2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Anti-Section Transitive Closure

Oded Green*
NVIDIA

Zhihui Du*

Hang Liu
Stevens Institute of Technology

Abstract—The transitive closure of a graph is a new graph
where every vertex is directly connected to all vertices to which
it had a path in the original graph. Transitive closures are useful
for reachability and relationship querying. Finding the transitive
closure can be computationally expensive and requires a large
memory footprint as the output is typically larger than the input.
Some of the original research on transitive closures assumed
that graphs were dense and used dense adjacency matrices. We
have since learned that many real-world networks are extremely
sparse, and the existing methods do not scale. In this work, we
introduce a new algorithm called Anti-section Transitive Closure
(ATC) for finding the transitive closure of a graph. We present
a new parallel edges operation — anti-sections — for finding
new edges to reachable vertices. ATC scales to massively multi-
threaded systems such as NVIDIA’s GPU with tens of thousands
of threads. We show that the anti-section operation shares some
traits with the triangle counting intersection operation in graph
analysis. Lastly, we view the transitive closure problem as a
dynamic graph problem requiring edge insertions. By doing this,
our memory footprint is smaller. We also show a method for
creating the batches in parallel using two different techniques:
dual-round and hash. Using these techniques and the Hornet
dynamic graph data structure, we show our new algorithm on
an NVIDIA Titan V GPU. We compare with other packages such
as NetworkX, SEI-GBTL, SuiteSparse, and cuSparse.

Index Terms—Transitive closure, dynamic graph, GPU, paral-
lel graph algorithm

I. INTRODUCTION

Graphs are a natural way to represent real-world problems,
found in numerous domains such as social sciences, biolog-
ical systems, and information systems (to name just a few).
Formulating problems with graphs enables using a wide range
of well-researched and established computational tools. The
GraphBLAS [1] is one such effort to create a framework for
implementing graph algorithms through the language of linear
algebra.

Theoretical work dating back half a century focused on
highly connected graphs, commonly referred to as dense
networks. In these networks, most vertices have a direct
connection to the remaining vertices in the graph. We have
since learned that many real-world networks are, in fact,
sparse where each vertex has a small fraction of its potential
connections. We commonly refer to such networks as sparse
networks. Many sparse networks, social networks in particular,
have an additional property - their edge distribution follows a
power-law distribution [2]-[4].

* These authors contributed equally to the manuscript.

2640-0316/21/$31.00 ©2021 IEEE
DOI 10.1109/HiPC53243.2021.00033

Sanyamee Patel
New Jersey Institute of Technology New Jersey Institute of Technology Stevens Institute of Technology

192

Zehui Xie

David A. Bader
New Jersey Institute of Technology

A transitive closure [5] is a basic binary relation operator
for finding reachability between two entities in a graph. Given
a graph G, if (u,v) and (v,w) are two different edges in
G, the edge (u,w) should appear in the output of the tran-
sitive closure Grc. The transitive closure allows for efficient
querying if two vertices share a directed path. To be precise,
such querying is possible with O(1) operations. Applications
requiring a large number of queries benefit from the transitive
closure operation.

Transitive closures are used in numerous domains, includ-
ing: database query languages [6], [7], VLSI Test Generation
[8], detecting runtime deadlocks [9], compiling optimization
[10] such as redundant synchronization removal and the legal-
ity of iteration reordering transformations testing [11]. Tran-
sitive closures are also used for model checking [12], RNA
secondary structure prediction [13], and machine learning [14].
Demetrescu and Italiano [15] show that small changes to
the transitive closure method can generate the shortest path.
The list of applications using transitive closure continuously
grows, and these entail a more efficient transitive closure
implementation method with high practical performance.

This paper introduces a new algorithm for finding the
transitive closure of a graph called Anti-section Transitive
Closure (ATC). The major algorithmic contributions are as
follows.

« We introduce a novel list anti-section operator that shares
many algorithmic traits with a set intersection. The sorted
set intersections found in a breadth of triangle counting
algorithms are well understood and optimized. Thus, our
algorithm benefits from them as well.

o The simplicity of the anti-section operator allows for ef-
fective parallelization across tens of thousands of threads.
The overlap between the two operators and their simplic-
ity leads to high productivity and enables us to quickly
implement this algorithm for NVIDIA GPUs.

o The proposed ATC algorithm integrates with a dynamic
graph data structure which supports bulk edge insertions
for updating the intermediate results of the transitive
closure. By using a dynamic graph data structure, we
need to store a single graph in memory resulting in a
reduced memory. Further, the algorithm is simple as it
does not require complex locking mechanisms to update
the graph. Altogether, these algorithmic contributions
allow for putting together a simple, elegant, and scalable

solution for transitive closures.

Based on the proposed ATC algorithm, we have the follow-

ing performance results.

« We use Hornet, a dynamic graph data structure, for
inserting edges into the output graph. Using Hornet, we
show a reduced memory footprint compared to other
methods that require rebuilding the graph when new
edges are found.

e Our new hash-based ATC algorithm outperforms both
single-thread CPU, multi-thread CPU, and GPU-based
implementations. Our hash-based ATC can resolve the
problem of identifying duplicated edges with an accept-
able memory overhead while improving performance over
our dual-round algorithm and other algorithms.

e Our GPU-based implementation outperforms a differ-
ent GPU implementation by 10x and 100x for two
inputs on the same GPU. When comparing our al-
gorithms against NetworkX, GraphBLAS-GBTL, and
GraphBLAS-SuiteSparse, the speedup varies depending
on the number of threads, programming language, and
problem formulation. Compared to the parallel and highly
efficient GraphBLAS-SuiteSparse framework, our algo-
rithm can be upto 3x faster.

II. PROBLEM FORMULATION

The transitive closure of a graph is defined as follows. Given
a directed graph G =< V, E > where V is the set of vertices
and E is the set of edges, the transitive closure

Gro =< V, Erc >

of GG has the same vertices as V and £ C Ep¢. If Ve € E e €
Epc and if e; = (u,w) € Erc N es = (w,v) € Epc then
e = (u,v) € Epc. The transitive closure graph can directly
answer the reachability query between any vertex pair in O(1)
time. The output of the transitive closure operation on an input
graph is a new graph where reachable vertices are directly
connected. Transitive closures are especially interesting for
directed graphs. Using a connected component algorithm for
an undirected graph can produce the same result and will be
quicker than most transitive closure algorithms, and will not
require the increased memory footprint.

Many transitive closure algorithms work iteratively. These
algorithms continuously add new edges into the graph as these
are found. The challenge of scaling these approaches is non-
trivial, primarily due to their dependency on dynamic graph
data structures. Implementing a high-performance dynamic
graph data structure requires tackling several problems: man-
aging fine-grain thread control, which leads to deadlocks or
livelocks, memory allocation and memory management, data
placement, and much more. For this reason, transitive closure
implementations for sparse graphs will use multiple graph
instances in their implementations, resulting in an increased
memory footprint.

We show a transitive closure algorithm designed for sparse
graphs that uses a dynamic graph data structure. Our imple-
mentation uses the Hornet [16] dynamic graph data-structure.

193

Hornet shares many traits with the Compressed Sparse Row
(CSR) format. Unlike CSR, Hornet supports both edge in-
sertions and deletions. Hornet supports efficient and scalable
update operations for large and sparse networks. Using Hornet,
we require storing only a single graph in memory throughout
our execution.

The kernel operation to generate the new edges of a transi-
tive closure is called anti-section in this paper. The term anti-
section stems from the execution similarity to a set intersection
operation. Anti-sections focus on finding non-common ele-
ments in one of the sets versus finding the common elements.
Given a directed edge (u,v) € Erc, let adj(u) be the set
of w’s adjacent vertices and adj(v) be the set of v’s adjacent
vertices , mathematically the anti-section of an edge (u, v) can
be defined based on a set difference as follows:

AntiSection((u,v)) = {(u,p)|p € adj(v) — adj(u))

For any edge e € AntiSection((u,v)) , that edge should
be identified and added to the output graph. In the following
section, we will describe how we implement the anti—section
operation efficiently.

III. PROPOSED METHOD

Our anti-section transitive closure generation method in-
cludes three key components: anti-section new edges genera-
tion, dynamic graph bulk edges insertion, and dynamic graph
segmented sorting.

A. Anti-Section for New Edges Generation

Given a single edge, the anti-section operation is the kernel
operation in which new edges are generated. These edges are
added one at a time in a batch. Lastly, the batch is inserted into
the graph in a bulk fashion. Furthermore, tens of thousands
of such operations are executed concurrently. In Alg. 1, the
anti-section operation shares a large number of traits with a
sorted-list intersection operation. For the sake of simplicity,
the pseudo-code algorithm assumes that the set add operation
is feasible at scale .

In Alg. 1, we first advance a; to keep Ala;] > B[b;] or
until a; points to the last element because we want to check
if B[b;] is in A. So, we can safely skip all A[a;] adjacency
vertices whose ID value is smaller than B[b;] as they do not
require comparing with the current elements from b; to the
end in B. When we find an element B[b;] which is not in A
(meaning that B[b;] is larger or less than any elements in A
or is sitting between two neighbour elements such as Afa;_1]
and A[a;] of the ordered array A), a new edge (u, B[b;]) will
be inserted into the dynamic graph G.

At runtime, for a given edge (u,v), our scheduler can par-
tition one complete anti-section operation into several parallel
sub anti-section operations by dividing adj(v) into subsets.
In this way, we can achieve two effects: (1) more fine-grain
parallelism operations and (2) better load-balancing of the
kernel anti-section operation.

'0n modern GPU architectures placing elements at the end of an array has
good performance due to the low overhead of atomic instructions

Algorithm 1: Anti-Section Algorithm

1 AntiSection((u,v), A, B)
/% (u,v) is the given edge. A =adj(u) and
B =adj(v) or B is a subset of adj(v)
2 a; < 0; b; < 0; count < 0; NewFEdgeSet = ¢
3 while (b; < |B|) do
while (A[a;] < B[b;] and a; < |A| — 1)) do
5 ‘ a; < a; +1;
6 end
7 if (Ala;] == B[b;]) then
8
9

IS

b; + b; +1;

continue;

if (B[b;] # u) then
NewEdgeSet.add((u, B[b;]))
bi < b +1;
count < count + 1;

end

end

15
16 end
17 return NewEdgeSet

Our anti-section operation and the intersection operation
in triangle counting share some traits: 1) both use a sorted
adjacency list, 2) both can execute on different edges in
parallel, and 3) both have the same time complexity. The big
difference between these two operations is the values that they
search. An intersection looks for common values; whereas,
the anti-section operation looks for values in v’s adjacency
list that are non-existent in u’s adjacency list. The new edges
generated from different anti-section operations can be merged
together and added into a batch operation. One of the key
benefits of our anti-section operator being so close to the
sorted-list intersection operator is that it is used in many graph
triangle counting algorithms. The last decade has a plethora of
optimizations for triangle counting (Sec. VI-B) such as vertices
partition, merge-path, binary-search and hash method.

B. Bulk based New Edge Set Creation and Insertion

We describe two approaches for managing and storing
the newly found edges in our anti-section transitive closure
operation. These two approaches trade off storage complexity
and time complexity. We name these two methods as the “dual-
round” approach and the “hash-based” approach.

Dual-Round: The dual-round method requires two iter-
ations of the anti-section operation. The first iteration counts
the number of newly detected edges without storing them for
allocating the exact array size for storing all the new edges
— this is the batch array. In the second iteration of the anti-
section, we place the newly found edges into the batch array.
Alg. 1 does not change a lot between the two rounds.

Different anti-section operations operating on different ad-
jacency lists can find the same edge, resulting in a duplicate
edge in the batch array. When the number of duplicated edges
is low, the storage complexity of this approach is also low. The
storage requirements increase with the number of duplicates.
From a theoretical perspective, this does not increase the time
complexity of the algorithm. In practice, the runtime does
increase. The simplicity of this approach enables us to give a
tight complexity bound (Sec. IV-B).

194

Algorithm 2: Hash Search based Anti-Section Algo-
rithm

1 AntiSection((u,v), A, B)
/% (u,v) is the given edge. A =adj(u) and
B =adj(v) or B is a subset of adj(v)
2 a; <+ 0; b; + 0; count < 0
3 while (b; < |B|) do
while (Afa;] < B[b;] and a; < |A| —1) do
5 | ai+ai+1;
6 end
7 if (Ala;] = B[b;]) then
8
9

*/

IS

b; < b; + 1; continue;
end
(B[b;] # u) then
insertSuccess = hashTable.insert({u, B[b;]})
if (insertSuccess == true) then
13 | NewEdgeSet.add((u, B[b;]))
end
b; < b; +1;
count < count + 1;
17 end
18 end
19 return NewFEdgeSet;

Lastly, the duplicate edges require a filtering phase to clean
the data to avoid inserting duplicates 2. For brevity, we do not
cover this topic in considerable detail as it can span numerous
papers. Instead, we refer the reader to Sec. VI-C.

Hash: In practice, we found that for many networks,
the number of duplicate edges found was extremely high and
created a strain on the amount of memory needed to store the
new edges. To avoid the problem of edge duplication, we use a
simple hash-table like data structure. Our hash table is a simple
array of length H where each entry stores only “0” and “1”
values to state if an entry is in use or not. Given a newly found
edge e = (u,v), we hash the edge with h(e) and check the
value at table[h(e)]. If table[h(e)] == 0, then this is an edge
that should be added to the batch. If table[h(e)] == 1 then
one of two things has happened: either the edge e has already
been added into the table or a different edge, é, was added
into the table (false-positive). Either way, we will not attempt
to find an empty entry in the hash-table and will not insert the
edge to the batch. Specifically, if table[h(e)] == 1 and the
edge that caused this value to be set to 1 was the edge e then
all is fine. However, if table[h(e)] == 1 was triggered by edge
é, then it means that the edge e will not get inserted in this
iteration. However, the way that this algorithm operates, this
edge is found in the following iteration. Specifically, transitive
closure algorithms do not stop until there is an iteration with
zero new edges found. Since this edge needs to be added
and that the current iteration has at least one found edge, we
can be certain that a follow-up iteration will find the edge
as part of the continued progress. The hash table is cleared
in each iteration of transitive closure. Pseudo-code for the
hash-table insertion is available in Alg. 2. Thus, it should be
clear that the hash-based anti-section operation not only

2The data structure, Hornet [16], that we use for implementing our new
algorithm supports this type of filtering. We bring this point up as it creates
many algorithmic challenges and increases the computational requirements if
not dealt with properly.

finds the necessary edges but it is also responsible for the
deduplication process.

Trade-off of Dual-Round and Hash: The hash-based ap-
proach has the added benefit that it avoids generating duplicate
edges. However, it comes at the cost of its increased theoritical
storage complexity of O(H), where H is the memory size
for storing the hash table. In practice, this additional memory
is relatively small compared to the amount needed for the
duplicated edges. Finding a good size for H compromises the
amount of storage size and the number of iterations. Allocating
a small hash-table will result in the table filling up quickly and
needing more iterations. Thus, we cannot give the same tight
bound on the number of iterations required by the algorithm
for completion. However, the hash-based approach reduces the
amount of anti-section operations compared to the dual-round
method. Further, the hash-based approach does not require
filtering as no duplicate edges exist in the batch. In practice,
the hash-based approach outperforms the dual-round approach.

Each anti-section operates on a different directed edge. We
can use the result of the anti-section to generate a set of
edges, possibly the null group, which needs to be inserted
into the graph. Our algorithm will run |E% | anti-sections in
each iteration where E%C is the set of edges in the graph
by iteration i. As the insertion works in a bulk synchronous
manner, newly detected edges are not inserted until all anti-
section operations have been completed. Instead, edges get
inserted into the graph in a bulk fashion®. For dual-approach,
duplicate edges are filtered out in a post-processing phase to
avoid inserting the same edge numerous times.

An asynchronous anti-section algorithm might be feasible;
however, such an algorithm will face many performance prob-
lems. As the anti-section operation requires sorted adjacency
lists, an asynchronous algorithm must ensure that the inserted
edge is placed correctly in its new adjacency array. Otherwise,
other anti-sections could be impacted by possibly iterating over
a non-sorted array. The problem is exacerbated by the increase
in the number of threads found in modern systems. For this
reason, we chose the bulk synchronous approach.

C. Dynamic Graph Based Segmented Sorting

The Hornet data-structure [16] is a framework designed to
solve both static and dynamic graph problems. Hornet is also
an excellent fit for problems where the graph evolves as part of
the algorithm — precisely as required by our new formulation.
Rather than building a new transitive closure graph in each
iteration, we continuously add edges into the graph until the
operation is complete. Hornet supports both a static graph
back-end, similar to CSR, and a dynamic graph back-end. As
our algorithm requires edge insertions, we use the dynamic
graph back-end. Since the different transitive closure iterations
need the graph to be sorted, this is a requirement expected of
Hornet. Hornet uses an efficient segmented-sorting algorithm
based on logarithmic radix binning [20] after each bulk edge

3Bulk edge insertion is a key feature of several existing dynamic graph
data structures, including Hornet [16], cuSTINGER [17], STINGER [18], and
AIMS [19]

195

Algorithm 3: Dynamic Graph Iteration based Transi-
tive Closure Generation

1 while (¢true) do

2 global Batch < ¢

3 forall (u,v) € Epc do

4 batchUV « {ele €
AntiSection((u,v), adj(u), adj(v))}
5 if (batchUV # ¢) then

6 | global Batch.append(batchUV')
7 end
8

9

end

if globalBatch == ¢ then
10 | break;

end
Graph.insert(global Batch)

Graph.Sort()

insertion to ensure that the graph is sorted for the next iteration
of the algorithm.

In a segmented sort, each adjacency list is sorted separately.
Segmented sorting tends to be computationally more efficient
than sorting the entire graph. Furthermore, the way that the
data is stored both in a CSR representation and in Hornet
requires transforming the data to edge-pairs prior to its sorting
- this increases the memory footprint and requires extra time.
Our algorithm uses the segmented-sort algorithm presented by
Fox et al. [20].

While sorting can be fairly costly for some applications,
its cost is not considerable compared to the anti-section
operations. Sorting an adjacency array of size d has a time
complexity of d - log(d) or O(d) depending on the sorting
algorithm used (merge-sort and radix-sort, respectively). In
contrasts, the time complexity of the anti-section operation
for the same vertex will require roughly O(d?) operations
(see subsection IV-B). As such, the sort’s overhead is not high
compared to the anti-section itself and is not a performance
bottleneck.

Simplistic pseudo-code for all the phases of ATC is available
in Alg.3, which consists of the following: scalable anti-
section new edges search (with edge batch creation), bulk edge
insertion, and dynamic graph segmented sorting. The pseudo-
code does not include the parallel code needed for managing
the edge insertion. We discuss the complexities of the insertion
in the subsequent subsections. Still, we note that storing the
newly found edges of a given anti-section, denoted as batchUV
in the pseudo-code, is a crucial feature of this algorithm.

IV. COMPLEXITY ANALYSIS
In this section, we discuss the iteration bounds, time and
space complexities of the new method.
A. Bound of Iteration Times

We prove that our iteration based formulation of ATC
converges quickly as it requires at most [log, |[V|] times of
iteration to completely build the transitive closure Gr¢.

Lemma IV.1 (Diameter Shrinkage). The diameter of the graph
shrinks by half in each iteration of ATC. Yu,v € V, if a path

between u and v exists, then let | be the length of the shortest
path connecting them. If | > 1, then after the anti-section the
shortest path will be denoted with | and | < [L].

Proof. Let (u = po,p1,-..,;i = v) be the shortest path
between u and v. Based on the definition of anti-section
transitive closure, after one anti-section operation across all
the edges in the graph, the following edges will be identified
as edges that need to be inserted into the transitive closure
graph: (po,p2), (p1,p3), (P2, 1), (P1—2,p1). If 1 is an odd
number, the following new shortest path between u and v
exists in the graph (pg,p2, P4, ..., Pi—1,p;) and its length is
BL — [L7.1f 1 is an even, the new shortest path between u
and v is (po, p2, P4, ..., Pi—2,p1) and its length is é = (%]
Thus, these shortest paths exists and their lengths meet the
requirement of l. O

Lemma IV.2 (ATC Ending Condition). When the graph’s
diameter has shrunk to 1, then the transitive closure has been
successfully built.

Proof. Assume by contradiction that there exists a shortest
path path = (po,p1, ..., p;) that has a length, [> 1 and that
the transitive algorithm has completed. The anti-section of pg
with p; will find p, which will result in a new edge being
added, in contradiction with the assumption. Therefore, the
algorithm will not complete until the diameter is of length
1. O

Theorem IV.3 (Maximum Iteration Steps). The maximal
number of iterations of ATC will be no more than [log, |V|]

Proof. Yu,v € V, if there exists one path between u and v,
then the longest shorted path between w and v in any graph
G should not be larger than |V| — 1. Based on Lemma IV.1,
it will take at most [log, |V|] iteration to shrink the diameter
of GG to 1. Based on Lemma IV.2, the diameter of G' becomes
1 means that the transitive closure has been successfully built,
and the algorithm will end. So, at most [log, |V|] iteration
will be needed for ATC. O

B. Time Complexity Analysis

For the time complexity analysis, we use the basic anti-
section algorithm as described in the pseudo-code of Alg.1.
Given the edge e = (u,v), an anti-section operation requires
O(d,, + d,) operations, where d, is the degree of vertex .
Given a vertex, u, that vertex will also partake in d, anti-
section operations - one for each of its adjacencies. As a
results, the time complexity for a vertex is O(d2). We use
dmaz to denote the vertex with the largest degree. Since
there are V' vertices, we can write the time complexity as
O(|V|-d?,..) as dpmasz > d,, for all vertices. While this does
not give a tight complexity for the algorithm, this complexity
is identical to that of triangle counting. Many triangle counting
algorithms use the above time complexity as no tighter bound
is known.

The O(|V| - d?,,,) time complexity is correct for each
iteration of our algorithms. The size of d,,,, can increase

196

with the iteration as additional edges are added into the graph.
We can rewrite the time complexity per-vertex as O((d?,)?)
where ¢ is the iteration and the time complexity iteration as
O(|V| - (di,,.)?) The time complexity of transitive closure
for dense matrices can be bound by O(|V]? - log(|V]). To
the best of our knowledge, no tighter bound can be given
to SpGEMM as it is a data-dependent problem. Thus, the
GraphBLAS solutions do not have a tighter bound than our
new algorithm. Fortunately, both algorithms have an equal
number of iterations.

For the dual-round approach, we can bound the time com-
plexity of the entire algorithm to be:

log, (IV]) _
O > VI (dhnae)?)
i=0
C. Memory Complexity Analysis

The storage complexity for transitive closure is non-trivial
and data-dependent; however, we can show that our solution
has a smaller memory footprint than the linear algebra-based
approach. For the linear algebra solution, three graphs are nec-
essary for the matrix multiplication and the memory should be
O3 x|V[*) = O(]V|?). In contrast, our solution uses a single
graph, and all operations are done in-place on that one graph
and the memory should be O(|V|]) + O(|Erc|) = O(|Erc))
since |V| < ex |Ep¢|, where ¢ is a constant. For sparse graph,
O(|Erc|) << O(|V|?). Therefore, our memory footprint is
much smaller than linear algebra-based solutions.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

System and Configuration: Our implementation of Anti-
section Transitive Closure is in CUDA and targets NVIDIA
GPUs. The GPU used in our experiments is the NVIDIA
Titan V from the Volta micro-architecture. The Titan V has
80 SMs (streaming multi-processors) and 64 SPs (streaming
processors) per SM, for a total of 5120 SPs, commonly
referred to as CUDA threads. The Titan V has a total of 12GB
of HBM2 memory and 6MB of shared cache between the
SMs. Newer GPUs such as the NVIDIA A100 have almost
7x the amount of memory with 80GB, enabling running on
significantly large graph instances. All CPU experiments are
executed on a dual Intel Xeon E5-2650 v4 Processor running
2.2GHz with 30MB LLC. The CPU has a total of 512GB of
memory. This system has 24 cores with 48 threads.

Input Networks: Our tests use a mix of real-world and
synthetic data taken from SuiteSparse collection [21]. Table I
summarizes the properties of these graphs, including the num-
ber of edges in the output graph. We specifically use directed
graphs and report the number of directed edges. We avoid
using undirected networks as typically the largest connected
component can account for 90% — 95% of the vertices [21]—
[24]. Such components would result in a clique, making it less
interesting while also requiring substantial memory. Lastly,
note that the ratio of the edges in the input graph and the
transitive closure graph can range between almost 60x for

delaunay_n17 and over 1, 000X for cit-HepPh. For this reason,
we are unable to test our algorithm for inputs with millions of
edges as the transitive closure graph would have an extremely
large memory footprint.

TABLEI
NETWORKS USED IN OUR EXPERIMENTS. || REFERS TO THE NUMBER OF
EDGES IN THE TRANSITIVE CLOSURE OF THE GRAPH. DENSITY VALUES
GO BETWEEN 0 (EMPTY) AND 1 (FULL).

Graph Name ‘ V| ‘ |E| ‘ |E| ‘ Density |E| ‘
p2p-Gnutella09 8,114 26,013 21,400,336 0.3255
delaunay_n13 8,192 24,547 1,656,270 0.0250
as-22july06 22,963 48,436 1,477,572 0.0029
delaunay_n15 32,768 98,274 4,703,128 0.0044
delaunay_n17 131,072 | 393,176 23,499,929 0.0014
cit-HepPh 34,546 421,578 | 485,646,072 0.4069

Additional Frameworks: We compare the performance of
our new algorithm with several implementations: NetworkX,
SEI-GBTL [25], SuiteSparse [26], and cuSparse [27]. We
chose these implementations as they are either open-source
or readily available for us. SuiteSparse and cuSparse are also
known for having good sparse implementations.

NetworkX is a widely used graph framework amongst
data scientists. The NetworkX implementation uses the DFS
(depth-first search) formulation. A DFS traversal is initiated
from each root, and the time complexity is O(|V|?). This
approach is inherently sequential.

We also compare against three transitive closure implemen-
tations that use sparse matrix-matrix multiplication formula-
tion. The first of these uses the GraphBLAS implementation
of SEI, which we refer to as SEI-GBTL. SEI-GBTL uses
sparse adjacency matrices as the basic matrix data structure,
and it is sequential. The second is based on SuiteSparse
and runs in parallel. The third is based on cuSparse and it
is a parallel implementation for the GPU. Altogether, these
implementations cover different solutions as well as target
different architectures. These frameworks do not include a
transitive closure. However, using the well-known BLAS for-
mulation, we implement sparse versions using sparse matrix
multiplications.

Implementation Details: The implementation of our new
Anti-section Transitive Closure algorithm is in C++ and
CUDA. Specifically, all parallel code on the GPU is in CUDA.
We use the Hornet framework (described below) for our
dynamic graph data structure. Hornet is part of NVIDIA’s
RAPIDS initiative and is part of cuGraph (referred to as
cuHornet in the RAPIDS framework). We include two varia-
tions of ATC: dual-round and hash-based.

B. Performance Analysis of ATC

1) Breakdown Analysis: Fig. 1 depicts a detailed break-
down of the execution time for both the dual-round and
hash-based algorithms. The top row represents the execution
breakdown in percentage, and the bottom row depicts the
execution time as a function of the iteration. We report the
execution times for each algorithm for the three key phases:

197

anti-section, bulk insertions, and graph sorting. The execution
breakdown takes into account the total time of an algorithm
for the entire iteration. For example, the sorting time is
nearly identical for dual-round and hash in a given iteration.
However, the relative cost of sorting is higher for the hash-
based ATC. The difference is primarily due to the disparity
of the anti-section operation between dual-round and hash.
Dual-round executes the anti-section twice and requires an
additional processing phase for duplicate filtering. That is why
we typically see a 4x ~ 6x difference in the anti-section
execution time and a 3x ~ 5x speedup of the hash-based
approach over the dual-round approach.

Another observation is that the absolute time spent on graph
sorting increases with the density. At the same time, we see
that time spent on the anti-section increases at a higher pace;
thus, the relative cost of sorting decreases.

2) Impact of Hash-Table Size: Fig. 2 depicts the impact
of the hash-table size on the number of iterations and the
execution time of the hash-based transitive closure. With a
small hash-table, the algorithm runs additional iterations. In
contrast, a large hash-table increases the memory footprint,
and the cost of clearing the hash-table at every iteration also
increases. Fortunately, clearing the hash-table is not extremely
expensive and requires a simple scan across all the hash table
entries. The scan uses a bandwidth-friendly memory access
pattern. Thus, the reset operation is relatively inexpensive
in comparison to the anti-section. The increased memory
footprint is more challenging to amortize, so we offer the
following rule of thumb: set the hash-table to 10% of the
system memory. In the worst case, if the output of the transitive
closure is enormous, within ten iterations, the entire system
memory will get filled. If the output is not very large, then
the hash table will not get used in its entirety. However, fewer
iterations of the anti-section will be required.

C. Comparison with Other Frameworks

1) Performance Comparison: We start by comparing our
new ATC algorithms with the other implementations. Fig.
3 depicts the execution time (left sub-plot) of these imple-
mentations, the speedup of ATC dual-round (middle plot),
and ATC hash-based (right plot) in comparison to the other
algorithms. For execution times, lower is better. For speedups,
a value over 1 implies that the algorithm is outperforming the
baseline. There were several graphs that we could not collect
the execution time as they did not finish due to out-of-memory,
segmentation-fault, or timed out. These are denoted with a
missing bar.

We found the sequential execution of SuiteSparse was on
many occasions 10x faster than SEI-GBTL. Further, SuiteS-
parse’s ability to use multiple threads also improves its per-
formance between 12x ~ 18X in comparison to its sequential
execution. Altogether, SuiteSparse can be 120x ~ 180x faster
than SEI-GBTL.

The hash-based ATC algorithm is usually over 1000 and
400x faster than NetworkX and GraphBLAS SEI-GBTL,

1.0-

iy
°

14
o
14
®

o
o
o
o

e
»
°
»

ual-Round - AntiSection == Hash - AntiSection
ual-Round - Insertion Hash - Insertion
ual-Round - Sort = Hash - Sort

°
N
=
N

Percentage of Execution
Percentage of Execution

Dull Round - AntiSection === Hash - AntiSection |
Dual-Round - Insertion
ual-Round - Sort

1.0-

o
o

4
o

e
S

=]
N

al-Round - AntiSection &= Hash - AntiSection
ual-Round - Insertion
ual-Round - Sort

Percentage of Execution

Hash - Insertion
e Hash - Sort

Hash - Insertion
= Hash - Sort

[l

o
°

2 3 a 5
Iterations

(a) as-22July20

w
=3
(=]

—s— Dual Round
—+— Hash

N
=3
(=]

20-
100

Execution Time (ms)

=
=)

Execution Time (ms)

2
Iterations

(d) as-22July20

3

a4

Iterations

(b) delaunay-n13

a4
Iterations

(e) delaunay-n13

e
°

5 6 7 8 9 a 5 6 1

Iterations

8 9

(c) delaunay-nl5

—— Dual Round
—v— Hash

—e— Dual Round
—+— Hash

200

100

Execution Time (ms)

5 6 7

3

a4 5
Iterations

(f) delaunay-n15

6 7 8 9

Fig. 1. The top row depicts the execution breakdown (anti-section, bulk insertions, and graph sorting) in percentage. The execution breakdown is relative to
the execution time of a given algorithm. The bottom row depicts the execution time for the same three networks as a function of the iteration.

- 10M
- 50M
15 mm 100M

sllnhh

getaunay " de\aunay_r\15 ﬂ,u\voﬁ - G,\uteuaw‘aunay 7
Hash Table Slze (in Millions)

- 150M
200M

Number of Iterations

= 150M |
zooM

= 10M
== 50M
== 100M

102

(a) Iterations as function of hash table size
10*
10°

o . . I I

getaunay "33 o ynay M35 mu\vo o _Gnutela92nay_n17
Hash Table S\ze (in Millions)

Execution Time (log scale)

(b) Execution time (ms) as a function of hash
table size

Fig. 2. The hash table size impacts the number of iterations (top) and the
execution (bottom). Selecting the ideal hash-table size is important.

respectively. The hash-based ATC typically outperformed cuS-
parse and SuiteSparse, except for one instance for each of these
frameworks.

SEI-GBTL, SuiteSparse, and cuSparse implementations all
use matrix-matrix multiplication. Therefore, it is not surprising
the GPU’s cuSparse can be up to 50x faster than the se-
quential SEI-GBTL. SuiteSparse’s sequential implementation
is roughly 10x faster than SEI-GBTL. With its parallel
implementation, SuiteSparse is up to 180x than SEI-GBTL.
Yet, our new algorithm in most cases is about 2.5x ~ 3X
faster that SuiteSparse. The performance gain is due to both
the GPU’s compute resources and the different optimization

198

methods of ATC.

2) Number of Iterations and Per Iteration Analysis: We
compare the number of iterations necessary for finding the
transitive closure of a graph, Fig. 4. We do not include results
for NetworkX as it uses a different (DFS) formulation. All the
algorithms require nearly the same number of iterations, with
a slight variance. The number of iterations follow our analysis
result in the subsection IV-A. The dual-round algorithm always
requires fewer iterations than the hash-based approach, which
matches the theoretical result in subsection III-B. Note, the
increase in the number of iterations is not substantial. In most
cases, the increase in iterations pays off as the dual-round
algorithm requires additional anti-sections operations.

Lastly, we analyze the execution time as a function of the
bulk batch of inserted edges for both our ATC algorithms and
cuSparse, Fig. 5. For most iterations, the hash-based approach
is over 10x faster than cuSparse, and, in some cases, it is over
100x faster. For the p2p-Gnutella09 network, there are several
iterations where our ATC algorithm is slower. As the graph
becomes denser, the cost of the anti-section operation also
grows. There seems to be room for improvement for our anti-
section algorithm for denser graphs, which we will explore in
future work.

VI. RELATED WORK
A. Transitive Closure

Many of the early transitive closure algorithms were de-
signed to operate on dense networks. In particular, the linear
algebra approach uses dense matrix multiplication, including
the seminal algorithm by Warshall [28]. Warshall’s algorithm
is also applicable, with some modifications to sparse networks.
The research on this topic over the years has been extensive.
Warren [29] optimized Warshall’s method by processing the
matrix elements in a row-wise manner when the matrix is

2 2

2

102

Execution Time (log)
S

Speedup - Hornet_DualRound
5

09
120 fetauna

y_n17

getauna¥_M3 i unay 115 as,zzxu\v"spz p-Gnute

(a) Execution Time

LLL

getaunay "3 (o ounay M5 2ojuly08 pap-Gnute

(b) Dual-Round Speedup

letworkx
- Griphbus SEI-GBTL
= GraphBLAS-S sulusplrse

= cusparse

y_n17

= Networkx |
== GraphBLAS-SEI-GBTL
== GraphBLAS-SuiteSparse
= cuSparse

Hornet- Dual-Round

- ~
g g

Speedup - Hornet_Hashing
"
5

1209

120 etauna getouna¥ "y qunay "> as-ﬂ’"‘yuspzpvﬂnu‘*‘ % etaunay "7

(c) Hash-Based Speedup

Fig. 3. (Left) - execution time of the various implementations (log-scale). Lower is better. (Middle) and (Right) - speedups of our two anti-section algorithms.

Higher is better.

-
N
«

N Hornet-ATC_Dual Round

N Hornet-ATC-Hash

WS GraphBLAS-SEI-GBTL

WS GraphBLAS-SuiteSparse
cusparse

ooIIi.

delaunay_"13gelaunay_n15yelaunay N17 5-22july06 5. Gnutella0?

-
o N 4
° n °

Number of Iterations

N
n

Fig. 4. The number of iterations needed for finding the transitive closure for
various inputs.

stored in a row-wise fashion. Pieterse et al. [30] shows how
different algorithm techniques, such as monitoring for changes,
loop fusion, loop tiling, and short-circuiting, can affect tran-
sitive closure performance. Hardware-oriented efforts were
another research direction. Kung et al. [31] developed systolic
arrays to find the transitive closure in hardware and Velasquez
et al. [32] implemented Boolean matrix-based transitive clo-
sure algorithm within 3D Crosspoint Memory.

Nuutila [33] developed an optimized dense graph
components-based transitive closure algorithm identifying the
relationship between strongly connected components of a
graph and then generating the transitive closure by utilizing
additional information on the graph layout. Some algorithms
rely on a predefined processing order rather than depending on
early termination, for example, Tarjan’s [34] DFS algorithm.
Yet, DFS algorithms have proven to be quite challenging to
parallelize in the general case. Naumov et al. [35] show that
DFS can be parallelized with moderate success in the case of
a DAG on NVIDIA GPUs; however, the same algorithm is not
practical for generic graphs that might include cycles.

The semi-naive algorithm by Bancilhon [36] is an iterative
transitive closure algorithm that avoids regenerating existing
relations or edges. Our hash bashed method is inspired by
this approach. Wang et al. [37] use a hash function in
their multiprocessor transitive closure algorithm for mapping
newly generated tuples to different processors. Gilray et al.
[38] implemented parallel transitive closure at process level
parallelism using MPI. In contrast, our algorithms scale using
intra-process parallelism with a large number of lightweight
threads.

199

B. Triangle Counting

Recall, in Sec. III we showed the relationship between our
anti-section operation and the intersection operation. However,
our ATC algorithm differs from a typical triangle counting
algorithm. In recent years, we have witnessed a surge of new
triangle counting algorithms due to the HPEC GraphChal-
lenge [39]. We also observed exciting efforts such as ma-
trix multiplication-based triangle counting [40], new load-
balancing mechanisms [41], [42], and subgraph matching-
based triangle counting [43]. We refer the readers to [39] for
an extended discussion.

Merge-path based triangle counting. Odeh et al. [44] in-
troduced the Merge-Path concept for parallel merging and
sorting. Merge-Path proposes an efficient way to partition
the two sorted lists into balanced and disjoint subranges to
increase parallelism. Green et al. [45] then extended Merge
to the GPU. Intersect-Path extends the Merge-Path concept
to set intersections operations and triangle counting [46]. In
our work, we extend the Merge-Path concept to do the ATC
operation.

C. Data Structure for Dynamic Graphs

Compressed-Sparse Row (CSR) is one of the most widely
used representations for sparse data. CSR is applicable in
multiple application domains, sparse graph analysis included.
One of the most significant limitations of CSR is that it is
immutable and cannot be updated. Extending a sparse data
format to support dynamic operations, such as edge insertions
and deletions, is non-trivial.

In recent years, several data structures and frameworks have
been designed to deal with updating the graphs. The original
thought was that the graph gets updated by an external source
due to some event occurrence. Yet, several recent dynamic
graph algorithms show instances where the graph changes due
to an internal event. For example, the graph is updated in our
ATC algorithm due to new edges getting detected in the anti-
section operation. Two other examples include finding a k-
truss [47] and k-core decomposition [48] where the graph is
updated as part of the algorithm.

The STINGER data structure [18] was first introduced as a
dynamic graph structure that can support both temporal and
spatial graphs with meta-data (such as vertex and edge types).
Graphln [49] is an incremental only data structure and uses

cusparse |
Hornet-ATC-Hash

-

» cuSparse

a
10 Hornet-ATC-Hash

=
=)
W

Hornet-ATC_Dual Round
GraphBLAS-SuiteSparse

+om

GraphBLAS-SuiteSparse

102

Time (ms)

10t -
4x10° 6 x 10° 108
Bulk Batch Size

(a) as-22July20

10°

Hornet-ATC_Dual Round |,

Bulk Batch Size

(b) delaunay-n13

L ! 4 cuSparse
N N . = Hornet-ATC-Hash
5 + GraphBLAS-SuiteSparseT

> e

£
= 102

10

10° 10°

Bulk Batch Size
(c) Gnutella09

Fig. 5. Execution time of each phase as a function of the number of new edges found.

both CSR and Coordinate list (COO) formats. Dynamic CSR
[50] stores an entire CSR graph for each graph update. This
data structure’s storage complexity is quite high and requires
special traversal primitives for operations that span multiple
CSR data structures.

AIMS [51] and FAIMS [52] are two recent dynamic graph
data structure focused on improving edge insertion and dele-
tion operations. Both of these data structures use a linked-list
of blocks to support dynamic graph operations. The adjacency
is split across multiple nodes of a linked-list, making the
anti-section (or intersection) operation hard to implement.
Furthermore, AIMS has low memory utilization as it allocates
all memory on the GPU. Awad et al. [53] use a hash table to
implement a dynamic graph data structure for the GPU.

cuSTINGER [17] was the first dynamic graph data structure
for the GPU. Hornet [16] followed up on cuSTINGER but
made significant changes to its data structure to enable tighter
memory bounds, better data management, and improved mem-
ory reclamation. The Hornet data structure is a dynamic CSR
variant.

VII. CONCLUSION

In this paper, we introduced a novel approach for comput-
ing the transitive closure using a dynamic graph. Our ATC
algorithm is simple, scalable, and high-performing. ATC has
several unique features. First, ATC shows a simple approach
for finding new edges using an anti-section operation, similar
to an intersection operation, with high efficiency. The simi-
larity between anti-sections and intersections means that our
new algorithm can easily benefit from the significant effort in
improving graph triangle counting in the last decade. Second,
we show that by using a dynamic sparse graph data structure
we can reduce the memory footprint, reduce data movement
between intermediate matrices, and avoid creating the interme-
diate matrices. Using Hornet, a scalable and high performing
dynamic graph data structure, we showed that edge insertions
are efficient and straightforward. Furthermore, the use of bulk
edge insertions is another new feature our algorithm shows
over past approaches. Third, every computational phase in our
algorithm is parallelizable. Because of this, we successfully
utilize NVIDIA GPUs and outperform existing CPU and GPU
implementations of transitive closures.

Our algorithm’s new features are why we can outperform a
highly tuned and parallel GraphBLAS implementation (Spars-

200

eSuite) by 2 x —3x with 24-cores (48-threads) while using a
single NVIDIA Titan V GPU. Our new algorithm was several
orders of magnitude faster than a sequential GraphBLAS (SEI-
GBTL) and the popular NetworkX framework. Lastly, our
GPU based implementation of ATC is faster than the linear
algebra-based solution on the same GPU. This highlights that
our contribution is exploiting more parallelism through the use
of dynamic bulk edge creation and co-designing the algorithm
with the use of a dynamic graph data structure.

ACKNOWLEDGMENTS

This research was funded in part by NSF grant number
CCF-2109988 (Bader).

REFERENCES
[1] J. Kepner, P. Aaltonen, D. Bader, A. Bulug, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, et al.,
“Mathematical foundations of the GraphBLAS,” in 2016 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1-9, IEEE,
2016.
A. T. Stephen and O. Toubia, “Explaining the power-law degree distri-
bution in a social commerce network,” Social Networks, vol. 31, no. 4,
pp. 262-270, 2009.
L. A. Adamic, B. A. Huberman, A. Barabdsi, R. Albert, H. Jeong, and
G. Bianconi, “Power-law distribution of the world wide web,” Science,
vol. 287, no. 5461, pp. 2115-2115, 2000.
M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Rela-
tionships of The Internet Topology,” in ACM SIGCOMM Computer
Communication Review, pp. 251-262, 1999.
M. J. Fischer and A. R. Meyer, “Boolean matrix multiplication and tran-
sitive closure,” in 12th Annual Symposium on Switching and Automata
Theory (swat 1971), pp. 129-131, IEEE, 1971.
H. Jagadish, R. Agrawal, and L. Ness, “A study of transitive closure as a
recursion mechanism,” ACM SIGMOD Record, vol. 16, no. 3, pp. 331-
344, 1987.
D. L. Monge and T. A. Schultz, “Process for providing transitive closure
using fourth generation structure query language (sql),” Oct. 6 1998. US
Patent 5,819,257.
S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler, “A transitive
closure algorithm for test generation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, no. 7,
pp. 1015-1028, 1993.
T. Mak, F. Xia, A. Yakovlev, M. Palesi, et al., “Embedded transitive
closure network for runtime deadlock detection in networks-on-chip,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 7,
pp. 1205-1215, 2011.
F. Coelho, “Compiling dynamic mappings with array copies,” in Pro-
ceedings of the sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 168-179, 1997.
W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman, “Transitive closure
of infinite graphs and its applications,” International Journal of Parallel
Programming, vol. 24, no. 6, pp. 579-598, 1996.

2

—

[10]

[11]

[12]

[13]

[14]

[17]

(18]

2
*x

S. Farheen, N. A. Day, A. Vakili, and A. Abbassi, “Transitive-closure-
based model checking (TCMC) in Alloy,” Software and Systems Mod-
eling, pp. 1-20, 2020.

M. Palkowski and W. Bielecki, “Parallel tiled Nussinov RNA folding
loop nest generated using both dependence graph transitive closure and
loop skewing,” BMC bioinformatics, vol. 18, no. 1, pp. 1-10, 2017.

Y. Ye and J. Talburt, “The effect of transitive closure on the calibration
of logistic regression for entity resolution,” Journal of Information
Technology Management, vol. 10, no. 4, pp. 1-11, 2018.

C. Demetrescu and G. F. Italiano, “Dynamic shortest paths and transitive
closure: Algorithmic techniques and data structures,” Journal of Discrete
Algorithms, vol. 4, no. 3, pp. 353-383, 2006.

F. Busato, O. Green, N. Bombieri, and D. Bader, “Hornet: An Efficient
Data Structure for Dynamic Sparse Graphs and Matrices on GPUs,” in
IEEE Proc. High Performance Extreme Computing (HPEC), (Waltham,
MA), 2018.

O. Green and D. Bader, “cuSTINGER: Supporting Dynamic Graph
Algorithms for GPUS,” in IEEE Proc. High Performance Extreme
Computing (HPEC), (Waltham, MA), 2016.

D. Bader, J. Berry, A. Amos-Binks, D. Chavarria-Miranda, C. Hastings,
K. Madduri, and S. Poulos, “STINGER: Spatio-Temporal Interaction
Networks and Graphs (STING) Extensible Representation,” tech. rep.,
Georgia Institute of Technology, 2009.

D. P. Martin, “Dynamic shortest path and transitive closure algorithms:
A survey,” arXiv preprint arXiv:1709.00553, 2017.

J. Fox, A. Tripathy, and O. Green, “Improving Scheduling for Irregular
Applications with Logarithmic Radix Binning,” in IEEE Proc. High
Performance Extreme Computing (HPEC), 2019.

T. Davis, Y. Hu, and S. Kolodziej, “The SuiteSparse Matrix Collection,”
2018.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph Structure in the Web,” Computer
Networks, vol. 33, no. 1, pp. 309-320, 2000.

C. Jain, P. Flick, T. Pan, O. Green, and S. Aluru, “An adaptive parallel
algorithm for computing connected components,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 9, pp. 2428-2439, 2017.
J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network
Dataset Collection.” http://snap.stanford.edu/data.

S. McMillan, “GBTL v3. 0: Primitives for optimized mxm,” tech. rep.,
Carnegie Mellon University, Pittsburgh, PA, 2020.

T. Davis, “SuiteSparse: GraphBLAS,” in High Performance Extreme
Computing Conference (HPEC). IEEE, 2017.

M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

S. Warshall, “A Theorem on Boolean Matrices,” Journal of the ACM
(JACM), vol. 9, pp. 11-12, 1 1962.

H. S. Warren, “A Modification of Warshall’s Algorithm for the Transitive
Closure of Binary Relations,” Communications of the ACM, 1975.

V. Pieterse and L. Cleophas, “Benchmarking optimised algorithms for

transitive closure,” in Proceedings of the South African Institute of

Computer Scientists and Information Technologists, pp. 1-10, ACM,
2017.

S.-Y. Kung, S.-C. Lo, et al., “Optimal systolic design for the transitive
closure and the shortest path problems,” IEEE Transactions on Comput-
ers, vol. 100, no. 5, pp. 603-614, 1987.

A. Velasquez and S. K. Jha, “Brief announcement: Parallel transitive
closure within 3d crosspoint memory,” in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, pp. 95-98,
2018.

E. Nuutila, Efficient transitive closure computation in large digraphs.
PhD thesis, Helsinki University of Technology, 1998.

R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM
Journal on Computing, vol. 1, pp. 146-160, 6 1972.

M. Naumov, A. Vrielink, and M. Garland, “Parallel depth-first search
for directed acyclic graphs,” in Proceedings of the Seventh Workshop on
Irregular Applications: Architectures and Algorithms, pp. 1-8, 2017.
F. Bancilhon, “Naive evaluation of recursively defined relations,” in On
Knowledge Base Management Systems, pp. 165-178, Springer, 1986.
B.-F. Wang and G.-H. Chen, “Constant time algorithms for the transitive
closure and some related graph problems on processor arrays with recon-
figurable bus systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 1, no. 4, pp. 500-507, 1990.

201

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

T. Gilray and S. Kumar, “Distributed relational algebra at scale,” in 2019
IEEE 26th International Conference on High Performance Computing,
Data, and Analytics (HiPC), pp. 12-22, IEEE, 2019.

S. Samsi, J. Kepner, V. Gadepally, M. Hurley, M. Jones, E. Kao,
S. Mohindra, A. Reuther, S. Smith, W. Song, et al., “Graphchallenge.
org triangle counting performance,” in 2020 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1-9, IEEE, 2020.

A. Yagar, S. Rajamanickam, J. Berry, M. Wolf, J. S. Young, and
U. V. Catalyiirek, “Linear algebra-based triangle counting via fine-
grained tasking on heterogeneous environments:(update on static graph
challenge),” in 2019 IEEE High Performance Extreme Computing Con-
ference (HPEC), pp. 1-4, IEEE, 2019.

O. Green, J. Fox, A. Tripathy, K. Gabert, E. Kim, X. An, K. Aatish, and
D. Bader, “Logarithmic Radix Binning and Vectorized Triangle Count-
ing,” in IEEE Proc. High Performance Extreme Computing (HPEC),
(Waltham, MA), 2018.

J. Fox, O. Green, K. Gabert, X. An, and D. Bader, “Fast and Adaptive
List Intersections on the GPU,” in IEEE Proc. High Performance
Extreme Computing (HPEC), (Waltham, MA), 2018.

L. Wang, Y. Wang, C. Yang, and J. D. Owens, “A comparative study
on exact triangle counting algorithms on the GPU,” in Proceedings of
the ACM Workshop on High Performance Graph Processing, pp. 1-8,
ACM, 2016.

S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk, “Merge Path-
Parallel Merging Made Simple,” in IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
pp. 1611-1618, 2012.

O. Green, R. McColl, and D. A. Bader, “GPU merge path: a GPU
merging algorithm,” in Proceedings of the 26th ACM international
conference on Supercomputing, pp. 331-340, 2012.

O. Green, P. Yalamanchili, and L. Munguia, “Fast Triangle Counting
on the GPU,” in IEEE Fourth Workshop on Irregular Applications:
Architectures and Algorithms, pp. 1-8, 2014.

0. Green, J. Fox, E. Kim, F. Busato, N. Bombieri, K. Lakhotia, S. Zhou,
S. Singapura, H. Zeng, R. Kannan, V. Prasanna, and D. Bader, “Quickly
Finding a Truss in a Haystack,” in IEEE Proc. High Performance
Extreme Computing (HPEC), (Waltham, MA), 2017.

A. Tripathy, F. Hohman, D. Chau, and O. Green, “Scalable K-Core De-
composition for Static Graphs Using a Dynamic Graph Data Structure,”
in IEEE Proc. Big Data, (Seattle, WA), 2018.

D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke, J. Young, M. Wolf,
and K. Schwan, “GraphIn: An Online High Performance Incremental
Graph Processing Framework,” in European Conference on Parallel
Processing, pp. 319-333, Springer, 2016.

J. King, T. Gilray, R. M. Kirby, and M. Might, “Dynamic Sparse-Matrix
Allocation on GPUs,” in International Conference on High Performance
Computing, pp. 61-80, Springer, 2016.

M. Winter, R. Zayer, and M. Steinberger, “Autonomous, Independent
Management of Dynamic Graphs on GPUs,” in International Super-
computing Conference, pp. 97-119, Springer, 2017.

M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger,
“faimGraph: high performance management of fully-dynamic graphs
under tight memory constraints on the GPU,” in SCI8: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 754-766, IEEE, 2018.

M. A. Awad, S. Ashkiani, S. D. Porumbescu, and J. D. Owens,
“Dynamic graphs on the GPU,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 739-748, 1EEE,
2020.

