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Abstract— Soft robots can operate effectively inside confined
spaces because their soft bodies can adapt to accommodate
the geometry around them. When they interact with the
environment, the presence of contact forces can dramatically
change the dynamics of the robots. If a soft robot is in contact
and the contact force is not known, the control action is
still targeted for a free robot. Hence the robot may perform
improper actions. Because a soft robot is deformable, it is quite
challenging to determine the contact forces and the system states
from sensor measurements. This paper proposes an observer
design to estimate the states of a fabric-reinforced inflatable
soft robot as well as the external contact forces. The soft
robot is represented by the disc-thread model which results
in a set of ordinary differential equations (ODEs). A linear
parameter-varying (LPV) system including some subsystems
is formed to represent the nonlinear robot. The observer is
based on the sliding mode approach and includes a set of
sub-observers corresponding to the subsystems in the LPV
system. The observer is validated through simulations and an
experiment. The simulation results show that the observer can
estimate the angular positions and their rate of changes as
well as assumed contact forces with no error in steady states.
The experiment results display good tracking of the robot’s
configurations compared to the ground truth data from the
motion tracking system.

I. INTRODUCTION

Soft robots can adaptively interact with their environ-
ment thanks to their deformable bodies. Soft bodies make
them suitable for new applications where rigid robots are
inapplicable. However, it is more challenging to model soft
robots as well as to design controllers or observers for
them [1], [2]. Due to the nonlinearity and complexity of
the soft robot models, applying well-developed traditional
control algorithms to inflatable soft robotics is difficult. There
have been some new-developed control schemes for soft
robots but they have to partially rely on estimates of the
robot configuration [3], [4]. Designed predominantly to have
contact with the surrounding environment, soft robots can
be better controlled with higher precision if the contact
forces are well known. Despite recent advances in soft sensor
technologies, complete and simultaneous sensing of soft
robot states and contact forces remains a big challenge due
to the deformable nature of soft robots [4].
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In this paper, we introduce an observer design to esti-
mate both soft robot states and contact forces. The state
estimations use position data from markers placed at several
locations on the robot body. The estimated contact forces
are able to track the assumed contact forces in a simulated
scenario. There have been several works about observers
for soft robots. Della Santina et al. designed an observer
that combines with machine learning to detect contact on
the soft robot body [4]. Zhang et al. used finite elements
to estimate the configuration matrices [S5]. Gillespie et al.
used a Kalman filter to integrate accelerations and angular
velocities for robot postures [6]. Ataka et al. used multi-
stage Extended Kalman Filter to estimate soft robot poses
[7]. Rone and Ben-Tzvi estimated the robot states using the
displacement of passive cables [8]. Srivatsan et al. used Lie
algebra to estimate the shape of a medical snake robot [9].
However, none of these studies perform both state estimation
and contact force estimation using a model-based algorithm.
In our study, we propose an observer that provides the means
to design full-state feedback controllers in free space and
under contact. The observer is based on the sliding mode
approach applied to a recently developed disc-thread model
of a fabric-reinforced inflatable soft robot. In this modeling
approach, the soft robot is discretized into /N discs connected
by N — 1 threads to represent joins and links, and the
equations of motion are formed using Langrangian method.
Since the modeling process produces ODEs in the manner
of a traditional robot, the observer is model-based and has a
closed form for the same class of robot models.

Our specific contributions include the following:

o Developing an LPV system based on disc-thread model

to represent the fabric-reinforced inflatable soft robot,

o Designing an observer to estimate the soft robot states
and generalized contact forces,

« Setting up a foundation for future model-based closed-
loop control of the fabric-reinforced inflatable soft
robots.

This article is structured as follows. In Section II, we review
the disc-thread model approach and the formulation of the
equations of motion. The LPV system and observer design
are addressed in Section III. Section IV shows the simulation
and experimental results of the observer. The conclusion is
presented in Section V.

II. THE D1SC-THREAD MODEL
A. Soft Robot Configuration And Frame Assignment

Our soft robot is an inflatable elastomeric chamber made
of Smooth-On Dragon Skin 30 silicone that has a thin band
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(a) The soft robot with the embedded
fabric in the front side and the set of
position markers

(b) Disc-thread model

Fig. 1. Examples of configurations of the disc-thread model representing
the shape of a soft robot

of fabric embedded longitudinally to reinforce one side. The
undeformed shape of the robot body and the fabric band is
a circular arc. When inflated pneumatically, the unreinforced
side can undergo large strains while the fabric side maintains
a constant length. This causes the chamber to bend. Because
of the fabric’s placement on the robot (see Fig.la), its tip
traces a 3D rather than just a 2D curve.

In order to construct a model that fits naturally with
the fabric-reinforced soft robot embodiment, we review the
disc-thread model. It was first introduced in [10]. In this
approach, we discretize the chamber longitudinally into a
sequence of NN discs, each connected to its neighbors on
either side by a single inextensible thread (representing the
fabric reinforcement). Each disc is considered to be a rigid
body and is constrained only by the thread. The frame
assignments and their implications are illustrated in Fig. 1b.

Each pose of the soft robot is configured by the relative po-
sition and orientation between two adjacent discs. Consider
a robot with N discs; there will be N — 1 threads connecting
them. As each thread imposes a holonomic constraint, if
one end of the robot is fixed, the number of degrees of
freedom for the robot is 5(N — 1). In other words, the
coordinate of each disc is parameterized by 5 generalized
coordinates. Each disc will be given the subscript i, with
1 = 1 corresponding to the root disc. The z axis for frame
1 will be directed along the normal to the disc, the y axis
pointing toward the centroid of the disc and the = axis will
be tangent to the circular profile of the disc. Proceeding
to the next disc, there will be a corresponding frame with
subscripts ¢ + 1. The generalized coordinates will be defined
with regard to three intermediate frames between frame ¢ and
i+ 1, each successive one denoted with an additional prime.
The thread 4 is parameterized by two angles «;, 8; € [0; 7).
Specifically, the other end of the thread ¢ at the disc ¢ 4 1
can move abound an unique axis n which is in (z;, y;) plane.
«; is the angle between this n axis and z; axis and (; is
the angle between the thread ¢ and z; axis. Performing the
rotation (ay;,0B;) on (x;,y;, z;) frame will result in the frame
(x},y;, z}). The subsequent frames will involve a translation
along the inextensible thread (of a fixed distance ¢;), together
with three other rotations ~;,; and ¢;, where the twisting

of the robot is accounted by ~y;. By performing each of the
sequence of rotations to the frame of disc ¢, it will be aligned
with the frame of disc ¢ 4+ 1. Therefore, the homogeneous
transformation matrix from frame ¢ to frame ¢ + 1 is:

v T =T (o, Bi)T(v:)T(4:)T(¢3), (D

The transformation consisting of 5 variable rotations and
a fixed translation accounted for in T'(y;). So by relying on
these fictitious discs and threads as well as angles from a; to
¢5(n—1), this approach models the soft robot in the manner
of a rigid one, but with a higher number of variables.

B. Equation of Motion

With the kinematics of the soft robot fully defined by the
disc-thread model, we can then form the Lagrangian and
take its derivatives to find the equations of motion using the
Euler-Lagrange formulation. The elasticity of the air can be
modeled by treating the air as an ideal gas, which exerts
a normal force on the N disc in the zy direction. The
elasticity of the walls can be modeled by connecting springs
from some origin on disk ¢ to insertion on disk ¢ 4 1. Since
this is a purely rotational system with no prismatic joints, the
equations for relating terms such as kinetic energy, potential
energy can be formulated primarily based on the relative
angular velocity between two adjacent discs. The equation
of motion has the form:

d (0L oL
hd _ 2L AT = 2
dt (8('1> 8q+ ar=Q )

where q € R®V-1) s the configuration vector contain-
ing oy ---¢n_1 variables, g—ﬁ is the partial derivative of
the Lagrangian with respect to each generalized variable,
Q € R*N-1) s the generalized forces due to the inter-
nal pressure acting on the surface of the last disc, and
Aq € RONV-Dx5(N=1) is the Jacobian of the Pfaffian
constraints arranged so that it can be multiplied by the vector
of Lagrange multipliers A € R®™=1_ In this study, we
examine the soft robot in free and in-contact condition, so
we can replace AZX by F. € RP™=1 which stands for
the affects of a contact force on the robot configuration. By
using the canonical momenta vector p = % = Mq with
M e R3(V-Dx5(N-1) jg the mass matrix, we can rewrite
the above equation of motion in the state space form as:

. _ 0
a) (0 M q
<P>_(0 0 )(p)+ 9L q-F.
dq
3)

Note that our soft robot used to characterize the workspace
properties of this architecture, described in [11]. The disc-
thread model approach and the soft robot equation of motion
were presented in [10] and the details will follow in a
forthcoming publication.
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III. OBSERVER DESIGN FOR THE SOFT ROBOT

Due to the deformable-body of the soft robot, the nu-
merical values of q, p and F. in (3) can not be obtained
directly from measuring equipment. In this section, we build
an observer to estimate those components using data from a
set of position markers and an assumed contact.

The inflatable soft robot described in section II will operate
at different pressures (see Fig. 2). At each pressure (operating
point), the robot has a different pose due to the changing
pressure and the elements of M, 9£/0q and Q in (3) are
also changing in a manner corresponding to the current pose
of the robot. Note that the values of these matrices must be
numerically calculated because they include partial deriva-
tives of expressions of many variables. Therefore, in order
to simulate and analyze the system at a certain operating
point, numerical values of M, 9£/0q and Q are fed into
the equation of motion (3) from separate subroutines. In
that case, we can retrieve an affine linear-time-invariant state
space standing for the soft robot nearby that operating point.
In order to describe the robot throughout its entire range
of motion, we divide the entire system into K subsystems
fixed to a sequence of operating points, by evaluating the
constituent matrices at corresponding pressures and form a
switched LPV system. Note that input pressure is chosen
as the switching condition because it is the main source
that changes the robot configuration. It is also easy to
be measured and we don’t have to know the robot pose
explicitly to choose the correct operating points. The LPV
system consists of a set of linear systems whose state-
space operational modes are driven by an underlying decision
process based on that time-varying pressure. The LPV system
is expressed as:

x(t) = Ay(pyx(t) + By(pyu(t) + Oy(p)
y(t) = Ox(t)
]T

4)

where x = [qp]’ = [x1 x2)7, the output y € R™ is
position measurements from motion capture markers (7 in
our example). The output is related to the states by C =
[CT"*™ 0] € R™*"™ which results from the linearization of
the nonlinear functions mapping the measured data to the
world frame. The switching rule v(P) € S¥ = {1,2,..K}
depends on input pressure P. For each j € SX, the
subsystem matrices A;, B; and ©; take on constant values
and have the forms:

-1
e[ %

0 0
0
Bi = { Q; ] 5)
0
R oL
7| (5e),raim

The number of operating points and their distribution are
carefully selected so that the switched LPV system can ade-
quately represent the whole continuous system. The system
is considered under the following Assumption.

(a) P = 1.5 psi

(b) P =25 psi

(c) P =3 psi (d) P =35 psi

Fig. 2. 4 subsystems represent the whole continuous system

Assumption 1: The generalized contact forces in (5) sat-
isfy the following conditions: F; has a derivative and both
are upper bounded as |F.;|| < L;, ||Fe|l < Lj

In order to estimate the system states and the generalized
contact forces, the following Lemma is re-stated to summa-
rize the result of finite-time stability of the dynamical system
in the study of Levant and Livne [12]

Lemma 1: Consider the following system:

€0 = f/\0|60\"/”+lsign(so) — Moo + €1,

€1 = —MAler — é0|("’1)/"sign(61 — o) —m(e1 — o)
+ €2,

En—1 = 7/\n—1‘5n—1 - én—2|1/251'9'”(571—1 - én—2)

- nn—l(gn—l - én—2) + Ens

. . . . 1

En = _)\nSZgn(En - Enfl) - 77n<5n - Enfl) - ff(t)

0

(6)

where n is the relative degree, ¢y, ...,€, are the state vari-
ables, Ag, ..., A, and 7, ..., n,, are appropriate positive scalar
constants and the perturbation f(¢) satisfies the condition
|f(#)| < Lo with Ly a proper positive constant. Then the
system converges to the origin in finite time.

Given position data from the marker set, we built a group
of observers based on the third order sliding mode approach
[12] which has fast convergence and high robustness. The
number of observers is the same as the number of subsystems
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in (4). The observer for subsystem j is of the form:

I3 —1a 1/3 14 . ~

x1j = M "%o; — ki L)% — x5 sign (k- x15)
= kaj(X1; — x15)

Xoj = —kBjL;/QHM]lﬁzj — x|/ ?sign(M; '%o; — 1)

“1a 2 oL .
- k4j(Mj 1X2j —X1;) + <8) +Q; +F
4/

-

= koo Ly (M "o — %15)
(7

where X1;, Xp; are vectors of estimated states, k1; to ke;
are the observer gains to be designed and ﬁ‘cj is the vector
of estimated generalized contact forces. Note that x;; can be
obtained from the multiplication of the inverse of C'; and y.
Since we have more outputs than the number of states, we
can form a non-singular square C; so that it is invertible.
Theorem 1: For system (4), if the observer set is designed
as in (7) and the observer gains are selected properly, then
the estimated states and contact forces will converge to the
true values in finite time.
Proof: If the estimation error variables are defined as:

)Ailj — X1j
Lj
M (g5 — %)
L,
1A X
_ Mj X2j 7X1j (8)
L;

M (ko5 — M%)

€15 =

€2j =

€3j

the dynamics of the estimation errors are then obtained as:

. 1 : )
€y = f(—kle;/‘jHLa‘elj\|2/3829n(61j) — kaj(Lje1)
J

+ Mjil)A(Qj — Mji1X2)

= —kyjlle || signler;) — kaj(er;) + ea,

. 1 .
€oj = fj(_ijL;/QHLJ’QJ’H1/2329n(62j) — kaj(Ljez;)
+ FCJ' - ch),
= —kajllea; |/ 2 sign(ea;) — kaj(ea;) + €3
) . 1 .
€3j = —k‘5jSZg’I’L(€2j) — kﬁjegj — chj
J

9

If the conditions in the Assumption 1 are satisfied, it
follows from Lemma 1 that system (9) is finite-time stable,
which implies that the estimates converge to true variables
in finite time. The detail of how to choose the observer gains
can be found in [12]. |

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we examine the performance of the pro-
posed observer on a four-disc model using some simulated
conditions and using data gathered from the physical robot
shown in Fig. la. The soft robot is discretized into 4 discs
and 3 threads. The thread lengths are chosen as ¢; = 7 cm,
fo =9 cm and {3 = 7 cm so that the discs will pass through
the marker locations. Note that the robot can be modeled
at higher accuracy with higher number of discs but at the
cost of higher computational load. For the dimension of the
current robot, this 4 disc model can sufficiently describe
its behavior. A higher number of discs results in longer
expressions without much improvement in model accuracy.
To apply the formalism in section III, we choose 4 operating
points at 4 increasing pressures including [1.5, 2.5, 3, 3.5]
psi (see Fig. 2) and evaluate the matrices M, L£/dq and
Q at these four points to create 4 corresponding subsystems
of the form of (3) that represent the entire working range
of the soft robot in the form of a switched LPV system
(4). During the operating time of the robot, when a new
subsystem is switched on due to the changing pressure, the
new corresponding observer (7) is switched on as well.

We carry out the simulations for three example cases: 1) no
acceleration and no contact for the whole continuous system
to estimate the angles ¢;, 2) constant acceleration and no
contact for the whole continuous system to estimate the rate
of change of each ¢;, and 3) no acceleration and with contact
for the third subsystem to estimate the generalized contact
forces. We also conduct an experiment where we inflate the
soft robot and collect the real-world marker data to feed into
the observer to estimate the states and the corresponding
robot poses.

In case study 1) we examine the ability of the observer
to estimate the angular positions when changing the input
pressure from 1.5 psi to 3.5 psi. The robot is simulated
as an LPV system containing 4 subsystems as described at
the beginning of this section. The simulation occurs over
4 seconds and is shown in Fig. 3. From the initial time,
after each second, the system switches to a new subsystem
with different constituent matrices calculated numerically.
Each subsystem is illustrated by a different shading from the
bright to the darker, each corresponding to higher pressure.
There will be, in total, 15 generalized coordinates to track
but due to space consideration, only the estimates of a few
representative variables are shown. We can see that from their
initial values at 0.5 rad, the estimated variables can quickly
converge to the true states, in every subsystem.

In case study 2) we assume that the soft robot is under-
going a motion with a constant angular acceleration at 4
mentioned operating points to check the estimation of the
angular velocities. Since ¢ = M~!p, we can only plot
the p; and p; s in the legends of this figure, instead of
the derivatives of the elements of q. Similar to case 1), the
simulation runs in 4 seconds and is shown in Fig. 4. It can
be observed that the estimates of the angular velocities can
quickly converge to true values from their initial values at
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5 rad/s, and without steady state errors. There are definitely
some biases when switching between the subsystems but the
steady observations will be obtained within a short time after
entering a new subsystem. Note that the convergence can
be smoother at switching points if we linearize the robot
by a higher number of subsystems but the LPV system
will be more complex. For the current pressurizing range,
4 subsystems are sufficient to evaluate the method with a
manageable level of complexity of the LPV system. In this
case, the biases happen in a short time with low magnitudes
so their effects are not considerable.

In case study 3) we assume the soft robot is in static
pose at 3 psi. Hence the simulation is performed for the
third subsystem to examine the observer in estimating the
generalized contact forces at this operating point. The sim-
ulation is run for 6 seconds and is shown in Fig. 5. In
this simulation, a contact is applied at ¢ = 2 seconds and
then removed after 2 more seconds. Each generalized contact
force is assumed to have a random value in the range [0; -
1] Nm!. Our goal is to estimate those generalized contact
forces well within the contact time. While the proposed
observer can estimate greater forces, the contact forces within

In fact the generalized contact forces are torques because they are the
forces acting on the robot generalized coordinates with lever arms.
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1 Nm in magnitude are introduced and considered as the
representative cases to track. As illustrated in the figure, we
can see that the designed observer can estimate the assumed
generalized contact forces (torques) well during the two-
second contact time. The estimates return to zero when the
contact is removed. When the contact forces changes their
states, there are some overshoots which result from natural
response of the observer with the current gains but they
happen in very short times and their magnitudes are less
than 10% of the changes so they will not have considerable
effects on the system model.

Since the disc-thread model represents a discretization
of a continuum soft robot, there is no ground truth value
against which to compare the state estimates. However, we
can compute what the marker locations should be based on
the state estimates and compare them to the measured marker
location. We inflate and deflate the robot with the input
pressure history shown in Fig. 6a. The robot bends down and
twists (as can be seen in Fig. 2) when inflated, and returns to
the original pose when deflated. The poses of the robot are
recorded by the Polhemus electromagnetic motion tracking
system. Seven markers are attached on the body of the robot
as shown in Fig. 1a to measure the coordinates of each disc.
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We then feed data measured from the tracking system into
the observer. The estimated outputs ¥ = C1X; are compared
to the real outputs measured from the markers. The results
are illustrated in Fig. 6. We can see that the postures of
the soft robot represented by marker coordinates are well
estimated and the estimates quickly converge to the marker
coordinates from their initial values at zero. This indicates
that the estimated states of the real robot obtained by the
observer are plausible and can be used for model-based
control design. Note that the experiment took 50 seconds
in order that the pressure was manually controlled smoothly
as shown in Fig.6a. While the time span in the simulation
can be of any duration, it was set as only 4 seconds so that
readers can recognize the rise time of the estimates easily. In
general, the performance of the observer in simulation and
in response to experimental data shows that it works well for
this class for the disc-thread model of fabric-reinforced soft
robots.

V. CONCLUSION

In this paper, we propose an observer to estimate the
generalized states and contact forces for a fabric-reinforced
inflatable robot as represented by a new disc-thread model
approach. Simulations and experiments are performed to
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Fig. 6. Estimation of measured marker coordinates

examine the behavior of the observer. The results show
that the observer works well in simulation by converging to
static poses and motion due to changing pressure as well
as estimating an assumed contact case. The performance
of the observer is also confirmed via an experiment where
it can estimate the pose of the soft robot using the data
from the position marker set. Interestingly, by applying this
modeling approach and observer design, we may exploit
well-developed model-based linear control theory for a class
of inflatable soft robots. Although the control schemes for
soft robots are definitely different from those for traditional
robots, the ability to apply traditional control algorithms
can provide stability guarantees and save a lot of works in
controller design. We plan to design a model-based controller
to perform position tracking with this soft robot in our future
research. In addition, future work will treat the case when
contact occurs suddenly by collision with an object in the
environment. Pose estimation under a real-world contact will
also be considered. It is likely that machine learning methods
will be used in tandem with this observer design to more
reliably estimate the contact force when the environment is
poorly known.
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