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Abstract—We consider the problem of covert communication
over a state-dependent channel when the Channel State Infor-
mation (CSI) is available either non-causally, causally, or strictly
causally, either at the transmitter alone, or at both transmitter
and receiver. Covert communication with respect to an adversary,
called ‘““warden,” is one in which, despite communication over
the channel, the warden’s observation remains indistinguishable
from an output induced by innocent channel-input symbols.
Covert communication involves fooling an adversary in part by a
proliferation of codebooks; for reliable decoding at the legitimate
receiver, the codebook uncertainty is typically removed via a
shared secret key that is unavailable to the warden. In contrast
to previous work, we do not assume the availability of a large
shared key at the transmitter and legitimate receiver. Instead,
we only require a secret key with negligible rate to bootstrap the
communication and our scheme extracts shared randomness from
the CSI in a manner that keeps it secret from the warden, despite
the influence of the CSI on the warden’s output. When CSI is
available at the transmitter and receiver, we derive the covert
capacity region. When CSI is only available at the transmitter,
we derive inner and outer bounds on the covert capacity. We
also provide examples for which the covert capacity is positive
with knowledge of CSI but is zero without it.

I. INTRODUCTION

Covert communication refers to scenarios in which reliable
communication over a channel must occur while simultane-
ously ensuring that a separate channel output at a node, called
the warden, has a distribution identical to that induced by an
innocent channel symbol [3]-[7]. It is known that in a Discrete
Memoryless Channel (DMC) without state, the number of
bits that can be reliably and covertly communicated over n
channel transmissions scales at most as O(y/n).! This result
has motivated the study of other models in which positive
rates are achievable [8], [9]. Of particular relevance to the
present work, Lee et al. [10] have considered the problem
of covert communication over a state-dependent channel in
which the CSI is known either causally or non-causally to the
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'In the special case when the output distribution (at the warden) induced
by the innocent symbol is a convex combination of the output distributions
generated by the other input symbols [5], the scaling is O(n).

transmitter but unknown to the receiver and the warden. The
authors derived the covert capacity when the transmitter and
the receiver share a sufficiently long secret key, as well as
a lower bound on the minimum secret key length needed to
achieve the covert capacity. Since the presence of CSI provides
a natural source of randomness from which to extract secret
keys, one may wonder if covert communication with positive
rate is possible without requiring an external secret key. The
present work offers conclusive answers to this question in
several scenarios.

The usefulness of exploiting CSI for secrecy has been
extensively investigated in the context of state-dependent
wiretap channels. A discrete memoryless wiretap channel
with random states known non-causally at the transmitter
was first studied by Chen and Vinck [11], who established a
lower bound on the secrecy capacity based on a combination
of wiretap coding with Gel’fand-Pinsker coding. Generally
speaking, coding schemes with CSI outperform those without
CSI because perfect knowledge of the CSI not only enables
the transmitter to align its signal toward the legitimate receiver
but also provides a source of common randomness from
which to generate a common secret key and enhance secrecy
rates. Khisti et al. [12] studied the problem of secret key
generation from non-causal CSI available at the transmitter and
established inner and outer bounds on the secret key capacity.
Chia and El Gamal [13] studied a wiretap channel in which the
state information is available causally at both transmitter and
receiver, proposing a scheme in which the transmitter and the
receiver extract a weak secret key from the state and protect
the confidential message via a one-time-pad driven with the
extracted key (see also [14] and [15]). Han and Sasaki [16]
subsequently extended this result to strong secret keys. Gold-
feld et al. [17] proposed a superposition coding scheme for
the problem of transmitting a semantically secure message
over a state-dependent channel with CSI available non-causally
at the transmitter. In the context of covert communications,
several works have demonstrated the benefits of exploiting
common randomness and CSI to generate secret keys. For
instance, stealth secret key generation from correlated sources
was studied by Lin et al. [18], [19] and covert secret key
generation was studied by Tahmasbi and Bloch [20], [21]. We
note that covert communication over a compound channel was
studied by Salehkalaibar er al. [22], although the objective
therein is to mask the state of the compound channel and not
to exploit CSI.

The present paper studies covert communication over a
state-dependent discrete memoryless channel with CSI avail-
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Fig. 1. Model of covert communication over a state-dependent DMC with
CSI available at both the transmitter and the receiver

able either non-causally, causally, or strictly causally, either
at both the transmitter and the receiver or at the transmitter
alone (see Fig. 1 and Fig. 2). One of the main contributions
of the present work is to show that the CSI can be used to
simultaneously and efficiently accomplish two necessary tasks:
using the CSI for a Shannon strategy or Gelfand-Pinsker
coding, while also extracting a shared secret key at the two
legitimate terminals to resolve the multiple codebooks that
are necessary for covert communication. Secret key extraction
from CSI replaces the external secret key in other models,
thus potentially generalizing and expanding the applicability
of covert communication. Our scheme requires the transmitter
and the receiver to share a secret key with negligible rate to
bootstrap the communication. This bootstrapping is common
in many security schemes, for instance in all schemes for
secret communication based on seeded invertible extractors
[23]-[25]. With a slight abuse of terminology, we refer to our
model as “keyless” instead of “asymptotically keyless.”

Specifically, we characterize the exact covert capacity when
CSI is available at both the transmitter and the receiver,
and derive inner and outer bounds on the covert capacity
when CSI is only available at the transmitter. For some
channel models for which the covert capacity is zero without
CSI, we show that the covert capacity is positive with CSI.
The code constructions behind our proofs combine differ-
ent coding mechanisms, including channel resolvability for
covertness, channel randomness extraction for key generation,
and Gel fand-Pinsker coding for state-dependent channels.
The key technical challenge consists in properly combining
these mechanisms to ensure the overall covertness of the
transmission through block-Markov chaining schemes. In the
interest of brevity, the proofs that are standard, or parallel
other proofs in this paper, are omitted and made available
online [26], [27].

II. PRELIMINARIES

N is the set of natural numbers, which does not include
0, while R denotes the set of real numbers. We define
Ry = {z € Rjlz > 0} and Ry; = R;\{0}. Random
variables are denoted by capital letters and their realizations by
lower case letters. Ex (+) is the expectation w.r.t. the random
variable X and 1., denotes the indicator function. The set
of e—strongly jointly typical se?uences of length n, accord-
ing to Pxy, is denoted by T" (Px.,y). For convenience,
typicality will reference the random variables rather than
the distribution, e.g., we write 7. (X,Y) or 7. (X|Y).
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Fig. 2. Model of covert communication over a state-dependent DMC with
CSI only available at the transmitter

Superscripts denote the dimension of a vector, e.g., X™. The
integer set {1,..., M} is denoted by [1:M], X/ indicates
the set {X;, X;11,...,X;}, and X2, denotes the vector X"
except X;. The cardinality of a set is denoted by | - |. The
total variation between Probability Mass Function (PMF) P
and PMF Q is defined as, ||[P — Q| = 33, |P(z) — Q(2)|
and the Kullback-Leibler (KL) divergence between PMFs is
defined as D(P||Q) = >, p(z)log gg; The support of a
probability distribution P is denoted by supp(P). The n-fold
product distribution constructed from the same distribution P
is denoted P®". Throughout the paper, log denotes the base
2 logarithm. For a set of random variables {X;};c 4 indexed
over a countable set A, E\;(-) is the expectation with respect
to all the random variables in .4 except the one with index
ie A

Finally, we recall a useful result about the relation between
the total variation distance and the KL-divergence.

Lemma 1 (Reverse Pinsker’s Inequality [28, eq. (323)]).
Pinsker’s inequality indicates for two arbitrary distributions
P and Q on alphabet A we have,

1P —Qll </ 3D(PlIQ) n

A reverse inequality is valid when the alphabet A is finite. Let
P and Q be two arbitrary distributions on a finite alphabet
set A such that P is absolutely continuous with respect to Q.

If £ min,¢ 0:Q(a)>0 Q(a), we have,

D(PI|Q) < 1og< )||P Qll. ®

III. CHANNEL MODEL

Consider discrete memoryless state-dependent channels as
shown in Fig. 1 or Fig. 2. The channel is characterized by
input alphabet X, legitimate output alphabet )/, warden output
alphabet Z, state alphabet S, and a transition probability
Wy zxs. We assume that the CSI is independent and identi-
cally distributed (i.i.d.) and drawn according to (s and we let
o € X be an innocent” symbol corresponding to the absence
of communication with the receiver. The distribution induced
at the warden in the absence of communication is then

)= ZQS(S)WZ|X,S('|$0,5), 3)
sES

and we let Q5" =[], Qo. The CSI may be available non-
causally, causally, or strictly causally at the transmitter and
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may or may not be available at the receiver. Note that the
exact causal or non-causal nature of CSI at the receiver is
irrelevant because decoding is always done after transmission
is completed. The warden is kept ignorant of the CSI.

Formally, a code with CSI available at both the transmitter
and the receiver is defined as follows.

Definition 1. A (2"%,n) code C,, with CSI available at both
the transmitter and the receiver consists of:

e a message set M = [1:2"E];

o when CSI is available non-causally at the transmitter,
for each time slot i € [1:n], a deterministic encoder
fi : M x 8™ — X; that maps a message m and the
entire CSI sequence to a channel input symbol x;;

o when CSI is available causally at the transmitter, for each
time slot i € [1:n], a deterministic encoder f; : M x
S+ X, that maps a message m and the past and current
CSI samples to a channel input symbol x;;

o when CSI is available strictly-causally at the transmitter,
for each time slot i € [1:n], a deterministic encoder
fi : M x 81— X; that maps a message m and the
past CSI samples to a channel input symbol x;;

e a decoding function g : 8™ x Y" — MU {?} that
maps the channel observations and the CSI sequence to
a message M € M or an error message ?.

A code with CSI available only at the transmitter is defined
as follows.

Definition 2. A (2"% n) code C,, with CSI available only at
the transmitter consists of

o a message set M = [1:2"%], a local randomness set
J = [1:2"77], and a secret key set K;

o when CSI is available non-causally, for each time slot i €
[1:n], a stochastic encoder f; : M x T x K xS™ — X,
that maps a message m, a local randomness j, a secret
key k, and the entire CSI sequence to a channel input
symbol x;;

o when CSI is available causally, for each time slot i €
[1:n], a stochastic encoder f; : M x J x K x 8§t — X,
that maps a message m, a local randomness j, a secret
key k, and the past and current CSI samples to a channel
input symbol x;;

o when CSI is available strictly-causally, for each time slot
i € [1:n], a stochastic encoder f; : MxJxKxS*~!
X; that maps a message m, a local randomness j, a secret
key k, and the past CSI samples to a channel input symbol
€T,

e a decoding function g : Y" x K — M U{?} that maps
the channel observations to a message M € M or an
error message .

The reason for introducing a stochastic encoder when CSI
is only available at the transmitter is that our achievability
scheme relies on a likelihood encoder [29]. The stochastic na-
ture of the likelihood encoder greatly simplifies the covertness
analysis by providing finer control over the statistics induced
by the encoder.

The code is assumed known to all parties and the objective
is to design a code that is reliable, covert, and keyless. Reliable

means that the probability of error Pe(") = ]P’(M # M)
vanishes when n — oo. Covert means that the warden cannot
determine whether communication is happening (hypothesis
H;) or not (hypothesis Hj). Specifically, the probabilities
of false alarm «,, (warden deciding H; when Hj is true)
and missed detection (3, (warden deciding Hy when Hj is
true) satisfy a,, + 8, = 1 for an uninformed warden making
random decisions. When the channel carries communication,
the warden’s channel output distribution is Pz», and the
optimal hypothesis test by the warden satisfies a,, + 3, >

1 — /D(Pz+||Q5™) [30]. Therefore, we define a code as

covert if D(Pz«||QF"™) vanishes when n — oco. We assume
that supp(Qo) = Z for otherwise D(Pyz||QS™) diverges.
Finally, keyless means that X log |KC| vanishes as n — co.

A rate R is achievable if there exists a sequence of reliable,
covert, and keyless (2" n) codes and the covert capacity
is the supremum of all achievable covert rates. We denote
the covert capacity by Cs.p where A € {NC,C,SC} indicates
the non-causal, causal, or strictly causal nature of the CSI at
the transmitter while B € {T,TR} indicates whether CSI is
available only at the transmitter or both the transmitter and
receiver. Hence, we are interested in characterizing Cnc.Tr,
Cneots Cetr, Ceor, Cseotr, and Cseor.

IV. CHANNEL STATE INFORMATION AVAILABLE AT THE
TRANSMITTER AND THE RECEIVER

Theorem 1. Let
AL {R>0:3Psxy,z €D such that R <I(X;Y|S)},
(4a)
where,

Psxyz:

Ps x v,z = QsPxsWy,z|s,x

Pz = Qo

H(S|Z) > 1(X; Z]S) — I(X;Y[S)
The covert capacity of the DMC Wy, 7|5 x with non-causal
CSI at both the transmitter and the receiver is

Cnctr = max{a : a € A}. 5)

Theorem 1 suggests that the key rate H(S|Z) extracted
from CSI should exceed the difference between the capacity
of the warden and the capacity of the legitimate receiver.
The achievability is proved by superposition encoding and the
complete proof is available in Appendix A.

(4b)

Theorem 2. Let
A2 {R>0:3Psyx,y,z €D such that R <I(U;Y|S)},

(6a)
where,
Psvuxy,z:
Psuxy,z= QSPUll{X:X(U S)}WKZ\S,X
A
D=qPr=Qo
H(S|Z) > 1(U; ZIS) - (U3 YS)
Ul <X +1
(6b)
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The covert capacity of the DMC Wy, 7|5 x with causal CSI at
both the transmitter and the receiver is

Ccrr = max{a : a € A}. 7

Again, Theorem 2 suggests that the key rate extracted from
CSI should exceed the difference between the capacity of
the warden and the capacity of the legitimate receiver. The
achievability proof is based on block Markov encoding to
combine a Shannon strategy for transmitting the message
according to CSI with key generation and is available in
Appendix B.

Theorem 3. Let

A2{R>0:3Psxy,z € D such that R <1(X;Y|S)},
(8a)

where,
Ps xy,z:
Ps x v,z = QsPxWy, 715, x

Pz = Qo
H(S|2) > 1(X: 2IS) — I(X; Y1S)

>
lI>

(8b)

The covert capacity of the DMC Wy, 7|5 x with strictly causal
CSI at both the transmitter and the receiver is

Csctr = max{a : a € A}. 9)

Even though strictly causal CSI provides limited opportu-
nities to enhance reliability, it is still useful here because it
provides shared randomness from which to extract a secret key.
The achievability proof merely uses a block Markov encoding
scheme for key generation but not for data transmission and
is available in Appendix C.

V. EXAMPLES OF CHANNELS WITH CSI AT TRANSMITTER
AND RECEIVER

We provide here two examples of covert communication
over state-dependent channels with CSI at the transmitter and
receiver. A positive covert capacity is achieved without an
external secret key, hence not subject to the square root law.
The two examples explore additive and multiplicative CSI,
respectively, with the former representing channels in which
the channel state can in principle be cancelled and the latter
representing fading-like channels.

Binary Additive State: Consider a channel in which X,Y, Z,
and S are all binary, Qs obeys a Bernoulli distribution with
parameter ¢ € (0 : 0.5), and the innocent symbol is 2g = 0.
(See Fig. 3). The law of the channel is

Y=Z=X&S5, (10)

so that Qg = Q5.

Proposition 1. The covert capacity of the DMC depicted
in Fig. 3 with causal or non-causal CSI available at the
transmitter and the receiver is

Cnetr = Cemr =Hp(C) = Clog% + (1 =¢)log %

4

M — — M

> Ho: Q5"
—) Hll PZw,

Det.

Fig. 3. Binary symmetric channel with additive CSI at the transmitter and
the receiver

Table 1
JOINT PROBABILITY DISTRIBUTION OF X, S

X
N 0 1

0 | ey B8

l-a-B-n n

Intuitively, the encoder perfectly controls the warden’s ob-
servations because it knows the CSI. By manipulating X,
the encoder ensures that Z follows the statistics of S. In
part, this means that the symbol X = 1 is associated half
the time to S = 0 and half the time to S = 1 to ensure
P; = Qs ~ Bern(¢). Further, since the transmitter and
receiver share the CSI, the legitimate channel is error-free.

Proof. We first prove Proposition 1 when CSI is available non-

causally at both the transmitter and the receiver. Substituting

Y =7 =X &S in Theorem 1 results in
CNC-TR = Qm]?x H(X|S),

sPxs

(12)

with the maximization subject to the constraint Pz = Q¢ =
Qs. Let the joint distribution between X and S be according
to Table 1, we have

Pz(z=0)=Pxs(xr=0,s=0)+Pxs(z=1,s=1)

=a+n, 13)
Qs(s=0)=Pxs(x=0,s=0)+Pxs(z=1,s=0)
=a+p. (14)

Therefore P; = Qg implies that
Qz(z=0=Qs(s=0)=a+n=a+8=n=04. (15

Therefore,

max H(X|S) =
QsPx|s
« 1—a-—243
max | —«lo —(1—-a—-28)log ————
(o,8) Sa+tp ( A) S ——
(=atB
B B
— Blog —— — Blog ————|. 16
6%a+ﬁ 5%1_a_ﬁ (16)

Considering Qg(s = 0) = ¢ = a + 8 and substituting 5 =
¢ — « in (16) results in

max H(X|S) =

sPx|s
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Fig. 4. Binary symmetric channel with multiplicative CSI at the transmitter
and the receiver

moz}x[falog%f(lJranC)log%
~ (- a)log Tt~ (-~ a)log { =] (D)

Since entropy is a continuous concave function, the maximizer
of H(X|S) is found at the root of the first derivative of (17).
This root is a = (2, resulting in max H(X|S) = H(S). Since
Y = Z, the condition H(S|Z) > I(X; Z|S) — I(X;Y]S) is
automatically satisfied.

We now prove Proposition 1 when CSI is available causally
at both the transmitter and the receiver. To prove achievabil-
ity, we shall substitute specific choices of auxiliary random
variables in Theorem 2. We choose U as a Bernoulli random
variable with parameter n € (0 : 0.5) and independent of
S, and we set X = U & S. Therefore, Y = Z = U and
I(U;Y|S) = H(U). Since o = 0 we have @y = Qg and the
condition Q7 = @ results in 7 = ¢ because

QRs(z=0)=P(s=0) =,
Qz(z=0)=Pu=0)=n.
Since Y = Z, the condition H(S|Z) > I(U; Z|S)—-1(U;Y|S)
is automatically satisfied and the covert capacity is lower

bounded by H,(¢). The converse proof follows from the fact
CC-TR < CNC—TR by definition. O

(18)
19)

Binary Multiplicative State: Consider a channel in which
XY, Z, 51, and Sy are all binary and S7 and S5 have a joint
distribution with parameters P(S1 = 4,52 = j) = p;;, for
1,7 € {0,1} and the innocent symbol is xg = 0 (See Fig. 4).
The law of the channel is

Y =X®5, Z=X®5. (20)

Proposition 2. The covert capacity of the DMC depicted
in Fig. 4 with causal or non-causal CSI available at the
transmitter and the receiver is

Cne-tr = Cetr =P1,0- 2D

Intuitively, covert communication occurs when the warden’s
observation is impaired by a bad realization of CSI while the
legitimate receiver simultaneously enjoys a good realization
of the CSI. Since the receiver knows the CSI, the legitimate
channel is effectively noise-free.

5

Proof. We prove Proposition 2 for the non-causal case, the
proof for the causal case is similar and omitted for brevity.
Substituting S = (S1,S2) in Theorem 1, we obtain

CNC—TR = maXx [H(X, Y‘Sh Sg)]
Px|sy,555
Qz=Qo

[iim,jw;ml =i,8 = )]

i=0 j=0

= max
Px 5,895
Qz=Qo

a)

= max
Px|sy.5,

—

{pl,OH(X;Y|S1 =1,5 = 0)}

[pm]ﬂl()ﬂs1 — 1,8, = 0)]

= max
Px|s,.55

= P1,0, (22)

where (@) holds because Y = 0 when S; = 0 so that
I(X;Y|S1 = 0,5 =j) =0and Z = X when Sy = 1
so that Py = Pz = @ imposes X = 0, and I(X;Y|S; =
1,52 = 1) = 0. Note that Qz = Qo implies that Z is
always equal to zero so that I(X; Z|S) < H(Z) = 0 and the
condition H(S|Z) > I(X; Z|S) — I(X;Y|S) is automatically
satisfied. O

VI. CHANNEL STATE INFORMATION ONLY AVAILABLE AT
THE TRANSMITTER

We first recall the definitions of the following classes of
broadcast channel, with channel state available only at the
transmitter.

Definition 3 (Less Noisy Broadcast Channel With CSI avail-
able only at the transmitter). A discrete memoryless broadcast
channel with CSI available only at the transmitter (X X
S, Wy, z1x,5, Y X Z) is said to be less noisy, if (U;Y) >
I(U; Z) for all U — (X, S) — (Y, Z). In this case, we say that
Y is less noisy than Z.

Definition 4 (More Capable Broadcast Channel With CSI
available only at the transmitter). A discrete memoryless
broadcast channel with CSI available only at the transmitter
(X X 8, Wy, z1x,5, Y x Z) is said to be more capable, if
I(X;Y) > I(X; Z) for all Px g. In this case, we say that Y
is more capable than Z.

Theorem 4. Let

R>0: HPU,V,S,X,Y,Z € D such that
R<]I(U;Y)—max{]I(U;S),]I(U,V;S) ,
~I(V;Y|U)}

AL

(23a)
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where,

Pyvsxyz:

Puvsxyz=PuPvPsuvie, g0

xWy, z1x,s

Qs() = Xueu 2ovey Pu(u)Py(v)
x Pgu,v (-|u, v)

Pz = Qo

I(V;Y|U) > max{I(V; 2), (U, V; Z)
-1(U;Y)}

X[ +5

| X+ 3

|
VI

NN

(23b)

The covert capacity of the DMC Wy 75 x with non-causal
CSI at the transmitter is lower-bounded as

Cner =2 sup{a : a € A}. (24)

The proof relies on block-Markov encoding to combine
Gel’fand-Pinsker coding, for transmitting the message ac-
cording to CSI [31], and Wyner-Ziv coding, for secret key
generation [32]. The transmitter not only generates a key from
S™, but also selects its codeword according to S™ by using
a likelihood encoder [33]-[35]. Instead of directly generating
a secret key from the CSI, the transmitter relies on another
random variable that is correlated with the CSI to help control
the secret key rate. In particular, note that secret keys may not
be needed, e.g, when the legitimate receiver’s channel is a less
noisy version of the warden’s channel (see Corollary 1). Proof
details are available in Appendix D.

A subset of rated in the region (23a) can be achieved
without block-Markov coding or secret key generation. We
provide these rates in Theorem 5 for reference. As shown in
Section VII, however, secret key generation might be crucial
to achieve positive covert rates.

} ,  (25a)

Theorem 5. Let

s JR2>20:3Psy.x v,z €D such that
T\ R<I(U;Y)—1(U;S)

where,
Psuxy,z:
Psuxyz= QSPU\S]I{X:X(U’S)}WY,Z\X,S
A
D= qP;=Qo
I(U;Y) > (U; Z)
U| < [X]+2

(25b)

The covert capacity of the DMC Wy, 7|5 x with non-causal
CSI at the transmitter is lower-bounded as

Cner 2 Sup{a ra e .A} (26)

Theorem 5 follows from Theorem 4 by choosing S inde-
pendent of V, so that Pg|y,y = Pg)y- This choice ensures that
I(V;S) =0and I(V;U,Y) = 0. Alternatively, Theorem 5 can
be established with Gel’fand-Pinsker coding with a likelihood

6

encoder but without block-Markov encoding or key generation
from CSI. Details are omitted for brevity and are available
online [26, Appendix E].

Theorem 6. Let

R>0: HPS,U,V,X,Y,Z € D such that
AL S R<min {I(U;Y) - L(U; S),L(U,V;Y) ,

~I(U;5|V)}
(27a)
where,
Psvv.xy,z:
Psuyvxyz= QSPUV\S]I{X:X(U,S)}
xWy, z1x,s
pa ] Pz=0Q . (27b)

min {I(U;Y) — 1(U; 5),
(U, V;Y) - 1L(U;S|V)} >
I(V;Z) —1(V;S)
max{|U|, [V[} <[X]+3

The covert capacity of the DMC Wy, 7|5 x with non-causal
CSI at the transmitter is upper-bounded as

Cner S max{a:a € A}. (28)

} » (299

Proof details are available in Appendix F.

Corollary 1. Let

N R>0: ElPS,U,X,Y,Z € D such that
R<I(U;Y) -1(U;S)

where,
Psvuxyz:

DA Psuxy,z= QSPU|S]I{X:X(U,S)}WY,Z\X,S
Pz =Qo
U < |X|+2

(29b)

The covert capacity with CSI available non-causally only at
the transmitter when the legitimate receiver’s channel is less
noisy than the warden’s channel, is

Cner = max{a:a € A}. (30)

Proof. The achievability follows from Theorem 5 and the less
noisy property of the channel. We can also prove the achiev-
ability by using Theorem 4 while generating S’ independently
of V' (ie. Psjy,v = Psjy) and the less noisy property of
the channel. Furthermore, the converse proof follows from
Theorem 6 and the less noisy property of the channel. O

Theorem 7. Let

N R>0: ElPU,V,S,X,Y,Z € D such that
| R<I(U;Y) +min {0,I(V;Y|U) = I(V;8)} [’
(31a)
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where,
Pyvs.xy,z:
Puv,sxyz = PUPVPS\vﬂ{X:X(U )
xWy, z1x,s
L | @s0) = Zoey Pr(v)Pspv (o)
D=qPz=Qo

I(V;Y|U) > max{I(V; Z),
IU,V;Z) - 1(U;Y)}

||+ 2

|X|+3

|
VI

<
<
(31b)

The covert capacity of the DMC Wy 75 x with causal CSI at

the transmitter is lower-bounded as
Cer = sup{a:a € A}. (32)

Theorem 7 is proved using block-Markov encoding to com-
bine a Shannon strategy for sending the message according
to CSI and Wyner-Ziv coding for secret key generation. The
details of the proof are available in Appendix G.

Theorem 8. Let

AL {R>0:3Psyx,y,z €D such that R <I(U;Y)},

(33a)
where,
Psvuxyz:
Psyxy,z = QSPU]l{X:X(U S)}WY,Z\X,S
A
D=4 P;=Qo
(U;Y) > L(U; Z)
U < |X|+1
(33b)

The covert capacity of the DMC Wy, 7|5, x with causal CSI at
the transmitter is lower-bounded as

Cer 2 sup{a:a € A}. (34)

The proof is similar to the proof of Theorem 5, the details
are omitted for brevity and are available online; please see
[26, Appendix G].

Theorem 9. Let

AL {R>0:3Psyyvx,yz €D such that R<I(U;Y)},
(35a)

where,

Psvvxy,z:

Psuvxyz= QSPVPU\Vﬂ{X:X(U )

xWy, z1x,s
Pz =Qo
I(U;Y) > 1(V;Z)
max{[U], [V|} < |X]

v
(1>

(35b)

7

The covert capacity of the DMC Wy, 75, x with causal CSI at
the transmitter is upper-bounded as

Cer < max{a:a € A}. (36)
Proof details are available in Appendix H.
Corollary 2. Let

A2 {R>0:3Psyx,yz €D such that R <I(U;Y)},

(37a)
where,
Psy xyz:
Da Psuxyz= QSPU]I{X:X(U)S)}WY,Z\X,S
Pz = Qo
Ul <X/ +1
(37b)

The covert capacity with CSI available causally only at the
transmitter when the legitimate receiver’s channel is less noisy
than the warden’s channel is

Cer = max{a:a € A}. (38)

Proof. The achievability is proved by using Theorem 8 and
the less noisy property of the channel. We can also prove
the achievability by using Theorem 7 while generating S
independently of V' (i.e. Psjy = (Qs) and the less noisy
property of the channel. Furthermore, the converse proof
follows from Theorem 9 and the less noisy property of the
channel. O

Theorem 10. Let

s JRZ0: 3Px v,s,v,z € D such that
| R<I(X;Y) 4+ min {0,I(V;Y[X) - I(V;9)} [’
(39a)
where,
Pxvxyz:
Pxv.syz = PxPyPsyWy zx,s
Qs(") = ey Pv(v)Psv(+|v)
D2 Pzr=Qo (39b)

I(V;Y]X) > max{I(V; Z),
1(X,V; 2) — 1(X; V)
V| <X +3

The covert capacity of the DMC Wy, 7|5 x with strictly causal
CSI at the transmitter is lower-bounded as

Cscr = sup{a : a € A}. (40)

The proof is similar to the proof of Theorem 7 and we only
use the CSI for key generation and not for data transmission.
The details are omitted for brevity and are available online;
please see [26, Appendix H].

Remark 1. In the proof of Theorem 4, Theorem 7, and
Theorem 10, we assume that there exist a shared secret key
for the first two transmission blocks to bootstrap the covert
communication between the transmitter and the receiver. The
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overall rate of this secret key asymptotically amortizes to a
negligible value as the number of transmission blocks B — oc.

Theorem 11. Let

A2 {R>0:3Psxy,z €D such that R <1(X;Y)},
(41a)

where,
Ps xyz:
Psxy,z=QsPxWy zx,s

Pz = Qo
I(X;Y) > I(X; Z)

(41b)

The covert capacity of the DMC Wy, 7|5 x with strictly causal
CSI at the transmitter is lower-bounded as

Cscr 2 Sup{a S ./4} 42)

The proof is similar to the proof of Theorem 8§, the details
of the proof are omitted for brevity and are available online;
please see [26, Appendix I]. We now present an upper bound
on the covert capacity when the CSI is available strictly
causally at the transmitter.

Theorem 12. Let
A2 {R>0:3Psy x,y,z €D such that R <I(X;Y)},

(43a)
where,
Psvxyz:
Psyv x v,z =QsPvPxvWy z/x s
DE S Py=Qo (43b)
I(X;Y)>1L(V;2)
V<X

The covert capacity of the DMC Wy, 7|5 x with strictly causal
CSI at the transmitter is upper-bounded as

Cscr < max{a:a € A}. (44)

Proof details are available in Appendix I.
Corollary 3. Let

AL {R>0:3Psxy,z €D such that R <I(X;Y)},
(452)

where,

Ps xvy,z :

D £ { Psxy,z=QsPxWyzx,s (45b)

Pz = Qo

The covert capacity when CSI is available strictly causally at
the transmitter and the legitimate receiver’s channel is more
capable than the warden’s channel is,

Cscr = max{a : a € A}. (46)

Proof. The achievability is proved by using Theorem 11 and
the more capable property of the channel. We can also prove
the achievability by using Theorem 10 while generating S

8

(51752) Si 2
M —{ Enc. X )é Y )% Z >

Fig. 5. Degraded channel with binary additive CSI at the transmitter

independently of V' (i.e. Psjy = (s) and the more capable
property of the channel. Furthermore, the converse is proved
by utilizing Theorem 12 and the more capable property of the
channel. O

Remark 2 (Cardinality Bounds). The cardinality bounds on
the auxiliary random variables in Theorems 2 to 10 follows by
a standard application of the Eggleston-Fenchel-Carathéodory
theorem [36, Theorem 18]. Details are omitted for brevity.

Remark 3 (Do Stochastic Encoders Improve the Capacity
Region?). We use deterministic encoders when the CSI is
available at both of the legitimate terminals, while we use
stochastic encoders when the CSI is only available at the
transmitter. The use of stochastic encoders is merely motivated
by technical convenience in our proof, and we could not con-
clude whether stochastic encoders outperform deterministic
ones.

VII. EXAMPLES OF CHANNELS WITH CSI AT
TRANSMITTER

We provide two examples of covert communication over
state-dependent channels with CSI at the transmitter alone,
for which the covert capacity is positive. In both examples,
the CSI is additive; however, in the first example the warden’s
channel is a degraded version of the legitimate receiver’s
channel while in the second example the legitimate receiver’s
channel is a degraded version of the warden’s channel. The
second example shows that our proposed coding scheme with
block-Markov encoding and Wyner-Ziv encoding for secret
key generation in Theorem 7, can outperform the simple
approach for deriving the covert rates in Theorem 8.

Degraded Channel with Binary Additive State: Consider a
channel in which XY, Z and S = (S1,S52) are all binary,
and let S; and S5, be independent Bernoulli random variables
with parameters o € [0 : 0.5] and 8 € [0 : 0.5], respectively,
and let zp = 0 (See Fig. 5). Here, S7 and S; are the CSI
of the legitimate receiver’s channel and the warden’s channel,
respectively. The CSI is available causally at the Encoder and
the law of the channel is as follows

Y =X&65,
Z=Y &S,

(47)
(48)

Proposition 3. The covert capacity of the DMC depicted in
Fig. 5 with causal CSI at the transmitter is

CC-T (i) max H(U) (:b) Hb(a),

U,
Pz=Qq

(49)

where Hy () is binary entropy.
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(S1,52) S S
Enc. X )% Z )% Y

Fig. 6. Reverse degraded channel with binary additive CSI at the transmitter

M —y

Proof. The achievability proof for (a) follows from the achiev-
ability part of Corollary 2 by considering U, which is the
auxiliary random variable that represents the message, as a
Bernoulli random variable independent of S; and S, with
parameter A € [0 : 0.5] and setting X = U &.5;. The converse
part of (a) follows from the converse part of Corollary 2 and
the fact that I(U;Y) < H(U). To prove (b) in Proposition 3,
we have

Q()(Z = 0) = ]P(Sl CEPES 0)

:]P)(Sl = 0,82 :0)+P(81 = 1,82 = 1)
=(1—-a)(1-28)+ap.

The distribution induced at the output of the warden when
transmitting a codeword is

(50)

Pz(z=0)=P(u® sz =0)
=Pu=0,5a=0)+Plu=1,s0=1)
=1 =21 -58)+ A8 (51)
Therefore, the covertness constraint Py, = (g requires \ =
Q. L]

Reverse Degraded Channel with Binary Additive State: To
show the benefits of the proposed scheme, we provide an
example in which the region in Theorem 7 strictly improves
the region in Theorem 8. Consider a channel in which X, Y, Z
and S = (S51,952) are all binary, and let Sy, Sy and U
be independent Bernoulli random variables with parameters

€ (0:0.5], 8 € (0:0.5], and A € (0 : 0.5], respectively,
and let xo = 0 (See Fig. 6). Also, let V' be a Bernoulli random
variable. Here, S; and S5 are the CSI of the warden’s channel
and the legitimate receiver’s channel, respectively, U is an
auxiliary random variable that represents the message, and V'
is an auxiliary random variable that represents a description
of the CSI. The CSI is available causally at the Encoder and
the law of the channel is as follows

ZZXEBS1,
Y =7&5;.

(52)
(53)

Since for this example I(U; Z) > I(U;Y'), the achievable rate
region in Theorem 8 results in zero rate but Theorem 7 results
in the following region.

Proposition 4. The covert capacity of the DMC depicted in
Fig. 6 with causal CSI at the transmitter is lower bounded as

Cer = Hy(n) — Hy(8),
where n = aff + (1 — a)(1 — ).

(54)
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%4 So

Fig. 7. Chaining between the random variables for the reverse degraded
channel with binary additive CSI

Proof. Here we choose X = U @ S; therefore Z = U and
Y = U @ S,. To prove the region in Proposition 4 by using
Theorem 7, we start with covertness constraint Py = Qo,
Qo(z=0) =P(s; =0) = q, (55)
Pz(z=0)=P(u=0) =\ (56)
Therefore, the covertness constraint requires A = a. We also
choose V' = S5 therefore,

Py\s = Py|s, s, = Pvis, = Liv=s,}- (57)

The chaining between the random variables for this example is
depicted in Fig. 7. Now we show that the fourth condition in
Theorem 7 which includes the following conditions is satisfied,
L(V;Y|U) >LV; Z), (58)
U, V;Y)>1(U,V; Z). (59)

We now have,
LV;Y|U) =H(S:|U) —

(52| H(S:2|U,Y)
H(Ss) — H(S2|U,U @ S2)
H(S2) = Hy(8),

H( (a)

H(S,|U) = 0.

Sa
S2) —

(v 2) =

where (a) follows since U and S5 are independent. Therefore,
the condition (58) is satisfied. For the condition in (59) we
have,

(U, V;Y) 1Y)
H(U, S2|U @ S2)
H(

SQ‘U@S2 b}

=H(U, S2) — H(U, S,
H(U) + H(S2) -

= H(U) + H(S2) -
since H(S3) —H(S2|U @& S2) > 0 the condition in (59) is also

satisfied. To calculate the covert rate (31a) in Theorem 7 we
have,

I(V;Y[U) = Hy(B),

I(V; S) = [(S2; 51, Sa)
= H(S2) = Hy(8),

I(U;Y) =H(Y) - H(Y[U)
=HU & S;) — H(U & S2|U)
=H(U & S2) — H(S2)
= Hy(n) — Ho(8),

where n = af + (1 — a)(1 — 5).
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Remark 4 (Covertness vs. Security). This example also
captures the difference between covertness and security. Here
the warden has noiseless access to the transmitted sequence,
and therefore it can decode the transmitted message, but since
the transmitted sequence has the same statistics as the CSI it
cannot prove that communication is happening.

Remark 5 (Shared Key). In the examples provided in this sec-
tion, the codebooks are generated with the same distribution
as the CSI Sy therefore the legitimate terminals need to have
access to a shared secret key of negligible rate to discriminate
the codewords from the CSI which is consistent with our code
definition in Definition 2.

O

VIII. CONCLUSION

This paper studies keyless covert communication over state
dependent channels, when the CSI is available either at the
transmitter alone, or at both the transmitter and receiver, but
not to the adversary (warden). Our results show the feasibility
of covertly communicating with a positive rate without an
externally shared key between the transmitter and the receiver.
This is in stark contrast with the known results showing that
in the absence of CSI, covert communication without a shared
key is impossible at positive rates.

APPENDIX A
PROOF OF THEOREM 1

Achievability Proof: Fix Px|s(z|s) and €; > ez > 0 such
that, Pz = Qo.

Codebook Generation: For every s" € S" let C, £
{X"(s™, m)} (sn,m)esn x m» Where M 2 [1:2"F], be a ran-
dom codebook consisting of independent random sequences
each generated according to P%HSHSJ We denote a realiza-
tion of C, by Cp, £ {™(s™,m)} (57 ,m)esm x M-

Encoding: Given the CSI s™, to send the message m, the
transmitter computes 2™ (s™, m) and transmits it over the chan-
nel. For a fixed codebook C,,, the induced joint distribution is

C’n n ~n n n n —n
PE o 7o (87 m, &7, 27) = Q§7(sM)27
X ]l{in:mn(sn7m)}ng7X(Zn|5n,i‘n) (60)
Covert Analysis: We now show
Ec, [D(Pznc, |QZ")] —2 0, 61)
where

Qz() = Z Z Qs(s)Pxs(z[s)Wzx,s(-|z,8).  (62)

seSzeX
Then we choose Px|s such that it satisfies Qz = Qo.

Henceforth, we denote by P(C) the distributions induced by a
fixed codebook C,, and by P,¢, the distributions induced by
a random codebook C,,. First, consider the following marginal
from (60),

Pznic, (") = Z Z Q5" (s™)2 7"

X ng,x (2"]s™, X" (s",m)). (63)
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We now bound Ec, [D(Pzn|c, ||Q%™)] as in (67) available at

the next page, in which

(a) follows from Jensen’s inequality;

(b) follows by taking expectation with respect to §™ and m
of the nominator of the second term in the argument of
the log function;

(c) follows by defining ¥; and ¥, as in (68) and (70);

(d) follows by defining WS, X7 =

' P, s Ly and — min P .
(s,m,z)nelég,)(’z) S,X,Z(S X Z) nz Izrélg Z(Z)

When n — oo then Wy in (70) vanishes; and ¥, in (68)
vanishes when n — oo if,

R>1(S,X;Z)—H(S). (64)
Basic information identities yield:
I(X,S;72)=1(X;5,2)+1(S; Z) - 1(X;S). (65)
Substituting (65) into (64) leads to
R>1(X;Z|S) — H(S|Z). (66)

Decoding and Error Probability Analysis: By access to
the CSI s™, the receiver declares that m = m if there
exists a unique index 7 such that (xz™(s™,r),y™,s") €
7™ (X,Y,S). According to the law of large numbers and
the packing lemma the probability of error goes to zero as
n — oo if [37],

R <I(X;Y]S). (72)

The region in Theorem 1 is derived by combining (66) and
(72).

Converse Proof: We now develop an upper bound for the
non-causal side information. Consider any sequence of length-
n codes for a state-dependent channel with CSI available non-
causally at both the transmitter and the receiver, such that
P < e, and D(Pyz||QE™) < & with lim,,_, 0 €, = 0. Note
that the converse is consistent with the model and does not
require ¢ to vanish.

Epsilon Rate Region: We first define a region A, for € > 0
that expands the region defined in (4) as follows.

Ac2{R>0:3Psxyz € Dc: R<I(X;Y|S) + ¢},

(73a)
where
Psxyvz:
D Ps x v,z = QsPx|sWy,zx,s
‘ D (Pz||Qo) < ¢
H(S|Z) > I(X; Z|S) — I(X;Y|S) — 2
(73b)

We next show that if a rate R is achievable, then R € A, for
any € > 0. For any ¢, > 0 and v > 0, we start by upper
bounding n R using standard techniques,

nR =H(M)

(a)
< H(M|S™) —H(M|Y™,S™) + ne,
=I(M;Y"™|S™) + ne,
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Ec, [D(Pznic,11Q5")] = Ec, {ZPZHCW (=™ log (M)}

Q7" (")
1 (~Z~)Q?n(gn)wggx(znmX"(E",fn))
=Ec, | DD ir@E (MWEE x (215", X" (5", m)) log | = oI
z" s™ m QZ (Z )
< 1 . QEEW R (15 X6 )
<222 5w 2 PERa(Man (" m) 2" log By m | RROT
= P el 2MQ 5" (=)
1 n n n n n
=222 5w 2 PEka(sman(s"m).2")
zh s m zn(sn’m)
®n(zn W®n nign_ Xn(3" 5
1 ?n(sn)ngX(Zn|8n’$n(sn7m)> E (8™ m);(s" m) s (S ) Z|S,X(z |S ’ (S ’m))
X ’ . ) ;
0g 2nRQ?n(zn) + B\ (s7,m) Q"P‘Q?n(z”)
1 n n n n n
=222 5w 2 PEka(sman(s"m).2")
zm s m xn(sn,’m)
[ QE W A (s ) B 2 Q"G x (2, ) )
X og i — + o s _
2mRQE™ (21) \ =, nRQE" (20
(b) 1 n n n n n ]
=20 0 5 2 Péka(smen(shm), ")
Zm st om zn(s™,m)
QU™ (sMYWZEn . (2|s™, x™ (s, m [ ®n(,n
clog [ S0 ZLSI%X;J . o) + B | D %
2nRQ5" (27) S 2 RQE (=)
Rn(n ®n NN LN N
1 n n o ,ni.n n S (S )WZ|S,X(Z |S » (S ’m))
Y Y X ARt o (SR
zn s m zn(sn’m) A
(é) \I/1 + \112 (67)
1 n n o ,n(.n n Q?”(SW)W%Z’X (Zn|sn’ xn(sn’ m))
=2 5w 2 P&k 2 (5" a" (8" m) 2 )bg( PR OE () +1] @
m (Sn’mn(sn’m)’zn)eﬁ(”) Z
27n(176)(H(S)+H(Z\S,X))
< log snRg—n(romZ) T 1 (69)
1 n n o ,ni.n n Q?n(sn)wgg,)( (Zn|8na zn(sn’ m))
V2=) oon > P& 7 (" a"(s",m), 2 )log< ERED +1 (70)
m (Snvl‘n(Snvm)7zn)¢7‘5(n) Z
(d) )
< 2]9)|X]|Z]e" s x 2 log (7 + 1) (71)
Kz
=Y I(M;Y;|Y*"!,S") + ne, =Y [H(Y;|S;) — H(Y;|S:, Xi)] + ney
i=1 i=1
=Y HY; Y, 8" - H(Yi[M, Y™, 8™)] + ne, = I(X;;Yi|S:) + nes,
i=1 i=1
®) - i—1 gn n © .V | Q
<) [H(Y;|S:) — H(Yi[M, Y71, 8™, X™)] + ney, < nl(X;Y|9) + ney
=t ()

< nH(X,Y/Lg) + ne
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(e

where

(a) follows from Fano’s inequality and since M is indepen-

dent of S™;
(b) holds because conditioning does not increase entropy;

(c) follows from the concavity of mutual information, with
the resulting random variables X, S, Y, and Z having

the following distributions

PXst

ZPXS{ES

Px syz(x,8,y,2) 2 PX,S(SU, )Wy, zx,s(y, 2|z, 5);

(75b)

(d) follows by defining ¢ = max{e,, v}, where we choose n

large enough such that v > 2 i )
(e) follows by defining X £ X, Y 2Y,and S £ S.
We also have,

nR =H(M)
=H(M|S™)
> ]I(M' Z"|8™)
@y, xm; 275
>T(X"; 2™ S™)
— (X", 8™ Z2") — 1(S™; Z2")
WEh ("], )
P(zm)

—H(S™) + H(S"|Z")

z Z Z ZP(&:", s, 2" log

T gn N

+D(Pz-]|Q5") — H(S™) — &

> ZZZZP(JEZ,S“ZIL)IOg

=1 x; S; 2

_ZH(S)_

n

Whs ("l s")

P(z")

Wy x,s(zili, s:)

Qo(zi)

i9904,24 i394

=1

—nH(S) -6
+ D(Pz||Qo) — nH(S) — &

() - -
> nD(Px,s,z||Px,sQo

)
= nD(pX,S,ZHpX,SPZ)

where

(a) follows because X™ is a function of (M, S™);

(b) follows from Jensen’s inequality, the convexity of D(+||-),

and concavity of H(-);
(¢) follows from the positivity of the KL-d
definition of random varlables

, S, Y, and Z in (75);
(d) follows by defining X £ X, Z 2 Z, a

ds28s.
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=nl(X;Y]S) + ne, (74)

(75a)

=nl(X,S;Z) — nH(S) — 4, (76)

L-divergence and the

12

For any v > 0, by choosing n large enough and substituting
(65) into (76) ensures that

R >1(X;Z|5)
> I(X; 2|S)

—H(S|Z) — v,
—H(S|2) — ¢, (77)
where the last inequality follows from the definition of € £

max{e,,v}. To show that D(Pz||Qo) < ¢, note that for n
large enough,

D(Pz[|Qo) = D(Pz[|Qo) = ( ZPZ

3

1 & 1 e 6
*Z (Pz1Q0) < ~D(P2[|QF") < — <v<e

(78)

Combining (74) and (77) shows that Ve,,,v > 0, R < max{a :
a € A.}. Therefore,

Cne-TrR = max {a ta € ﬂ Ae} ) (79)

>0

Continuity at Zero: One can prove the continuity at zero
of A, by substituting min{I(U;Y) — I(U; S),L(U,V;Y) —
I(U; S|V)} with I(X;Y]S) and I(V;Z) — I(V;S) with
I(X; Z|S) — H(S|Z) in the continuity at zero proof in Ap-
pendix F and following the exact same arguments.

APPENDIX B
PROOF OF THEOREM 2

Achievability Proof: To prove the achievability of The-
orem 2 it is convenient to introduce an associated channel
Wy, zju,s as follows: Let U € U be an arbitrary auxiliary
random variable which is independent of the state S, and
let x : U xS — X be a deterministic mapping subject
t0 Lip—z(s,u)}- According to the Shannon strategy [38], we
define the Wy, 7|y, 5 as a channel specified by

Wy ziu,s = Z 1o—a(suy Wy, z1x,5(Y, 2|7, 8),  (80)
rEX
which results in a channel with input U, outputs Y, Z, and
state S. Therefore, we only focus on the coding problem for
the channel Wy, 7|, s for the achievability proof.

We use block-Markov coding in which B independent
messages are transmitted over B channel blocks, each of
length r, therefore the overall codeword length is n = rB
symbols. The warden’s observation Z" can be described in
terms of observations in individual block-Markov blocks Z™ =
(Z7,...,Z}%). The distribution of the warden’s observation,
induced by the block-Markov coding, is Pz» S PZ{’M zr, and
the target output distribution is Q5" = Hle QY

D(Py||QE™) = JD)(PZ{,Z;é 6@”3)
B

QXr
(e giiein )

[D(Pz1IQ§") +D(Pyy m.r

". Therefore,

.
Il
—

Il
M=

Py|P, B)}

J+1

.
Il
-
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B
_ ®r r. 7B,r
S p(eier) sz
j=1
where 22 = {Z7,,,... Z}}. Hence, ]D)(pzn gan) —

0, is equivalent to;

]]])(PZ;HQ??T) —0, ]I(Z;;Zﬁ;’;) ——0, Vje[1:8].
(82)

This requires constructing a code that approximates Q?T in
each block, while eliminating the dependencies across blocks
created by block-Markov coding. The random code generation
is as follows.

Fix Py(u), © = z(s,u), and €1 > €3 > 0 such that, Pz =
Qo.

Codebook Generation for Keys: For each block j € [1: B],
create a function ® : ST +— [1: 278« through random binning
by choosing the value of <I>(s§) independently and uniformly
at random for every s’ € S". The key k; = ®(s7) obtained
in the block j € [1: B] from the state sequence s’ is used to
assist the encoder in the next block.

Codebook Generation for Messages: For each block j €
[[]. : BH, let Cr = {Ur(mj, kj_l)}(nlj,kjfl)EMXK’ where
M & [1:27F] and K £ [1:2"F*], be a random codebook
consisting of independent random sequences each generated
according to Pg”'. We denote a realization of C, by C, £
{u"(my, kj—1) Y omy ks emxx

Encoding: For the first block, we assume that the transmitter
and the receiver have access to a shared secret key kg, in this
block to transmit m; the encoder computes u"(mq, ko) and
transmits codeword z", where z; = x(u;(m1, ko), s;). At the
end of the first block, the encoder generates a key from CSI
s7 to be used in Block 2.

For block j € [2: B], to send the message m; according to
the generated key k;_; from the previous block, the encoder
computes u"(m;,k;j_1) and transmits codeword x", where
x; = x(ui(mj, kj_1),s;). Also, at the end of each block
J € [2:B], the encoder generates a key from CSI s’ to be
used in the next block.

Define

TS\S;)K- ursr.zr i, (Mg, ki1, 07, 85, 25, k)
GG —1,U 705,45, ’ ’ L RN R
N Q—T(Rk+R)]l{a

X Wiy, s (17 851k =asp)-

T:W(mjﬁkj—l)}Q?“S;)
(83)

For a fixed codebook C,., the induced joint distribution by our
code design (i.e. P(€)) satisfies
Cr Cr
]D) (P]E/IJ ,)I<j717UT,S;7Z;‘7Kj | ‘TSWJ?Kjfl,UT,S;‘,Z;7Kj) < €. (84)
This intermediate distribution Y(¢*) approximates the true
distribution P®) and will be used in the sequel for bounding
purposes. Expression (84) holds because the main difference
between P(¢*) and Y(¢) is that the key K;_; is assumed to
be uniformly distributed in Y€ which is made (arbitrarily)

nearly uniform in P(¢) with appropriate control of rate as in
(96).

13

Yyr Y.]r+1
M; X Zj My Xin Zit
[ > > ® > >
Kj-1 S; K; Sit
h Block j T Block j + 1 -

Fig. 8. Functional dependence graph for the block-Markov encoding scheme

Covert Analysis: We now show
Ec, [D(Pzn 0, [1Q5")] —— 0, where C, is the set of
all codebooks from all blocks, and

Q)= X3 X Qs )
seSuel xeX
X WZ|X,S('|I75)'

(85)

Then we choose Py and X (U, S) such that it satisfies Q7 =
Qo- From the expansion in (81), by substituting Qg with @z,
for every block j € [2: B],
T, B,’r T, B,T‘
(Z5; 250) < (255 Ky, 257)

a

= I(Z}; K;),

—
=

(86)

where (a) holds because Z7 — K — Zﬁjq forms a Markov

chain, as seen in the functional dependence graph depicted in
Fig. 8. Also,

, Cn Cn) p(Cn
(2 K;) = D(Pg5 ||1Pg) Pic)

® C r
<D(PL% 13" Qx, ),

where Q; is the uniform distribution over [1:27%%] and (b)
follows from the positivity of relative entropy and

D(PZ;,K_,»HPZ;PKJ-) = D(PZ}KJ' ||Q§TQK.7)
— D(Px, ||Qx;) — D(Pz||Q%"). (88)
Therefore by combining (81), (87), and (88),

87)

B
5 <2 D(Pzr k0, (89)

j=1

D(Pznlcn

Q%" Qx;).

We now proceed to bound the right-hand side of (89). First,
consider the following marginal from (83),

1
TZ;,K”CT(Z;» kj) = Z Z Z or(R+Rx)
mj k

j—1 85
X QS (SHW o (251U (my, k1), 85) Lk =a(sryy- (90)
From (84) and the monotonicity of KL-divergence we have,
D(TZ;,KJ|CT||PZ;,Kj\CT> <e 1)

To bound the Right Hand Side (RHS) of (89) by using
Lemma 1 and the triangle inequality we have,

ECTHPZ;,KJ\CT* 5 QI
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< Eq, ||Pzr k510, — TZ]?,KHCTHI &= {Mj # M;}, (97b)
+Ec, [Tz k10, — QF Q1 ©2) &y ={(U" (M), K;-1).57) ¢ T (QsPo) s 97c)

From Lemma 1 and (91) the first term on the RHS of (92) &5 = {(UT(ijKj—l)zsjr'anr) ¢ 7;gr)(QSPUVVY\U,S)}a
vanishes as r grows. We now bound the second term on the 97d)
RHS of (92) by using Lemma 1 as in (93) available at the &= {(Ur(kj_hmj)’gjt”y?) c 7;(;)71-‘01- some 1 # Mj},
next page, in which (97e)

(a) follows from Jensen’s inequality;
(b) holds because 1.y < 1;
(c) follows by defining ¥; and Uy as follows,

B
B
1 PE)LKP &; \E]P’c‘:‘. 98
U = kg E E 72T(R+Rk+RK) ( )< {Uj:1 J} <j:1 (]) (98)

where ea > €; > ¢ > 0. The probability of error is upper
bounded as follows,

i mj kj_1
. . oy Now we bound P(&;) by using union bound
X Z T%"",ST,Z"(u (mj,k:j,l),sj,zj) ( ]) y . & .
(u"(mj,k]‘71),s;’,z;')€7—€(n) P(gj) < P(glhj) + P(81‘7j N 827j) + P(gé,j n g&j). 99)
Q?"(s;)wgas (zﬂur(mj, kj-1), 3;) By the law of large numbers the first and second term on RHS
1 (Rt R ROQT (27) of (99) vanishes when r grows. According to the law of large
Z ('zj numbers and the packing lemma, the last term on RHS of (99)
N QTRKQ?TZ(S;, z7) Wg?] (zflum(my, k1)) ) vanishes when r grows if [37],
7 (=) 2r (RO QD" (27) R <1I(U;8,Y) = I(U;Y]S). (100)

Furthermore, this scheme requires that

orRic g—r(1-c) (H(S)+H(Z|U.S))
slog | —5rmrRay Ao

Ry, < Rg = H(S|Z) — ¢, (101)
27‘RK27’I”(176)H(S,Z) 277‘(176)H(Z‘U) ) Th ) " Th 5 btained b Ivi F .
— + — — + e region in Theorem 2 is obtained by applying Fourier-
2 IHE) 2rif i) 2= (IR Motzkin to (96a), (100), and (101),
(94) Converse Proof: We now develop an upper bound when
T — Z Z Z 1 CSI is available causally at both of the legitimate terminals.
2 — L L or(R+Ri+Rk) Consider any sequence of length-n codes for a state-dependent
3 e channel with CSI available causally at both the transmitter and
X Z ng,sr,zr (u"(mj, kj—1),55,2])  the receiver such that P < ¢, and D(Pz-||QF™) < & with
(ur(mgkj—1),s7,27) @TE™ lim,, o0 €, = 0. Note that the converse is consistent with the
RF /NI ®T Tl 1 . model and does not require J to vanish.
1 S (SJ')WZ\U»S (Zj [u"(my, kj—1), Sj) Epsilon Rate Region: We first define a region A, for ¢ > 0
2r(R+Ri—Ri )Q? (Z]T) that expands the region defined in (6) as follows,
r . . Kr T|,,T
2TRKQ?)Z(S;‘7'Z;’) + WZ\U(ZJ‘U (mj7kj_1)) +1 Aeé {R>O:3PS,U,X,Y,Z € D, R<H<U7Y|S)+€},
?’“(Z;?) 2r(R+Rk)Q§T(Z;) (102a)
2
< 2|U)|$]|Zle " ros 2 log (= + 1), (95) “here
Kz Psuxy,z:
Wl.lefe HUS,z = (u’s)z?él(g)s,z) Pu.s,z(u,s,2) and pz | = Psuxyz= QSPU]I{X:X(US)}WY,MX,S
Izrélél Pz(z). When r — oo then ¥y — 0, by choosing D, = {p (P4]|Qo) < ¢
Ry =H(S|Z) — €, ¥ vanishes when r grows if, H(S|Z) > 1(U; Z|S) — (U; Y|S) — 2¢
R+ Ry, > I(U; Z|S), (96a) Ul < [X[+1
R+ Ry > I(U; 2). (96b) (102b)
We next show that if a rate R is achievable then R € A, for

Since U and S are independent, (96b) is redundant because
of (96a). any € > 0. For any ¢, > 0 and v > 0, we start by upper

Decoding and Error Probability Analysis: At the end of bounding nft using standard techniques,

the block j € [1:B], using its knowledge of the CSI s’ nR =H(M)

of the current block and the key k;_; generated from the (a)

previous block, the receiver finds a unique 772; such that < H(M|S™) —H(M|Y",S™) + ne,
(ur (g, k1), 85, y5) € T4, To analyze the probability of =I(M;Y™|S™) + ne,

error, we define the following error events for j € [1: B]

_ Ly yvi—1 n
£ (N1 £ ), 7a) _;H(M,my ,S™) + ne,
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Tz K;|C, (Zr‘vkj)
Ec, [D(Yzr k10, |QS" Q)] = Ec, Yz k.ic, (27, ki) 1o AR
DTz 1610, 105" Qi) )] = Ee, | 3 Yy 1. (25 k) og g(z;)QKJ,(M

r
] ki

2 2.0 2r<R+Rk)ZQ WS s (107 (my, k1), 85) L, =aop)y

z k‘ ) m;j J 1
>y ZQ@’T(”)W?\Zs( U7 (5, i), ) Ly =gy
m; k. 15
x log — "
< 2r (R Re=Ric) Q57 (1) )

(a)
< Z ZZ 2"”(R+Rk) Z Z T%:’Sr’zr(ur(mjvkjfl)’ J’ J)Eq)( )[]l{kJ:q)(S;)}]
(z ki) My k1 wr(mg kg 1)
b S QE WL o (251U (7, k1), 35) L, —aep)y
mj kJ 155 ]

x log E\((mj,kj,l),<1>(s;)) [ 2r(R+Rk—RK)QQZ§>7‘(Zr)
J

1

Z ZZ 2r(R+Rk Z Do Tors g (u(my ki1, 5, 20) g orRrc

k)mJ i—1 57 ur(mjkj—1)

1
x 1 WEr (2T (my, k1), s
Og2r(R+RkRK)Q(§T(z§)< "W, (5 u"(mg, ki), 55)

+E\(77Lj,kj1)[ Z ( )W§ZS( ;|Ur(mj’];j—1)vs;)‘|
(g ey —1)#(mg k1)

R [ZQ@T GV, (2 5|“T(mj"fj—ﬁvg?)]l{kj—@(é;‘)}]

+ E\((my ky-1). (7)) [Z > § (W s (2 §|Ur(mja’fj—1>,5§)]1{kj—q><§;'>}1)

i;‘ (ﬁl] 7~] 1)75(”1‘7 7kj*1)

Z Z Z 2r(R+Rk+RK) Z Z Tgf,Sr,Zr (Ur(mj,kj—l),sjazj)

(2] .kj) ™My kj—a u”(my,kj—1)
W@T Sl m',k'_l , S Qr s,z
X10g< S ( ) Z\US( J| ( 727" ) J) + Z S,Z( J g)

or(R+Ri— RK)Qgr(ZJr) 2T(R+Rk*RK)Q?T(Z;)

(kj—1,3)#(m;,k; 1)

Wap (1 (mgo ki)
2T(R+Rk)Q®7'( r)

Z ZZ 27(R+Rk+RK) Z Z T%r,ST,ZT(“T(mﬂ"ki—l)’sw%)

( ki) my ki ur(mj,kj—1)
x 1o 5" ()W Zns j|“ (my,ky1),55) 2R QET (7, 25) Wy (31w (my, ki) 1
g 9r(R+Ri— RK)Q?T(Z;) Q?T( j) 2T(R+Rk)Q§T(Z§)

YDy, 4w, 93)

n , A © o

= Z[H(YAYH, S™) —H(Y;|M, Y™, 8™)] + ney, < nl(U;Y|5) + nen
; @

< nl(U;Y|S) + ne

< Y S )/z U7,7S1 + ney €
Z | H(Yi| )] (:)n]I(U;Y|S)+ne (103)

n

:ZH(Ui;Yi|Si)+n€n where
=t (a) follows from Fano’s inequality and since M is indepen-
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dent of S™;

(b) holds because conditioning does not increase entropy and
U, = (Ma Yi_la 521),

(¢) follows from the concavity of mutual information, with
the resulting random variables U s 5’ and Y having the
following distributions

- 1 <
P 2N Py ox
v.s.x(u,s,2) = ; Us,8i,%; (U 8, ),
(104a)
PU,S,X,Y,Z(UH S, T, Y, Z) £ pU,S,X(u7 S, l‘)
X Wy, z1x,s(y, 2|z, 5); (104b)
(d) follows by defining ¢ = max{e,, v}, where we choose n
large enough such that v > %;
(e) follows by defining U 2U,Y2Y,and S£5S.
‘We now have,

(105)

where

(a) follows from the exact same steps as in (77);

(b) follows from the Markov chain U — (X, S) — Z and from
the definition of random variables 0, X s S s 37, and Z in
(104);

(¢) follows by defining U £ U, Z2 Z, and S 2 .

Rewriting the bound in (105) by using the basic property in

(65) leads to

R>1(U; Z|S) —H(S|Z) —e. (106)

To show that D(Py||Qo) < ¢, note that for n large enough,

)

9
n

D(Pz||Qo) = D(Pz]|Qo) = D(i ZPZi
=1

1< 1 .
< EED(PL Qo) < =D(P]IQF") < S <v<e.
(107)

Combining (103) and (106) shows that Ve,,v > 0, R <
max{a : a € Ac}. Therefore,

C’CTRmax{a:aG nAe}.

e>0

(108)

Continuity at Zero: Continuity at zero for A, is established by
substituting min{I(U;Y) — I(U; S),I(U,V;Y) —1I(U; S|V)}
with I(U;Y]S) and I(V;Z) — I(V;S) with I(U; Z|S) —
H(S|Z) in the continuity at zero proof in Appendix F and
following the same arguments.

APPENDIX C
PROOF OF THEOREM 3

Achievability Proof: We adopt a block-Markov encoding
scheme in which B independent messages are transmitted over

16

B channel blocks each of length 7, such that n = rB. The
warden’s observation is Z™ = (Z7, ..., Z},), the target output
distribution is Q§", and Equation (81), describing the distance
between the two distributions, continues to hold. The random
code generation is as follows.

Fix Px and €; > €5 > 0 such that, Pz = Q)g.

Codebook Generation for Keys: For each block j € [1: B],
create a function ® : ST — [1: 27Ex ] through random binning
by choosing the value of ®(s}) independently and uniformly
at random for every s} € S". The key k; = ®(s}) obtained
in the block j € [1: B] from the state sequence s’ is used to
assist the encoder in the next block.

Codebook Generation for Messages: For each block j €
[[113]], let C, = {Xr(mjvk'j—l)}(mj,kj,l)eMxlC, where
M & [1:27F] and K £ [1:2"F*], be a random codebook
consisting of independent random sequences each generated
according to PY". We denote a realization of C, by C, =
{a"(my, kj—1) }omy ks emxic

Encoding: For the first block, we assume that the transmitter
and the receiver have access to a shared secret key ko, in this
block to transmit m; the encoder computes =" (mq, ko) and
transmits it over the channel. At the end of the first block, the
encoder generates a key from CSI s7 to be used in Block 2.

For block j € [2: B], to send the message m; according to
the generated key k;_; from the previous block, the encoder
computes x"(m;, k;_1) and transmits it over the channel.
Also, at the end of the block j € [2: B], the encoder generates
a key from CSI s’ to be used in the next block.

Define

(Cr) . . ~TLT T .
TMJ,Kj,l,XT,S;",Z;',Kj(m]ak]—lam ’Sj,Zj,kg)

S 2_T(R+Rk)1{:i’7‘:xr(mj,kj,l)}Q?T(Sg)
®r T [d
X WZ|X,S(Zj |$r’sj)]1{kj:<1>(§;f)}- (109)

For a fixed codebook C,., the induced joint distribution by our
code design (i.e. P(CT)) satisfies

< €.
(110)

(Cr) (Cr)
D(PMJ,Kj,l,X",S;,Z;,KjHTJ\@,Kj,l,XT,SJT,Z;,Kj

This intermediate distribution Y(¢*) approximates the true
distribution P¢) and will be used in the sequel for bounding
purposes. Expression (110) holds because the main difference
between P(Cr) and Y(¢r) is that the key K;_; is assumed to
be uniformly distributed in Y(¢~), which is made (arbitrarily)
nearly uniform in P(¢*) with appropriate control of rate as in
(118).

Covert Analysis: We now show that this coding scheme
guarantees that Ec, [D(Pznc, ||Q5")] — 0, where C,, is
the set of all the codebooks for all blocl?s_,> (Zlond

Qz() = Z Z Qs(s)Px(x)Wz x,s(-|7, 5).

seSzeX

(111)

Then we choose Px such that it satisfies Qz = (Qy. Similar
to (89), by using the functional dependence graph depicted in
Fig. 9,

D(Pznic, Q") <2 D(Pzr k10, |1QF Qx,).  (112)

j=1
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Fig. 9. Functional dependence graph for the block-Markov encoding scheme

We now proceed to bound the RHS of (112). First, consider
the following marginal from (109),

1
Y2y 005k =D >0 siwrmy
m; k

j-1 8]
< Q" (SHWx s (271X (1m0, kjo1), 87) L s, =a(sp)}-
(113)

To bound the RHS of (112) by using Lemma 1 and the triangle
inequality we have,

Ec,||Pz; i;10, — Q% Qx|
< ECTHPZ;,KHCT - TZ}?,K”CTHI
+Ec 1Tz k10, — QY Qxk, 1.

From Lemma 1 and (110) the first term on the RHS of (114)
vanishes as r grows. We now bound the second term on the
RHS of (92) by using Lemma 1 as in (115) available at the
next page, in which

(114)

(a) follows from Jensen’s inequality;
(b) holds because 1.y < 1;
(¢) follows by defining ¥, and U as follows,

1
i=> > > swmrino

kj kj—1 my
x 2
(w7 (mykj—1).5.27) €T
g ( § (W s (212" (mj, ki), 55)
2T(R+Rk*RK)Q§’"(z;)
QS (5,2) | Wik (512" (ms ki) 1)
Q7" (=) 2r (RO QZT (27)

orRic9—r(1-€) (H(S)+1(Z|X,5))
< log or(R+Ry,) 9—r(1+€)H(Z)

TS 50,20 (@7 (Mg, kjm1), 55, 25)

_|_

27‘RK277‘(176)H(S,Z) 27T(176)H(Z|X)

+ +1

27r(1+e)H(Z) 2T(R+Rk)27r(l+e)H(Z)

(116)

1
Wz:;ZZm

i k-1 My

. 2

(2r(mjkj—1).s7.20) g7

T?}";’Sr7zr (xr(mja kj—l)a S§7 Z;)

17

§ (SHWE s (2f 12" (my, k1), 55)
2r(R+Rk—RK)Q§T(Z§)
W%S( (er |z (mj, k‘j_l)) n 1)
QT(R+Rk)Q§T(Z§)

xlog(

2 Qg (55, %))

Q7" (2])
2

< 2| X8| Z]e~ T Hx 5 2 1 log (7 n 1),
Kz

(117)

where px sz = Px sz(x,s,z) and pz =

min
(w,5,2)€(X,S,2)

mi}glPZ(z). When » — oo then ¥y — 0, by choosing

zE
Ry =H(S|Z) — ¢, Uy vanishes when r grows if,

R+ Ry > I(X; Z|9),
R+ Ry, >1(X; 2).

(118a)
(118b)

Since X and S are independent, (118b) is redundant because
of (118a).

Decoding and Error Probability Analysis: At the end of
the block j € [1:B], using its knowledge of the CSI s
of the current block and the key k;_; generated from the
previous block, the receiver finds a unique 7; such that
(ur (g, k1), 85, y5) € 74" To analyze the probability of
error, we define the following error events for j € [1: B],

&={M#M}, (119)
& = {M; # M;}, (119b)
&1y ={(X"(M;,K;1),5}) ¢ T(QsPx)}, (119¢c)

Eaj = {(X"(M;,K;-1), S1.Y]) ¢ TU(QsPx Wy |x,5) },
(119d)

gg’j = {(Xr(kj_l,mj) S

i VR
for some 7; # M;},

Y7) e Td,
(119)

where ea > €; > € > 0. The probability of error is upper
bounded as follows,

B
B
P(E) < ]P’{ U_ gj} < ;P(Sj). (120)
=
Now we bound P(€;) by using union bound
P(gj) < P(gl,j) + ]P)((c/‘ij N 5273‘) + ]P)((C/‘QCJ N 5371'). (121)

By the law of large numbers the first and second term on
RHS of (121) vanishes when r grows. According to the law
of large numbers and the packing lemma, the last term on
RHS of (121) vanishes when r grows if [37],

R<I(X;SY)=1I(X;Y|5). (122)
Furthermore, this scheme requires that,
Ry < Rx =H(S|Z) —e. (123)

The region in Theorem 3 is obtained by applying Fourier-
Motzkin to (118a), (122), and (123).

Remark 6. In the achievability proof of Theorem 2 and
Theorem 3 we transmit B messages over B blocks. We assume
that there exists a shared secret key between the transmitter
and the receiver that is used in the first block to bootstrap
the covert communication. Consequently, the shared secret key
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Ec, [D(TZ;,KJ\C,,HQ?TQKJ)] =Eg, [
(Z;’kj)

2 ZZ Ry ZQ 55)

(27 ,k;) My kj—

ZZZQ

W

Z|X, s (ZF X" (my, ki),

(”)W?& s (271X (g k1), 55) Ly =)y

18

Yz k10, (25, kj)
Yy ko (25, ki) 1 TraY:
Z Zj’KJ‘CT(Z]’ j) Og(QQZ§T(Z;)QK](k])>:|

ST) L, =a(s7))

m; k7 1 3]‘
X log

DY ZZT(mm 2 2

joxr(my.kj—1)

(25 .kj) mj kj— 8%
> X 2§

m; k7 15

2r<R+RrRx)Q§T(z;)

"W

)

Y%7 s,z (@7 (my, kjmv), 5, 25) % Bagor) [L,=a(sp)]

X 10g B ((my ;1) 2(57) [

£ ZZT(MUZ 2

(Zk)m771 aj(m./7./1)

1
Qr
x log 2r(R+Rk—RK)Q§T(Z;-) ( S "(s J)WZ|X s

+E\(mj,kj—1)l

(77L]',]Ej71)75(7n]',kj71)

> QE(

el

B\ ((my k1), 9(57) [ > >

55755 (M ky—1)#(my,kj1)

<Y XY swm 2 2

(7k)m]71 w(mJ5J1)
| ST (sHWx s (2 §|33 (mj, kj-1), s7)
* 108 (R R R0 QF (21)
+

r;és

<Y XY s 2 2

( k)m171 w(mle)

+ Eva(sr) l

§TGHW o s (27 1a" (my, ki), 57)
2r(R+Rk)Q§T(zr)

(175 ,k5—1)#(m; k1)

)

TS sr 20 (27 (M, k1), 85, 25)

2TRK Q?T

Zix.s (271 X7 (g, k1), 55)]1{1@7@(5;)}]

2T(R+Rk*RK)Q(§T(Z;)

1

T?}’C,S"‘,ZT (Ir(m]‘,k]’_l),sj,z]> X TTK
(512" (my, kj—1), s5)
> § W s ( ;XT(mj7’5j1)7S§)]

8j) % WZ\XS( zjla" (mg, kj1), J)ﬂ{ka—@(éT)}]

S EIW ks ( ;‘X’“(mw%j1>,§;>ﬂ{kj_q><§;>}p

T?E'TT’S'P’ZT (xr(m_ﬁ kj—l)v S],Zj)

575, 25)

QT(R""RR—RK)Q%T(Z;)

2.

(Sj’zj)

% log 5 (s ])Wgrxs( zjla” (mjakjfl)’sg)
or(R+Ry— RK)Q?T(;{:;)
()

_\I’1+\I/27

WL (510" )
7" (%) 2r(RHRIQZ" (27)

(115)

rate is negligible. However, to eliminate the need for this secret
key, similar to the block Markov encoding schemes in [39],
[40] we can transmit B — 1 messages over B blocks and
remove the decodability condition of the message of the first
block, this results in a slight rate loss in the first block, which
becomes asymptotically negligible as the number of blocks
B — oc.
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Converse Proof: To establish the upper bound, consider
any sequence of length-n codes for a state-dependent channel
with CSI available strictl Causally at both the transmitter and
the receiver, such that P.") < €, and D(Pz-||Q5") < § with
lim,,_,~ €, = 0. Note that the converse is consistent with the
model and does not require J to vanish.

Epsilon Rate Region: We first define a region A, for € > 0
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that expands the region defined in (8) as follows,

A2 {R>0:3Psxyz € De: R<IX;Y[S) + €},
(124a)
where
Ps x v,z :
D Ps x v,z =QsPxWy zx,s
¢ D( )<e
H(S|Z) > 1(X; Z|S) — I(X;Y|S) — 2€

(124b)

We next show that if a rate R is achievable then R € A, for
any ¢ > 0. For any ¢, > 0 and v > 0, we start by upper
bounding n R using standard techniques.

nR = H(M)

< H(M|S™) —H(M|Y™, S™) 4+ ne,
=I(M;Y™S™) + ne,

= I(M;Yi|Y*"!, 8™) + ney,
i=1

Z (ViIY'=,87) — H(Y[Y'!, 57, X0, M)] + e,

En: I(X;; Yi|S;) + nen

<n I(X;Y|S) + ne,
(d) [
< nl(X;YS) + ne

(e

=nl(X;Y]S) + ne, (125)

where

(a) follows from Fano’s inequality and since M is indepen-
dent of S™;

(b) holds because conditioning does not increase entropy and
(M, Y=t Sn. X",) — (X;,S;) — Y; forms a Markov
chain;

(c) follows from concavity of mutual information, with re-
spect to the input distribution, with the random variables
X, S,Y, and Z having the following distributions

Z Px, s

PX7S($3 S)WY,Z|X7S(y7 Z|1‘, S);
(126b)

PXS r,s) (126a)

Px syz(x,s,y,2) =

(d) follows by defining ¢ = max{e,, v}, where we choose n
large enough such that v > %,

(e) follows by defining U 20U, Y2Y,and S£S.

By following the same steps as in (77) we also have,

nR > nl(X,S; Z) — nH(S) — (127)

where the random variables X s S s f’, and Z have been defined
in (126). Substituting (65) into (127) leads to

R>1(X;Z|S) —H(S|Z) — ¢

19

=1(X; Z|S) — H(S|Z) — e, (128)

where the last equality follows by defining U LU,z 27,
and S £ S. To show that D(Pz||Qo) < ¢, note that for n
large enough,

D(P7]|Qo) = D(P4]|Qo) = (ZPZ

lz D(Pz,[|Qo) <

n

D(Pz-||QF™) <

<v<e

3\>—‘

(129)

Combining (125) and (128) shows that Ve,,v > 0, R <
max{a : a € Ac}. Therefore,

CsctrR = max{a ta € ﬂ Ae}.

e>0

(130)

Continuity at Zero: One can prove the continuity at zero
of A, by substituting min{I(U;Y) — I(U; S),L(U,V;Y) —
I(U; S|V)} with I(X;Y]S) and I(V;Z) — I(V;S) with
I(X; Z|S) — H(S|Z) in the continuity at zero proof in Ap-
pendix F and following the exact same arguments.

APPENDIX D
PROOF OF THEOREM 4

We adopt a block-Markov encoding scheme in which B
independent messages are transmitted over B channel blocks
each of length r, such that n = rB. The warden’s observation
is Z" = (Z7,...,Z%), the distribution induced at the output
of the warden is Pzn, the target output distribution is Qf)@",
and Equation (81), describing the distance between the two
distributions, continues to hold. The random code generation
is as follows.

Fix Py s(uls), Pyis(vls), z(u,
that, Pz = Qo.

Codebook Generation for Keys: For each block j ¢
[1:B]. let ¢ & {V"(a))}, Jcar Where A £ 12277,
be a random codebook c0n51st1ng of independent random
sequences each generated according to PS", where Py =
> scs Qs(s)Pyis(v]s). We denote a realization of CY) by
¢ % {vr(aj)}ajeA. Partition the set of indices a; €
[1:27F] into bins B(t), t € [1:2"F7] by using function
¢ : V" (a;j) + [1:2757] through random binning by choosing
the value of ¢(v"(a;)) independently and uniformly at random
for every v"(a;) € V". For each block j € [1:B], create a
function & : Vr(aj) + [1:272x] through random binning by
choosing the value of ®(v"(a;)) independently and uniformly
at random for every v"(a;) € V. The key k; = ®(v"(a;))
obtained in block j € [1: B] from the description of the CSI
sequence v"(a;) is used to assist the encoder in block j + 2.

Codebook Generation for Messages: For
each  block j € [1:B], let C” =
{Ur(mjvta 17k3 2,4 )}(m7 b1 k—2, 4 ) EMXT XK X L2
where M £ [1:2"7], T = [1 QTRf]], K £ [1:278],
and £ 2 [1:2°%], be a random codebook consisting
of independent random sequences each generated

s), and €; > €3 > 0 such
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(€) L4 X . ~ro~T T T . ) .
FMJ-,T]-,I,Kj,z,Lj,Aj,UT,VT,S;‘,Z_;‘,Kj,l,Tj,Kj (my,tj—1,kj—2,4;,a;,a anaSij’kalvtwa)
_ o—r(R+R+RL+R'+R)7 _ B r riAT ST
=2 Uar—ur(my ty—1ky—2,6)y Uor=vm(ay)y P (85107, 07)
Qr ri~r r\o—rRg B _
X Wi,s(Z5107,85) 27 Lig,=o am) L gy =aom)) (131)
Qr T (1t ) N o (.
Fl5, aslsT mi b1 ko) Psuv (s5lu”(my, tj-1, kj-2,€5), 0" (a;)) (132)
3o @g15g, Ty bj—15 hj—2) = T / Y
Yo X Py (sflun(my b1, ke, £5), 07 (a))
@;E[[l 12TR ]]a;.éﬂl:Q"’R]]
(€r) T ~T o ~T T
TMj’T.f—l»K.j—2=S§’Lj’A.f-,U"'vV""ZfﬁKj—th7K.7‘(mj’tj_l’kj_Q’sj’Ej’aj’u 0 25 k-t Kj)
2 9—r(R+R:+R QT (T r
i2 ( t k)QS (Sj)f(€j7aj|sj7mj’tj_17kj_Q)]]‘{ﬁzT:ur(mj7tj—1,kj727éj)}]]‘{i3r:’ur(aj)}
r ri~r r\o—rRg B _
X Wain,s(Z 10" s5)27 Ly o 5y Ly =0 om)) - (133)

according to Pg’r. We denote a realization of C’Q(T) by

¢ & {UT(mj’tﬂ'*lvkﬂ'*%gﬂ')}(mj,tj,l,kj,z,ej)eMxTxmL'
Let, C, = {C\”, 57} and €, = {c{"”,c5”}. The indices
(mj,tj—1,kj—2,¢;) can be viewed as a three layer binning.
We define an ideal PMF for codebook C, as in (131) at the
top of this page, as an approximate distribution to facilitate
the analysis, in (131) Wzy,s is the marginal distribution
WZ|U,S = erX ]l{w:w(u,s)}WZ\X,S and PS|U,V is defined
as follows

s Psuv(s,u,v)
o PU,V(U, 7})
_ Qs(s)Py|s(uls)Pys(v]s)
Y ses @s(8)Puys(uls)Pys(v]s)”

Encoding: We assume that the transmitter and the receiver
have access to shared secret keys k_; and kg for the first two
blocks, but after the first two blocks they use the key that they
generate from the CSI.

In the first block, to send the message m; according to
k_1, the encoder generates the index ¢y uniformly at random
and then generates the indices ¢; and a; according to the
distribution defined in (132) at the top of this page with j = 1,
Pgy,v in (132) is defined in (134). Based on these indices,
the encoder computes u"(mgy,to,k—1,¢1) and v"(a;) and
transmits codeword z", where z; = x(u;(m1,to, k-1, 1), si).
Note that, the index ¢y does not convey any useful information.
Simultaneously, it uses the description of the CSI v"(a1) to
generate a reconciliation index ¢, and a key k; to be used in
the second and the third blocks, respectively.

In the second block, to send the message mo and rec-
onciliation index ¢; according to kg, the encoder generates
the indices /5 and as according to the likelihood encoder
described in (132) with 5 = 2. Based on these indices, the
encoder computes u” (ma, t1, ko, ¢2) and v" (a2) and transmits
codeword z", where x; = x(u;(ma,t1, ko, 1), s;). Simulta-
neously, it uses the description of the CSI v"(as) to generate
a reconciliation index ¢, and a key k5 to be used in the third
and the fourth block, respectively.

Psu,v (slu,v)

(134)

In block j € [3:B], to send the message m; and the
reconciliation index ¢;_;, generated in the previous block,
according to the key k;_o, generated in the block j — 2,
and the CSI of the current block, the encoder generates
indices ¢; and a; from the bin (m;,t;_1,k;—2) according
to the likelihood encoder described in (132). The encoder
then transmits the codeword z”, where each coordinate of
the transmitted signal is a function of the CSI, as well as
the corresponding sample of the transmitter’s codeword wu;,
ie., T; = x(ui(mj,tj,l,kj,g,fj),Si). Simultaneously, the
encoder uses the description of the CSI v"(a;) to generate
a reconciliation index ¢; and a key k; to be used in the block
7+ 1 and the block j + 2, respectively. The encoding scheme
in block j € [3: B] is depicted in Fig. 10.

Considering (133) at the top of this page, for a given
codebook C,., the induced joint distribution over the codebook
(ie., P satisfies

p(PE")
M]',ijl,Kjfg,S;',Lj,Aj,U7‘,VT,Z.;,Kj71,Tj,Kj
Cr)
e . r <e
H I\/I]’,ijl,Kjfg,Sj,L]‘,A]‘,UT,VT,ZJ,Kjfl,Tj,Kj =

(135)

This intermediate distribution Y(¢*) approximates the true
distribution P(¢) and will be used in the sequel for bounding
purposes. Expression (135) holds because the main difference
between P(€) and T(€) is that the keys K;_o, K;_1 and
the reconciliation index T;_; are assumed to be uniformly
distributed in Y(¢"), which are made (arbitrarily) nearly uni-
form in P(Cr) with appropriate control of rate as in (144) and
(150).

Covert Analysis: We now show
Ec, [D(Pzc, [|Q3"™)] — 0, where C,, is the set of
all the codebooks for all blocks and,

Qz() =YY > > Pu(u)Pv(v)Psj,v(slu,v)

ueU veY seS zeX

Xe ey} VzixsCles), (136)
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Fig. 10. Proposed coding scheme for the dual use of CSI

such that >, > oy, Pu(u)Py (v)Psjv(-|lu,v) = Qs(-).
Then we choose Py, Py, Psjy,v, and x(u,s) such that it
satisfies Q7 = Q. For every j € [2: B],

Iz

VR

B,r T,
Zj+1) g H(ZjaKj—lajjj')Kjv

(a) r
=17} Kj—1, T}, K;),

B,
Z)

(137)

where (a) holds because Z] — (K1, T}, K;) — Zﬁr’; forms

a Markov chain, as seen in the functional dependence graph
depicted in Fig. 11. Also,

T Cr
W(Z}; Kj1,T;, K;) = D(Pé;}(

(®) C T
< ]D)(Pé;t}{jfl’Tj’KjHQ? QKj—lQTjQK]‘)7

where @ Kjle K; QTj is the uniform distribution over
[1:278x] x [1:278x] x [1:27F7] and (b) follows from

C Cr Cr
D(PE i ISV PIEY, )

e, i,
= ]I))(Pé]q}(j,l,Tj,KjHQ? QKj,lQTjQKj)
Cr r Cr
_D(Pé;)HQ% ) _D(Pf((jjl,Tj,Kj||QKJ'71QTJ'QKJ)~
(139)

Therefore, from the expansion in (81), by substituting Qg with
Qz, and also from (138) and (139),

p(PEleg")

j_1,Tj,Kj||PZ;PKj_1,Tj7Kj)

(138)

B
Cr r
<23 (P 1 i, IRF @, Qn,Qx, ). (140)
j=1

To bound the RHS of (140) by using Lemma 1 and the triangle
inequality we have,
Ec,||Pzr 5, 11,5500, — Q%7 QK1 Qr,Qx; |1
S Ec, ||Pzr ;1 156500, — Vzr w0 my k51001t
+Ee, |z k0151510, — Q% Qk,_,Qr,Qxk, |1
S ECT||PZ}7K.7‘—1>TJ‘7KJ‘|CT - TZ}ZKj—lvijKjICTHI

+Eo, Yz K, 115,100, = Vzr o, 15510011
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+Ee, |z k0151510, — Q%" Qx,_,Qr,Qxk, 1.
' (141)
From (135) and the monotonicity of KL-divergence the first
term on the RHS of (141) vanishes when r grows. To bound
the second term on the RHS of (141) for a fixed codebook C,.,
we have (142) at the top of the next page, in which (142b)
follows from (132). Hence,

Ec, 1T zy ;115,510 = Vzr w01y k5100 |1t

< Ec,

Y0, Ty K2, ST, Ly A U V7 27 K1 Ty K|

- FM:‘vTj—l7Kj—27S§,Lj»ApUT,VﬁZLKj—thijICT||1
CEe,|IT jo. - T ||

Crlld My 50 150,87 1C M;,T;_1,K;_2,87|C, |1
Q)

Ec,||Q§" - FS_;:|Mj:1,Tj,1:1,Kj,2:1,CT||1, (143)

where (a) follows from (142b)-(142h) and (b) follows from the
symmetry of the codebook construction with respect to M;,
Tj_1,and K;_5 and (142a). Based on [41] or [42, Theorem 2]
the RHS of (143) vanishes if

R >1(U;S), (144a)
R>1(V;8), (144b)
R +R>1(U,V;S). (144c)

We now proceed to bound the third term on the RHS of (141).
First, consider the following marginal from (131),

FZ_;'ijflﬁTjsKj‘Cr(Z;?kj—latjakj)
— 1
=22 2.2 Smhnni
mj tji—1kj_2 £; aj s
X PGy (51U (my tj1,kj—2,45), V" (a;))
X Wit s (251U (my, tj-1, kj-2,£5), 55)

A
J

X Lty =o(vr(a)y Lik;=a(vr(a)} (145)

1
= Z Z Z Z Z or(R+Ri+2R,+R'+R)

my ti—1kjo £ a;

X W v (5107 (my,tj—1, kj—a,45), V" (a;))
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Fig. 11. Functional dependence graph for the block-Markov encoding scheme
Cr —r + _ ~(Cr
Dy, = 2 TR — () (1422)
(Cr) — T — (CT)
Y Tj_1,K; 2,87 — f,a5]s5,my, i1, kj—2) = TL%AJ_|M]_7T_7__1,K_7,_275;, (142b)
(Cr) _ (Cr)
FUT‘M]'7T]'71,Kj72,S;7Lj,Aj _Il{’a‘r:uT(mj’tj*hk:j*Qfej)} TUT‘M]7TJ71,KJ 2,S Lj,Aj’ (142C)
(Cr) _ ()
P V7IM;, T 1, K; 2,87, L, A;,U" *]l{ﬂr=vr(aj)} *TV7~|MJ-,TJ-_1, Kj—2,87,L;,A;,U" (142d)
(€) (Cr)
FZJT|M Tjo1,K;j-2,57,Lj,A; .U V"™ = WZ\US_TZT\ Tj_1,K;-2,55,L;,A; .U, V" (142e)
(Ccr) __ o—TR (Cr)
PKjflle,ijl, ]72,5 L A ,ur.vr, Z7 2 g T J,l‘ 71, ]7273 L A ur,vr, ZT’ (142f)
(@) —1 <C ) (142g)
Tj|M;,Tj1,K;_2,87,L;,A;,Un V27 Koy~ ~Aty=o (W)} = 15 |M;, Ty 1, K, 2,87, L, A;,Um, V" 2T K; 1 g
(Cr) _ (Cr)
I‘Kj|Mj,Tj,1, Kj_2,87,L;,A;, U, V7,25 K;_1,T; = Lik;=a ()} _TKJ-|MJ-,TJ-,1, K 2,87,L;,A;,U", V7,27 K; 1,T;’ (142h)
2T(RT+RK) 2—7‘(1—6)H(Z|V)
X Lity=o(vr(any Lk =evr(a))s (146) 4 .
TR 27r(1+e)H(Z)
where Wz ju v (2|u, v) = 3= s Psjuv (slu, v) Wz, s(zlu, 5). 9—r(l—e)H(Z|U)
To bgund bognd the: th.ird term on .th.e RHS .of (141), by + S RT R T R B 5 9 r(11OH(Z) +1 (148)
using Pinsker’s inequality in Lemma 1 it is sufficient to bound 1
]ECT [D(FZ7 Kj_1,T, ®TQKJ-71QT]' QKj )] as in (147) Uy = 0
available at the next page, in which 2r (Rt Rt 2Ry + R+ Rt R+ Ric) (kj_lz;j k) %;t]z:l
(a) follows from Jensen’s inequality;
(b) holds because 1.y < 1; Zzézg A KZ i R
(c) follows by defining ¥; and U5 as follows, b o (urmy ty—1.ks—2,65),07(a5),27) €7
X FUT vr. zr (ur(mj,tj_l, kj_Q,éj),vT(aj), Z;)
1 WS o (25" (my, tj—1, kj—2, £5),v" (a;))
9r(R+Ri+2Ry,+R +R+Rr+RK) P R el vt x log QT(R+Rt+Rk+R/+R,RT,RK)Q§T(Z;)
ZZZ > WEk (510" (ay))
kj—z £ (ur (my ti—1,kj—2,65),07 (az),25) €T Qr(RfRTfRK)Qgr(Z;)
X FUT v, Zr(u (mjvtj—lak;j—%gj)?v (CLj),Z;) WZ|U( ;|ur(mj,tj_1,kj_2,€j)) n 1
‘1 WZ|UV( ;|ur(mj,tj_1,k:j_g,éj),vr(aj)) 2T(R+Rt+Rk+RI)Q§T(Z§)
08 2r(R+Rt+Rk+R’+R—RT—RK)Q<§T(Z77) R 2
o ) <V ||U||Z|e v 2 log (— + 1). (149)
Wz|v( j|v (aj)) Wz

2r(A-Rr—Ri)QZr (21)

Wi (25 lu"(my, ti—1, kj—2, ¢5))
2r(R+Rt+Rk+R’)Q§T(Z;)

or(Rr+Rk) y 9—r(1-e)H(Z|U,V)

<log =
Ir(R+Ri+Ri+R'+R) w 9—r(1+e)H(Z)

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee. 0r§ ;)ubhcanons standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on December 30,2021 at

In (149 = min
( ) bvu,z (v,u,2)e(V,U,Z)

mi}zl Pyz(z). When r — oo then U5 — 0 and ¥y goes to zero
1S

PV,U,Z(U,U,Z) and Hz =

when r grows if

R+ R+ Ry+R +R— Ry — Rg >1(U,V; Z),
R— Ry — Rk >1(V; 2),

(150a)
(150b)
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]Ec,,,[D(Fz;,Kj,l,Tj,Kﬂcr||Q?TQKJ,1QTjQKj)]
Lzr iy oa,my0500, (25 kj—1, 15, kj)
:ECT{ FZT,K]-, T;,K;|Cy (Z ki_q1,t; ,k‘ )log( A ):|
<Z> o Y 7 (5)Qu, . (kj-)Qr, (1) R, (k)
— Qr : g
~ Ec. S 33 > R+Rt+sz+Rf+R) Wy (U (my,ty 1, k2, 45), V' (ay))
(Z ko1t ki) mg ti—1kj_o £ aj
X Lits=o(vran Lik=e(vria;))} o
XX X Y WEL v (Ut k2, £), V(@) Lt =0 (vrasy Lk, =o(vr (a;))
mj t]- aj
x log b b R+Ri+Ry+R'+R—Rr—R ®r
or(R+Ri+Rp+R' +R—Rp— K)QZ (Z;)
(a)
Qr L f. . . .
< Z ZZZZZQT R+Rt+2Rk+R’+R) Z Lo, v, Zr( (m‘ptjflak‘]72;€j>7vr(a])72§.)
(z K1t k) my ti—1 ko £ aj (ur,om)
X Eo(ur(ay)) [1{tj:o<w<aj>>}] X Eaor (a;) [Liry=a(07(a))}]
x log E !
0 s st Kosm L h
SR ) | 2 R R R R R R0 QT ()
XD DD DD W (IU7 gty kyma, £5), V(@) Lty =o v L iy =e(ve(as)))
g f ik §; G
(b) 1 r r
= Z Z Z Z ZZ or( (R+R¢+2Ry+R'+R+Rr+RK) Z I—‘UT vr, ZT( (mj7tj—1akj—27€j)vv (aj)7zj)
(zwa,l,t Jkj) my ti—1 ko £ aj (ur,om)
1 T s T
x log r(R+Re+ Ryt R+ R—Rr—Ri) Q7 (27) WZIUV( Zlu" (my 1, ky—2, ), 0" (a5)
Z \%j
F B\ 51k 0.t)) > Wi v (251U (g, -1, ke, ), 0" (ay)
(g 1,k 2, 05)F(my b5 —1,kj—2,£;)
®r T, r/~
+ B0y 0 (0r (@) ora)) | D Wiy (FFlul (my -1 ki—0,65), V7 (@3)) Lty =o(ve(a Liky=a(vr(a;))
ajFa;
+E\(mj7tj71,kj—2)‘€jyaj)7 Z Z WZlUV( T|U (mj7t] lak] 2a€) V'(a ))
\(e(v7(a})), @ (v (a;))) (g1 kg ,85)#(m b1,k _2,0;) 575
X Lit;=o(vr@ Lik=e(vr(;))y
1 ®r r r
S Z ZZZZZ2T R+Rf+2Rk+R’+R+RT+RK) Z F v, Zr( (mjvtjflvkj727€j);v (aj)wZ])
(zJ,k],l,t,,k )y my ti—1kj_2 £; aj (um,vm)
Lo Wiy (25l (my tio1, k-2, €5), 0" ()
& 2r(R+Rt+Rk+R’+I~%7RT7RK)Q%T(Zr)
+ Z WZ|V( ;‘|vr(aj)) n Z WZ|U( ;|ur(mj,tj,1,kj,2,€j))
o ~ 2r(R+Rt+Rk+R’+R7RT7RK)Q®T(ZT.') : 2r(R+Rt+Rk+R'+R)Q®r(Z7;)
(Mg tj—1,k5—2,65)F(my,tj—1,kj—2,¢;5) z a;#a; Z i
1
Kr ot . . T, r
S Z ZZ Z ZZ QT(R+R1+ZRk+R’+R+RT+RK) Z Ly VT Z’( (mﬂtj—l?kJ—Qvg])vU (a])vzj)
(Z]JCJ—l;tJ;k? ) mj ti—1kj_o £; aj u”,um)
« log WZ\UV( 2l (my, -1, kj—2,45),0" (a;)) WZ|V( ;|UT(CLJ’)) WZ|U< Zlu (my, -1, kj—2,4;)) 1
ZT(RJFR#RHR,JFR_RT_RK)Q%@r(Z;) QT(R—RT—RK)Qgr(Z;) 2r (R+R1+Rk+R/)Q§T(Z;)
g+, a4
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R+ R+ R+ R >1(U;Z). (150c)

Decoding and Error Probability Analysis: At the end of
the block j € [1:B], using its knowledge of the key k;_o
generated from the block j — 2, the receiver finds a unique
triple (mj7 1?];1, gj) such that (ur(mj, tAjfl, kjfg,gj), y;) S
7;(T). To bound the probability of error at the encoder and the
decoder, we use the following lemma.

Lemma 2 (Typical With High Probability). If (R', R) € RZ
satisfies (144), then for any (mj,t;_1,kj—2) € (M, T,K)
and € > 0, we have

Ec,Pp ((U”(mj, ti—1,kj2,L;),V'(4;),57) ¢ 7Z(T)|Cr>

—0, (151)

r—00
where P is the induced distribution over the codebook defined
in (135).

The proof of Lemma 2 is given in Appendix E.
To analyze the probability of error, we define the following
error events for j € [1: B],

EE{M# M}, (152a)
& & {M; # M}, (152b)

E1; 2 {(UT(M;,Tj-1, Kj—2,Lj), S}) ¢ T\ (U,S)},
(152¢)

Eay 2 {(UT(M;,Tj—1, Kj—2,L;),Y]) ¢ TS (U Y)},
(152d)

€5 2 {(U" (M}, Tjo1, K2, L), Y]) € T (UY)
for some m; # M; and ¢; € [1:2"% ]}, (152e)

where €2 > €1 > € > 0. The probability of error is upper
bounded as follows,

B
B
P(E) = p{ U. gj} < Zl]f»(gj). (153)
i=
Now we bound P(£;) by using union bound,
P(&;) S P(E1;) +P(ET; NE2) +P(E5 ;N Es5).  (154)

According to Lemma 2 the first term on the RHS of (154)
vanishes when r grows, and by the law of large numbers the
second term on the RHS of (154) vanishes when r grows.
Also, according to the law of large numbers and the packing
lemma, the last term on the RHS of (154) vanishes when r
grows if [37],

R+ R, + R <I(U;Y). (155)

We now analyze the probability of error at the encoder and
the decoder for key generation. Let (A;_1,T;_1) denote the
chosen indices at the encoder and flj_l and Tj_l be the
estimates of the indices A;_; and T;_; at the decoder. At
the end of block j, by decoding U7, the decoder knows Tj_l.
To find A;_, we define the error event,

5/:{(‘/}31(4’—1), i1 }_1,3’{_1) ¢7;<”}. (156)

24
Also, consider the error events,
& ={(viilas0),85-) ¢ TS
for all a;_; € [1: 2"%}, (157a)

&= {(fol("lﬂ‘*l)’sﬂnU;’!l,Yj’;l) ¢ 72('“’}, (157b)
€= {(vafl(a‘jfl)v Uﬂpr,l) e 7"

for some a@;_; € B(Tj_l), a1 # Aj_l}, (157¢)
where € > ¢ > 0. By the union bound we have,
P(E") < P(&)) + P& NELY) + P(EY). (158)

According to Lemma 2 the first term on the RHS of (158)
vanishes when r grows if we have (144). Following the steps
in [37, Sec. 11.3.1], the last two terms on the RHS of (158)
go to zero when 7 grows if,

R>1(V;8),
R—R, <I(V;U,Y).

(159a)
(159b)

The region in Theorem 4 is derived by remarking that the
scheme requires Rx + Rr > Ry + R; and applying Fourier-
Motzkin to (144) and (150), (155), and (159).

APPENDIX E
PROOF OF LEMMA 2

For a fix ¢ > 0, consider the PMF I' defined in
(131). For the random experiment described by I'; since
Ur(mj'7tj_1,kj_2,Lj) ~ Pg?r, for every (mj,tj_l,kj_g) S
M x T x K) and V"(A;) ~ PZ", for every a; € A), and
S7 is derived by passing (U™ (mj, tj—1,kj—2,L;),V"(A;))
through the DMC PS&V by the weak law of large numbers
we have

ECTPF((UT(mjatjfh ki—2,L;),V"(4;),S]) ¢ 7;(")|C,)

— 0. (160)

r—00

We also have

ECTHPUT,VT,S_;\C,,, —Lyryrsre,

< Ec,

PijTj—lﬁKj—%S;vLijj1UT»VT7Z;aKj—1>Tj7Kj|CT

- FA{j,Tj717Kj72vs;]"‘7Lj7Aj7UT7VT72_;‘7Kj*11Tj1Kj‘C7‘||1 r—00 0,
(161)

where the RHS of (161) vanishes when r grows because
of (143). We now define g, : U" x V" X SJT — R as

gr(ur v",sT) & IL{(U,"UT}S;NT;T)}. We now have,

ECTPP((U’”(mwt]‘—h kj—2,L;),
=Ec,Ep [gr(Ur(mjv tj-1,kj-2,L;),
< Eg, Er [gr(Ur(mMjfl’ kj—2,L;), V"(4;), S}")ICT}
B, [Ep [gr(U7 (m5, i1, k52, L), VT (4,), S7IC
—Er [gT(UT(mj,tj,l,kj,Q,Lj),VT(Aj),S;NCT]

V(4)),57) ¢ TIC)
V7 (45), S)IC]
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(@)

< Ec,Er|g-(U"(my,tj-1,kj—2,L;), V" (4;),S])|C

+Ec, [|Purvrsric, = Turvesric, (162)

where (a) follows from [43, Property 1] for g, being bounded
by 1. From (160) and (161) the RHS of (162) vanishes when
T ZrOWS.

APPENDIX F
PROOF OF THEOREM 6

Consider any sequence of length-n codes for a state-
dependent channel with CSI available non-causally only at
the transmitter such that P\ < e, D(Pz:||QF™) < 6, and
Rk /n < A, with lim,_, €, = lim, . A, = 0. Note that
the converse is consistent with the model and does not require
0 to vanish. The following lemma, a version of which with
variational distance can be found in [33, Lemma VI1.3], will
prove useful.

Lemma 3. If D(Pz:||QS") < 6, then > 1(Zi; Z71) < 6§
and Y7 1(Zi; ZP ) < 6. In addition, if T € [1:n] is an
independent variable uniformly distributed, then 1(T; Z7) <

A
v, where v = %.

Note that Lemma 3 is slightly different from [33, Lemma
VI.3], as the upper bounds are tighter and do not include a
factor of n. This is a consequence of using a constraint based
on relative entropy instead of total variation. This is crucial in
what follows, as we do no necessarily require 6 — 0.

Proof. First note that,

n n

Zu(zi; 7Y = [H(Z)

=1

=2 M) -1z
DD WACITABES SLAE

:_ZZPZ )log Py, (2 +ZZPZ ) log Qo(z)

—H(Z,|Z2"71)]

10gPZ logPZn( )

- ZZPZ )log Qo(2) + szn )log Pzn (2")
= —ZD Pyz,1|Qo) ZPZn )log QG (=")
+ ZPZ” )log Pzn (2")
< D(P «|1Q5™)
< 0.
Similarly, one can prove > | I(Z;; Z}", ;) < 6. Next,

:fz ZPZ ) log — ZPZ
M IAT

= H(ZT) - (ZT|T)

)log Pz, (2)

25
_ _Z szz )log — ZPZ,
+Z ZPZ )1log Qo(z)
B % 3" Pz, (2)log Qo(z)
z =1
+ % ; zszzi (2) log Pz, (2)
:—D<iZPZi Q0>+ )
i=1
1 n
< E;D( )
< TB(P21Q5™)
. é (163)
n
O

Epsilon Rate Region: We first define a region A, for € > 0
that expands the region defined in (27) as follows,
R>0: ElPSUVXYZ € D, such that
R <min{I(U;Y) - 1(U;S),1(U,V;Y) ,
~L(U;S|V)} + €

A&

(164a)
where
Psuv.xy,z:

Psuvvxyz= QSPUV|S]1{X:X(U 9}

xWy, z1x,s
D (PI|Qo) < ¢
min {I(U;Y) — I(U; S),
(U, V;Y)—1LU;S|V)} >
Wv;z)-1v;Ss) —
ma{ ], V]} < [¥] +3

S
>

(164b)

We next show that if a rate R is achievable then R € A, for
any € > 0. For any ¢, > 0 and v > 0, we start by upper
bounding nR using standard techniques,

nR = H(M)
(@)
<I(M;Y™) + ne,

— ZH(M;mW—l) + ney,

i=1
<Y UM
i=1

= > (LMY 03 Y) — I(SH s YiM,Y )] 4 ey

7Y1;_1; sz) + nep

O™ [0, YL, 873 Vi) -
=1

LYY 8i|M, SP )] + ney,

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee. 0r§fubhcat10ns standards/ll__gubhcatlons/n hts/index.html for more information.
Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on December 30,2021 at

11:58 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3135291, IEEE

Transactions on Information Theory

n
(:C)Z[H(M,Yi LSEY) = (MY ST 5 80)] + ey,

(Ui;SZ')] + ne,
n 1 . .
=ny_ —[I(Us YT = i) = (U3 ST = i)] + nen

=) [I(Us Yi|T = i) = I(Us; Si|T = 0)] + nen

Ur; Yr|T) — I(Ur; S7|T)] + ne,

Ur; YT|T) — H(UT, T, ST)} + ney
Uy, T;Yr) = I(Ur, T; St)| + ney,

= n[l(U;Y) —L(U; S)] + ne,

—1(U;S)] + ne (165)

) follows from Fano’s inequality for n large enough;
) follows from Csiszar-Korner sum identity [44, Lemma 7];
) follows since S; is independent of (M, S, ;);
d) follows by defining U; £ (M,Y*~!, S ,);
) follows from the independence of St and T';
) follows by defining U £ Up,T),Y £ Yy, and S £ Sp;
) follows by defining ¢ 2 max{e,,\,,v}, where we
choose n large enough such that v > %.

‘We also have,

nR =H(M)
=H(M|K)
)
<I(M;Y"K) + ne,

=Y IM:;Y;|[Y'"™!, K) + ne,

=1

I(M,K, Y™, Z71Y;) + ne,

<M§

&
Il
-

(M, K, Y, 271 S5 Y))

I
-
I M:
I

|
=

(SI Vi M K, Y 27N + ney

=
Mﬁ

s
Il
-

(M, K, Y, 271 S Y))
— 1YL 8|M, K, SP L, 2] + ney,

[ (Ula‘/%Y) (UlaS’Ll‘/L)] +’I’L€n

=
'M:

s
Il
-

n

[H(UT, VT; YT|T = ’L)

I
3
3=

i=1
—(Up; S7|Vp, T = z)] + ney

:nZP(T:

i=1

— ]I(UT; ST|VT,T

Z) [H(UT, VT; YT|T = Z)

=1i)| + ne,

26
= n[]I(UT, VT,YT|T) - ]I(UT,ST“/YT7 )] + ney,
< [I(Ur, Vr,T; Yr) = W(Ur; St |V, T)| + nep
D o1, V;Y) - I SV)] + nen
(e)
<n[I(U,V;Y) = L(U; S|V)] + ne, (166)

where

(a) follows from Fano’s inequality for n large enough and
the fact that conditioning does not increase entropys;

(b) follows from Csiszar-Koérner sum identity [44, Lemma 7];
(c) follows by defining U; £ (M,Y*"', 57 ) and V; £
(Ma K» Ziilvszn-i-l);

(d) follows by defining U £

and S £ Sp:
(e) follows from definition € £ max{e,, \,, V}.

(UT7T)’ Vv é (VT7T)7 Y é YT7

Next, we lower bound nR as follows,

nR+ Rg > H(M, K)
> H(M K;Z")

= Z (M, K; Z;|Z™Y)
=Y [I(M,K,S!; 2|27 ") = 1(SP s Zi| M, K, 27 1)]
:Z []I(MaKﬂSZl+1;Zi|Zi_1) (Zl b ;S |M K, Sz+1)]

®
ZZ[H(M K, er17ZZ b Z)_H(Zl Y S|M K Z+1)] -9

— (M, K,SP, Z 8] —

DS [0V ) — 1(Vis )] -
= ni%[H(VT,ZT\T = Z) —H(VT;ST|T = Z)] — 5

=n ]P(T— W) [I(Vr; Z|T = i) = W(Vp; Sp|T =4)] — 6

_n[]l Vi Zp|T) — 1(Vp; S7|T)] —

S

n[ﬂ Vr; Zp|T) = 1(Vp, T; St)] — 6

(f)

Z n[]I VT,T ZT 7H(VT,T ST)] — 20

9 v I(V;S)] - 20 (167)
where

S

) follows from Csiszar-Korner sum identity [44, Lemma 7],
b) follows from Lemma 3;

) follows since S; is independent of (M, K, S}, ;);

) follows by defining V; £ (M, K, S?, |, Z71);

) follows from the independence of St and T’
)
)

$)

e
f
)

follows from Lemma 3;
A
= (VTa

/\A/\a,—\,—\/—\

follows by defining V' ), 2 £ Zr, and S £ Syp.
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For any v > 0, choosing n large enough ensures that,

R+ ﬁ >1L(V;2)-1L(V;S) —2v. (168)
Therefore,
R>LV;Z)-1(V; S)—21/—%
>I(V;2)-1(V;8) —2v =\,
>LV;2)-1L(V;S) — (169)

where the last inequality follows since € = max{e,, An, v}
To show that D(Py||Qo) < ¢, note that for n large enough

)

1 & 1 )
,Z D(Pz:||Q%") < = < v <e
n P n

n

D(Pz||Qo) = D(Pz,[|Qo) = ( ZPZ

(170)

Combining (165), (166), (169), and (170) shows that
Veén, An, v > 0, R < max{a : a € A.}. Therefore,

Rgmax{a:ae ﬂAe}. 71)

e>0

Continuity at Zero: Our objective is to show that the
capacity region is included in the region defined in (27). The
challenge, first highlighted in [33, Section VL.D], is that our
converse arguments only establish that the capacity region is
included in the region [, ,.Ac where A, is defined in (164).
In the sequel, the continuity of the slackness in the mutual
information inequality (164b) will assume some importance,
hence for ease of expression we define and refer to g(e) = 3e.
As € vanishes, both the region A, and the set of distributions
D, shrink, so that proving the continuity at ¢ = 0 is not
completely straightforward. We carefully lay out the arguments
leading to the result in a series of lemmas.

Lemma 4. For all € > 0, the set D, is closed and bounded,
hence compact.

Proof. We need to check that every constraint defining the
set D, defines a closed set of distributions, so that D, is an
intersection of closed sets and remains closed. First note that:

« the function that outputs the marginal Pz of Py v,s x,v,z
is continuous in Pyz;
e Qo has support Z so that the divergence D(Py || Qo) is
a continuous function of Pz;
« mutual information, viewed as a function of the joint dis-
tribution of the random variables involved, is continuous;
e all the constraints in the definition of D, are non-strict
inequalities.
Consequently, the pre-images of the closed sets defined by the
inequalities are pre-images of closed sets through continuous
functions, hence closed. D, is bounded because it is a subset
of the probability simplex, hence it is compact. O

Lemma 5. For all € > 0, the set A, is non-empty, closed, and
bounded.

27

Proof. The set of Pareto optimal points in A, is the image of
D, through a continuous function. Since D, is compact, the
set of Pareto optimal points is compact. In R, compact sets are
closed, hence the set of Pareto optimal points is closed and A,
itself is closed by definition. A, is also non-empty because it
contains 0. 4. is bounded because we can upper bound R by
2log |X| +e. O

Now define the set

R>0:3Psyyv.x,v,z € Dc such that
R <min{I(U;Y) - 1(U;S),1(U,V;Y)
~I(U;5|V)}

ra
AL =

(172)

Note that A, differs from A in the absence of e in the rate
constraint.

Lemma 6. For all € > 0, the set A. is closed and bounded.
Proof. The proof is similar to the proof of Lemma 5. O

Lemma 7.

(173)

A=

e>0

A

e>0

Proof. First, note that ﬂ€>0 A’ is closed, since it is an
intersection of closed sets, and bounded, since the sets A’
are nested and bounded. Hence, (. A, is compact. Con-
sequently, there exists a maximal element, T. Consider any
r € [0,77]. Then Ye > 0 3Pyvsxyz € De 7 <
rT < min{l(U;Y) — I(U; 9),1(U,V;Y) — I(U; S|V)} and
7€ Nesg At

We now want to show that (). AL = [).5oAc. The
hard part is showing that, ()., Ac C [).oq-A. since the
other direction follows by the definition of A, and A.. We
proceed by contradiction. Assume 3r* € (1., .Ac such that

¢ NesoA.L. It must be that rf < r* for otherwise
7" € [0 AL as noted earlier.

Set 7o £ £(r' 4 r*), which is such that 7o > r' and
therefore ro ¢ [).oA.. Set € > 0 such that Ve < ¢
gle) < % which exists by the assumptions on g. As-
sume that Ve € (0;¢'] 7o € Al Then, 79 € ()., A
which contradicts our assumption. Hence, there exists 0 <
€ < € such that 0 ¢ ‘Aéo Hence VPU,V,S,X,Y,Z S Deo
ro > min{l(U;Y) —I(U; S),I(U,V;Y) — L(U; S|V)}. Then
VPu,v,s.x,v,z € De,

ro > min{l(U;Y) —I(U; S),I(U,V;Y) - L(U; S|V)}

(174)
I L min{I(U;Y) — L(U; S),
I(U,V;Y) — [(U; S|V)} (175)
T* ;TT LT . ™ min{I(U:Y) - (U S),
WU, V:Y) —1(U; S|V)} + (176)
= r* > min{I(U;Y) — I(U; S),
(U, V;Y) =LU;S|V)} +g(e0)  (A77)
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Since 7* € (\oAe, we have Ve > 0 3Pyvsxyv,z €
D. such that * < min{I(U;Y) — I(U;S),(U,V;Y) —
I(U; S|V)} + g(€). Hence, there is a contradiction, and we
must have 7* € (., AL O

To conclude, one can prove that (1 ., AL = Ao, following
the exact same arguments as in [33, Section IV.C].

APPENDIX G
PROOF OF THEOREM 7

We adopt a block-Markov encoding scheme in which B
independent messages are transmitted over B channel blocks
each of length r, such that n = rB. The warden’s observation
is Z™ = (Z7,...,Z}), the distribution induced at the output
of the warden is Pyz», the target output distribution is ng’",
and Equation (81), describing the distance between the two
distributions, continues to hold. The random code generation
is as follows.

Fix Py(u), Py s(v|s), (u,s), and €; > ez > 0 such that,
Pz = Qo.

Codebook Generation for Keys: For each block j ¢
[1:B]. let {7 2 {V"(¢;)}, _,. where £ 2 [1:27F],
be a random codebook consisﬁng of independent random
sequences each generated according to P%", where Py =
> scs Qs(s)Pyis(v]s). We denote a realization of CY) by
¢\ a {v"(¢;)}, .- Partition the set of indices ¢; € [1:2"7]
into bins B(t), t e [1:2727] by using function ¢ : V" (¢;) —
[1:27%7] through random binning by choosing the value of
@(v"(¢;)) independently and uniformly at random for every
v"(¢;) € V". For each block j € [1:B], create a function
@ : V7(4;) — [1:27Ex] through random binning by choosing
the value of ®(v"(¢;)) independently and uniformly at random
for every v"(¢;) € V". The key k; = ®(v"({;)) obtained in
block j € [1:B] from the description of the CSI sequence
v"(¢;) is used to assist the encoder in block j + 2.

Codebook Generation for Messages: For
each  block j € [1:B], let C"” =
{Ur(mj’tj—l’kj—2)}(mj,tj_l,kj_Q)eMxTx/C’ where
ME[1:278], T £ [1:27%], and K £ [1:278%], be a ran-
dom codebook consisting of independent random sequences
each generated according to Pg@r. We denote a realization of
Cér) by Cér) 2 {ur(m-j’t‘j71)k.j72)}(mj,t]‘—lykj—Q)eMXTXK:.
Also, let C, = {C\”,C57) and ¢, = {C{T),Cér)}. The
indices (mj,t;_1,kj_2) can be viewed as a two layer
binning. We define an ideal PMF for codebook C, as in (178)
at the top of the next page, as an approximate distribution
to facilitate the analysis, in (178) Wy s is the marginal
distribution of Wz 5 = >, cx L{z=a(u,s)} Wz|x,s and

Ps.v(s,v) Qs(s)Pys(vls)

Pr(t)  SusQsPysls) OV

Encoding: We assume that the transmitter and the receiver
have access to the shared secret keys k_; and kq for the first
two blocks, but after the first two blocks they use the key that
they generate from the CSI.

In the first block, to send the message m; according to k_1,
the encoder generates the index ¢y uniformly at random and

Psjv =

28

computes u” (my, to, k—1) and transmits a codeword ", where
x; = x(u;(ma,to, k_1), s1,;). Note that, the index ¢¢ does not
convey any useful information. At the end of the first block,
to generate a secret key shared between the transmitter and
the receiver, the encoder generates the index ¢; according to
the following distribution with j = 1,

Py (s5lv" (£5))

> ) P?l’”v(s;\vr(ég))’
e[l:27R]

Ft1s5) =

(181)

where Pg|y is defined in (180). Then generates the reconcil-
iation index t; = (v™(¢1)); simultaneously, the transmitter
generates a key k1 = ®(v"(¢1)) from the description of its
CSI of the first block v"(¢1) to be used in Block 3.

In the second block, to transmit the message meo and the
reconciliation index t; according to the key kg, the encoder
computes u” (ma, t1, ko) and transmits a codeword x”, where
x; = x(u;(ma, t1, ko), S2,:). At the end of the second block,
to generate a secret key shared between the transmitter and
the receiver, the encoder generates the index ¢/ based si by
using the likelihood encoder described in (181) with j = 2.
Then generates the reconciliation index to = p(v™({2)); si-
multaneously, the transmitter generates a key ko = ®(v"(¢2))
from the description of its CSI of the second block v" (1) to
be used in Block 4.

In block j € [3:B], to send the message m; and the
reconciliation index ¢;_; according to the generated key k;_o
from the previous blocks and the CSI of the current block
s, the encoder computes u"(my,tj_1,kj_2) and transmits
a codeword z", where each coordinate of the transmitted
signal is a function of the current state s’ as well as the
corresponding sample of the transmitter’s codeword u;, i.e.,
xT; = x(ui(mj,tj_l,k;j_g),sj,i). At the end of this block,
the encoder first selects the index ¢; based s? by using
the likelihood encoder described in (181) and then generates
the reconciliation index t; = ¢(v"(¢;)); simultaneously the
encoder generates a key k; = ®(v"(¢;)) from the description
of its CSI of the block 7, v"(¢;), to be used in the Block j+ 2.

Considering (179) at the top of the next page, for a given
codebook C,., the induced joint distribution over the codebook
(i.e. P(C)) satisfies

(Cr)
D<PMJ'7TJ—1,KJ—2,UT75;7LJ',VT7ZJT7Kj—1aTj7Kj

(Cr)
||TM,-7T,-,1,Kj,2,UT,S;‘,Lj,vr,z;7K,-,1,Tj7K,- <e (182)

This intermediate distribution Y(¢) approximates the true
distribution P®) and will be used in the sequel for bounding
purposes. Expression (182) holds because the main difference
between P(¢*) and YT(€) is that the keys K;_», K;_1 and
the reconciliation index 7%_; are assumed to be uniformly
distributed in Y(¢~), which are made (arbitrarily) nearly uni-
form in P(¢) with appropriate control of rate as in (188) and
(193).

Covert Analysis: We now show that this coding scheme
guarantees that Ec,, [D(Pznc, ||Q%™)] — 0, where C,, is
the set of all the codebooks for all blocﬁs, CElond

Qz()=>_3">">" Pu(u)Py(v)Psy(slv)

UuEU vEY sES TzEX
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vy Vi Yiia
M; U; Xj Zj : My Ui Xi/;il Mtz Ujta Xj}/j’iz
7 ° 7 ° 7 o
o—%ﬂ X J
Ty sy T, STy Vi Ty Shes Vi
K, » K K,
Block j Block j +1 Block j +2
Fig. 12. Functional dependence graph for the block-Markov encoding scheme
ric) (mj ti_1, ko, 0 070", 8%, 20 ki1, t, k)
Mj7Tj—1»Kj—2aLj,UT,VT,SJT,Z;T,KJ-,l,Tj,Kj g bj—=15Nj—=2,%5, s U995 <5y vj—15 bgs v
A o—r(R+Ri+R+R)q B QT (|57 ®r T|~T LT
=2 Lgar—ur(my b1k} Lo =or (0} Py (85107 Wz o (25 10", 55)
—rR
X 27 L =@ Lk = (o7)) (178)
() (M ti1, kjo, @ 87, 05,0, 25 ki1, by, k)
M;, T 1,K;_2,U",SF,L; V7,27 K1, Ty, K T Uj—15 Rj—2, U5 85, L5, U0 255 Bj—1, U5 By
A o—r(R+Ri+Ri)q . _ ®r (o1 eV
=2 Liar—ur(my 51,k )3 Qs (85) (5187 L gar=vr ()}
r r|~r o Jr\o—TRy B B
X Wy s (25107 85)27 Ly — o5y Lk, =0 (5m)} (179)
x ]I{X:X(%s)}WZ\X,S("m)3); (183) SEo, | Tas 11 k50,871, Um Ve 20 K0 T KO,
=Tty 0 K057, 0,,Um V27 K T K| C 1
such that Z’UGV PV<U>PS|V(|U) — QS() Then, we choose o Joti—1 852,095,050V 4 B —1,1475, ilCr
. . a
P.U,.PV, Pgsv, and. z(u, 8) such' that it satisfies Q7 = Qo. = IECT||TMJ_7TJ_71,K].72,S;|CT - FMJ.,TJ.717KJ.727S;|CT\|1
Similar to (140) using the functional dependence graph de- ®)
. . . . Y ®
picted in Fig. 12 it follows that, =Ec [1Q5" = Tsying =111 =1,K,2=1,¢. |1, (187)

p(PEIRE") <

B
c, :
23 D(PE Q5 Q- Qr,Qx, ). (184)

j=1
To bound the RHS of (184) by using Lemma 1 and the triangle
inequality we have,
®
Ec, [1Pz7 .k, -1,15,k50c, — Q7 QK- Q1, QK |1
S Ee l|Pzr ;1 1y k510, — Dzr kg 16500011
®
+Ee, Uz k01,1500, — Q7 @k, Qr, @k, |11

1

S Ec, |1Pzy i,y 1y 510 = Y275, 0,15, K510,
+Ec 1Tz ;115,110 — Vzr k015510011

+Ee, |0z k1,550, — QY Qk, ,Qr, Qx|
(185)

From (182) and the monotonicity of KL-divergence the first
term on the RHS of (185) goes to zero when 7 grows. To bound
the second term on the RHS of (185) for a fixed codebook C,.,
we have (186) at the top of the next page, in which (186c)
follows from (181).

Hence,

ECTHTZ;,Kj,l,Tj,Kj\Q - FZ;,K]-,I,T]-,KHCTHl

where (a) follows from (186b)-(186h) and (b) follows from
the symmetry of the codebook construction with respect to
M;, Tj_1, and K;_» and (186a). Based on the soft covering
lemma [33, Corollary VIL.5] the RHS of (187) vanishes when
r grows if

R>1(S;V). (188)

We now proceed to bound the third term on the RHS of (185).
First, consider the following marginal from (178),

Uzr k1m0 (25 kj—1, 15, kj)
1 s T '
=220 mﬁgv(%l‘/ (£5))
mj tj_1kj_o £; S%
x Wi s (251U (my, tj-1, kj—2), 57)

X L= (vr ey Lk = v ;)

1
=222 SEmnn

my tj—l kj72 f]'

X W%Z,V(Z;|Ur(mj»tj—la kj-2), V" (4;))

X L= (vr ey Lk =a(vr ()} (189)

where Wz u v (2|u,v) = > cs Psjv (s[v)Wzu,s(2|u, s). To
bound bound the third term on the RHS of (185), by using
Pinsker’s inequality in Lemma 1 it is sufficient to bound
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c, _ . Cr
§v1 )T LKy = 2 R = Tgwj,)T,-,l,Kj,zv (186a)
(Cr) ()
Loring oy s 2,57 = Lgar—ur(my tyo1ks-2)y = Lo, r 1K 2,8 (186b)
(€r) _ ()
FleijTj—lijfz,S;,Ur - f(g‘]‘sj) TL | M 1,Kj72,S;-‘,UT7 (186C)
() _ _ (C
FVTle,ijl,Kj72,S;,Lj,U"‘ —]].{{)r:v'r'(z.)} _TV"‘le,Tj LK 2’3 L;, U™ (186d)
(cr) ®r (Cr)
Fz;\Mj,Tj_l,Kj_g,s;,Lj,Uv-,Vv - WZ|US = Tzr\M Ty—1,K;—2,87,L;, U,V (186e)
(cr) —rR (Cr)
FKj,l\Mj,TJ VKm0, ST, L U VT, 27 =2 "%k T Koo M;, K 2,87,L;,U" V", 25 (186f)
(Cr) _ _ (C )
FT7‘Mj?Ti—l7K.f—2’S;7L_jvU’rvvv"'aZ;ij—l = Lit;=o(or(e))) = TT |M;,T5 1, 2,87, L;,Um V", 27 K; 1 (186g)
(Cr) _ (Cr)
K| M, Tj—1,K;—2,85,L;,U"\ V7,27 K;_1,T; = Lgg=a@r @)y = TKJ\MJ,TJ VK 2,ST Ly U V2T K 1 Ty (186h)
(g |,
Ec, Dz &, .1 2" Qx, ,Qr,Qx,)] as in (190) Wi (2f[u” (my, tj—1, kj—2)) o
available at the next page in which 2r(B+Re+Re) Q%" (27)
(a) follows from Jensen’s inequality; Ppvu g 2
(b) holds because 1.y <1 <2|V||U||Z]e 07 rlog </~TZ + 1)- (192)

(c) follows by defining ¥; and ¥y as follows,

1
vy = ~ > 22
2T(R+Rt+2Rk+R+RT+RK)
kj_1,tj,ki) mj tj—1kj_2
<2 >

ej (uT(mJ'7tj71,kj72)7’u7‘([') T) T(T)
Xrg:VTZT( "(mystj-1,kj—2) ), %)

«1 W?]Zv( rlu (my,ti—1, kj— 2) (¢ ))
o 27(R+R1+Rk+R Rp— RK)Q®T( )

Wi (5" (¢5))
2r(R-Rr—Ri) QG (27)
Wi (25 lu"(my, ti—1, kj—2))
2T(R+R1,+Rk)Q§r(Z;T)

)

QT(RT+RK) % 277‘(176)H(Z‘U,V)
< =
< log or(R+Ri+Rp+R)  9—r(1+e)H(2Z)

9r(Rr+RK) 3 9—-r(1-)H(Z|V)

" 2rR  9—r(1+e)H(Z)
277‘(176)H(Z|U)
T S RIRT ) % 9 r(LrOR(Z) 1 (191)

1
Yy = 2T(R+Rt+2Rk+R+RT+RK) Z Z Z Z
kj—1,tj,k;) My tj—1kj_o
xD >

b (“"(mjvtj—l7kj—2)ﬂ)"(éj),zf>¢72(r)
X F%: vr, Z'r (ur(mj, tj_l, kj_g), ’Ur(éj), Z;)

1 W?fi/v( Zi|u" (my,ti-1, kj—2), 0" (¢5))
© ZT(RJrRmLRkJrR*RT*RK)Qgr(ZJT)

Wiy (25" (¢;))
9r(R—Ry— Rx)Q?T(z;)
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In (192 = i
(192) bv.z (v,u,zgreu(%,uz)

mig P7(z). When r — oo then U3 — 0 and ¥ goes to zero
ze

Pyuyz(v,u,z) and py =

when r grows if

R+Ri+Ri+R—Rr—Ri >1(U,V;Z), (193a)
R— Ry — Rg > 1(V; 2), (193b)
R+ Ri+ Ry > 1(U; 2). (193c¢)

Decoding and Error Probability Analysis: At the end of
the block j € [1:B], using its knowledge of the key k;_o
generated from the block j — 2, the receiver finds a unique
pair (v, ;1) such that (u” (1, tj_1,kj—2),y5) € 7.
According to the law of large numbers and the packing lemma

probability of error vanishes when r grows if [37],

R+ R, <I(U;Y). (194)

We now analyze the probability of error at the encoder and
the decoder for key generation. Let (L;_q,Tj_1) denote the
chosen indices at the encoder and I:j_l and Tj_l be the
estimate of the index L;_; and 7T}_; at the decoder. At the

end of block j, by decoding U ]T , the receiver knows T} _; and
to find L;_; we define the error event,
&= {(lel(ﬁj,l)ﬁ;,l, T Y) ¢ 7Z(T)}~ (195)

Also, consider the error events,

&= {(eril(gj,l), 7o) ¢ T4 for all ¢;_; € [[1;2"“1?]]}7

(196a)
& = {( Vi (Lj-1), 851, U1, Y1) ¢ 7;‘”}, (196b)
& = {( V(L) L Y) € 7
for some ¢;_; € B(Tj_l),ﬁj_l * Zj_l}, (196¢)
where ¢ > ¢ > 0. By the union bound we have,
P(&) < P(&) + P(Ef N &) + P(&s). (197)
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Similar to the proof of Lemma 2 one can show that the first
term on the RHS of (197) vanishes when r grows if we have
(188). Following the steps in [37, Sec. 11.3.1], the last two
terms on the RHS of (197) go to zero when r grows if,

R>1(S;V),
R—R, <I(V;U,Y).

(198a)
(198b)

Applying Fourier-Motzkin to (188), (193), (194), and (198)
and remarking that the scheme requires R; + Ry < Ry + Ry
results in the achievable region in Theorem 7.

APPENDIX H
PROOF OF THEOREM 9

Consider any sequence of length-n codes for a state-
dependent channel with CSI available causally only at the
transmitter such that Pe(n) < €, ]D)(PZn||Q%§”) < 4, and
Ri/n < A, with lim,_, €, = lim, o A, = 0. Note that
the converse is consistent with the model and does not require
d to vanish.

Epsilon Rate Region: We first define a region A, for € > 0
that expands the region defined in (35) as follows,

i {R >0:3Pyvsxyz €D : RSIU;Y)+ e},

(199a)
where
Pyvsxyz:
Puyvsxyz= QSPVPU\VIL{X:X(U,S)}WY,Z\X,S
De= (D (Pz]|Qo) < e

WU;Y) 2V, Z) — 4e
max{|U|, [V[} < |X]
(199b)

We next show that if a rate R is achievable then R € A, for
any ¢ > 0. For any ¢, > 0 and v > 0, we start by upper
bounding n R using standard techniques,

nR =H(M)

=H(M|K)

(a)
<I(M;Y"™K) + ne,

=Y I(M;Yi|Y*" !, K) + ne,

=1

«
Il

(M, K, Y"1, Y;) + ne,

NE

<
1

.
Il

—~
<o
~

N
NE

I(M,K,S1.Y;) + ne,
1

.
Il

s
[

LU Yi) + nex
1

1
- nz E]I(Ui; Y:) + nep,
i=1

= nZ}P’(T =)l(Ur; Yr|T = i) + nen
i=1

.
Il

32
= nH(UT; YT|T) + ne,
< nH(UT, T, YT) + ne,
@ nl(U;Y) + ne,
(e)
< nl(U;Y) + ne, (200)

where

(a) follows from Fano’s inequality;

(b) follows since (M, K,Y* 1) — (M, K,S*"!) —Y;, note
that we also have V; — (M, K, S""1) —Y;, where V; £
(Ma K, Ziil);

(¢) follows by defining U; £ (M, K, S*~1);

(d) follows by defining U £ (U, T) and Y £ Y7;

(e) follows by defining ¢ = max{e,, \,, v}, where we
choose n large enough such that v > %.

Next, we lower bound nR as follows,

nR+ Rg > H(M, K)
> I(M,K;Z")

=Y 1M, K; Z|z"7)
=1

(@)

> ]I(M7K7Zzilvzl)_6

M-

=1
¢ ZH(Vi; Zi) =0

=1
=nY P(T =i)l(Vr; Zr|T = i) — 6
=1
= nH(VT; ZT‘T) )

©
> n]I(VT, T7 ZT) — 26

(4

= nl(V;Z) — 26 (201)

where

(a) and (c) follow from Lemma 3;

(b) follows from the definition of V; = (M, K, Z'~1), which
is defined in the process of deriving (200);

(d) follows by defining V = (Vp,T) and Z = Zrp.

For any v > 0, choosing n large enough ensures that,

R
R+ TK >1(V; Z) — 2v. (202)
Therefore,
Ry
R>1V;Z)— 20— 2K
n
>V, Z2)—2v— )\,
> (V3 Z) — 3e, (203)

where the last inequality follows since € = max{e,, An, v}
To show that D(Pz||Qo) < ¢, note that for n large enough

y

D(Pz[|Qo) = D(Pz,||Qo) = D(i > Py,
i=1

< D( Py,

i=1

") <

1
Qo) < ~D(Pz»

S|

(204)
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Combining (200) and (203), and (204) shows that Ve,,, A\,,, v >
0, R < max{a : a € A.}. Therefore,

Rgmax{a:ae mAf}'

e>0

(205)

Continuity at Zero: One can prove the continuity at zero
of A. by substituting min{I(U;Y) — I(U; S),1(U,V;Y) —
I(U; S|V)} with (U;Y) and I(V; Z) —I(V; S) with I(V; Z)
in the continuity at zero proof in Appendix F and following
the exact same arguments.

APPENDIX I
PROOF OF THEOREM 12

Consider any sequence of length-n codes for a state-
dependent channel with CSI available strictly causally only
at the transmitter such that P\ < e, D(Pz||Q3") < 6,
and Ry /n < A\, with lim, o €, = lim,_, - A, = 0. Note
that the converse is consistent with the model and does not
require ¢ to vanish.

Epsilon Rate Region: We first define a region A, for € > 0
that expands the region defined in (43) as follows,

A2 {R >0:3Pvsxyvz €D : RSI(X;Y) + 6}7
(206a)
where

Pvsxyz:
Pys.xy,z = QsPvPxyvWy,zx.s

D.= D (PZ”QO) <e (206b)
I(X;Y)>1(V;Z) —
V| < [X]

We next show that if a rate R is achievable then R € A, for
any ¢ > 0. For any ¢, > 0 and v > 0, we start by upper
bounding n R using standard techniques.
nR = H(M)
= H(M|K)

(a)
<I(M;Y™K) + ne,

=Y I(M;Yi|Y*" !, K) + ne,

i=1

<D IM K Y'ThY) + ey

i=1

) & .
g§ I(M,K,S"1Y;) + nep
=1

<Y UMK, S, 275 Y5) + ney
=1

(c)

SZ (X:;Y3) + nep,

_nz
—nZ]P’

I(X;;Y:) + nep

(X5 YT = i) + ne,

33

= nH(XT; YT‘T) + ne,
TLH(XT, T; YT) —+ ney,

@ nl(X;Y) 4 ne,

(]

< nl(X;Y) + ne, (207)

where

(a) follows from Fano’s inequality;

(b) follows from the Markov chain (M,K,Y"1) —
(M, K, $) - Vi,

(c) follows since Si is independent of
(M, K,S=1 771 X (M, Sifl)) and therefore

(M, K,S" Y, 271 Y| X;)
<SIM, K, S8 2L Yi|X, 8) =0, (208)

that is (M, K,S*"',Z"71) — X; — Y; forms a Markov
chain, which implies V; — X; — Y;, where V; £
(M, K, Z=1), also forms a Markov chain;

(d) follows by defining X = (Xr,T) and Y = Yr.

(e) follows by defining ¢ = max{en, /\n7 v}, where we
choose n large enough such that v > 2 z ..

Next, we lower bound nR as follows,

nR+ Ry > H(M, K)
>1(M,K;Z")

= I(M,K; 2|27 ")
=1
(@) & -
> UMK, 274 Z;) = 6
=1
b n
O3 1V z)] -6
i=1

= nH(VT; ZT|T) )
’I’LH(VT, T, ZT) — 26
(

DoV 7) - 26 (209)

where

(a) and (c) follow from Lemma 3;

(b) follows by defining V; = (M, K, Z*~') which is defined
in the process of deriving (207);

(d) follows by defining V = (Vp,T) and Z = Zrp.

For any v > 0, choosing n large enough ensures that,

Rk
R+ — >H(V 7Z) — 2v. (210)
Therefore,
Rk
R>I(V;Z)—2v— —
n
>I(V;Z)—2v— A
>I(V;Z)— 3¢ (211)

where the last inequality follows since ¢ = max{e,, A\n, v}
To show that D(Pz||Qo) < €, note that for n large enough

Qo)

D(Pg||Qo) = D(Pz,[|Qo) = ( ZPZ
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n

D(Pz-]|Q5™) <

)
—<v<e
n

3=

=1

212)

Combining (207) and (211), and (212) shows that Ve,,,v > 0,
R <max{a:a € Ac}. Therefore,

R<max<{a:ac€ ﬂ.Ae
e>0

213)

Continuity at Zero: One can prove the continuity at zero
of A. by substituting min{I(U;Y) — I(U; S),1(U,V;Y) —
I(U; S|V)} with [(X;Y) and I(V; Z) = I(V; S) with I(V; Z)
in the continuity at zero proof in Appendix F and following
the exact same arguments.
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