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Abstract—In a multiple-input multiple-output (MIMO) broad-
cast channel (BC), the difference in spatial transmit correlation
matrices of different users is called transmit correlation diversity.
Recently, several works have extended this concept beyond its
original scope, to include channels whose transmit correlation
matrices have non-overlapping eigenspaces. In contrast to earlier
analyses of overlapping eigenspaces that were mostly described
in terms of degrees-of-freedom, this work presents achievable
rate regions. These achievable regions are derived by rate-
splitting, product superposition, or a combination thereof. Our
rate expressions make explicit the contribution of the common
parts and individual (non-overlapping) parts of the correlation
eigenspaces toward the achievable rate region. As a by-product,
a result of Hassibi and Hochwald on MIMO channel training is
extended to channels with spatial correlation.

I. INTRODUCTION

In practical wireless channels, the fading coefficients between
different antennas are often correlated. This correlation arises
from the propagation environment causing the received signal
gains to be larger in some spatial directions, and also from the
spatially dependent patterns of the antennas [1]. The effect of
spatial correlation on the capacity of multiple-input multiple-
output (MIMO) links has been a subject of long-standing inter-
est [2], [3]. It was shown in [4] that correlation is detrimental
to the sum rate scaling with various transmission schemes,
assuming that all users experience identical correlation. In
practice, however, the users may have different correlation
matrices because they are typically not co-located [5], [6].

The difference between the spatial correlation observed by
different users in the system is called transmit correlation diver-
sity. It was originally conceived for transmit spatial correlation
matrices that have mutually exclusive, i.e., nonoverlapping,
eigenspaces. Under this condition, a joint spatial division
multiplexing (JSDM) transmission scheme was proposed
in [7], [8] that reduces the overhead needed for channel
estimation. Nonoverlapping correlation eigenspaces may occur
in, e.g., severely rank-deficient MIMO links. However, in many
other scenarios, transmit correlation matrices have partially
overlapping eigenspaces, motivating to understand and exploit
transmit correlation diversity in this more general setting.

This paper investigates a two-user MIMO broadcast channel
(BC) with partially overlapping correlation eigenspaces. We
consider the noncoherent setting in which the correlation ma-
trices are deterministic and known, but the channel realizations
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are not known a priori to either the transmitter or users. For
this channel, we have previously proposed some achievable
degrees of freedom (DoF), i.e., rate pre-log, regions in [9]-[11].
In this paper, we make further progress by characterizing some
achievable rate regions.

Section III begins with an achievable rate region with
orthogonal transmission, e.g., time-division multiple access
(TDMA), which was shown to be DoF-optimal in the absence
of spatial correlation [12]. As a by-product, we find the
rate achieved with pilot-based schemes for the single-user
channel, thus generalize the results in [13] to correlated
fading. Section IV derives rate regions achieved with different
superposition techniques. We flexibly employ rate splitting,
product superposition, and a composition thereof to effectively
create multiple data streams in both common and private parts
of the correlation eigenspaces. Numerical results in Section V
show that these superposition techniques significantly enlarge
the achievable rate region upon orthogonal transmission. We
note that most of our results do not require the fading to be
Rayleigh. Due to the space limit, we only provide sketches of
proofs of the theorems. For the full proofs, please refer to [14].

Notation: For random quantities, we use non-italic letters
with sans serif fonts, e.g., a scalar x, a vector v, and a matrix
M. Deterministic quantities are denoted with italic letters, e.g.,
a scalar x, a vector v, and a matrix M; M [i:5] denotes the
sub-matrix containing columns from ¢ to j of M. All rates are
measured in bits/channel use.

II. SYSTEM MODEL

We consider a MIMO BC in which a transmitter equipped
with M antennas transmits to two users, user k with Nj
antennas, k € {1,2}. The channel between the transmitter
and user k is flat and block fading with equal-length and
synchronous coherence interval (across the users) of 7' channel
uses. That is, the channel matrix H, € CV**M remains constant
during each length-T" block and changes independently between
blocks. Let X[b] € CM*T be the transmitted signal during a
coherence block b. The received signal matrix at user k is

Yi[b] = Ho[BIX[0] + Z[o], ke {1,2}, b=1,2,...,

where Z[b] € CN**T is the additive noise with independent
and identically distributed (i.i.d.) CN(0, 1) entries. The input is
subject to the power constraint + >, | [X[b]||3 < PT, where
v is the number of blocks spanned by a codeword. Thus P is

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on December 30,2021 at 17:16:09 UTC from IEEE Xplore. Restrictions apply.



2021 IEEE Information Theory Workshop (ITW)

the signal-to-noise ratio (SNR) of the channel. Hereafter, we
omit the block index b whenever confusion is not likely.
Channel Spatial Correlation: We assume that the channel
is spatially correlated at the transmitter’s side according to the
Kronecker model, thus the channel matrices are expressed as

Hk = F'kR%, ke {].72}7

where Rj, = NikE [H{H,] € CMXM 1 (Ry,) = M, is the
transmit correlation matrix! of user k& with rank 74, and
H;, € CVeXM is drawn from a generic distribution satisfying
h(Hy) > —oo,]E[FI:FIk} =NiIp, k € {1,2}. We consider the
eigendecomposition Ry = UX,U' where Xy is a 7, X 7y
diagonal matrix containing r nonzero eigenvalues of Ry, and
Uj € CM>"r contains the corresponding eigenvectors of Ry.
The rows of Hy, belong to Span(Uy},), so-called the eigenspace
of user k. The matrix Hy can be expanded as

Hy, = HULS2UY = GB2UY, ke {1,2),

where Gy := I:IkU k 1s equivalently drawn from a generic
distribution satisfying h(Gy) > —oo, E[G{Gx] = NiI,,.

We assume that R, is known to both the transmitter and user
k, but the realizations of H, are not known a priori at any node.
User k& might attempt to estimate Hj, using known pilot symbols
inserted in X. Hereafter, we assume that rp < min{Ny, T},
k € {1,2}, and, without loss of generality, 7, > rs.

II1. ACHIEVABLE RATES WITH ORTHOGONAL TRANSMISSION

A. The Single-User Case

We first consider the single-user case and, for simplicity,
drop the user’s index. The received signal is Y = HX+Z where
the assumptions for X, Z, and H are as before. In particular,
H is block fading with coherence interval T' and has rank-r
correlation matrix R = UXU".

Theorem 1. For the single-user spatially correlated channel,
the rate R is achievable with a pilot-based scheme, where
1) if the transmitter does not know R:

PsPHR" )}
Pstr(E-1+P L) )+ M/
) (1)
where the rows of H 16 CNXM gre iid. according to
CN(O,R(IM + PTR)_ R), and (Py, Ps) satisfies Pr M +
Ps(T — M) < PT;

2) if the transmitter knows R and uses orthogonal pilots:

PsP.O0" )}

Pstr((R'+P.1,) ) +r

. 2)
where the rows of Q € (Civx’" are i.i.d. according to
CN(QR(IT + PTR)flR), R := V"RV for a truncated
unitary matrix V. € CM*" such that (s.t.) Span (V) =
Span (U), and (P;, Ps) satisfies Prr + Ps(T —r) < PT.

R= (I—A;)E{logdet (IN+

R= (1 . %)]E {log det(IN+

!Our results can be extended to the case where the users experience different
large-scale fading, e.g., path loss and shadowing, by considering different
values of tr (Ry).

Allowing non-orthogonal pilots improves the rate to

1))_14-7“)}

. 3)
where the rows of & € CN*" are iid. according to

CN(0,R— (P, + tr(R™))7'L,).

Remark 1. The optimal power allocation maximizing the rate
in (3) is characterized by P, = w and Ps = a’% with

PQ0"

rPs(P-+*tr(R

R(l;)IE{logdet<IN+

=7
a=1ifT=2rand a=b— \/b(b—a) if T > 2r, where
IR C L N _ T (L w(R)
a=1+—p% ~ PTu(R) and b = 7 (H- T )

Corollary 1. If R = I, the achievable rate is

M PsP; H
=(1— = |E|I I — ~ HH
i ( T) [Ogdet(N+M(1+P5+PT) ﬂ

where H € CN*M s the uncorrelated channel matrix. This
coincides with [13, Eq.(21)].

Proof of Theorem 1. We present here a sketch of the proof.
For the full proof, see [14, Appendix A]. The proof follows by
extending [13] to correlated generic fading. First, if the transmit-

ter does not know R, let it transmit X = [, / %XT £/ %Xg} ,
where X, € CM*M s an orthogonal pilot matrix and

Xs € CMX(T=M) 5 a data matrix with iid. CN(0,1)
entries. The receiver performs minimum-mean-square-error
(MMSE) channel estimation, thus the residual estimation error
is uncorrelated with the input. By evoking the argument
that the worst-case uncorrelated noise is Gaussian [13], we
obtain (1). Second, by exploiting R, the transmitter can project
the signal onto the eigenspace of R using precoder V. The

transmitted signal is X = V{‘/%X - \/%Xﬁs} with pilot
matrix X, € C"*" and Gaussian data matrix Xz € C">(T—7),
Again, using MMSE channel estimation and the worst-case
uncorrelated noise argument, we obtain the achievable rate (2)
with orthogonal pilots and (3) with optimized pilots. O

B. The Two-User Case with Orthogonal Transmission

We consider a baseline scheme based on orthogonal trans-
mission, e.g., TDMA, that activates only one user per time-
frequency resource unit. From Theorem 1, the following
corollary demonstrates an achievable rate with this strategy.

Corollary 2. For the two-user BC, by activating only user k €
{1,2}, user k can achieve a rate Ry, given by R in Theorem 1
with R = Ry, r = ri, N = Ny, while the other user achieves
zero rate. The convex hull of (0,0), (R1,0), and (0, R3) is an
achievable rate region with orthogonal transmission.

IV. ACHIEVABLE RATES WITH RATE SPLITTING AND
SUPERPOSITION

For any nonnegative integers si, Sa, S satisfying sg < rg,
s1 <ry —1ro and so < rg — 1o, one can find eigendirections
Vg e CMxso V| € CM*51 V, € CM*52 that are aligned
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with a part of the common and noncommon sections of the
two channel eigenspaces s.t.2

Span (V) C (Span (U1) N Span (Us) ),
Span (V1) C (Span (U1) N Span U,)* )
Span (V'2) C (Span (Us3) N Span U,)* ).

In our achievable schemes, we will use Vo, V; and V5 as
precoders to create multiple data streams in both the common
and private sections of the correlation eigenspaces. By tuning
the parameters s, ss, and sg, we explore the trade-off between
the number of data dimensions (indicating the pilot overhead)
and the amount of channel uses for data transmission within
each section. For k& € {1, 2}, let us denote
o B40:=U} Vo, Bpp:=UVi, ®p:=[Pro B
. ng = '-I> Ek(DkO’ Rkk = <I> 2k®kk7 R
D3Py
. RkO =&} X Do, Ry, = &}, 3.8y

A. Rate Splitting

=U,.[Vo Vil;
[Rio Rix] =

With rate splitting, we let the transmitter transmit
X =VXo+ViXi +VaXo,

where Xg, X1, and Xs are independent and satisfy the power
constraint E [tr (X"X)] < PT. Thanks to the precoders, Xj, is
seen by user & only, while X is seen by both users. Specifically,

Y. = GkEEQkQXQ + Gk.E,ftbkak. +2Z,, ke {1, 2},

1
where the equivalent channels G X2®;0 € CNr*%0 and

széq)kk € CNexsk are correlated and unknown. The
received signal at user k is similar to the output of a two-
user multiple-access channel (MAC) with (sg, si) equivalent
transmit antennas and N receive antennas. The two MACs
share a common signal Xy. From the capacity region of the
MAGCs [16], we know that the rate pairs (Ro, R}) and (Rg, Rb)
are simultaneously achievable for the MAC 1 and MAC 2,
respectively, if the rates Ry > 0, R} > 0, R > 0 satisfy

Ry < #1(Y1;X0/X1),
RY < #1(Y1; X1[Xo),
Ro+ R} < 71(Y1;X0,X1),
Ro < %I(Y i Xo[X2),
R, < 7 1(Y2: X2[Xo),
Ro+ R} < 4I(Y2;Xo,Xz)

Then for the BC, user 1 achieves rate R} with private signal X,
user 2 achieves rate Rg with X3, and both users can achieve
rate Ry with common signal Xq. Let Rgy be user k’s share in
Ry, then the BC can achieve the rate pair (R, Re) = (Ro1 +
RE,ROQ + Rg) Replacing Ry = Ro1 + Roo, Rli = R1 — Ro1,
and RS = Ry — Rp2 in (4) and applying Fourier-Motzkin
elimination, we obtain the following achievable rate region.

2y gcan be calculated from U1 and U o using, e.g., Zassenhaus algorithm [15].
V1 and V3 can be found similarly from U; and null (Uz), and null (U1)
and U, respectively, where null (Uy,) is s.t. [Uy null (Uy)] is unitary.

Lemma 1. With rate splitting, the two-user BC can achieve
any rate pair (R, Re) satisfying
R, < %min{I(Yl;Xl,Xo),I(Y;l;X1|X0)—&—I(Y2;X0\X2)}7
Ry < % miH{I(YQ;Xzaxo), I(Y2;X2|X0)+I(Y1§X0\X1)}7
Ri+Ry < % min{7(Y1;X1|Xo) + I(Y2; Xz, Xo),
I(Y1;X1,X0) + I(Y2; X21X0) },

for input distributions px,, px,, and px, satisfying the power
constraint E [||Xo |3 + [[X1[|E + [X2[3] < PT.

We consider the input distribution characterized by

[ | P,
XO = POTISO 050><sl 0550 )
Xl - Os1><so V Pl‘rIsl \) 71651 5
/P
X2 = 52><So V PQTISQ 26 3

where the data matrices Sy € (CSOX(T_Sl_SO), S, ¢
Cov¥(T=s1=50) "and Sy € C%2*(T=52750) have ii.d. CN(0,1)
entries. This signaling corresponds to a pilot-based scheme
where pilots are sent simultaneously in the mutually exclusive
parts of the correlation eigenspaces. With this input distribution,
we obtain the following achievable rate region.

Theorem 2. With rate splitting, the two-user BC with r1 > 75
can achieve any rate pair (R, Rs) satisfying

Rl S min{R'l, Rfl) + ROQ},
Rs < min{R’Q, Rg + R()l} (6)
Ry + Ry < min{R} + Ry, R} + Rb}.
Here,
R = (1 — 81;80> IEl[logdet(IN1

QR PysR. Q) )}
+ —— ) )
tr((Rl +P17—) P15) +1

RY = (1 — ;SO> IEI[logdet(IN1

PisQ Ry R, Q) ﬂ
81 [tr((Rl_l +P17)_1P16) + 1] 7
ROI = (1 — 51;:SO> E[logdet (IN1
PosQiRio R} Q)

soltr((Ry ' +Pir) " Pis) +1] ﬂ

POTIso 0 _— %150 0
|: 0 P17151:| 7P15 = |: 00 P1(SI )

and the rows of Q € CN1x(sots1) are i.id. accordmg to
CN (o, PlT( RlPlT + 1 4s0) 1P ), furthermore,

where P, :=

s
I
R2_

2 {log det (IN2
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PQ(SQQRQQRQQ ):|
ngtr(RQQ (R2 + RoP>-Ry) " 'Ryo) + 52

+ (1 _a ;SO> E[logdet(IN2
n Q2Ry P25 Ry, ) }
tr((R;1+PQT)71P2§) +1 ’

S
R) = 1T]E {log det <IN2
N PysQyR; Ry Ry, RoXY, )]
ngtr(RQQ (R2 + RoP3-Ry) " 'Ryo) + 52
+ (1 51 ;SO> I[E[logdet(IN2
n P2502R2R22R;2R2Q;

sa[tr((Ry " + Pay) 'Pay) +1] )] ’
Reo = (1 _a ;SO) E[logdet (IN2
PosSsRoRoo Ry R, )]
soltr((Ry" + Par) ' Pos) +1] /1
PyI,, O

PosI 0
and the rows Oflﬂg €, CN2x(s0+s2) are i.i.d. according
to C./\/'(O,PQET (P;RQPQET + ISZ_HO)ilPQET). The integers
S0, 81,82 satisfy sg < ro, s1 < 1r1 — 1o, and s2 < ro — 1.
The power components Py, P;s, i € {0,1,2}, satisfy

where Py, = [

Porso+Pos(T—s1—s0) + 37, [Pirsi+P;s(T—s;i—so)| < PT.

@)
The convex hull of (6) over all feasible values of sg, s1, 3 and
all possible power allocations satisfying (7) is an achievable
rate region for the two-user BC.

Proof. From Lemma 1, the achievable rate region is fully
characterized by the mutual information terms I(Y; X, Xo),

I(Y5; X | Xo), and T(Yg; Xo | Xg), & € {1,2}. With the help
of the pllots user k first MMSE-estimates the equivalent
channel GkE *®;. by QR and then decodes the data in
Sy and S;. To analyze the conditional mutual information
I(Yg; Xk | Xo), and I(Y;Xo | Xi), consider that the receiver
removes partly the interference caused by Xy and Xy, respec-
tively, using the knowledge of these terms and the channel
estimate, before data decoding. Finally, by using repeatedly the
worst-case uncorrelated noise argument in a similar manner as
in the single-user case, we can show that I(Y; X, Xo) > R},
I(Yk;Xk |X0) > Rz, and I(Yk;XO |Xk) > Rox, k € {1,2}
Substituting these bounds into Lemma 1, we obtain (6). The
full proof can be found in [14, Appendix B]. O

B. Product Superposition

With product superposition, we transmit

X =[Vy Va]Xi Xy,

with
X = {V” e pslfsl], (®)
0 \/plaISQ
e [ Pas
|: P2TI52+30 ‘+’5052:|7
where the data matrices S; € C®0*%2 and S, ¢

C(s2+s0)x(T=s2=50) have i.i.d. CN(0,1) entries. In this way,
the signal X; for user 1 is embedded in the pilot of user 2, thus
user 1 communicates in the first sy + sg channel uses only. On
the other hand, X; constitutes the equivalent channel of user 2.
This input distribution leads to the following achievable rate.

Theorem 3. With product superposition, the two-user BC can
achieve any rate pair (Ry, R2) of the form

Ry = S%E llog det, <IN1

A AH
P15P2¢Q10910
v—1

pléPQTtr((RkO + plTPQ‘rIso)

)

_1) + so>

where the rows of Qg € CN1Xso are i.i.d. according to

CN(07017P2TR10 (plTPQTRkO +1,,) RkO) and
Ry = (1 - 52;80) E[log det (IN2
A AH
n P35Ga. Gy,
P25tr((R2_el + P27'152+50)

71) + 5o —i—soﬂ

where Gop € CN2X(s2+50) has distribution imposed by

Goe =V Por (\/ P2TG222%‘I)2X1 + 22[1:524-50])

X (P2TR2e + ISQ-"-SO)_I RQe- (9)

The integers sg and so satisfy so < ro and so < r9 — 1. The
power constraint is

%0 P25) <PT. (10)

T
(50/)17' + 82(P15+p1a)) (P27+ 53+ 50

In (9), Xy is given by (8) and Rs. is defined as

p1-Rao \/Plfﬂla‘I’SOEQ‘I’z% }
VP17 P1aP5:32Po0 %tr(Rzo)ISQ + praRaz

By swapping the users’ roles, a similar rate pair is achievable.
The convex hull of the origin and these rate pairs over all
feasible values of sg, s1, s2 and all possible power allocations
(10) is an achievable rate region for the two-user BC.

Rge = |:

Proof. In the first so + so channel users, user 1 MMSE-
estimates the equivalent channel Q¢ := G;X?®;( by Q10
and then decode the data in S;. User 2 first MMSE-estimates
the equivalent channel Gy, := G22 ®.X; by GQC and then
decode the data in S,. The achievable rates I(Y;Xy,) are lower
bounded by Ry, k € {1,2}, using the worst-case uncorrelated
noise as before. For the full proof, see [14, Appendix C]. [l
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C. Hybrid Superposition
We consider a composite scheme that involves both rate
splitting and product superposition. The transmitted signal is

X = [Vo Vﬂ 12X1 +VoXs
with
[ = Pys
Xl = P1T181+30 751 )
i 1+s
[ Pys
X2 = 052><SO V PQTISQ ?52 )
L 2

X/2 — VvV pQTISO |:050><52 %S/Q:'
L 0 vV ,0211151

where the data matrices S; € Clr1tso)x(T=s1=s0) G, ¢
Cs2x(T=s2=s0) and S}, € C*0*(1=52) have i.id. CA(0,1)

Y

entries. In this way, user 1 communicates in its full eigenspace.

A part (X5) of user 2’s signal is embedded in the pilot of userl,
and the remaining part Xs is sent in the private eigenspace
of user 2. With hybrid superposition, we obtain an achievable
rate region reported in [14, Theorem 7]. The expressions are
omitted here due to the space limit.

Remark 2. Hybrid superposition utilizes both rate splitting and
product superposition but is not a generalization, in the sense
that the results of pure rate splitting and product superposition
cannot be recovered from the hybrid scheme.

V. NUMERICAL RESULTS

We assume Rayleigh fading, i.e., G, has independent
CN(0,1) entries, and generate the correlation matrices Ry, =
UL U}, k € {1,2}, as follows:

o The eigenvalues in ¥ are drawn from the joint distribution
of the nonzero eigenvalues of a Wishart matrix BB" where
B is a M X 7, matrix with independent CA/(0, 1) entries,
and normalized so that tr (X;) = M. This is suggested by
the maximum-entropy channel modeling approach [17].

o The eigenvectors Uy, are generated as Uy, = UxEy, where
U, and U are drawn respectively by selecting randomly
r1 and 79 columns of a random unitary matrix U which is
uniformly distributed in the space of M x M unitary matrix,
and the rotation matrix Z is drawn uniformly from the
space of r; X rj unitary matrix.

In Fig. 1, we plot the rate regions for the BC achieved with
the considered schemes in a setting of 7' = 24, M = 16,
Ny = Ny = 12, and (r1,72,70) € {(9,7,2),(10,6,4)}, at
SNR P = 30 dB. We observe that the rate region of TDMA
while transmitting in the channel eigenspace Span (Uy) is
much larger than that while transmitting in full space C. This
is because the former scheme spends less time (r; channel uses)
for channel estimation than the latter scheme (M channel uses),
while both schemes essentially communicate through the same
effective channel. The rate region can be largely improved with
rate splitting and superposition. Rate splitting achieves a large
region with respect to other schemes, especially when the ranks
of the two eigenspaces are relatively similar (as 11 = 9,170 =7

/channel use

n
b=
e} o
o
~ "
15 | Overall region .
— — — TDMA, transmitting in the eigenspace \\
10F]|——— TDMA, transmitting in full space . N
Rate splitting N N N \\
5 I Product superposition N J
Hybrid superposition N N
0 Il Il : | 1
0 10 20 30 40 50 60
Ry bits/channel use
@r1=9r2="71m70=2
50 T T T T T T T T T
45 7
40 !
., 35 b
8
T 30 d
5 25 1
~
w2
b=
2 20 b
o N N N
~ . A ~
15 | Overall region \'\ g
— — — TDMA, transmitting in the eigenspace| > Ny \‘\;
100H-——— TDMA, transmitting in full space N N A -
Rate splitting N '\
5 H e Product superposition > < 1
Hybrid superposition N N 4
\
0 1 1 1 1 1 1 1 1 k|

0 5 10 15 20 25 30 35 40 45 50
R, bits/channel use

(b)r1 =10, r9 =6, 170 =4

Fig. 1. The rate regions of various schemes for the spatially correlated BC
with T' = 24, N1 = N3 = 12, M = 16, and at SNR P = 30 dB.

in Fig. 1(a)). The improvement by product superposition is more
pronounced when the rank difference between two eigenspaces
is more significant (as r; = 10,72 = 6 in Fig. 1(b)) since
the gain achieved by product superposition come from the
nonoverlapping part of the eigenspaces.

VI. CONCLUSION

We study the two-user noncoherent MIMO BC with spatial
correlation eigenspaces that partially overlap. We derive some
achievable rate regions with pilot-based signaling together
with rate splitting, product superposition, and a composition
thereof. These schemes exploit effectively both the common
and mutually exclusive parts of the correlation eigenspaces, thus
provide methods to make use of transmit correlation diversity
using only statistical channel knowledge. A next step is to find
outer bounds on the rate region.
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