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Abstract— The development of Railway Smart Grids (RSGs)
has multi-fold benefits [1]. Trains are flexible demands and thus
it is possible to have a multitude of velocity profiles satisfying
the same end-to-end time constraints. This opens up the
opportunities of cost of energy optimization in RSGs in addition
to energy optimization in electric railways. In this paper, we
have proposed the idea of transaction of energy between the
trains and external loads when there is a difference between the
day-ahead and real-time electricity price. This is made possible
by the flexibility of the power demand of the trains. This case
has been analyzed on Acela express running on Northeast
Corridor for different trips. The results show promise in that
the participating entities can make profit on successful price
negotiation.
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I. INTRODUCTION

Energy management in electric railway systems is a huge
challenge, considering the number and type of players
involved in it — trains, electric grid, way-side energy storage
systems etc. The development of smart railway grids which
involve pervasive sensing and coordinated information
exchange between various participants in real time, yields
distributed control and thus creates an exciting opportunity of
integrating the scheduling of the train to the economy of its
operation.

Different approaches have been made towards optimizing
the energy consumption of electric railway systems. Time-
table optimization and driving strategy optimization are two
different optimization approaches adopted for railway
energy minimization. To meet the variable passenger
demand, the railway operators schedule several timetables in
advance and choose one based on passenger flow., Many
formulations have been proposed for cyclic timetable
formulation for minimizing passenger waiting times and
delay times, headway-control, etc. [2]-[4]. On the other
hand, many studies have focused on efficient driving
strategies for minimizing the energy consumption between
stations. The works [5]-[7] analyzed the Pontryagin's
maximum principle for minimum energy consumption for
various track conditions and trip durations and obtained the
optimal operating modes of the trains. Khmelnitsky [8]
considered the problem of energy minimization in a track
with variable gradients and speed limit sections. He also
showed that if regenerative energy can be fully recovered
during the braking phase, the coasting phase will be
interrupted in the optimal speed profile. Studies have also
been performed on adjusting the speed profile of the trains
according to the braking time of other trains in a multi-train
system to effectively utilize the recovered regenerative
energy [9], [10]. Another aspect has been the application of
evolutionary algorithms to solve the optimal switching
strategy [11]. They have an advantage over the numerical
methods when it comes to solving complex systems, but
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their accuracy and speed are limited when it comes to
solving real-time systems.

But, the minimization of energy utilization does not
necessarily imply the minimization of the cost for energy
utilization of the Railway Power System (RPS). It implies
that at any given instant, even if the operation of an electric
train is not so set such that it minimizes the overall energy
consumption, spread over the entire network of trains, the
overall operational cost for energy utilization is minimized.
This is a unique opportunity that can be exploited not only for
existing and planned high-speed inter-state and inter-city
electric trains but for existing and planned intra-city electric
trains potentially as well, where the frequency of travel is
higher even though the distance of travel is smaller [13]. For
the same end-to-end scheduling time of a train, corresponding
to a given average velocity of the train, there may exist a
plurality of instantaneous velocity profiles one of which may
yield the lowest cost of electricity usage. This is shown in
Figure 1.
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Figure 1. Multiple velocity profiles with same trip time

This flexibility is the key to achieving different objectives
which also lead to the possibility of the RPS behaving as
transactive nodes. In this paper, the concept of transaction of
energy applied to the electric trains utilizes the demand-
shifting capability of the trains, where the participating
entities can make profit depending on where and when it is
applied.

Section II provides the approach for energy transaction for
RPS used in this paper. Section III describes the different
optimization objectives and how the energy transaction has
been formulated, and Section IV presents the simulation
analysis succeeded by Sections V which concludes the work.
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II. TRANSACTIVE CONTROL APPROACH

Figure 2 below shows a broad classification of driving
strategy optimization approaches that exist for electric and
diesel trains. Electric trains provide a unique mechanism for
saving part of its transient energy by feeding it back to the
railway grid using regenerative action when it decelerates or
comes to a stop at a station. This means that an electric train
can behave both like a demand as well as a generating source.

This also leads to the possibility of scenario-centric
transaction control opportunities. When there is an external
load controlled by the Load Serving Entity (LSE) that has an
emergency power demand that is to be met, RPS can act as a
transactive agent, willing to send a virtual power by reducing
its contracted energy consumption during a stipulated time
interval so that the grid can feed this energy to the external
load. When the train’s trip is expected to end during the same
price-hour, it can run an optimization check and determine
whether it will be able to meet the schedule economically
while still making profit.
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Figure 2. Driving strategy optimization approached for electric and diesel
trains

The transactions evolve over different temporal scales
ranging from day-ahead online transaction between the
power grid and the railway system operators yielding price
optimality to real-time optimal transaction among the trains
(T) or the area control centers (ACC). The possible
opportunities for transaction within the Independent System
Operator (ISO)-RPS-LSE is shown in Figure 3.

All of these transactions are carried out while meeting system
constraints ranging from end-to-end time-scheduling, power-

quality, and capacity.
¢ Transaction > LlSE

Figure 3. Possible transaction opportunities within ISO-RPS-LSE.

III. ELECTRIC TRAIN MODEL

A. Assumptions

e The mass of the train is assumed constant
throughout the simulation and is multiplied by a
factor of 1.1 to consider the rotational effect.

e The traction force and the braking force depend on
velocity and they can be varied continuously.

e  With regenerative braking capabilities, the energy
conversion efficiencies are assumed to be 70%.

B. Model

Figure 4 shows the forces acting on a single train, governed
by the Newton’s law as shown below:

M.a =F,(v) - EW) —E() = F(s) (1)

Figure 4. Forces acting on a train travelling through a slope and curve

where, M is the total mass of the train including rotational
effect (kg), a is the acceleration/deceleration of the train
(m/s?), F,.(v) is the traction/braking force of the train
(N),E.(v) is the air drag and rolling resistance combined
(N), F,(s) is the resistance due to curvature (N), F,;(s) is the
gradient resistance force (N). The F;,. is determined by the
driver by moving the throttle in one or the other direction,
according to a journey booklet which specifies the timetable
for reaching several points and the objective speeds to be
followed in every point. The objective of this optimization is
to determine the content of this journey booklet, in such a way
that the velocity profile is the optimal driving strategy for a
specific optimization objective.

The formulae for F.(v), F;(s) and F,(s)are given below:

F:q(S) =M*g*5(s) (2)
F(v) =A+B.v+ C.v* 3)
D
0, otherwise

where A,B,C,and D are empirical constants, R(s) is the
radius of curvature at position s and g is the acceleration due
to gravity. The power consumed by the train is then
calculated as follows:

Ferv

Pirgin = T + Pancillary Q)

where, the symbol 7 is the energy conversion coefficient
from electrical to mechanical, Pgnciiary is the power
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consumption of the ancillary equipment (heating/air
conditioning, cooling equipment, lighting, etc.).

The energy consumption of a journey Ej,.,i, can be calculated
as shown:

Etrain = Z{:to Ptrain (6)

C. Optimization

The different optimization approaches and comparison of
their formulation are detailed in this section. The operation of
the train is constrained by the speed limits of the track and the
train, acceleration and deceleration limits of the train and the
terminal constraints. The speed limits on the track, v;,,4,, are
imposed due to the track conditions such as gradients, curves
or tunnels. The limits on acceleration and deceleration rates
of the train, a4, and a,,;, are imposed also keeping in
mind the passengers' comfort. Also, there is an operation
limit on the maximum traction and the maximum braking
force depending on the velocity of the train, Fyq, (V). Tiin
and Ty, 4, are the minimum and maximum allowed time limits
for reaching the station and T is the trip time. The minimum
and maximum limit of the trip time is obtained from the
schedule and the train operator is penalized for violating the
same.

Table 1. Comparison of optimization objectives.

more economical for the Railway System Operators (RSO).
The day-ahead cost of electricity that has spatial and temporal
variations A(t,s) is multiplied by the instantaneous power
P(t,s) to obtain the cost of energy utilization for the trip.
Thus, the objective function and constraints for this case are
shown in column 2 of Table 1.

In the scenario where the real-time (RT) electricity price is
higher than the day-ahead (DA) price, consider an external
load L which has a sudden requirement of power for a small
duration. The load L requests power from the adjacent TNs
where the RSG is one of them. Then the sequence of events
follows as far as the train/RSO is concerned.

1. The train runs a schedule check to determine if it can
meet up with its original schedule within the allowed
delay time.

2. If yes for (1), then it runs an economic viability
check to determine whether it will still be able to
make profit if it adjusts its energy consumption in
real-time.

3. Ifyes for (2), then the external load L and the train
(RSO) negotiate the price that is to be paid by the
load L to the train so that both the parties win.

Case 1. Energy

Case 2. Cost of Energy

Case 3. Transaction with External

V < Vnmax
Ftr(v) =< Fmax(v)
Toin =T = Tinax
Amin sas Amax

V < Vnax
Ftr(v) < Fmax(v)
Tin =T = Tinax
Amin sas Amax

Minimization Minimization load
Objective Min Min Min
function 25 I, P(t,s) 25 T, Alt,s) * P(t,s) 23, (Btoo Alt,s) * P(t,s)
HET, X(t,5) * P'(t,5))
Constraints V < Vnax

Ftr(v) =< Fmax(v)
Tmin <=T< Tmax
Amin = @ = Qupqx

v(s=0)=0,v(s=
Station) =0

v(s=0)=0,v(s =
Station) =0

v(s=0)=0, v(s =

Station) =0
act orig __ pprequest
E[t’:t’+6t] = E[t’:t’+5t] E[t’:t’+5t]

Comparison of different cases of optimization approach-
objective functions and constraints are shown in Table 1. For
an electric train with regeneration, the objective is to
minimize the total energy consumed, also considering the
regenerative energy maximization. The instantaneous power
P(t, s) has to be summed up over the entire trip for obtaining
the total energy of the trip. Thus, the objective function and
constraints for this case are shown in column 1 of Table 1.

The electricity prices, in general, have spatial and temporal
variations. In such a case, the energy minimization may not
lead to a minimum cost of energy utilization. Hence for a train
that passes through zones with spatial and temporal price
variations, minimizing the cost of energy utilized will prove

The external load requests E[rte,?;fisgt] MWh of energy for 6t

duration starting from time t’. The optimizer determines the
feasibility and profitability of the RPS by evaluating the
following optimization problem: The actual energy
consumption of the train E[‘zcr:tt, +5¢ has to be less than the
orig

[t":t'+6t]
requested time by the requested amount of energy E [t/:t"+5¢]"

Here, P’(t,s) is the adjusted instantaneous power
consumption of the train and A’ (¢, s) is the new price vector.
The RSO has to pay the RT price for the excess energy
consumption greater than the contracted amount and will
have to pay DA price otherwise.

original contracted energy consumption E during the

request
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IV. SIMULATION

The Acela express running from Boston, MA to New Haven,
CT has been considered for the simulation. Differential
Evolution [12] solver has been used for optimizing the
velocity profile to achieve different objectives. The curve
resistance has not been considered. The maximum and
minimum deceleration limits are taken as 1.23 m/s? and the
maximum speed of Acela is 217 miles/hr. The maximum
traction force curve is shown in Figure 5.
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Figure 5. Maximum traction force curve

Acela’s first leg of journey between Boston, MA and New
Haven, CT is fed from a 60 Hz, 25 kV overhead catenary
system whereas the trip from New York City to Washington
DC is supplied by a 25 Hz 12 kV catenary system. The ISO-
NE is the wholesale energy provider in the regions of Boston,
Rhode Island and Connecticut and NYISO feeds the New
York region and PJM is the ISO operator for the New Jersey
to Washington D.C.

For the trip of Acela that has been considered in this in our
simulation, the trains pass through 4 zones where the
electricity prices vary with time. The zones that are
considered are NE Mass. (4008), SE Mass. (4006), Rhode
Island (4005), and Connecticut (4004).

The zonal day-ahead electricity pricing information has been
obtained from [14] for June 27, 2019. The hourly price
variation between the zones of Richmond (RI) and
Connecticut (CT) are shown in Figure 6 and the results of
energy and cost of energy optimization are compared in Table
2. It can be observed that there is a huge price variation
between the zones during the hours 15-20 and hence the trains
that pass through these zones during these periods can make
profit by performing cost of energy optimization. The price
variation makes the optimizer choose the profile such that the
energy consumed during the high-price hours is minimized.
The results are compared in Figures 7 (a) and (b).

The schedule of the trains also determines the cost of energy
utilization. As it is evident from the Figure 6, the electricity
price variation between the two zones is not much during the
hours before 3 pm and after 8 pm. Both of the optimization
objectives would yield similar results when the price
difference is not much.

From the velocity profile, it can be verified that the trip time
for the journey remains the same, whereas the brown curve
achieves the minimum cost of energy operation.

Table 2: Comparison of Energy and Cost Minimization Objectives

Minimization of Minimization of
Energy Objective Cost Objective
Cost of 73.9883 71.6609
Energy ($)
Energy 1573.4 1601.3
(kWh)
i J
,»// ) AN
20F — -
-

Hour of the day

Figure 6. Day ahead hourly price variation for RI and CT zone on June 27,
2019.
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Figure 7. Comparison of (a) velocity and (b) Cost of Energy profile
between minimization of energy and minimization of cost of energy
objectives.

The Figure 7 (b) shows the cost of the trip against the trip
duration. It can be observed that the Min Cost profile
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consumes more energy during lower price periods i.e., before
the RI-CT crossover so that it finishes the trip with lower cost
of energy utilization than the minimization of energy case.
There is a reduction in cost of energy utilization by 3.14% for
an increase in energy utilization of only 1.77%.

In order to assess the profit of cost optimization for a single
day, cost of energy utilization for the trip between
Providence, RI to New Haven, CT, for a weekday is found
out. The price difference between the contiguous zones could
be anywhere between -0.01 $/MWh and 112 $/MWh based
on our analysis. The RT hourly electricity price for February
4,2016 is considered in our simulation which exhibits greater
price variations as shown in Figure 8.

140 T T T

Electricity Price of Rl zone ($/MWh)

0 L 1 L 1
0 5 10 15 20 25

Hour of the day

Figure 8. Electricity price variation in RI zone on Feb 4, 2016.

The total cost for all the trips from Providence, RI to New
Haven, CT on Feb 4, 2016 is tabulated in Table 3.

Table 3. Comparison of daily cost for Providence, RI to New Haven, CT trips
for a single day.

Minimization of | Minimization of
Energy Objective | Cost Objective
Daily Cost for 409.4751 349.9803
Providence-New
Haven Trip ($)

From the results, the weighted cost minimization has a profit
of 14.53% over the energy minimization for all the trips from
Providence, RI to New Haven, CT, for a single day.

This comparison is valid only for the particular trip for a
particular electricity price-day since the electricity prices
vary widely over time and space. This implies that the
schedule of the train, its trip time, and the pricing zones
through which it passes also affect the variation in cost of
energy. To address the possible variations and to see the
profitability with cost of energy minimization, the factors of
zonal price variations, distance and speed are varied and are
tabulated in Table 4. Here, Trip A is taken as the base case
and Trip B has the same distance as A, but with maximum
speed = 60% of maximum speed of Trip A. Trip C has the
same maximum speed as Trip A, but its distance = 60% of
distance of Trip A. It is assumed that there are only two price

zones for all the trips. Factor on the first column of Table 4 is
the ratio by which the electricity prices of the two pricing
zones vary.

Table 4: Comparison of profit with cost optimization when considering
energy optimization as the base case for the trips A, B and C.

Trip A Trip B Trip C
Factor =1.5 3.5% 0.49% 1.69%
Factor =2 7.3% 0.82% 4.6%
Factor =5 21% 1.37% 11.1%

This shows the profitability of the approach when considering
millions of dollars spent in electricity consumption for the
whole year. From this it is clear that the benefits with cost
minimization will be more pronounced when considering:

1) Longer trips with higher speeds.
2) Greater price variations between the adjacent zones.
3) Schedule of the trips and trips during peak period.

The results are indicative of a proof that aiming for cost of
energy utilization will lead to lesser cost of energy utilization
when employed for all the trips of its journey. This shows that
the cost of energy minimization will prove more profitable in
the long run, when the US is expected to have a larger
network of higher speed trains.

A. Transaction of Energy with an External Load

The DA and RT prices for Feb 13 for the two zones of NE
Mass. and SE Mass. of ISO-NE are shown in Table 5.

Table 5. DA and RT prices for the 2 zones NE Mass. and SE Mass. of ISO-

NE.
DA-price RT- price
($/MWh) ($/MWh)
Zone 1 24.14 35.22
Zone 2 24.05 34.99

The train contracted the energy requirement for the trip day-
ahead. The external load requests an average power of 0.5
MW from the train for 5 minutes which is equivalently,
0.5/12 MWh. The train relinquishes the equivalent amount of
energy from 400 to 700 sec. But the train receives this request
at 300 s and starts adjusting its consumption from 340 s, if it
is economically feasible. Price to be paid by the load to the
grid with RT price of $35.22/MWh= 35.22*%1%(0.5/12) =
$1.4675. The train determines that if it relinquishes the
amount of energy requested, it will have to incur an excess of
only $0.4 from the initial cost of energy of $14.4284, with no
delay in reaching its destination. The RSO can enter into
negotiation with the external load and determine a price that
would be profitable to both entities. The reduction in cost of
energy for the RSO can be anywhere between 0-9.89 % based
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on the negotiation. The velocity profiles corresponding to
both cases is shown in Figures 9 (a), (b) and (c).
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Figure 9. Comparison of (a) velocity (b) cost of energy and (c) power profiles
before and after energy transaction

The RSO determines that the train can alter its consumption
when travelling through a low-price-hour area and still make
additional money through exchange of demand with the
external load. Figure 10 below shows the maximum reduction

in electricity cost for the RSO when transacting with the
external load, when the RT prices of the zones are higher than
the DA contracted price by an average of 43%.

Cost Reduction(%)

0 10 20 30 40 50 60
Energy Transacted to External Load (kWh)

Figure 10. Cost Reduction (%) of the RSO while Transacting with the
External Load without Violating the Scheduling Constraints.

This is the maximum cost reduction (%) plotted against the
energy transacted to the external load (kWh). The train would
not be able to achieve a reduction in its cost without violating
the scheduling constraints if it were to transact more than
60kWh during this trip of 51.5.This is economically viable
when the train travels through different areas with different
real-time prices. It is this flexibility of power consumption
that enables the energy transaction, leading to further
reduction in cost.

V. CONCLUSION

In this work, application of weighted cost minimization and
energy transaction has been explained as methods to reduce
the cost of energy utilization of electric trains. The benefit of
cost reduction with the cost-optimal profile are shown for
various cases. The opportunity for energy transactions
between the train and an external load or between trains could
also be beneficial during times when the grid is highly
stressed. The variations in the external factors such as the
number of passengers, weather conditions, unexpected
delays, comfort constraint variations, geographic variations
of electricity price and storage elements are expected to have
an effect on the transactions.
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