given meta-
learning method and reliable performance comparisons of different methods. For these concerns, we
provide initial suggestions and alternatives with the hope of alleviating these issues. Overall, we aim to
raise awareness about the dichotomy of FSL evaluation and to motivate the meta-learning community
to collectively reason about ways to improve both ID and OOD methodology and evaluation.

10

Acknowledgements. This work was supported in part by the National Science Foundation Grant
11S1838017, a Google Faculty Award, a Facebook Faculty Award, and the CONIX Research Center.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the NSF or any other funding agency.

References

[1] M. Al-Shedivat, L. Li, E. Xing, and A. Talwalkar. On data efficiency of meta-learning. In
International Conference on Artificial Intelligence and Statistics, pages 1369-1377. PMLR,
2021.

[2] S. M. Arnold and F. Sha. Embedding adaptation is still needed for few-shot learning. arXiv
preprint arXiv:2104.07255, 2021.

[3] Y. Bai, M. Chen, P. Zhou, T. Zhao, J. D. Lee, S. Kakade, H. Wang, and C. Xiong. How important
is the train-validation split in meta-learning? arXiv preprint arXiv:2010.05843, 2020.

[4] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi. Meta-learning with differentiable
closed-form solvers. In International Conference on Learning Representations, 2019.

[5] G. Blanchard, G. Lee, and C. Scott. Generalizing from several related classification tasks to
a new unlabeled sample. Advances in neural information processing systems, 24:2178-2186,
2011.

[6] S.Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan, V. Smith, and A. Talwalkar.
Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097, 2018.

[7] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He. Federated meta-learning with fast convergence
and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

[8] J. Chen, X.-M. Wu, Y. Li, Q. LI, L.-M. Zhan, and F.-l. Chung. A closer look at the training
strategy for modern meta-learning. Advances in Neural Information Processing Systems, 33,
2020.

[9] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer look at few-shot
classification. International Conference on Learning Representations, 2019.

[10] Y. Chen, X. Wang, Z. Liu, H. Xu, and T. Darrell. A new meta-baseline for few-shot learning.
arXiv preprint arXiv:2003.04390, 2020.

[11] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

[12] A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning with theoretical guar-
antees: A model-agnostic meta-learning approach. Advances in Neural Information Processing
Systems, 33, 2020.

[13] A. Fallah, A. Mokhtari, and A. Ozdaglar. Generalization of model-agnostic meta-learning
algorithms: Recurring and unseen tasks. arXiv preprint arXiv:2102.03832, 2021.

[14] C. Finn and S. Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=HyjC5yWCW.

[15] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pages 1126—1135, 2017.

[16] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In Advances in
Neural Information Processing Systems, pages 9516-9527, 2018.

[17] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
43674375, 2018.

11

https://openreview.net/forum?id=HyjC5yWCW

[18] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

[19] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey. arXiv preprint arXiv:2004.05439, 2020.

[20] Y. Jiang, J. Konecny, K. Rush, and S. Kannan. Improving federated learning personalization
via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

[21] M. G. Kendall. Rank correlation methods. Griffin, London, 3d ed. edition, 1962.

[22] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar. Adaptive gradient-based meta-learning
methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
f4aa0dd960521e045ae2£20621fb4ee9-Paper.pdf.

[23] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Ya-
sunaga, R. L. Phillips, I. Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. arXiv
preprint arXiv:2012.07421, 2020.

[24] H. B. Lee, H. Lee, D. Na, S. Kim, M. Park, E. Yang, and S. J. Hwang. Learning to balance:
Bayesian meta-learning for imbalanced and out-of-distribution tasks. International Conference
on Learning Representations, 2020.

[25] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex opti-
mization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 10657-10665, 2019.

[26] T.Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and
future directions. IEEE Signal Processing Magazine, 37(3):50-60, 2020.

[27] S. Lin, G. Yang, and J. Zhang. A collaborative learning framework via federated meta-
learning. In 2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS), pages 289-299, Los Alamitos, CA, USA, dec 2020. IEEE Computer Society. doi:
10.1109/ICDCS47774.2020.00032. URL https://doi.ieeecomputersociety.org/10.
1109/ICDCS47774.2020.00032.

[28] H. B. McMahan et al. Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1), 2021.

[29] K. Muandet, D. Balduzzi, and B. Scholkopf. Domain generalization via invariant feature
representation. In International Conference on Machine Learning, pages 10-18. PMLR, 2013.

[30] B. N. Oreshkin, P. Rodriguez, and A. Lacoste. Tadam: Task dependent adaptive metric for
improved few-shot learning. In Advances in Neural Information Processing Systems, 2018.

[31] A.Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients. In
Advances in Neural Information Processing Systems, pages 113124, 2019.

[32] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

[33] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle,
and R. S. Zemel. Meta-learning for semi-supervised few-shot classification. arXiv preprint
arXiv:1803.00676, 2018.

[34] M. Ren, R. Liao, E. Fetaya, and R. Zemel. Incremental few-shot learning with attention
attractor networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/e833e042£509c996b1b25324d56659fb-Paper . pdf.

[35] M. Ren, E. Triantafillou, K.-C. Wang, J. Lucas, J. Snell, X. Pitkow, A. S. Tolias, and R. Zemel.
Flexible few-shot learning with contextual similarity. arXiv preprint arXiv:2012.05895, 2020.

12

https://proceedings.neurips.cc/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://doi.ieeecomputersociety.org/10.1109/ICDCS47774.2020.00032
https://doi.ieeecomputersociety.org/10.1109/ICDCS47774.2020.00032
https://proceedings.neurips.cc/paper/2019/file/e833e042f509c996b1b25324d56659fb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e833e042f509c996b1b25324d56659fb-Paper.pdf

[36] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with

memory-augmented neural networks. In International conference on machine learning, pages
1842-1850. PMLR, 2016.

[37] J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universitidt Miinchen, 1987.

[38] A. Setlur, O. Li, and V. Smith. Is support set diversity necessary for meta-learning? arXiv
preprint arXiv:2011.14048, 2020.

[39] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances
in neural information processing systems, pages 4077-4087, 2017.

[40] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci, K. Xu, R. Goroshin, C. Gelada,
K. Swersky, P.-A. Manzagol, et al. Meta-dataset: A dataset of datasets for learning to learn
from few examples. In International Conference on Learning Representations, 2020.

[41] E. Triantafillou, H. Larochelle, R. Zemel, and V. Dumoulin. Learning a universal template for
few-shot dataset generalization. In International Conference on Machine Learning, 2021.

[42] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning.
In Advances in neural information processing systems, pages 3630-3638, 2016.

[43] A. Yuand K. Grauman. Fine-grained visual comparisons with local learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 192-199, 2014.

13

Appendix

Appendix Outline

A. Assumption (ID) and Evaluation (OOD) Mismatch Examples

B. Formal Analysis on Why Current FSL Benchmarks Are OOD

C. Overview of Notations for (S, @) Sampling in ID and OOD Benchmarks
D. Dataset Preprocessing and Hyperparameter Details

E. Additional Results on Evaluating ID Performance

F. Additional Discussion and Results on OOD Evaluation

A Assumption (ID) and Evaluation (OOD) Mismatch Examples

To illustrate the mismatch between meta-learning theory/methodology and evaluation (Section 2),
below are some examples of works that motivate commonly-used meta-learning methods in the
in-distribution setting, but largely evaluate empirical performance on OOD FSL benchmarks. For
convenience, we provide exact lines from the original works that refer to the ID scenario. Our aim is
not to draw attention to these works specifically, but to highlight the ubiquity of the divide between
theory and practice in current meta-learning literature.

e Lee et al. [25] (Section 3.1): “It is often assumed that the training and test set are sampled
from the same distribution and the domain is mapped to a feature space using an embedding
model f4 parameterized by ¢ .

* Rajeswaran et al. [31] (Section 2.1): “... a collection of meta-training tasks {7;}£, drawn
from P(7) ... At meta-test (deployment) time, when presented with a dataset D;r correspond-
ing to a new task 7; ~ P(7).” Notice that the training and test tasks are all sampled from the
same task distribution P(7).

* Finn et al. [16] (Section 3): “To do so, meta-learning algorithms require a set of meta-training
and meta-testing tasks drawn from some distribution p(7"). The key assumption of learning-
to-learn is that the tasks in this distribution share common ... ”.

B Formal Analysis on Why Current FSL. Benchmarks Are OOD

In this section we provide formal arguments for the informal statements in Section 3, which explain
why it is improbable for the train and test tasks in the current FSL benchmarks to be iid sampled from
the same underlying distribution.

Formal Setup. If we believe that both train and test tasks in current FSL benchmarks are sampled
from the same underlying task distribution, then this shared task distribution (where each task is
specified by a class tuple) must cover a larger set of underlying classes Cz, which would contain both
the base classes and novel classes as subsets C;, O (Cp U Cy). For convenience, we represent the
classes in this set with Cr, := {1,..., L} where the task distribution (from which the train and test
tasks are iid sampled) is induced by a probabilistic distribution over n—way non-repeating tuples
c:=(c1,...,¢p,) € [C}], denoted by P, (c). To sample a task from this larger task distribution, we
sample ¢ ~ P, and take the corresponding task 7.. Notice that this task distribution can be more
general than P¢, or P¢,,, as P, (¢) does not have to be a uniform distribution over all possible class
tuples.

Definition 1 (Probability of observing a class in a single draw). The indicator event of observing a
class i anywhere in a randomly drawn class tuple ¢ ~ P, can be represented by Z;’:l I(c; = 1),
since it is impossible to observe the same class more than once in the same tuple. We denote the

probability of this event by p; = P ((Zyil I(c; = z)) = 1) = > P(l(c; =0) = 1) =
Z?:l P(C] = Z)'

Lemma 1. The sum of the probability of observing a class i in a single class tuple draw over all the
classes i € Cy, is equal to n, i.e., ZiLZI pi = n.

14

Proof of Lemma 1. We know that Zle P = Zle Z?Zl P(¢; = i) by simply plugging in the
definition of p;. Since Zle P(c; = i) = 1, by exchanging the summations we get, ZiLzl D =

Z?:l Zz‘L=1 P(e; =1i) = Z;-Lzl[l] =n. o

Assumption 1 (Every class must have nonzero probability to be sampled). To avoid degeneracy,
we assume that each class has a minimum non-zero probability of being sampled in a class tuple:
Vie{l,...,L}, 1> p; > 3=, where vy € (0,1]. Notice vy is strictly greater than 0 to avoid the
degenerate case where a class would almost surely never be sampled in any class tuple. If there exists
such a class, then we can prune the set Cy, accordingly and use the pruned set (which now has every

class with nonzero probability) as our new Cp,.

Remark. Note that the task distribution induced by the probability values {p;}% ; in Assumption 1
is a relaxed form of the uniform distribution Unif({7. := ¢ € [C}]}) over all non-repeating class
tuples spawned by Cr. This case can be recovered by setting p; = ¥+, Vi € [L].

Suppose there are N total iid random draws {c®¥)}I¥_, of class tuples from Py, (every (%) € [C}]),
then the event of observing a class ¢ in any of these [V class tuple draws is exactly the complement of
the event that the class does not appear in any of these tuples.

Definition 2 (Observing a class at least once in N draws). We denote the indicator random variable
of observing a class i in any of the N draws by

N
Xin=1-1 ((Z 1(i e c(k))> = 0) € {0,1}. (1)

k=1

Then we have E[X;] = P(X; n = 1) = 1—(1—p;)". We denote the random variable representing
the total number of unique classes observed in N draws as Z, which can be expressed by

L
Z=Y Xin. 2)
=1

Remark. We note that the total number of unique classes seen (Z) in N iid draws 1) must have at
least n classes (even after a single class tuple is sampled, there would already be n different classes
seen) and cannot be greater than the total number of classes possible, i.e., Z € [n, L], and 2) cannot
be greater than the total number of (possibly overlapping) classes drawn, i.e., Z < nN.

Lemma 2. For notational convenience, let q; := 1 — p;. Then, by Equation (1) and Assumption 1 we
have:

(@) E[Z)=L—-Y{ (1-p)N =L-31 4", (3)

(b) For {g;}£,,0< ¢ < 1— I and Zle ¢ =L—n. (4)

Now that we have set up the problem formulation, we provide Theorems 1, 2 describing properties of
E[Z] and V[Z] which we will use to analyze the dichotomy described in the main paper (Section 3).

B.1 Lower Bound on E[Z]

To achieve a lower bound of E[Z], we need to analyze the worst case class tuple distribution that
makes the value L — Ele g as small as possible. This amounts to maximizing the value of

Zle ¢ under the constraints for {¢; } 2 ; described in Lemma 2. We present an upper bound for
this constrained maximization objective below.

15

Theorem 1 (Lower bound on E [Z]). The optimal value of the following constrained optimization
problem in (5) is upper bounded by L (— %)

L
N
max q; (%)
subjectto 0< ¢; < 1— %7 Vi € [L]
L

Z%‘ZL—H

i=1
As a result, for Z defined in (2), directly applying (3) we get E[Z] > L (1 — (1 — 22)).

To prove Theorem 1, we first provide a lemma describing the structure of the solution to the
optimization problem in (5).

Lemma 3 (Structure of the optimal solution to (5)). The optimal solution to optimization Objective
(5) has the following form: out of the L variables {q;}~_, K of them have value 1 — 2*, (L — K —1)
of them have value 0, and the last remaining variable has the value (L — n) — K(1 —), which
must still be in the range of [O, 1-— %} This directly implies that the integer K must be satisfy

L?—nlL _ L?>—nL
T — LS K< =0

Proof of Lemma 3. Let us denote the optimal solution to Objective (5) by (¢7, .. ., ¢;:). Suppose that
there exists a pair gy, ¢j, k # j, such that neither of them equals 0 or 1 — 1. Then by changing
the values of gj;, g to be either (1 — I, ¢z +¢; — 1+) or (0, g; + ¢), the new g tuple would
still be feasible while the value of Objective 5 would strictly improve because the function q,iv + qJN

is strongly convex over Ri 1~ (Recall that a convex function over a closed interval can only take
maximum value at either one of its two endpoints.) As a result, there can be no more than a single g
in the optimal solution (qi, ..., q7) that has a value of neither 0 nor 1 — 3. Now, we denote the
total number of ¢;’s in the optimal solution that has the value of 1 — 2= by K € Z, then there must

be at least L — K — 1 values of 0, with the remaining term (L — n) — K(1 — 2*) € [0,1 — 22].

Manipulating this inequality of K gives us the feasible range of K, LLQ_’;’HL —-1<K<L L;:jrf . O

Proof of Theorem 1. We know from Lemma 3 that the optimal solution to the constrained maximiza-
tion problem in Theorem 1 is given by the optimal solution to the reduced objective below.

yn\ N 1Y
K-(1-1" [L— —K-(l——)} 6
Ker{r(lﬁfL} (L) + " L ©)
L? —nL L2 —nL
subject to 7n—1§ K< Z —nE @)
L—~n L—~n

Let the optimal value of K (minimum value if multiple are optimal) in the above optimization
problem be K*. Then the optimal value of the above is upper bounded by:

(=) e (=)

g(K*—i—l)-(l—%)N

(-3’

As a result, directly applying (3), we have:

E[Z]ZL.{1—(1—?)N]. @)

16

B.2 Upper bound on V[Z]

We apply the Efron-Stein inequality to obtain the upper bound of the variance of Z, which we state
here for convenience.

Lemma 4 (Efron-Stein’s inequality). Let S : YN — R be a measurable function that is permutation
invariant. Let the random variable U be given by U = S(Y1,...,Yn), where (Y1,...,YN) isa
random vector of N independent random variables in Y. Then, we have:

N
1
VU] <5 D E(U - U, ©)
i=1
where Ul = S(Y1,...,Y!,....,YN), and Vi € [N], Y; and Y] are drawn iid from the same distribution.
Theorem 2 (Upper bound on V [Z]). For Z defined in (2), the variance V[Z] < %nQN)

Proof of Theorem 2. By directly applying Lemma 4 on the permutation invariant measurable function
S [CHN = R, where Z = S(c,....e™) = S°F | X, v, we have the variance V[Z] <
1 J\i E(Z-2Z)?<1]\i n? = 1n2N. Note that the last inequality holds because when we
2 Lui=1 i 2 Zui=1 2 q y

swap out one observed class tuple c¢(*) (among the IV total) with a different one c® (to get Z)), the
total number of unique classes we observe can change by at most n, i.e., |Z — Z!| < n. O

Using Theorems 1, 2, we now show that it is extremely unlikely for the commonly used FSL
benchmarks, which have a (relatively) small number of train classes and disjoint train/test classes, to
have their training and test tasks sampled iid from the same underlying task distribution. We break
this analysis into the dichotomy presented in the main paper (Section 3).

B.3 When |C;|is Small (L = O(nN))

Definition 3. Let Z;, be the total number of unique classes observed in Ny, iid drawn train class
tuples (tasks) from P, and similarly let Z.. be the total number of unique classes observed in Ny,
iid drawn test class tuples (tasks) from Pr. Furthermore, denote the set of indices of unique train
classes by Iy, = {j : X, N, = 1,7 € [Nw]} and the set of unique test classes be Lo = {j :
XN = 1,7 € [Nie|}. Under this notation, the probability of observing disjoint sets of train and
test classes among the Ny, and Ny, randomly drawn train and test class tuples can be denoted by
]P)(Itr NZLie = (b)

Theorem 3 (Upper bounding the probability of having disjoint train, test classes). P(Zy, + Zio <

L) < 4(1—)" NN us g result, P(Ty N Toe = ¢) < P(Zu + Zie < L) <
4 (1 _ %)mm(Ntr,Nte).

Proof of Theorem 3. Since the random variable L — Z;, > 0, using Markov’s inequality we have:

p(ztr<§) :p(L—Ztr>L—§> (10)
< L— E[ftr]
(L—%)
- 2AL—E[Zu))
- L
<2 (1 - %)Ntr . (using Theorem 1) (11)

Similarly, since L. — Z;, > 0, we have

P (Zte < 5) <2(1- %)N (12)

17

Since P (Zyy 4+ Zye < L) <P ((Ze < £) U (Zie < %)), applying the union bound yields:

min(Ny, Nee)
) (13)

I[D(ZtﬁztegL)gzl(kf

When Z;, + Zi > L, by pigeonhole principle, the two sets of class indices Z;, and Z;, must
have non-empty intersection, i.e., Zy, N Zye # ¢. Taking the contra-positive of this claim, we see
that 7y, N Zy, = ¢ implies the event Z;, + Zyo < L. As a result, we have P(Z;, N Ty = ¢) <

P(Ztr ¥ 7. < L) < 4(1 _ %)min(Nn,Nte). 0

Corollary 1. If enough samples are observed i.e., if min(Ny, Nie) > ln(i#, then the probability
of having no training and test classes intersection is upper bounded by P(Zi, N Ty = ¢) < p.

Proof of Corollary 1. By logarithm inequality In(1 4+) > £, we have In(L/(L — yn)) > yn/L.

= 14z°
Taking the reciprocal of the two sides, we have % > m As a result, min(Ny,, Nie) >
1n(ily<lp)L > ln(£7gi/fzyﬂ)) = 1;?1(5@) = log(y_an)(4), where the last step uses the change of basis
L

equality of logarithm. Thus, by min (N, Nie) > log(;_an) (%), we have
P(Itr NZie = d))
S]P)(Ztr + Zte S L)

min(Ny, Nie)
<4 (1 - ﬂ)

L
n 10%(1,M)(£)
<4 (1 - —) z
- L
_4.7
4

O

Remark. From Corollary 1, we see that when the number of tasks sampled is larger than a multiple
of the number of underlying classes (for example when p = 0.01, v = 0.5, n = 5, min(N,, Nie) >

ln(i% ~ 2.39L), and equivalently, L = O(nN), the probability of having no training and test task
classes intersecting is upper bounded by P(Z;, N Zi. = ¢) < p (in our example, the probability is
upper bounded by p = 0.01, which is a statistically rare event). In summary, in this case, we show
that when L < cnN for some small constant c, the probability of having no intersection between the
training and test task classes is extremely small because it is very likely that the training tasks and

test tasks would each cover a majority (> 50%) of the entire set of classes.

B.4 When |C;|is Large (L = Q(nN))

In this alternate case, we analyze the scenario where the underlying set of classes is larger than the
total number of tasks we sampled, for which we make the following assumption:

Assumption 2. L > nN, i.e., even if we observe all the classes in the randomly drawn N tuples to
be distinct, we still would not exhaust the much larger underlying set Cy,. In this setting, L = Q(nN).

Corollary 2. By Assumption 2 and the Bernoulli inequality (1 + z)" < 1+ ﬁ, T €
(-1, i), r > 1, substituting x = =, v = N, we can further lower bound the RHS of Equation (8)
in Theorem 1:

ynIN

B> a5

(14)

Theorem 4 (Unlikely to observe only a small number of unique classes). For n € (0,1), the
probability of observing totally fewer than 2N

s Ity
(1+7)
most 5= Ssar-

classes in N iid class tuple samples from Pr, is at

18

Proof.

nmynN
’ (Z : (1+7)> (1
<P(Z <nEl[Z])

V[Z] . .
< (by Chebyshev’s inequality)
((1—n)E[Z])?
%n2N (using Theorem 2)
(1= n)?E[Z] e
%nQN .
< 7 (using Corollary 2)
2 (an
(1=n) ((1+“/)>
(1+)°
— 16
2(1 —n)*y*N 1o
O

In summary, in this case, when L > n N, the probability of observing only a small fraction of n/V
classes in N tuple draws, scales with 1/N. Because in practice a very large number of training tasks
are used (N > 10°), the probability of only observing fewer than hundreds of classes (Z < 10%)
in N class tuple samples would be extremely small. This means that we shouldn’t treat the large
number of tasks used during meta-training as being sampled iid from an underlying task distribution
under the assumption that the number of task samples hasn’t exceeded the total number of underlying
classes.

B.5 Concluding Remarks

In the first part of the dichotomy, we show using Theorem 3 that when the number of underlying
classes is smaller than nJV, it is highly unlikely for the train and test classes to be completely disjoint.

In the second part of the dichotomy, we show using Theorem 4 that when the number of underlying
classes is larger than nV, it is unlikely to observe only a few (very small fraction of n/V) unique train
classes — in fact the number of unique train classes observed would roughly speaking scale linearly
with the number of task samples N.

Conclusion on why current FSL benchmarks target OOD. Note that in current FSL benchmarks
i) there is no overlap of classes observed in the train and test tasks; and ii) the number of train (base)
classes observed (e.g., 64 for mini) is much smaller than the total number of train tasks (e.g., ~ 10°
for mini). Thus, the two sides of the dichotomy (above) when taken together leads us to reject the
hypothesis/assumption of iid sampled train and test tasks in the current FSL benchmarks.

19

C Overview of Notations for (S, () Sampling in ID and OOD Benchmarks

Table 2: An overview of the notations used to describe each of the two steps: i) sampling the task from the
training/test task distribution, and ii) sampling (S,Q) pair from the task; for the OOD benchmarks (mini, cifar,
FC, tiered, Zappos-OOD) and ID benchmarks (FEMNIST, Zappos-ID).

Benchmark / Steps ‘ Step 1: 7 ~ P(T) ‘ Step 2: (5,Q) ~T
mini, cifar, FC, | Train | 7., ~ Pc, = Unif({7., : cg € [CL]}) S,Q ~ Tep
tiered (O0OD) | Test | 7oy ~ Pc, = Unif({7¢, : en € [C¥]}) S,Q ~ Ten
Zappos-OOD | Train | T, ~PA(T) = Unif({7, : a € [A?])} 5.Q~Ta
(OOD) Test | T ~Pa(T) = Unif({To : @’ € [A?])} S5,.Q ~ Ta
FEMNIST Train Tia ~ P(id) S,Q ~ Tia
(ID) Test Tia ~ P(id) S, Q ~ Tia
Zappos-ID Train | T, ~P4(T) = Unif({7, : a € [A?])} S,Q~Ta
(ID) Test | To ~Pa(T)="Unif({7, : a € [A?])} S,Q~Ta

D Dataset Preprocessing and Hyperparameter Details

Here we first provide some details on the logic used to construct the ID benchmark Zappos-ID and its
OOD counterpart Zappos-OOD. We then list the set of hyperparameter configurations used to train
the meta-learning methods PN, RR, SVM, FOMAML and the supervised learning baselines MB, SB and
IC on each of the benchmarks in the paper.

D.1 Zappos Preprocessing

Recall that the Zappos dataset is motivated through an online shopping recommendation problem,
where each task is a binary classification of shoe images into an attribute context. Every online user
is represented by such a task, where the user’s preference for shoes is specified by the corresponding
shoe attribute context. We consider a simplified setting where we fix a set of universal shoe attributes
A and each user’s preference is specified exactly by a pair of attributes @ = (a1, a2) € A%, aj # as.
The Zappos-ID and Zappos-OOD FSL benchmarks we use are derived from the UT Zappos50k
corpus which consists of 50,025 shoe images each annotated with a list of attributes the shoe possess.

Attributes Selection. We limit the subset of attributes we consider to the 78 considered by Ren
et al. [35] (Table 7). Recall that the task distribution we consider is the uniform distribution 7, ~
P A(T) = Unif({7, : a € [A?])} (Table 2) over all non-repeating attribute pairs in .A. In order to
ensure that each attribute pair in A has at least 20 shoes carrying both the attributes (feasible pairs),
we only consider the uniform distribution over such feasible attribute pairs. Thus, we reduce the
original set of 78 attributes to 66, since 12 of the attributes where found to be infeasible with every
other attribute in the original set.

Determining A, A’. For the Zappos-ID benchmark we use the set of attributes specified by A (of
size 36) to iid sample 1000 (or 50) train and 25000 test tasks. On the other hand, as mentioned in
Section 5 we use a disjoint set of attributes A’ (of size 30) to sample 25000 test tasks for Zappos-OOD
(see Table 3 for the exact sets). To determine this partition, we first consider a graph of 66 nodes,
where each node represents an attribute and an undirected edge between a pair of attribute node is
weighted by the number of shoe images (in the corpus) that have both attributes. Using spectral
clustering, we find an approximate min-cut bipartition of this graph. In other words, we partition the
entire set of attributes into two subsets in a way that reduces the number of images which carry pairs
of attributes that are not in the same subset. This graph partition gives us the split of a 36-attribute set
(A) and a 30-attribute set (A’).

20

Table 3: We show the disjoint set of attributes .4, A’ for the Zappos-ID/OOD datasets. For the Zappos-ID dataset
we use the set of attributes in A to iid sample train and test tasks 7o ~ [P 4. For the Zappos-OOD dataset the
train tasks are still sampled using A i.e., T, ~ P.4 but the test tasks are sampled using A’ i.e., Tg/ ~ P 4.

Category.Boots Category.Sandals Closure.Ankle.Strap Closure.Ankle.Wrap
Closure.Buckle Closure.Bungee Closure.Button.Loop Closure.Elastic.Gore
Closure.Pull.on Closure.Sling.Back Closure.Snap Closure.T.Strap
Closure.Toggle Closure.Zipper Gender.Girls Gender.Women

A HeelHeight.High.heel HeelHeight.Short.heel Material. Rubber Material.Suede
SubCategory.Ankle SubCategory.Clogs.and.Mules SubCategory.Flats SubCategory.Heel
SubCategory.Heels SubCategory.Knee.High SubCategory.Mid.Calf SubCategory.Over.the.Knee
ToeStyle.Almond ToeStyle.Center Seam ToeStyle.Closed Toe ToeStyle.Open Toe
ToeStyle.Peep Toe ToeStyle.Pointed Toe ToeStyle.Round Toe ToeStyle.Snip Toe
Category.Shoes Category.Slippers Closure.Hook.and.Loop Closure.Lace.up
Closure.Monk.Strap Closure.Slip.On Gender.Boys Gender.Men
Material.Corduroy Material.Silk Material.Wool SubCategory.Boat.Shoes

A SubCategory.Crib.Shoes SubCategory.Firstwalker SubCategory.Loafers SubCategory.Oxfords
SubCategory.Prewalker ~ SubCategory.Slipper.Flats SubCategory.Sneakers.and.Athletic.Shoes ToeStyle.Algonquin
ToeStyle.Apron Toe ToeStyle.Bicycle Toe ToeStyle.Bump Toe ToeStyle.Capped Toe
ToeStyle.Medallion ToeStyle.Moc Toe ToeStyle.Snub Toe ToeStyle.Square Toe
ToeStyle.Wide Toe Box ToeStyle.Wingtip

D.2 Hyperparameter settings

For all the experiments performed in our paper, we have run grid search to tune both the meta-
learning method-specific hyperparameters and the optimization hyperparameters for each meta-
learning method. For the existing OOD FSL benchmarks, we found that the best hyperparameters are
often the same as what was reported in the original paper. Additionally, the absolute performance
and performance orders we report on OOD FSL benchmarks match with other works after the
hyperparameter tuning — indicating that we have been fair in representing each meta-learning method
with its best hyperparameter setting. For our newly identified in-distribution benchmarks, we took
care in tuning these hyperparameters for each method to ensure fairness of comparison.

In Table 4 we list the optimization and other algorithm-specific hyperparameters for each meta-
learning method, dataset pair. For optimization hyperparameters, we describe

(a) the total number of epochs (each with 1000 iterations of gradient updates except for FEM-
NIST, Zappos-ID, and Zappos-OOD where each epoch depends on number of training
tasks);

(b) step (staircase) learning rate schedule (Ir: e1(r1) — ea(r2) — ... — e, (r,) where r; is the
value of the learning rate and e; is the epoch number at which r; is first set);

(c) the number of tasks in a minibatch to compute one gradient update (task batch size or task
BS);

(d) for all experiments we use SGD optimizer (Nesterov Momentum 0.9).

Other meta-learning method specific hyperparameters: The scale-factor refers to a constant
factor that is multiplied to the logits for each class, before passing them through softmax. In some
cases these are fixed through training, and in others they are learnable. For other method-specific
hyperparameters that we borrow directly from the original paper, we provide the references.

i) During meta-training, we perform the same data augmentation used in Chen et al. [9] for
mini-M and used in Lee et al. [25] for cifar-M, FC-M, tiered-M. For FEMNIST, Zappos-ID
and Zappos-OOD we do not perform any data augmentations.

ii) We use a weight decay of 5e — 4 for all datasets except for FEMNIST for which a weight
decay of le — 2 is used to prevent overfitting.

iii) We use the Resnet-12 backbone for all our experiments except for FEMNIST which is
made up of the relatively easier tasks of digit classification. For FEMNIST, we use a four
layer Conv-64 model backbone.

Computational Resources. For all experiments we use (at most) four NVIDIA GEFORCE GTX
1080Ti GPU cards. A single run of PN, RR, SVM, and FOMAML on the mini-M dataset takes ~ 12
hrs, 48 hrs, 48 hrs, and 72 hrs respectively. For experiments on Zappos and FEMNIST, except for
FOMAML which takes about 24 hrs, all the other experiments take no more than 5 hrs to complete
training.

21

Table 4: Hyperparameter details for different algorithms and datasets in Sections 4, 5.

Alg / Dataset | Optimization hyperparameters | Other hyperparameters
PN/ 60 Epochs scale-factor 10
(mini-M, cifar-M, | 1r: 0(0.1)-20(6e-3)-40(1.2e-3)- | euclidean metric [39]
tiered-M) 50(2.4e-4)
task BS: 4(5-way), 1(>5-way)
PN/ 15 Epochs scale-factor 10
FC-M Ir: 0(0.1)-5(6e-3) euclidean metric [39]
task BS: 4(5-way), 1(>5-way)
(RR, SVM)/ 60 Epochs learnable scale
(mini-M, cifar-M, | 1r: 0(0.1)-20(6e-3)-40(1.2e-3)- | other as in Lee et al. [25]
tiered-M) 50(2.4e-4)
task BS: 8 (always 5 way)
(RR, SVM)/ 30 Epochs scale-factor 7
FC-M Ir: 0(0.1)-20(6e-3) other as in Lee et al. [25]
task BS: 8 (always 5 way)
FOMAML/ 60 Epochs scale-factor 1

(cifar-M, FC-M)

Ir: 0(0.01)-20(6e-3)-40(1.2e-3)
task BS: 4 (always 5 way)

inner loop step size: 0.01
inner loop steps: 5 (train), 20 (test)
other as in Finn and Levine [14]

FOMAML/
(mini-M, tiered-M)

70 Epochs
Ir: O(le-2)-35(1e-3)-65(1e-4)
task BS: 4 (always 5 way)

scale-factor 1

inner loop step size: 0.01

inner loop steps: 5 (train), 20 (test)
other as in Finn and Levine [14]

(PN, RR, SVM, | 60 Epochs PN: scale-factor 10, euclidean metric [39]

FOMAML)/ Ir: 0(0.1)-30(6e-3) RR: learnable scale

(Zappos-1D, task BS: 4 SVM: learnable scale

Zappos-O0OD) FOMAML: inner loop steps: 5 (train), 20 (test),
other as in Finn and Levine [14]

(PN, RR, SVM, FO- | 100 Epochs PN: scale-factor 10, euclidean metric [39]

MAML)/ Ir: O(1e-3)-50(1e-4) RR: learnable scale

FEMNIST task BS: 5 SVM: learnable scale
FOMAML: inner loop steps: 5 (train), 20 (test),
other as in Finn and Levine [14]

(SB, MB)/ 100 Epochs SB, MB: We project features in to unit norm

(mini-M, cifar-M, | Ir: 0(0.1)-90(1e-2) during meta-train and use euclidean metric with

tiered-M, FC-M)

batch size: 128

scale-factor 10 in meta-test [39]
MB only: we further finetune (Ir=1e-3) on the
meta-learning objective for additional 30 epochs.

1c/
(cifar-M, mini-M)

100 Epochs
Ir: 0(0.1)-90(1e-2)
batch size: 128

Figure 2(b) (cifar-M): For supervised learning
image classification (IC) baseline we collect all
the images belonging to the base classes in ci-
far-M and randomly split them into 80%(train)-
10%(val)-10%(test). The val and test rankings
used for computing the Kendall coefficient (p)
are obtained using the val and test splits.

Figure 3(b) (mini-M): The supervised learning
IC baseline is trained on 600 train images from
each base class in mini-M. After training is com-
pleted, we identify two IC models that differ by
€ = 0.5% in terms of their generalization perfor-
mance over a test set made up of all the unused
examples (~ 700) from each base class. To test
the frequency of conclusion flips, for each of
the 100 comparison runs, a random test subset
is sampled from this test set with 100 examples
sampled from each class. The chosen IC model
pair is then evaluated over this test subset and
their performance difference is recorded for this
comparison run.

22

E Additional Results on Evaluating ID Performance

In this section, we first present additional results on the choice of a different meta-learning method
or the usage of a different (S, Q) sampling strategy (FIX-ML) for the same meta-learning method
can lead to improvements in OOD performance at the cost of ID performance. Then, we show how
reducing the number of training tasks is unlikely to change the performance order of meta-learning
methods in the ID benchmark Zappos-ID — even though by reducing the number of training tasks,
the number of unseen attribute pairs at test time increases. Finally, we present additional results how
the degree of train/test task distribution mismatch can impact the performance order of meta-learning
methods.

E.1 Additional results on ID/OOD Performance Tradeoffs

In the main text (Section 4, Figure 1), we have compared the BaseGen and NovelGen performance of
the best validation snapshots from different meta-learning methods (PN, SVM, RR, FOMAML) and
supervised trained baselines (SB, MB) on the mini-M and tiered-M datasets. Here, we show how the
performance order of the same set of methods can also flip in the ID (BaseGen) and OOD (NovelGen)
settings on two additional datasets: cifar-M and FC-M (Figure 4(a),(b)). Additionally, in the main
text, we have shown how switching the choice of the (S, @) sampling strategy to one with fixed
support sets (FIX-ML Setlur et al. [38]) can also lead to improvements in the OOD performance at the
cost of ID performance on the cifar-M dataset. In Figure 4(c),(d) we provide further evidence of this
performance tradeoff on two more datasets mini-M and FC-M.

95.5

5.5 86 26.0 96.0

e 323 59 95.0 79 os 57

4.0 85 94.5 58 9.5 : 56
c 232 c @ PN 8[31]'2 57c ® PN 94.0 78c ® PumL 95.0 c @ PumL
8 %g 843 @ Ridge $930 ® Ridge G S X PN L S 945 55 @ X PNFixML
% 2.0 % @ sw ©92.5 569 @ swm 0 93.5 O @ RidgeML 2 % ® Ridge ML
$ 915 833 @ rfomamL 3 8%? 55% @ romamL o030 77 ¢ X RidgeFixm. 0 94.0 54 9 X Ridge FixML
o 91.0 S MB 85173 s MB 3 925 S e swm B 93.5 S @ swm

02 82 @ ss 90.5 54< ¢ 8 : X SVM FixML 53% X SvMFxML

8'(5’ gg.g 53 92.0 76 93.0 S

20 81 890 52 915 925

. 88.5 92 51
8.0 80 88.0 51 91.0- . 75 o
cifar-M 5w5s (Best Val) FC-M 5w5s (Best Val) mini-M 5w5s (Best Val) FC-M 5w5s (Best Val)

(a) (b) (©) (d)
Figure 4: BaseGen and NovelGen performance tradeoff (for best validation snapshots): over the choice of a set
of four meta-learning and two supervised pre-training methods on cifar-M (a) and FC-M (b); over the use of
FIX-ML (S, Q) generation strategy or not (ML) with SVM, RR and PN on mini-M in (c) and FC-M in (d).

E.2 In-distribution Performance with Reduced Number of Training Tasks

Now we analyze the impact of the number of training tasks on the performance order of meta-learning
methods in ID scenario. For the 2w5s results on the Zappos-ID dataset in Table 1 we used 1000 (or
50) training tasks and 25000 test tasks. Here, we also consider using 250 training tasks (while still
using the same number of test tasks). As we have discussed in Section 4, it is possible to encounter
unseen classes (attribute pairs in the case of Zappos) at test time even while evaluating a meta-learning
method in the ID scenario. When we reduce the number of training tasks, we observe more unseen
attribute pairs at test time. For 250 train tasks we observe 153 and for 50 train tasks we observe 269
unseen attribute pairs at test time.

Table 5: We analyze the 2w5s performance order of PN, SVM, RR and FOMAML on the Zappos-ID dataset with
reduced number (50, 250) of train tasks and compare the performance order (ranking in parentheses) observed
with the larger set of 1000 train tasks.

Methods / # Train tasks 50 | 250 l 1000
PN M77.67+0.17% | V81.67+0.16% | (V86.58 + 0.15%
Ridge (2)74.75 £ 0.16% | (¥80.84 £ 0.15% || (¥85.56 + 0.16%
SVM (3)74.06 +0.17% | 380.15+0.17% || ®85.12 + 0.16%
FO-MAML (4)69.85 + 0.18% | M73.20+0.16% | ¥80.14 + 0.15%

23

In Table 5 we can see that even with reduced training tasks and more unseen attribute pairs at test
time the performance order of PN, RR, SVM and FOMAML is retained. Note that the same order is
observed on the other ID benchmark FEMNIST. This also matches the BaseGen performance order
obtained after doing ID evaluations on modified FSL benchmarks. This result further confirms that
the performance evaluations done on ID datasets are much more consistent than OOD datasets.

E.3 Degree of Mismatch between Train (P¢,) and Test (P¢,,) Distributions

In Section 4 we notice that the performance order of meta-learning methods in the ID scenario
(Zappos-ID) is quite different from that of the OOD FSL benchmarks (e.g., mini). We believe this is
mainly because of the OOD nature of FSL benchmarks, which we also proof formally in Appendix B.
Moreover, since the type/degree of the mismatch between training and test distributions can vary
for different FSL benchmarks, the performance order of popular methods is not as consistent as we
would like them to be on these OOD benchmarks (see Section 5.2).

Range of test task distributions. To further analyze the impact of the degree of distribution mismatch
on the performance order, for each FSL benchmark we construct a range of new task distributions
that are increasingly dissimilar to the train task distribution Pc, and similar to the test task
distribution P¢,,. We denote this set of task distributions as {Pgy(A), A € [0, 1]}. When sampling
an n-way task from Py ()), instead of performing the first step of sampling outlined in Table 2,
we sample the class tuple ¢ = (cq,...,¢,) € [(Cp UCn)"] where ¢;’s are sequentially sampled
non-repeatedly from Cy uniformly with probability A and from Cp with probability 1 — A. The
second step of sampling (.5,) from the task distribution 7 is done in the usual way. It is clear that
Pun(0) = Pej, and Pyy(1) = Pe,,. In addition, when A = |Cn|/(|Cn| + |CB]), Pax(A) = Pegucy
which describes a continual learning setting where the evaluation task is made up of classes uniformly
sampled from the union of base and novel classes. Notice that the task distribution Pyy(\) is not the
same as the mixture distribution A - Pc,, +(1 — A) - P¢,, because a single task from Py (\) can have
both classes from Cpy and Cp. With this set of new task distributions defined, we evaluate our learned
algorithm snapshot for each meta-learning method not only over the training (P¢,,) and the test (P¢c,,)
task distribution but also over distributions from this interpolation set. We plot the performances in
Figure 5.

mini-M 5w5s (Best Val) tiered-M 5w5s (Best Val) 26 cifar-M 5w5s (Best Val) FC-M 5w5s (Best Val)

941 $=3:

95.0
92.5

©
=}

>90.0 392 >
g875 g% g%
585.0 g g0
o O s}
825 286 g

80.0 84 60

77.5 82

0001 02 03 04 “L‘E 06 07 08 0.91.0) 0.0(8)01 02 03 0.4 0.5 0.6 0.7 0.8 0.910(N) 00()01 02 03 04 05 06 0.7 0.8 0.910(N) Soomaml 02 03 0.4 05 0.6 0.7 0.8 0910(N)
A A A

(@) (b) (© (d
Figure 5: Comparison of PN, SVM, RR, FOMAML, SB and MB’s performance (best validation snapshots) on the
set of distributions {Pgx ()} for (a) mini-M, (b) fiered-M, (c) cifar-M, and (d) FC-M datasets.

Performance order depends on degree of mismatch. In Figure 5 we first notice that the per-
formance drops in a monotonically non-increasing way as A increases for each dataset/method
combination. More importantly, we note that the performance order of the methods depends on the
degree of mismatch. If the test task distribution is very similar to the train task distribution, then the
performance order is mostly retained as the ID performance order (e.g., for A < 0.2 in Figure 5(a)).
Also in most cases the lines don’t cross each other more than once, which indicates that if the degree
of mismatch crosses a certain threshold then it is unlikely for the performance order to switch again
for a given pair of methods. However, without seeing any test tasks during meta-training, it is difficult
to know the degree of training and test task distribution mismatch, which makes it more difficult to
predict when a given method will start performing better/worse. For example, the performance order
changes at a lower value of \ for mini and cifar, as compared to tiered.

F Additional Discussion and Results on OOD Evaluation

F.1 Simplified Example of Snapshot Selection and Hyperparameter Selection

To further explain our existing definition of hyperparameter and snapshot selection in Section 5.1,
we accompany our original definitions with a concrete simplified scenario: suppose we want to train

24

Prototypical Network (PN) with two hyperparameter configs: training with learning rate le-3 vs. with
learning rate le-4 (with all other hyperparameters the same).

[Snapshot Selection] Training under each hyperparameter config would generate a sequence of
algorithm snapshots (most often with one snapshot saved after each training epoch). The term
snapshot selection refers to the procedure of choosing one snapshot from each hyperparameter
config: one from the le-3 learning-rate optimized PN algorithm snapshot trajectory, and one from the
le-4 learning-rate optimized PN algorithm snapshot trajectory. There can be multiple strategies for
snapshot selection, for example, picking 1) the last snapshot at the end of training; 2) the snapshot
that has the lowest training loss; 3) the snapshot that has the best BaseGen performance; or 4) the
snapshot that has the best ValGen performance.

[Hyperparameter Selection] Once an algorithm snapshot is chosen for each considered hyperparam-
eter config, we need to decide which hyperparameter config’s (Ir le-3 or Ir 1e-4) selected snapshot to
choose to be evaluated on the test task distribution with its performance recorded as the meta-learning
method PN’s performance. The procedure of deciding which hyperparameter config’s snapshot to
choose is called the hyperparameter selection problem. Similar to snapshot selection, there can be
multiple strategies for hyperparameter selection: e.g., choosing the hyperparameter config whose
selected snapshot has the best BaseGen or the best ValGen performance.

F.2 Distinction between Snapshot Selection and Early Stopping

Early stopping is not the same as what we mean by snapshot selection in our paper. In standard
supervised learning, early stopping involves keeping track of the performance over an iid validation
dataset and stopping training after the validation performance starts to consistently deteriorate. It
mainly serves as an approach to avoid overfitting and to save unnecessary computations if one
believes further training would never improve the test performance. In terms of deciding which
snapshot to choose, early stopping is often equivalent to the strategy of selecting the snapshot that
has the highest validation accuracy. In contrast, in our paper, the term snapshot selection refers to
the general problem of deciding which snapshot to select for a given training run, as opposed to a
specific choice of selection strategy. As we have explained in Section 5.1.1, the strategy of picking
the snapshot with the best meta-validation performance (early stopping) might not be the best strategy
in the OOD scenario. There exist other snapshot selection strategies (different from early stopping),
such as picking the snapshot with the lowest training loss or the best BaseGen performance.

F.3 Differences in NovelGen Performance When Using Best BaseGen vs. ValGen for
Snapshot Selection

In Section 5.1 we compare different model selection strategies in the out-of-distribution scenario
where we show that in some cases BaseGen performance can track NovelGen (Figure 2(c)) while in
other cases the ValGen performance may be better correlated with NovelGen (Figure 2(d)). In Table 6
we present NovelGen (test) performance results on two different datasets when the snapshot is chosen
using the best BaseGen snapshot (row 1) vs the best ValGen snapshot (row 2), and compare them
against the best possible NovelGen across all snapshots (row 3). Here we notice that there can be a
significant difference in the selected snapshot’s NovelGen performance if we use one selection
strategy instead of another and there isn’t a single snapshot selection strategy that yields the best
results for multiple OOD scenarios.

Table 6: NovelGen performance for i) PN trained on fiered-M; and ii) SVM trained on cifar-M evaluated using
the snapshot chosen with best BaseGen/ValGen/NovelGen performance.

Snapshot selection strategy PN on tiered-M (Figure 2(c)) SVM on cifar-M (Figure 2(d))

Best BaseGen 80.45% 80.49%
Best ValGen 80.05% 82.65%
Best NovelGen 80.45% 82.79%

25

F.4 What to Consider While Designing Model Selection and Comparison Strategies for
Both ID and OOD Performance?

In Section 5.1 we discuss in detail the implications of different model selection strategies on the final
NovelGen performance of the selected snapshot specific to current OOD FSL benchmarks. In more
generic settings, it is likely that one may wish to design model selection methods when one cares
about both ID and OOD performance. In such a case we believe that the optimal model selection and
comparison strategy would depend on: i) the final comparison metric; ii) the type of task access for
model selection.

i) Method comparison metric: We first need to define a metric for the final evaluation of a meta-
learning method’s selected algorithm snapshot. One way is to individually evaluate ID and OOD
performance and record it as a 2-tuple. In this case, a meta-learning method is said to outperform
another only if its selected snapshot is better in each component of the 2-tuple. In this case, it is
very possible that there does not exist a meta-learning method that clearly outperforms all others
in this metric as we have seen from Figure 1(a)(b). Another way is to evaluate the performance
on a mixture task distribution, with the training and OOD test distributions weighted by fixed
probability weights (as we do in Appendix E.3). As we have seen in Appendix E.3 (Figure 5),
different probability weighting of the two distributions can result in different conclusions of
which meta-learning method works the best.

ii) Task access during model selection: We also need to specify what type of task samples are
available during model selection. While it is reasonable to assume there are additional fresh iid
samples from the training distribution (e.g. by holdout training set), it depends on the specific
application to know whether there exist task samples from the OOD task distribution. Different
scenarios may arise based on this: i) In federated learning applications, one might be allowed to
evaluate meta-learned algorithm snapshots over a small sample of users (tasks) from the OOD user
population before deployment; or ii) In case one does not have such OOD task samples, a proxy
distribution (e.g. validation task distribution in FSL benchmarks) may still be available and iid
task samples drawn from it could be used for model selection. However, its utility would depend
on how similar it is to the actual OOD distribution and we have seen examples in Figure 2(a) that
using samples from such proxy task distributions might also be suboptimal.

We hope that our work advocates for more discussion and development of model comparison metrics
and selection strategies while taking into these considerations described above.

F.5 Hyperparameter Selection Strategies

In Section 5.1 we discuss the distinction between snapshot selection and hyperparameter selection
and how the former is called as a subroutine while determining the best snapshot to represent a
specific hyperparameter configuration. As snapshot selection is a ubiquitous problem we focus on
analyzing it and exploring alternative strategies (in the context of meta-learning) in the main paper.
Motivated by the work of Gulrajani and Lopez-Paz [18], we now discuss some ways of performing
hyperparameter selection specifically for settings similar to the current FSL benchmarks where the
few-shot classification tasks are determined by a class tuple.

Because the current FSL benchmarks have set aside a specific validation set of classes, it would
appear that using tasks generated by these classes is the only option for hyperparameter selection.
However, as mentioned in [18], there are also other alternatives.

Cross validated hyperparameter selection. Instead of using a single set of validation classes, one
could rely on cross validation. Here, for a given hyperparameter configuration, one can train multiple
times, where each training run is done on tasks generated by a different subset of the training (base)
classes (or the union of base and val classes) and the proxy performance is calculated on tasks
generated by the remaining classes not used in training. Finally, the performance is averaged over all
runs for the given hyperparameter configuration and the hyperparameter with the highest performance
would be chosen.

However, this approach would still require performing snapshot selection for each run, thus it
remains unclear how to best perform snapshot selection in this case. Despite this, cross-validated
hyperparameter evaluation could potentially be more reliable than using a single set of validation
classes for hyperparameter selection (as done on the current FSL benchmarks) but it would also be

26

more computationally expensive and we leave further investigation of this hyperparameter selection
approach as future work.

Allowing restricted oracle evaluation over the test task distribution. Instead of completely for-
bidding access to the test task distribution, one can allow a limited number of test task distribution
performance evaluations for a given meta-learning method. In this case it becomes the responsibil-
ity of designer of the meta-learning method to decide how to best distribute this fixed number of
evaluations wisely over different hyperparameter and snapshot choices.

F.6 Variance of performance A(Cy) over randomly sampled C

In Section 5.2 Inconsistency example 1, we have shown how limited number of novel classes in the
evaluation can lead to a high chance of conclusion flips. This high degree of unreliability stems from
the variance of the performance estimator A(Cx) which only uses a subset of the larger underlying
class set Cy,. In Figure 6 we plot the histogram of the random variable A(Cy) randomized over the
choice of novel classes Cy. We notice that the performance standard deviation is 2.49% on mini and
3.1% on tiered. The standard deviation on tiered is higher since the number of underlying classes
|C| is larger in tiered (= 552). When the variance of the novel accuracy is as high as what we
have observed here, it becomes very hard to clearly determine the better meta-learning method. To
alleviate this, we provide some actionable suggestions like choosing benchmarks with more base
classes during training and more novel classes during evaluation (see Section 5.2).

mini-M PN |Cg| =64 |Cy| =20 |C,| =120 tiered-M PN |Cg| =64 |Cy| = 20 |C,| = 552
I s ;

7 ---- mean H ---- mean
6 7
54 6
- o5
S =
S 3 8!
3
2] 2
19 1
0- 0
68 70 72 74 76 78 80 82 84 67.5 70.0 72.5 75.0 77.5 80.0 82.5
A(Cy) A(Cy)
(a) (b)

Figure 6: Histogram plots (over 100 runs) of the OOD accuracy A(Cn) for (a) a PN trained on mini and
evaluated on random 20 out of 120 novel classes; and (b) a PN trained on 64 tiered base-classes (see Section 5.2)
and evaluated on random 20 out of 552 novel classes.

27

	1 Introduction
	2 Related Work
	3 FSL benchmarks: Background & Focus on OOD evaluation
	4 Evaluating In-Distribution Performance
	5 Challenges With Out-of-Distribution Evaluation
	5.1 Model Selection
	5.1.1 Option 1: Snapshot selection tradition using ValGen.
	5.1.2 Option 2: Snapshot selection alternative using BaseGen.

	5.2 Inconsistencies in Meta-learning Method Performance Comparisons

	6 Conclusion
	A Assumption (ID) and Evaluation (OOD) Mismatch Examples
	B Formal Analysis on Why Current FSL Benchmarks Are OOD
	B.1 Lower Bound on EZ
	B.2 Upper bound on VZ
	B.3 When CL is Small ()
	B.4 When CL is Large ()
	B.5 Concluding Remarks

	C Overview of Notations for SQ Sampling in ID and OOD Benchmarks
	D Dataset Preprocessing and Hyperparameter Details
	D.1 Zappos Preprocessing
	D.2 Hyperparameter settings

	E Additional Results on Evaluating ID Performance
	E.1 Additional results on ID/OOD Performance Tradeoffs
	E.2 In-distribution Performance with Reduced Number of Training Tasks
	E.3 Degree of Mismatch between Train PCB and Test PCN Distributions

	F Additional Discussion and Results on OOD Evaluation
	F.1 Simplified Example of Snapshot Selection and Hyperparameter Selection
	F.2 Distinction between Snapshot Selection and Early Stopping
	F.3 Differences in NovelGen Performance When Using Best BaseGen vs. ValGen for Snapshot Selection
	F.4 What to Consider While Designing Model Selection and Comparison Strategies for Both ID and OOD Performance?
	F.5 Hyperparameter Selection Strategies
	F.6 Variance of performance ACN over randomly sampled CN

