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Abstract—The transitive closure of a graph is a new graph
where every vertex is directly connected to all vertices to which
it had a path in the original graph. Transitive closures are useful
for reachability and relationship querying. Finding the transitive
closure can be computationally expensive and requires a large
memory footprint as the output is typically larger than the input.
Some of the original research on transitive closures assumed
that graphs were dense and used dense adjacency matrices. We
have since learned that many real-world networks are extremely
sparse, and the existing methods do not scale. In this work, we
introduce a new algorithm called Anti-section Transitive Closure
(ATC) for finding the transitive closure of a graph. We present
a new parallel edges operation – anti-sections – for finding
new edges to reachable vertices. ATC scales to massively multi-
threaded systems such as NVIDIA’s GPU with tens of thousands
of threads. We show that the anti-section operation shares some
traits with the triangle counting intersection operation in graph
analysis. Lastly, we view the transitive closure problem as a
dynamic graph problem requiring edge insertions. By doing this,
our memory footprint is smaller. We also show a method for
creating the batches in parallel using two different techniques:
dual-round and hash. Using these techniques and the Hornet
dynamic graph data structure, we show our new algorithm on
an NVIDIA Titan V GPU. We compare with other packages such
as NetworkX, SEI-GBTL, SuiteSparse, and cuSparse.

Index Terms—Transitive closure, dynamic graph, GPU, paral-
lel graph algorithm

I. INTRODUCTION

Graphs are a natural way to represent real-world problems,

found in numerous domains such as social sciences, biolog-

ical systems, and information systems (to name just a few).

Formulating problems with graphs enables using a wide range

of well-researched and established computational tools. The

GraphBLAS [1] is one such effort to create a framework for

implementing graph algorithms through the language of linear

algebra.
Theoretical work dating back half a century focused on

highly connected graphs, commonly referred to as dense

networks. In these networks, most vertices have a direct

connection to the remaining vertices in the graph. We have

since learned that many real-world networks are, in fact,

sparse where each vertex has a small fraction of its potential

connections. We commonly refer to such networks as sparse

networks. Many sparse networks, social networks in particular,

have an additional property - their edge distribution follows a

power-law distribution [2]–[4].

* These authors contributed equally to the manuscript.

A transitive closure [5] is a basic binary relation operator

for finding reachability between two entities in a graph. Given

a graph G, if (u, v) and (v, w) are two different edges in

G, the edge (u,w) should appear in the output of the tran-

sitive closure GTC . The transitive closure allows for efficient

querying if two vertices share a directed path. To be precise,

such querying is possible with O(1) operations. Applications

requiring a large number of queries benefit from the transitive

closure operation.
Transitive closures are used in numerous domains, includ-

ing: database query languages [6], [7], VLSI Test Generation

[8], detecting runtime deadlocks [9], compiling optimization

[10] such as redundant synchronization removal and the legal-

ity of iteration reordering transformations testing [11]. Tran-

sitive closures are also used for model checking [12], RNA

secondary structure prediction [13], and machine learning [14].

Demetrescu and Italiano [15] show that small changes to

the transitive closure method can generate the shortest path.

The list of applications using transitive closure continuously

grows, and these entail a more efficient transitive closure

implementation method with high practical performance.
This paper introduces a new algorithm for finding the

transitive closure of a graph called Anti-section Transitive

Closure (ATC). The major algorithmic contributions are as

follows.

• We introduce a novel list anti-section operator that shares

many algorithmic traits with a set intersection. The sorted

set intersections found in a breadth of triangle counting

algorithms are well understood and optimized. Thus, our

algorithm benefits from them as well.

• The simplicity of the anti-section operator allows for ef-

fective parallelization across tens of thousands of threads.

The overlap between the two operators and their simplic-

ity leads to high productivity and enables us to quickly

implement this algorithm for NVIDIA GPUs.

• The proposed ATC algorithm integrates with a dynamic

graph data structure which supports bulk edge insertions

for updating the intermediate results of the transitive

closure. By using a dynamic graph data structure, we

need to store a single graph in memory resulting in a

reduced memory. Further, the algorithm is simple as it

does not require complex locking mechanisms to update

the graph. Altogether, these algorithmic contributions

allow for putting together a simple, elegant, and scalable
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solution for transitive closures.

Based on the proposed ATC algorithm, we have the follow-

ing performance results.

• We use Hornet, a dynamic graph data structure, for

inserting edges into the output graph. Using Hornet, we

show a reduced memory footprint compared to other

methods that require rebuilding the graph when new

edges are found.

• Our new hash-based ATC algorithm outperforms both

single-thread CPU, multi-thread CPU, and GPU-based

implementations. Our hash-based ATC can resolve the

problem of identifying duplicated edges with an accept-

able memory overhead while improving performance over

our dual-round algorithm and other algorithms.

• Our GPU-based implementation outperforms a differ-

ent GPU implementation by 10× and 100× for two

inputs on the same GPU. When comparing our al-

gorithms against NetworkX, GraphBLAS-GBTL, and

GraphBLAS-SuiteSparse, the speedup varies depending

on the number of threads, programming language, and

problem formulation. Compared to the parallel and highly

efficient GraphBLAS-SuiteSparse framework, our algo-

rithm can be upto 3× faster.

II. PROBLEM FORMULATION

The transitive closure of a graph is defined as follows. Given

a directed graph G =< V,E > where V is the set of vertices

and E is the set of edges, the transitive closure

GTC =< V,ETC >

of G has the same vertices as V and E ⊆ ETC . If ∀e ∈ E, e ∈
ETC and if e1 = (u,w) ∈ ETC ∧ e2 = (w, v) ∈ ETC then

e = (u, v) ∈ ETC . The transitive closure graph can directly

answer the reachability query between any vertex pair in O(1)
time. The output of the transitive closure operation on an input

graph is a new graph where reachable vertices are directly

connected. Transitive closures are especially interesting for

directed graphs. Using a connected component algorithm for

an undirected graph can produce the same result and will be

quicker than most transitive closure algorithms, and will not

require the increased memory footprint.

Many transitive closure algorithms work iteratively. These

algorithms continuously add new edges into the graph as these

are found. The challenge of scaling these approaches is non-

trivial, primarily due to their dependency on dynamic graph

data structures. Implementing a high-performance dynamic

graph data structure requires tackling several problems: man-

aging fine-grain thread control, which leads to deadlocks or

livelocks, memory allocation and memory management, data

placement, and much more. For this reason, transitive closure

implementations for sparse graphs will use multiple graph

instances in their implementations, resulting in an increased

memory footprint.

We show a transitive closure algorithm designed for sparse

graphs that uses a dynamic graph data structure. Our imple-

mentation uses the Hornet [16] dynamic graph data-structure.

Hornet shares many traits with the Compressed Sparse Row

(CSR) format. Unlike CSR, Hornet supports both edge in-

sertions and deletions. Hornet supports efficient and scalable

update operations for large and sparse networks. Using Hornet,

we require storing only a single graph in memory throughout

our execution.

The kernel operation to generate the new edges of a transi-

tive closure is called anti-section in this paper. The term anti-

section stems from the execution similarity to a set intersection

operation. Anti-sections focus on finding non-common ele-

ments in one of the sets versus finding the common elements.

Given a directed edge (u, v) ∈ ETC , let adj(u) be the set

of u’s adjacent vertices and adj(v) be the set of v’s adjacent

vertices , mathematically the anti-section of an edge (u, v) can

be defined based on a set difference as follows:

AntiSection((u, v)) = {(u, p)|p ∈ adj(v)− adj(u))

For any edge e ∈ AntiSection((u, v)) , that edge should

be identified and added to the output graph. In the following

section, we will describe how we implement the anti−section
operation efficiently.

III. PROPOSED METHOD

Our anti-section transitive closure generation method in-

cludes three key components: anti-section new edges genera-

tion, dynamic graph bulk edges insertion, and dynamic graph

segmented sorting.

A. Anti-Section for New Edges Generation

Given a single edge, the anti-section operation is the kernel

operation in which new edges are generated. These edges are

added one at a time in a batch. Lastly, the batch is inserted into

the graph in a bulk fashion. Furthermore, tens of thousands

of such operations are executed concurrently. In Alg. 1, the

anti-section operation shares a large number of traits with a

sorted-list intersection operation. For the sake of simplicity,

the pseudo-code algorithm assumes that the set add operation

is feasible at scale 1.

In Alg. 1, we first advance ai to keep A[ai] ≥ B[bi] or

until ai points to the last element because we want to check

if B[bi] is in A. So, we can safely skip all A[ai] adjacency

vertices whose ID value is smaller than B[bi] as they do not

require comparing with the current elements from bi to the

end in B. When we find an element B[bi] which is not in A
(meaning that B[bi] is larger or less than any elements in A
or is sitting between two neighbour elements such as A[ai−1]
and A[ai] of the ordered array A), a new edge (u,B[bi]) will

be inserted into the dynamic graph G.

At runtime, for a given edge (u, v), our scheduler can par-

tition one complete anti-section operation into several parallel

sub anti-section operations by dividing adj(v) into subsets.

In this way, we can achieve two effects: (1) more fine-grain

parallelism operations and (2) better load-balancing of the

kernel anti-section operation.

1On modern GPU architectures placing elements at the end of an array has
good performance due to the low overhead of atomic instructions
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Algorithm 1: Anti-Section Algorithm

1 AntiSection((u, v), A,B)
/* (u, v) is the given edge. A = adj(u) and

B = adj(v) or B is a subset of adj(v) */
2 ai ← 0; bi ← 0; count ← 0; NewEdgeSet = φ
3 while (bi < |B|) do
4 while (A[ai] < B[bi] and ai < |A| − 1)) do
5 ai ← ai + 1;
6 end
7 if (A[ai] == B[bi]) then
8 bi ← bi + 1;
9 continue;

10 if (B[bi] �= u) then
11 NewEdgeSet.add((u,B[bi]))
12 bi ← bi + 1;
13 count ← count+ 1;
14 end
15 end
16 end
17 return NewEdgeSet

Our anti-section operation and the intersection operation

in triangle counting share some traits: 1) both use a sorted

adjacency list, 2) both can execute on different edges in

parallel, and 3) both have the same time complexity. The big

difference between these two operations is the values that they

search. An intersection looks for common values; whereas,

the anti-section operation looks for values in v’s adjacency

list that are non-existent in u’s adjacency list. The new edges

generated from different anti-section operations can be merged

together and added into a batch operation. One of the key

benefits of our anti-section operator being so close to the

sorted-list intersection operator is that it is used in many graph

triangle counting algorithms. The last decade has a plethora of

optimizations for triangle counting (Sec. VI-B) such as vertices

partition, merge-path, binary-search and hash method.

B. Bulk based New Edge Set Creation and Insertion

We describe two approaches for managing and storing

the newly found edges in our anti-section transitive closure

operation. These two approaches trade off storage complexity

and time complexity. We name these two methods as the “dual-

round” approach and the “hash-based” approach.

Dual-Round: The dual-round method requires two iter-

ations of the anti-section operation. The first iteration counts

the number of newly detected edges without storing them for

allocating the exact array size for storing all the new edges

– this is the batch array. In the second iteration of the anti-

section, we place the newly found edges into the batch array.

Alg. 1 does not change a lot between the two rounds.

Different anti-section operations operating on different ad-

jacency lists can find the same edge, resulting in a duplicate

edge in the batch array. When the number of duplicated edges

is low, the storage complexity of this approach is also low. The

storage requirements increase with the number of duplicates.

From a theoretical perspective, this does not increase the time

complexity of the algorithm. In practice, the runtime does

increase. The simplicity of this approach enables us to give a

tight complexity bound (Sec. IV-B).

Algorithm 2: Hash Search based Anti-Section Algo-

rithm
1 AntiSection((u, v), A,B)
/* (u, v) is the given edge. A = adj(u) and

B = adj(v) or B is a subset of adj(v) */
2 ai ← 0; bi ← 0; count ← 0
3 while (bi < |B|) do
4 while (A[ai] < B[bi] and ai < |A| − 1) do
5 ai ← ai + 1;
6 end
7 if (A[ai] = B[bi]) then
8 bi ← bi + 1; continue;
9 end

10 if (B[bi] �= u) then
11 insertSuccess = hashTable.insert({u,B[bi]})
12 if (insertSuccess == true) then
13 NewEdgeSet.add((u,B[bi]))
14 end
15 bi ← bi + 1;
16 count ← count+ 1;
17 end
18 end
19 return NewEdgeSet;

Lastly, the duplicate edges require a filtering phase to clean

the data to avoid inserting duplicates 2. For brevity, we do not

cover this topic in considerable detail as it can span numerous

papers. Instead, we refer the reader to Sec. VI-C.
Hash: In practice, we found that for many networks,

the number of duplicate edges found was extremely high and

created a strain on the amount of memory needed to store the

new edges. To avoid the problem of edge duplication, we use a

simple hash-table like data structure. Our hash table is a simple

array of length H where each entry stores only “0” and “1”

values to state if an entry is in use or not. Given a newly found

edge e = (u, v), we hash the edge with h(e) and check the

value at table[h(e)]. If table[h(e)] == 0, then this is an edge

that should be added to the batch. If table[h(e)] == 1 then

one of two things has happened: either the edge e has already

been added into the table or a different edge, ê, was added

into the table (false-positive). Either way, we will not attempt

to find an empty entry in the hash-table and will not insert the

edge to the batch. Specifically, if table[h(e)] == 1 and the

edge that caused this value to be set to 1 was the edge e then

all is fine. However, if table[h(e)] == 1 was triggered by edge

ê, then it means that the edge e will not get inserted in this

iteration. However, the way that this algorithm operates, this

edge is found in the following iteration. Specifically, transitive

closure algorithms do not stop until there is an iteration with

zero new edges found. Since this edge needs to be added

and that the current iteration has at least one found edge, we

can be certain that a follow-up iteration will find the edge

as part of the continued progress. The hash table is cleared

in each iteration of transitive closure. Pseudo-code for the

hash-table insertion is available in Alg. 2. Thus, it should be
clear that the hash-based anti-section operation not only

2The data structure, Hornet [16], that we use for implementing our new
algorithm supports this type of filtering. We bring this point up as it creates
many algorithmic challenges and increases the computational requirements if
not dealt with properly.
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finds the necessary edges but it is also responsible for the
deduplication process.

Trade-off of Dual-Round and Hash: The hash-based ap-

proach has the added benefit that it avoids generating duplicate

edges. However, it comes at the cost of its increased theoritical

storage complexity of O(H), where H is the memory size

for storing the hash table. In practice, this additional memory

is relatively small compared to the amount needed for the

duplicated edges. Finding a good size for H compromises the

amount of storage size and the number of iterations. Allocating

a small hash-table will result in the table filling up quickly and

needing more iterations. Thus, we cannot give the same tight

bound on the number of iterations required by the algorithm

for completion. However, the hash-based approach reduces the

amount of anti-section operations compared to the dual-round

method. Further, the hash-based approach does not require

filtering as no duplicate edges exist in the batch. In practice,

the hash-based approach outperforms the dual-round approach.

Each anti-section operates on a different directed edge. We

can use the result of the anti-section to generate a set of

edges, possibly the null group, which needs to be inserted

into the graph. Our algorithm will run |Ei
TC | anti-sections in

each iteration where Ei
TC is the set of edges in the graph

by iteration i. As the insertion works in a bulk synchronous

manner, newly detected edges are not inserted until all anti-

section operations have been completed. Instead, edges get

inserted into the graph in a bulk fashion3. For dual-approach,

duplicate edges are filtered out in a post-processing phase to

avoid inserting the same edge numerous times.

An asynchronous anti-section algorithm might be feasible;

however, such an algorithm will face many performance prob-

lems. As the anti-section operation requires sorted adjacency

lists, an asynchronous algorithm must ensure that the inserted

edge is placed correctly in its new adjacency array. Otherwise,

other anti-sections could be impacted by possibly iterating over

a non-sorted array. The problem is exacerbated by the increase

in the number of threads found in modern systems. For this

reason, we chose the bulk synchronous approach.

C. Dynamic Graph Based Segmented Sorting

The Hornet data-structure [16] is a framework designed to

solve both static and dynamic graph problems. Hornet is also

an excellent fit for problems where the graph evolves as part of

the algorithm — precisely as required by our new formulation.

Rather than building a new transitive closure graph in each

iteration, we continuously add edges into the graph until the

operation is complete. Hornet supports both a static graph

back-end, similar to CSR, and a dynamic graph back-end. As

our algorithm requires edge insertions, we use the dynamic

graph back-end. Since the different transitive closure iterations

need the graph to be sorted, this is a requirement expected of

Hornet. Hornet uses an efficient segmented-sorting algorithm

based on logarithmic radix binning [20] after each bulk edge

3Bulk edge insertion is a key feature of several existing dynamic graph
data structures, including Hornet [16], cuSTINGER [17], STINGER [18], and
AIMS [19]

Algorithm 3: Dynamic Graph Iteration based Transi-

tive Closure Generation
1 while (true) do
2 globalBatch ← φ
3 forall (u, v) ∈ ETC do
4 batchUV ← {e|e ∈

AntiSection((u, v), adj(u), adj(v))}
5 if (batchUV �= φ) then
6 globalBatch.append(batchUV )
7 end
8 end
9 if globalBatch == φ then

10 break;
11 end
12 Graph.insert(globalBatch)
13 Graph.Sort()
14 end

insertion to ensure that the graph is sorted for the next iteration

of the algorithm.

In a segmented sort, each adjacency list is sorted separately.

Segmented sorting tends to be computationally more efficient

than sorting the entire graph. Furthermore, the way that the

data is stored both in a CSR representation and in Hornet

requires transforming the data to edge-pairs prior to its sorting

- this increases the memory footprint and requires extra time.

Our algorithm uses the segmented-sort algorithm presented by

Fox et al. [20].

While sorting can be fairly costly for some applications,

its cost is not considerable compared to the anti-section

operations. Sorting an adjacency array of size d has a time

complexity of d · log(d) or O(d) depending on the sorting

algorithm used (merge-sort and radix-sort, respectively). In

contrasts, the time complexity of the anti-section operation

for the same vertex will require roughly O(d2) operations

(see subsection IV-B). As such, the sort’s overhead is not high

compared to the anti-section itself and is not a performance

bottleneck.

Simplistic pseudo-code for all the phases of ATC is available

in Alg.3, which consists of the following: scalable anti-

section new edges search (with edge batch creation), bulk edge

insertion, and dynamic graph segmented sorting. The pseudo-

code does not include the parallel code needed for managing

the edge insertion. We discuss the complexities of the insertion

in the subsequent subsections. Still, we note that storing the

newly found edges of a given anti-section, denoted as batchUV
in the pseudo-code, is a crucial feature of this algorithm.

IV. COMPLEXITY ANALYSIS

In this section, we discuss the iteration bounds, time and

space complexities of the new method.

A. Bound of Iteration Times

We prove that our iteration based formulation of ATC

converges quickly as it requires at most �log2 |V |� times of

iteration to completely build the transitive closure GTC .

Lemma IV.1 (Diameter Shrinkage). The diameter of the graph
shrinks by half in each iteration of ATC. ∀u, v ∈ V , if a path
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between u and v exists, then let l be the length of the shortest
path connecting them. If l > 1, then after the anti-section the
shortest path will be denoted with l̂ and l̂ ≤ � l

2�.

Proof. Let (u = p0, p1, ..., pl = v) be the shortest path

between u and v. Based on the definition of anti-section

transitive closure, after one anti-section operation across all

the edges in the graph, the following edges will be identified

as edges that need to be inserted into the transitive closure

graph: (p0, p2), (p1, p3), (p2, p4)..., (pl−2, pl). If l is an odd

number, the following new shortest path between u and v
exists in the graph (p0, p2, p4, ..., pl−1, pl) and its length is
l+1
2 = � l

2�. If l is an even, the new shortest path between u
and v is (p0, p2, p4, ..., pl−2, pl) and its length is l

2 = � l
2�.

Thus, these shortest paths exists and their lengths meet the

requirement of l̂.

Lemma IV.2 (ATC Ending Condition). When the graph’s
diameter has shrunk to 1, then the transitive closure has been
successfully built.

Proof. Assume by contradiction that there exists a shortest

path path = (p0, p1, ..., pl) that has a length, l > 1 and that

the transitive algorithm has completed. The anti-section of p0
with p1 will find p2 which will result in a new edge being

added, in contradiction with the assumption. Therefore, the

algorithm will not complete until the diameter is of length

1.

Theorem IV.3 (Maximum Iteration Steps). The maximal
number of iterations of ATC will be no more than �log2 |V |�
Proof. ∀u, v ∈ V , if there exists one path between u and v,

then the longest shorted path between u and v in any graph

G should not be larger than |V | − 1. Based on Lemma IV.1,

it will take at most �log2 |V |� iteration to shrink the diameter

of G to 1. Based on Lemma IV.2, the diameter of G becomes

1 means that the transitive closure has been successfully built,

and the algorithm will end. So, at most �log2 |V |� iteration

will be needed for ATC.

B. Time Complexity Analysis

For the time complexity analysis, we use the basic anti-

section algorithm as described in the pseudo-code of Alg.1.

Given the edge e = (u, v), an anti-section operation requires

O(du + dv) operations, where dx is the degree of vertex x.

Given a vertex, u, that vertex will also partake in du anti-

section operations - one for each of its adjacencies. As a

results, the time complexity for a vertex is O(d2u). We use

dmax to denote the vertex with the largest degree. Since

there are V vertices, we can write the time complexity as

O(|V | · d2max) as dmax ≥ du for all vertices. While this does
not give a tight complexity for the algorithm, this complexity

is identical to that of triangle counting. Many triangle counting

algorithms use the above time complexity as no tighter bound

is known.

The O(|V | · d2max) time complexity is correct for each

iteration of our algorithms. The size of dmax can increase

with the iteration as additional edges are added into the graph.

We can rewrite the time complexity per-vertex as O((diu)
2)

where i is the iteration and the time complexity iteration as

O(|V | · (dimax)
2) The time complexity of transitive closure

for dense matrices can be bound by O(|V |3 · log(|V |). To

the best of our knowledge, no tighter bound can be given

to SpGEMM as it is a data-dependent problem. Thus, the

GraphBLAS solutions do not have a tighter bound than our

new algorithm. Fortunately, both algorithms have an equal

number of iterations.

For the dual-round approach, we can bound the time com-

plexity of the entire algorithm to be:

O(

log2(|V |)∑

i=0

|V | · (dimax)
2)

C. Memory Complexity Analysis

The storage complexity for transitive closure is non-trivial

and data-dependent; however, we can show that our solution

has a smaller memory footprint than the linear algebra-based

approach. For the linear algebra solution, three graphs are nec-

essary for the matrix multiplication and the memory should be

O(3×|V |2) = O(|V |2). In contrast, our solution uses a single

graph, and all operations are done in-place on that one graph

and the memory should be O(|V |) +O(|ETC |) = O(|ETC |)
since |V | ≤ c×|ETC |, where c is a constant. For sparse graph,

O(|ETC |) << O(|V |2). Therefore, our memory footprint is

much smaller than linear algebra-based solutions.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

System and Configuration: Our implementation of Anti-

section Transitive Closure is in CUDA and targets NVIDIA

GPUs. The GPU used in our experiments is the NVIDIA

Titan V from the Volta micro-architecture. The Titan V has

80 SMs (streaming multi-processors) and 64 SPs (streaming

processors) per SM, for a total of 5120 SPs, commonly

referred to as CUDA threads. The Titan V has a total of 12GB

of HBM2 memory and 6MB of shared cache between the

SMs. Newer GPUs such as the NVIDIA A100 have almost

7× the amount of memory with 80GB, enabling running on

significantly large graph instances. All CPU experiments are

executed on a dual Intel Xeon E5-2650 v4 Processor running

2.2GHz with 30MB LLC. The CPU has a total of 512GB of

memory. This system has 24 cores with 48 threads.

Input Networks: Our tests use a mix of real-world and

synthetic data taken from SuiteSparse collection [21]. Table I

summarizes the properties of these graphs, including the num-

ber of edges in the output graph. We specifically use directed

graphs and report the number of directed edges. We avoid

using undirected networks as typically the largest connected

component can account for 90%− 95% of the vertices [21]–

[24]. Such components would result in a clique, making it less

interesting while also requiring substantial memory. Lastly,

note that the ratio of the edges in the input graph and the

transitive closure graph can range between almost 60× for
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delaunay n17 and over 1, 000X for cit-HepPh. For this reason,

we are unable to test our algorithm for inputs with millions of

edges as the transitive closure graph would have an extremely

large memory footprint.

TABLE I
NETWORKS USED IN OUR EXPERIMENTS. |Ê| REFERS TO THE NUMBER OF

EDGES IN THE TRANSITIVE CLOSURE OF THE GRAPH. DENSITY VALUES

GO BETWEEN 0 (EMPTY) AND 1 (FULL).

Graph Name |V | |E| |Ê| Density |Ê|
p2p-Gnutella09 8,114 26,013 21,400,336 0.3255

delaunay n13 8,192 24,547 1,656,270 0.0250

as-22july06 22,963 48,436 1,477,572 0.0029

delaunay n15 32,768 98,274 4,703,128 0.0044

delaunay n17 131,072 393,176 23,499,929 0.0014

cit-HepPh 34,546 421,578 485,646,072 0.4069

Additional Frameworks: We compare the performance of

our new algorithm with several implementations: NetworkX,

SEI-GBTL [25], SuiteSparse [26], and cuSparse [27]. We

chose these implementations as they are either open-source

or readily available for us. SuiteSparse and cuSparse are also

known for having good sparse implementations.

NetworkX is a widely used graph framework amongst

data scientists. The NetworkX implementation uses the DFS

(depth-first search) formulation. A DFS traversal is initiated

from each root, and the time complexity is O(|V |3). This

approach is inherently sequential.

We also compare against three transitive closure implemen-

tations that use sparse matrix-matrix multiplication formula-

tion. The first of these uses the GraphBLAS implementation

of SEI, which we refer to as SEI-GBTL. SEI-GBTL uses

sparse adjacency matrices as the basic matrix data structure,

and it is sequential. The second is based on SuiteSparse

and runs in parallel. The third is based on cuSparse and it

is a parallel implementation for the GPU. Altogether, these

implementations cover different solutions as well as target

different architectures. These frameworks do not include a

transitive closure. However, using the well-known BLAS for-

mulation, we implement sparse versions using sparse matrix

multiplications.

Implementation Details: The implementation of our new

Anti-section Transitive Closure algorithm is in C++ and

CUDA. Specifically, all parallel code on the GPU is in CUDA.

We use the Hornet framework (described below) for our

dynamic graph data structure. Hornet is part of NVIDIA’s

RAPIDS initiative and is part of cuGraph (referred to as

cuHornet in the RAPIDS framework). We include two varia-

tions of ATC: dual-round and hash-based.

B. Performance Analysis of ATC

1) Breakdown Analysis: Fig. 1 depicts a detailed break-

down of the execution time for both the dual-round and

hash-based algorithms. The top row represents the execution

breakdown in percentage, and the bottom row depicts the

execution time as a function of the iteration. We report the

execution times for each algorithm for the three key phases:

anti-section, bulk insertions, and graph sorting. The execution

breakdown takes into account the total time of an algorithm

for the entire iteration. For example, the sorting time is

nearly identical for dual-round and hash in a given iteration.

However, the relative cost of sorting is higher for the hash-

based ATC. The difference is primarily due to the disparity

of the anti-section operation between dual-round and hash.

Dual-round executes the anti-section twice and requires an

additional processing phase for duplicate filtering. That is why

we typically see a 4× ∼ 6× difference in the anti-section

execution time and a 3× ∼ 5× speedup of the hash-based

approach over the dual-round approach.

Another observation is that the absolute time spent on graph

sorting increases with the density. At the same time, we see

that time spent on the anti-section increases at a higher pace;

thus, the relative cost of sorting decreases.

2) Impact of Hash-Table Size: Fig. 2 depicts the impact

of the hash-table size on the number of iterations and the

execution time of the hash-based transitive closure. With a

small hash-table, the algorithm runs additional iterations. In

contrast, a large hash-table increases the memory footprint,

and the cost of clearing the hash-table at every iteration also

increases. Fortunately, clearing the hash-table is not extremely

expensive and requires a simple scan across all the hash table

entries. The scan uses a bandwidth-friendly memory access

pattern. Thus, the reset operation is relatively inexpensive

in comparison to the anti-section. The increased memory

footprint is more challenging to amortize, so we offer the

following rule of thumb: set the hash-table to 10% of the

system memory. In the worst case, if the output of the transitive

closure is enormous, within ten iterations, the entire system

memory will get filled. If the output is not very large, then

the hash table will not get used in its entirety. However, fewer

iterations of the anti-section will be required.

C. Comparison with Other Frameworks

1) Performance Comparison: We start by comparing our

new ATC algorithms with the other implementations. Fig.

3 depicts the execution time (left sub-plot) of these imple-

mentations, the speedup of ATC dual-round (middle plot),

and ATC hash-based (right plot) in comparison to the other

algorithms. For execution times, lower is better. For speedups,

a value over 1 implies that the algorithm is outperforming the

baseline. There were several graphs that we could not collect

the execution time as they did not finish due to out-of-memory,

segmentation-fault, or timed out. These are denoted with a

missing bar.

We found the sequential execution of SuiteSparse was on

many occasions 10× faster than SEI-GBTL. Further, SuiteS-

parse’s ability to use multiple threads also improves its per-

formance between 12× ∼ 18× in comparison to its sequential

execution. Altogether, SuiteSparse can be 120× ∼ 180× faster

than SEI-GBTL.

The hash-based ATC algorithm is usually over 1000× and

400× faster than NetworkX and GraphBLAS SEI-GBTL,

197



(a) as-22July20 (b) delaunay-n13 (c) delaunay-n15

(d) as-22July20 (e) delaunay-n13 (f) delaunay-n15

Fig. 1. The top row depicts the execution breakdown (anti-section, bulk insertions, and graph sorting) in percentage. The execution breakdown is relative to
the execution time of a given algorithm. The bottom row depicts the execution time for the same three networks as a function of the iteration.

(a) Iterations as function of hash table size

(b) Execution time (ms) as a function of hash
table size

Fig. 2. The hash table size impacts the number of iterations (top) and the
execution (bottom). Selecting the ideal hash-table size is important.

respectively. The hash-based ATC typically outperformed cuS-

parse and SuiteSparse, except for one instance for each of these

frameworks.

SEI-GBTL, SuiteSparse, and cuSparse implementations all

use matrix-matrix multiplication. Therefore, it is not surprising

the GPU’s cuSparse can be up to 50× faster than the se-

quential SEI-GBTL. SuiteSparse’s sequential implementation

is roughly 10× faster than SEI-GBTL. With its parallel

implementation, SuiteSparse is up to 180× than SEI-GBTL.

Yet, our new algorithm in most cases is about 2.5× ∼ 3×
faster that SuiteSparse. The performance gain is due to both

the GPU’s compute resources and the different optimization

methods of ATC.

2) Number of Iterations and Per Iteration Analysis: We

compare the number of iterations necessary for finding the

transitive closure of a graph, Fig. 4. We do not include results

for NetworkX as it uses a different (DFS) formulation. All the

algorithms require nearly the same number of iterations, with

a slight variance. The number of iterations follow our analysis

result in the subsection IV-A. The dual-round algorithm always

requires fewer iterations than the hash-based approach, which

matches the theoretical result in subsection III-B. Note, the

increase in the number of iterations is not substantial. In most

cases, the increase in iterations pays off as the dual-round

algorithm requires additional anti-sections operations.

Lastly, we analyze the execution time as a function of the

bulk batch of inserted edges for both our ATC algorithms and

cuSparse, Fig. 5. For most iterations, the hash-based approach

is over 10× faster than cuSparse, and, in some cases, it is over

100× faster. For the p2p-Gnutella09 network, there are several

iterations where our ATC algorithm is slower. As the graph

becomes denser, the cost of the anti-section operation also

grows. There seems to be room for improvement for our anti-

section algorithm for denser graphs, which we will explore in

future work.

VI. RELATED WORK

A. Transitive Closure

Many of the early transitive closure algorithms were de-

signed to operate on dense networks. In particular, the linear

algebra approach uses dense matrix multiplication, including

the seminal algorithm by Warshall [28]. Warshall’s algorithm

is also applicable, with some modifications to sparse networks.

The research on this topic over the years has been extensive.

Warren [29] optimized Warshall’s method by processing the

matrix elements in a row-wise manner when the matrix is
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(a) Execution Time (b) Dual-Round Speedup (c) Hash-Based Speedup

Fig. 3. (Left) - execution time of the various implementations (log-scale). Lower is better. (Middle) and (Right) - speedups of our two anti-section algorithms.
Higher is better.

Fig. 4. The number of iterations needed for finding the transitive closure for
various inputs.

stored in a row-wise fashion. Pieterse et al. [30] shows how

different algorithm techniques, such as monitoring for changes,

loop fusion, loop tiling, and short-circuiting, can affect tran-

sitive closure performance. Hardware-oriented efforts were

another research direction. Kung et al. [31] developed systolic

arrays to find the transitive closure in hardware and Velasquez

et al. [32] implemented Boolean matrix-based transitive clo-

sure algorithm within 3D Crosspoint Memory.

Nuutila [33] developed an optimized dense graph

components-based transitive closure algorithm identifying the

relationship between strongly connected components of a

graph and then generating the transitive closure by utilizing

additional information on the graph layout. Some algorithms

rely on a predefined processing order rather than depending on

early termination, for example, Tarjan’s [34] DFS algorithm.

Yet, DFS algorithms have proven to be quite challenging to

parallelize in the general case. Naumov et al. [35] show that

DFS can be parallelized with moderate success in the case of

a DAG on NVIDIA GPUs; however, the same algorithm is not

practical for generic graphs that might include cycles.

The semi-naive algorithm by Bancilhon [36] is an iterative

transitive closure algorithm that avoids regenerating existing

relations or edges. Our hash bashed method is inspired by

this approach. Wang et al. [37] use a hash function in

their multiprocessor transitive closure algorithm for mapping

newly generated tuples to different processors. Gilray et al.
[38] implemented parallel transitive closure at process level

parallelism using MPI. In contrast, our algorithms scale using

intra-process parallelism with a large number of lightweight

threads.

B. Triangle Counting

Recall, in Sec. III we showed the relationship between our

anti-section operation and the intersection operation. However,

our ATC algorithm differs from a typical triangle counting

algorithm. In recent years, we have witnessed a surge of new

triangle counting algorithms due to the HPEC GraphChal-

lenge [39]. We also observed exciting efforts such as ma-

trix multiplication-based triangle counting [40], new load-

balancing mechanisms [41], [42], and subgraph matching-

based triangle counting [43]. We refer the readers to [39] for

an extended discussion.

Merge-path based triangle counting. Odeh et al. [44] in-

troduced the Merge-Path concept for parallel merging and

sorting. Merge-Path proposes an efficient way to partition

the two sorted lists into balanced and disjoint subranges to

increase parallelism. Green et al. [45] then extended Merge

to the GPU. Intersect-Path extends the Merge-Path concept

to set intersections operations and triangle counting [46]. In

our work, we extend the Merge-Path concept to do the ATC
operation.

C. Data Structure for Dynamic Graphs

Compressed-Sparse Row (CSR) is one of the most widely

used representations for sparse data. CSR is applicable in

multiple application domains, sparse graph analysis included.

One of the most significant limitations of CSR is that it is

immutable and cannot be updated. Extending a sparse data

format to support dynamic operations, such as edge insertions

and deletions, is non-trivial.

In recent years, several data structures and frameworks have

been designed to deal with updating the graphs. The original

thought was that the graph gets updated by an external source

due to some event occurrence. Yet, several recent dynamic

graph algorithms show instances where the graph changes due

to an internal event. For example, the graph is updated in our

ATC algorithm due to new edges getting detected in the anti-

section operation. Two other examples include finding a k-

truss [47] and k-core decomposition [48] where the graph is

updated as part of the algorithm.

The STINGER data structure [18] was first introduced as a

dynamic graph structure that can support both temporal and

spatial graphs with meta-data (such as vertex and edge types).

GraphIn [49] is an incremental only data structure and uses
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Fig. 5. Execution time of each phase as a function of the number of new edges found.

both CSR and Coordinate list (COO) formats. Dynamic CSR

[50] stores an entire CSR graph for each graph update. This

data structure’s storage complexity is quite high and requires

special traversal primitives for operations that span multiple

CSR data structures.

AIMS [51] and FAIMS [52] are two recent dynamic graph

data structure focused on improving edge insertion and dele-

tion operations. Both of these data structures use a linked-list

of blocks to support dynamic graph operations. The adjacency

is split across multiple nodes of a linked-list, making the

anti-section (or intersection) operation hard to implement.

Furthermore, AIMS has low memory utilization as it allocates

all memory on the GPU. Awad et al. [53] use a hash table to

implement a dynamic graph data structure for the GPU.

cuSTINGER [17] was the first dynamic graph data structure

for the GPU. Hornet [16] followed up on cuSTINGER but

made significant changes to its data structure to enable tighter

memory bounds, better data management, and improved mem-

ory reclamation. The Hornet data structure is a dynamic CSR

variant.

VII. CONCLUSION

In this paper, we introduced a novel approach for comput-

ing the transitive closure using a dynamic graph. Our ATC
algorithm is simple, scalable, and high-performing. ATC has

several unique features. First, ATC shows a simple approach

for finding new edges using an anti-section operation, similar

to an intersection operation, with high efficiency. The simi-

larity between anti-sections and intersections means that our

new algorithm can easily benefit from the significant effort in

improving graph triangle counting in the last decade. Second,

we show that by using a dynamic sparse graph data structure

we can reduce the memory footprint, reduce data movement

between intermediate matrices, and avoid creating the interme-

diate matrices. Using Hornet, a scalable and high performing

dynamic graph data structure, we showed that edge insertions

are efficient and straightforward. Furthermore, the use of bulk

edge insertions is another new feature our algorithm shows

over past approaches. Third, every computational phase in our

algorithm is parallelizable. Because of this, we successfully

utilize NVIDIA GPUs and outperform existing CPU and GPU

implementations of transitive closures.

Our algorithm’s new features are why we can outperform a

highly tuned and parallel GraphBLAS implementation (Spars-

eSuite) by 2×−3× with 24-cores (48-threads) while using a

single NVIDIA Titan V GPU. Our new algorithm was several

orders of magnitude faster than a sequential GraphBLAS (SEI-

GBTL) and the popular NetworkX framework. Lastly, our

GPU based implementation of ATC is faster than the linear

algebra-based solution on the same GPU. This highlights that

our contribution is exploiting more parallelism through the use

of dynamic bulk edge creation and co-designing the algorithm

with the use of a dynamic graph data structure.
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