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Abstract— The development of Railway Smart Grids (RSGs) 

has multi-fold benefits [1]. Trains are flexible demands and thus 

it is possible to have a multitude of velocity profiles satisfying 

the same end-to-end time constraints. This opens up the 

opportunities of cost of energy optimization in RSGs in addition 

to energy optimization in electric railways. In this paper, we 

have proposed the idea of transaction of energy between the 

trains and external loads when there is a difference between the 

day-ahead and real-time electricity price. This is made possible 

by the flexibility of the power demand of the trains. This case 

has been analyzed on Acela express running on Northeast 

Corridor for different trips. The results show promise in that 

the participating entities can make profit on successful price 

negotiation. 
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I. INTRODUCTION  

Energy management in electric railway systems is a huge 

challenge, considering the number and type of players 

involved in it – trains, electric grid, way-side energy storage 

systems etc.  The development of smart railway grids which 

involve pervasive sensing and coordinated information 

exchange between various participants in real time, yields 

distributed control and thus creates an exciting opportunity of 

integrating the scheduling of the train to the economy of its 

operation. 

Different approaches have been made towards optimizing 

the energy consumption of electric railway systems. Time-

table optimization and driving strategy optimization are two 

different optimization approaches adopted for railway 

energy minimization. To meet the variable passenger 

demand, the railway operators schedule several timetables in 

advance and choose one based on passenger flow., Many 

formulations have been proposed for cyclic timetable 

formulation for minimizing passenger waiting times and 

delay times, headway-control, etc. [2]-[4]. On the other 

hand, many studies have focused on efficient driving 

strategies for minimizing the energy consumption between 

stations. The works [5]-[7] analyzed the Pontryagin's 

maximum principle for minimum energy consumption for 

various track conditions and trip durations and obtained the 

optimal operating modes of the trains. Khmelnitsky [8] 

considered the problem of energy minimization in a track 

with variable gradients and speed limit sections. He also 

showed that if regenerative energy can be fully recovered 

during the braking phase, the coasting phase will be 

interrupted in the optimal speed profile. Studies have also 

been performed on adjusting the speed profile of the trains 

according to the braking time of other trains in a multi-train 

system to effectively utilize the recovered regenerative 

energy [9], [10]. Another aspect has been the application of 

evolutionary algorithms to solve the optimal switching 

strategy [11]. They have an advantage over the numerical 

methods when it comes to solving complex systems, but 

their accuracy and speed are limited when it comes to 

solving real-time systems.  

But, the minimization of energy utilization does not 

necessarily imply the minimization of the cost for energy 

utilization of the Railway Power System (RPS). It implies 

that at any given instant, even if the operation of an electric 

train is not so set such that it minimizes the overall energy 

consumption, spread over the entire network of trains, the 

overall operational cost for energy utilization is minimized. 

This is a unique opportunity that can be exploited not only for 

existing and planned high-speed inter-state and inter-city 

electric trains but for existing and planned intra-city electric 

trains potentially as well, where the frequency of travel is 

higher even though the distance of travel is smaller [13]. For 

the same end-to-end scheduling time of a train, corresponding 

to a given average velocity of the train, there may exist a 

plurality of instantaneous velocity profiles one of which may 

yield the lowest cost of electricity usage. This is shown in 

Figure 1. 

 

Figure 1. Multiple velocity profiles with same trip time 

 

This flexibility is the key to achieving different objectives 

which also lead to the possibility of the RPS behaving as 

transactive nodes. In this paper, the concept of transaction of 

energy applied to the electric trains utilizes the demand-

shifting capability of the trains, where the participating 

entities can make profit depending on where and when it is 

applied. 

Section II provides the approach for energy transaction for 

RPS used in this paper. Section III describes the different 

optimization objectives and how the energy transaction has 

been formulated, and Section IV presents the simulation 

analysis succeeded by Sections V which concludes the work. 
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II. TRANSACTIVE CONTROL APPROACH 

Figure 2 below shows a broad classification of driving 

strategy optimization approaches that exist for electric and 

diesel trains. Electric trains provide a unique mechanism for 

saving part of its transient energy by feeding it back to the 

railway grid using regenerative action when it decelerates or 

comes to a stop at a station. This means that an electric train 

can behave both like a demand as well as a generating source.  

This also leads to the possibility of scenario-centric 

transaction control opportunities. When there is an external 

load controlled by the Load Serving Entity (LSE) that has an 

emergency power demand that is to be met, RPS can act as a 

transactive agent, willing to send a virtual power by reducing 

its contracted energy consumption during a stipulated time 

interval so that the grid can feed this energy to the external 

load. When the train’s trip is expected to end during the same 

price-hour, it can run an optimization check and determine 

whether it will be able to meet the schedule economically 

while still making profit.  

 

 
Figure 2. Driving strategy optimization approached for electric and diesel 
trains 

The transactions evolve over different temporal scales 

ranging from day-ahead online transaction between the 

power grid and the railway system operators yielding price 

optimality to real-time optimal transaction among the trains 

(T) or the area control centers (ACC). The possible 

opportunities for transaction within the Independent System 

Operator (ISO)-RPS-LSE is shown in Figure 3.  

All of these transactions are carried out while meeting system 

constraints ranging from end-to-end time-scheduling, power-

quality, and capacity. 

 

Figure 3. Possible transaction opportunities within ISO-RPS-LSE. 

III. ELECTRIC TRAIN MODEL 

A. Assumptions 

 The mass of the train is assumed constant 

throughout the simulation and is multiplied by a 

factor of 1.1 to consider the rotational effect. 

 The traction force and the braking force depend on 

velocity and they can be varied continuously. 

 With regenerative braking capabilities, the energy 

conversion efficiencies are assumed to be 70%. 
 

B. Model 

Figure 4 shows the forces acting on a single train, governed 

by the Newton’s law as shown below: 

𝑀. 𝑎 = 𝐹𝑡𝑟(𝑣) − 𝐹𝑟(𝑣) − 𝐹𝑐(𝑠) − 𝐹𝑔(𝑠)          (1) 

 

Figure 4.  Forces acting on a train travelling through a slope and curve 

 

where, 𝑀  is the total mass of the train including rotational 

effect (𝑘𝑔), 𝑎 is the acceleration/deceleration of the train 

(𝑚/𝑠2), 𝐹𝑡𝑟(𝑣) is the traction/braking force of the train 

(𝑁), 𝐹𝑟(𝑣) is the air drag and rolling resistance combined 

(𝑁),  𝐹𝑐(𝑠) is the resistance due to curvature (𝑁), 𝐹𝑔(𝑠) is the 

gradient resistance force (𝑁). The 𝐹𝑡𝑟 is determined by the 

driver by moving the throttle in one or the other direction, 

according to a journey booklet which specifies the timetable 

for reaching several points and the objective speeds to be 

followed in every point. The objective of this optimization is 

to determine the content of this journey booklet, in such a way 

that the velocity profile is the optimal driving strategy for a 

specific optimization objective. 

The formulae for 𝐹𝑟(𝑣), 𝐹𝑐(𝑠) and 𝐹𝑔(𝑠)are given below: 

              𝐹𝑔(𝑠) = 𝑀 ∗ 𝑔 ∗ 𝛿(𝑠)                                             (2)                                                                              

              𝐹𝑟(𝑣) = 𝐴 + 𝐵. 𝑣 + 𝐶. 𝑣2                                       (3) 

              𝐹𝑐(𝑠) = {
𝑀 ∗ 𝑔 ∗

𝐷

1000∗𝑅(𝑠)
, 𝑅(𝑠) > 10

0,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (4) 

where 𝐴, 𝐵, 𝐶, and 𝐷 are empirical constants, 𝑅(𝑠) is the 

radius of curvature at position 𝑠 and 𝑔 is the acceleration due 

to gravity. The power consumed by the train is then 

calculated as follows: 

𝑃𝑡𝑟𝑎𝑖𝑛 =
𝐹𝑡𝑟.𝑣

𝜂
+ 𝑃𝑎𝑛𝑐𝑖𝑙𝑙𝑎𝑟𝑦                           (5) 

where, the symbol 𝜂 is the energy conversion coefficient 

from electrical to mechanical, 𝑃𝑎𝑛𝑐𝑖𝑙𝑙𝑎𝑟𝑦  is the power 
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consumption of the ancillary equipment (heating/air 

conditioning, cooling equipment, lighting, etc.). 

The energy consumption of a journey 𝐸𝑡𝑟𝑎𝑖𝑛 can be calculated 

as shown: 

 𝐸𝑡𝑟𝑎𝑖𝑛 = ∑ 𝑃𝑡𝑟𝑎𝑖𝑛
𝑇
𝑡=𝑡0                                  (6) 

C. Optimization 

The different optimization approaches and comparison of 

their formulation are detailed in this section. The operation of 

the train is constrained by the speed limits of the track and the 

train, acceleration and deceleration limits of the train and the 

terminal constraints. The speed limits on the track, 𝑣𝑚𝑎𝑥, are 

imposed due to the track conditions such as gradients, curves 

or tunnels. The limits on acceleration and deceleration rates 

of the train, 𝑎𝑚𝑎𝑥 , and 𝑎𝑚𝑖𝑛  are imposed also keeping in 

mind the passengers' comfort.  Also, there is an operation 

limit on the maximum traction and the maximum braking 

force depending on the velocity of the train, 𝐹𝑚𝑎𝑥(𝑣). 𝑇𝑚𝑖𝑛  

and 𝑇𝑚𝑎𝑥  are the minimum and maximum allowed time limits 

for reaching the station and 𝑇 is the trip time. The minimum 

and maximum limit of the trip time is obtained from the 

schedule and the train operator is penalized for violating the 

same. 

    Table 1. Comparison of optimization objectives. 

 

Comparison of different cases of optimization approach- 

objective functions and constraints are shown in Table 1. For 

an electric train with regeneration, the objective is to 

minimize the total energy consumed, also considering the 

regenerative energy maximization.  The instantaneous  power  

𝑃(𝑡, 𝑠) has to be summed up over the entire trip for obtaining 

the total energy of the trip. Thus, the objective function and 

constraints for this case are shown in column 1 of Table 1. 

The electricity prices, in general, have spatial and temporal 

variations. In such a case, the energy minimization may not 

lead to a minimum cost of energy utilization. Hence for a train 

that passes through zones with spatial and temporal price 

variations, minimizing the cost of energy utilized will prove 

more economical for the Railway System Operators (RSO). 

The day-ahead cost of electricity that has spatial and temporal 

variations 𝜆(𝑡, 𝑠) is multiplied by the instantaneous power 

 𝑃(𝑡, 𝑠) to obtain the cost of energy utilization for the trip. 

Thus, the objective function and constraints for this case are 

shown in column 2 of Table 1.  

In the scenario where the real-time (RT) electricity price is 

higher than the day-ahead (DA) price, consider an external 

load L which has a sudden requirement of power for a small 

duration. The load L requests power from the adjacent TNs 

where the RSG is one of them. Then the sequence of events 

follows as far as the train/RSO is concerned. 

1. The train runs a schedule check to determine if it can 

meet up with its original schedule within the allowed 

delay time. 

2. If yes for (1), then it runs an economic viability 

check to determine whether it will still be able to 

make profit if it adjusts its energy consumption in 

real-time. 
3. If yes for (2), then the external load L and the train 

(RSO) negotiate the price that is to be paid by the 

load L to the train so that both the parties win.  

 

 

The external load requests 𝐸
[𝑡′:𝑡′+𝛿𝑡]

𝑟𝑒𝑞𝑢𝑒𝑠𝑡
 MWh of energy for 𝛿𝑡 

duration starting from time 𝑡′. The optimizer determines the 

feasibility and profitability of the RPS by evaluating the 

following optimization problem: The actual energy 

consumption of the train 𝐸[𝑡′:𝑡′+𝛿𝑡]
𝑎𝑐𝑡  has to be less than the 

original contracted energy consumption 𝐸
[𝑡′:𝑡′+𝛿𝑡]

𝑜𝑟𝑖𝑔
 during the 

requested time by the requested amount of energy 𝐸
[𝑡′:𝑡′+𝛿𝑡]

𝑟𝑒𝑞𝑢𝑒𝑠𝑡
. 

Here, 𝑃′(𝑡, 𝑠) is the adjusted  instantaneous power 

consumption of the train and 𝜆′(𝑡, 𝑠) is the new price vector. 

The RSO has to pay the RT price for the excess energy 

consumption greater than the contracted amount and will 

have to pay DA price otherwise. 

 
Case 1. Energy 

Minimization 

Case 2. Cost of Energy 

Minimization 

Case 3. Transaction with External 

load 

Objective 

function 
𝑀𝑖𝑛 

Σ
𝑠=0 
𝑆 Σ𝑡=0

𝑇  𝑃(𝑡, 𝑠) 

𝑀𝑖𝑛  

 Σ
𝑠=0 
𝑆 Σ𝑡=0

𝑇  𝜆(𝑡, 𝑠) ∗ 𝑃(𝑡, 𝑠) 

𝑀𝑖𝑛 

 Σ
𝑠=0 
𝑆 (Σ𝑡=0

𝑡′
 𝜆(𝑡, 𝑠) ∗ 𝑃(𝑡, 𝑠) 

+(Σ
𝑡=𝑡′  
𝑇 𝜆′(𝑡, 𝑠) ∗ 𝑃′(𝑡, 𝑠)) 

Constraints  𝑣 ≤ 𝑣𝑚𝑎𝑥                                                                                             

𝐹𝑡𝑟(𝑣) ≤  𝐹𝑚𝑎𝑥(𝑣)                                                                        

𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥                                                                               

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥                                                                             

𝑣(𝑠 = 0) = 0,  𝑣(𝑠 =
𝑆𝑡𝑎𝑡𝑖𝑜𝑛) = 0                                                

 𝑣 ≤ 𝑣𝑚𝑎𝑥                                                                                             

𝐹𝑡𝑟(𝑣) ≤  𝐹𝑚𝑎𝑥(𝑣)                                                                        

𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥                                                                               

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥                                                                             

𝑣(𝑠 = 0) = 0, 𝑣(𝑠 =
𝑆𝑡𝑎𝑡𝑖𝑜𝑛) =0 

𝑣 ≤ 𝑣𝑚𝑎𝑥                                                                                            

𝐹𝑡𝑟(𝑣) ≤  𝐹𝑚𝑎𝑥(𝑣)                                                                        

𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥                                                                               

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥                                                                             

𝑣(𝑠 = 0) = 0,  𝑣(𝑠 =
𝑆𝑡𝑎𝑡𝑖𝑜𝑛) =0 

𝐸[𝑡′:𝑡′+𝛿𝑡]
𝑎𝑐𝑡 ≤ 𝐸

[𝑡′:𝑡′+𝛿𝑡]

𝑜𝑟𝑖𝑔
− 𝐸

[𝑡′:𝑡′+𝛿𝑡]

𝑟𝑒𝑞𝑢𝑒𝑠𝑡
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IV. SIMULATION 

The Acela express running from Boston, MA to New Haven, 

CT has been considered for the simulation. Differential 

Evolution [12] solver has been used for optimizing the 

velocity profile to achieve different objectives. The curve 

resistance has not been considered. The maximum and 

minimum deceleration limits are taken as 1.23 𝑚/𝑠2 and the 

maximum speed of Acela is 217 miles/hr.   The maximum 

traction force curve is shown in Figure 5.  

 

Figure 5. Maximum traction force curve 

Acela’s first leg of journey between Boston, MA and New 

Haven, CT is fed from a 60 Hz, 25 kV overhead catenary 

system whereas the trip from New York City to Washington 

DC is supplied by a 25 Hz 12 kV catenary system. The ISO-

NE is the wholesale energy provider in the regions of Boston, 

Rhode Island and Connecticut and NYISO feeds the New 

York region and PJM is the ISO operator for the New Jersey 

to Washington D.C. 

For the trip of Acela that has been considered in this in our 

simulation, the trains pass through 4 zones where the 

electricity prices vary with time. The zones that are 

considered are NE Mass. (4008), SE Mass. (4006), Rhode 

Island (4005), and Connecticut (4004).  

The zonal day-ahead electricity pricing information has been 

obtained from [14] for June 27, 2019. The hourly price 

variation between the zones of Richmond (RI) and 

Connecticut (CT) are shown in Figure 6 and the results of 

energy and cost of energy optimization are compared in Table 

2. It can be observed that there is a huge price variation 

between the zones during the hours 15-20 and hence the trains 

that pass through these zones during these periods can make 

profit by performing cost of energy optimization. The price 

variation makes the optimizer choose the profile such that the 

energy consumed during the high-price hours is minimized. 

The results are compared in Figures 7 (a) and (b). 

The schedule of the trains also determines the cost of energy 

utilization. As it is evident from the Figure 6, the electricity 

price variation between the two zones is not much during the 

hours before 3 pm and after 8 pm. Both of the optimization 

objectives would yield similar results when the price 

difference is not much. 

From the velocity profile, it can be verified that the trip time 

for the journey remains the same, whereas the brown curve 

achieves the minimum cost of energy operation. 

Table 2: Comparison of Energy and Cost Minimization Objectives 

 

 Minimization of 

Energy Objective 

Minimization of 

Cost Objective 

Cost of 

Energy ($) 

73.9883 71.6609 

Energy 

(kWh) 

1573.4 1601.3 

 

 

 

 

Figure 6. Day ahead hourly price variation for RI and CT zone on June 27, 

2019. 

 

 (a) 

 
(b) 

Figure 7. Comparison of (a) velocity and (b) Cost of Energy profile 

between minimization of energy and minimization of cost of energy 

objectives. 

 

The Figure 7 (b) shows the cost of the trip against the trip 

duration. It can be observed that the Min Cost profile 
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consumes more energy during lower price periods i.e., before 

the RI-CT crossover so that it finishes the trip with lower cost 

of energy utilization than the minimization of energy case. 

There is a reduction in cost of energy utilization by 3.14% for 

an increase in energy utilization of only 1.77%. 

In order to assess the profit of cost optimization for a single 

day, cost of energy utilization for the trip between 

Providence, RI to New Haven, CT, for a weekday is found 

out. The price difference between the contiguous zones could 

be anywhere between -0.01 $/MWh and 112 $/MWh based 

on our analysis. The RT hourly electricity price for February 

4, 2016 is considered in our simulation which exhibits greater 

price variations as shown in Figure 8. 

 

Figure 8. Electricity price variation in RI zone on Feb 4, 2016. 

The total cost for all the trips from Providence, RI to New 

Haven, CT on Feb 4, 2016 is tabulated in Table 3. 

Table 3. Comparison of daily cost for Providence, RI to New Haven, CT trips 

for a single day. 

 Minimization of 

Energy Objective 

Minimization of 

Cost Objective 

Daily Cost for 

Providence-New 

Haven Trip ($) 

409.4751 349.9803 

 

 

From the results, the weighted cost minimization has a profit 

of 14.53% over the energy minimization for all the trips from 

Providence, RI to New Haven, CT, for a single day.  

This comparison is valid only for the particular trip for a 

particular electricity price-day since the electricity prices 

vary widely over time and space. This implies that the 

schedule of the train, its trip time, and the pricing zones 

through which it passes also affect the variation in cost of 

energy. To address the possible variations and to see the 

profitability with cost of energy minimization, the factors of 

zonal price variations, distance and speed are varied and are 

tabulated in Table 4. Here, Trip A is taken as the base case 

and Trip B has the same distance as A, but with maximum 

speed = 60% of maximum speed of Trip A. Trip C has the 

same maximum speed as Trip A, but its distance = 60% of 

distance of Trip A. It is assumed that there are only two price 

zones for all the trips. Factor on the first column of Table 4 is 

the ratio by which the electricity prices of the two pricing 

zones vary.  

Table 4: Comparison of profit with cost optimization when considering 

energy optimization as the base case for the trips A, B and C.  

 Trip A Trip B Trip C 

Factor =1.5 3.5% 0.49% 1.69% 

Factor =2 7.3% 0.82% 4.6% 

Factor =5 21% 1.37% 11.1% 

 

This shows the profitability of the approach when considering 

millions of dollars spent in electricity consumption for the 

whole year. From this it is clear that the benefits with cost 

minimization will be more pronounced when considering: 

1) Longer trips with higher speeds. 

2) Greater price variations between the adjacent zones. 

3) Schedule of the trips and trips during peak period. 

The results are indicative of a proof that aiming for cost of 

energy utilization will lead to lesser cost of energy utilization 

when employed for all the trips of its journey. This shows that 

the cost of energy minimization will prove more profitable in 

the long run, when the US is expected to have a larger 

network of higher speed trains.  

A. Transaction of Energy with an External Load  

The DA and RT prices for Feb 13 for the two zones of NE 

Mass. and SE Mass. of ISO-NE are shown in Table 5.  

Table 5. DA and RT prices for the 2 zones NE Mass. and SE Mass. of ISO-

NE. 

 DA-price 

($/MWh) 

RT- price 

($/MWh) 

Zone 1 24.14 35.22 

Zone 2 24.05 34.99 
 

The train contracted the energy requirement for the trip day-

ahead. The external load requests an average power of 0.5 

MW from the train for 5 minutes which is equivalently, 

0.5/12 MWh. The train relinquishes the equivalent amount of 

energy from 400 to 700 sec. But the train receives this request 

at 300 s and starts adjusting its consumption from 340 s, if it 

is economically feasible.  Price to be paid by the load to the 

grid with RT price of $35.22/MWh= 35.22*1*(0.5/12) = 

$1.4675. The train determines that if it relinquishes the 

amount of energy requested, it will have to incur an excess of 

only $0.4 from the initial cost of energy of $14.4284, with no 

delay in reaching its destination. The RSO can enter into 

negotiation with the external load and determine a price that 

would be profitable to both entities. The reduction in cost of 

energy for the RSO can be anywhere between 0-9.89 % based 
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on the negotiation. The velocity profiles corresponding to 

both cases is shown in Figures 9 (a), (b) and (c).  

 

(a) 

 

(b) 

 

(c)  

Figure 9. Comparison of (a) velocity (b) cost of energy and (c) power profiles 
before and after energy transaction 

The RSO determines that the train can alter its consumption 

when travelling through a low-price-hour area and still make 

additional money through exchange of demand with the 

external load. Figure 10 below shows the maximum reduction 

in electricity cost for the RSO when transacting with the 

external load, when the RT prices of the zones are higher than 

the DA contracted price by an average of 43%. 

 

Figure 10. Cost Reduction (%) of the RSO while Transacting with the 

External Load without Violating the Scheduling Constraints. 

This is the maximum cost reduction (%) plotted against the 

energy transacted to the external load (kWh). The train would 

not be able to achieve a reduction in its cost without violating 

the scheduling constraints if it were to transact more than 

60kWh during this trip of 51.5.This is economically viable 

when the train travels through different areas with different 

real-time prices. It is this flexibility of power consumption 

that enables the energy transaction, leading to further 

reduction in cost.  

V. CONCLUSION 

In this work, application of weighted cost minimization and 

energy transaction has been explained as methods to reduce 

the cost of energy utilization of electric trains. The benefit of 

cost reduction with the cost-optimal profile are shown for 

various cases. The opportunity for energy transactions 

between the train and an external load or between trains could 

also be beneficial during times when the grid is highly 

stressed. The variations in the external factors such as the 

number of passengers, weather conditions, unexpected 

delays, comfort constraint variations, geographic variations 

of electricity price and storage elements are expected to have 

an effect on the transactions. 
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