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Online Projected Gradient Descent for
Stochastic Optimization With

Decision-Dependent Distributions
Killian Wood , Gianluca Bianchin , Member, IEEE , and Emiliano Dall’Anese , Member, IEEE

Abstract—This letter investigates the problem of track-
ing solutions of stochastic optimization problems with
time-varying costs that depend on random variables with
decision-dependent distributions. In this context, we pro-
pose the use of an online stochastic gradient descent
method to solve the optimization, and we provide explicit
bounds in expectation and in high probability for the dis-
tance between the optimizers and the points generated by
the algorithm. In particular, we show that when the gradient
error due to sampling is modeled as a sub-Weibull random
variable, then the tracking error is ultimately bounded in
expectation and in high probability. The theoretical findings
are validated via numerical simulations in the context of
charging optimization of a fleet of electric vehicles.

Index Terms—Optimization, optimization algorithms.

I. INTRODUCTION

THIS letter considers the problem of developing and
analyzing online algorithms to track the solutions of time-

varying stochastic optimization problems, where the distribu-
tion of the underlying random variables is decision-dependent.
Formally, we consider problems of the form1:

x∗
t ∈ arg min

x∈Ct
E

z∼Dt(x)
[�t(x, z)], (1)
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1Notation. We let N0 := N ∪ {0}, where N denotes the set of natural

numbers. For a given column vector x ∈ R
n, ‖x‖ is the Euclidean norm.

Given a differentiable function f : Rn → R, ∇f (x) denotes the gradient of
f at x (taken to be a column vector). Given a closed convex set C ⊆ R

n,
projC : R

n → R
n denotes the Euclidean projection of y onto C, namely

projC(y) := arg minv∈C ‖y − v‖. For a given random variable z ∈ R, E[z]
denotes the expected value of z, and P(z ≤ ε) denotes the probability of z
taking values smaller than or equal to ε; ‖z‖p := E[|z|p]1/p, for any p ≥ 1.
Finally, e denotes Euler’s number.

where t ∈ N0 is a time index, x ∈ R
d is the decision

variable, Dt is a map from the set R
d to the space of dis-

tributions, z ∈ Zt is a random variable (with Zt the union
of the support of Dt(x) for all x ∈ Ct), �t:Rd × Zt → R is
the loss function, and Ct ⊆ R

d is a closed and convex set.
Problems of this form arise in sequential learning and strate-
gic classification [1], and in applications in power and energy
systems [2], [3] to model uncertainty in pricing and human
behavior. Moreover, the framework (1) can be used to solve
control problems for dynamical systems whose dynamics are
unknown, where the variable z is used to account for the lack
of knowledge of the underlying system dynamics (similarly to
problems in feedback-based optimization [4], [5]).

Since the distribution of z in (1) depends on the deci-
sion variable x, the problem of finding x∗

t is computationally
burdensome for general cases, and intractable when Dt in
unknown – even when the loss function is convex in x [6], [7].
For this reason, we focus on finding decisions that are
optimal with respect to the distribution that they induce; we
refer to these points as performatively stable [6], while we
refer to solutions x∗

t to the original problem (1) as perfor-
matively optimal. We obtain explicit error bounds between
performatively optimal and performatively stable points by
leveraging tools from [6], [7]. The main focus of this letter
is to propose and analyze online algorithms that can deter-
mine performatively stable points, in contexts where the loss
function and constraint set are revealed sequentially. Since the
distributional map Dt may be unknown in practice, we then
extend our techniques to stochastic methods that only require
samples of z.

Prior Work: Online (projected) gradient descent methods
have been well-investigated by using tools from the controls
community, we refer to the representative works [8]–[12] as
well as to pertinent references therein. Convergence guaran-
tees for online stochastic gradient methods where drift and
noise terms satisfy sub-Gaussian assumptions were recently
provided in [13]. Online stochastic optimization problems with
time-varying distributions are studied in, e.g., [1], [14], [15].
On the other hand, time-varying costs are considered in [16],
along with sampling strategies to satisfy regret guarantees.
For static optimization problems, the notion of performatively
stable points is introduced in [6], where error bounds for
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risk minimization and gradient descent methods applied to
stochastic problems with decision-dependent distributions are
provided. Stochastic gradient methods to identify performa-
tively stable points for decision-dependent distributions are
studied in [7], [17] – the latter also providing results for an
online setting in expectation. A stochastic gradient method for
time-invariant distributional maps is presented in [18].

Contributions: We offer the following main contributions.
C1) First, we propose an online projected gradient descent
(OPGD) method to solve (1), and we show that the tracking
error (relative to the performatively stable points) is ultimately
bounded by terms that account for the temporal drift of the
optimizers. C2) Second, we propose an online stochastic pro-
jected gradient descent (OSPGD) and we provide error bounds
in expectation and in high probability. Our bounds in high
probability are derived by modeling the gradient error as a
sub-Weibull random variable [19]: this allows us to capture a
variety of sub-cases, including scenarios where the error fol-
lows sub-Gaussian and sub-exponential distributions [20], or
any distribution with finite support.

Relative to [1], [14]–[16] our distributions are decision depen-
dent; relative to [6], [7], [17], [18], our cost and distributional
maps are time varying. Moreover, our results do not rely on
bias or variance assumptions regarding the gradient estimator.
In the absence of distributional shift and without a sub-Weibull
error, our upper bounds reduce to the results of [9]. Relative
to [18], we seek performatively stable points rather than the
performative optima. In doing so, we incur the error charac-
terized in [6]; however, we do not restrict to distributional
maps that induce continuous distributions or require finite dif-
ference approximations. With respect to the available literature
on stochastic optimization, we provide for the first time explicit
bounds in expectation and in high probability to solve stochas-
tic optimization with decision dependent distributions in the
presence of time-dependent distributional maps.

The remainder of this letter is organized as follows.
Section II introduces some preliminaries; Section III studies
the OPGD, and Section IV studies the OSPGD. Section V
illustrates simulation results, and Section VI concludes this
letter.

II. PRELIMINARIES

We first introduce preliminary definitions and results. We
consider random variables z that take values on a metric space
(M, d), where the set M is equipped with the Borel σ -algebra
induced by metric d. We assume that M is a complete and
separable metric space (hence M is a Polish space). We let
P(M) denote the set of Radon probability measures on M
with finite first moment. Given ν ∈ P(M), z ∼ ν denotes
that the random variable z is distributed according to ν. Due
to Kantorovich-Rubenstein duality, the Wasserstein-1 distance
between μ, ν ∈ P(M) can be defined as [21]:

W1(μ, ν) = sup
g∈Lip1

{
E

z∼μ
[
g(z)

]− E
z∼ν
[
g(z)

]}
, (2)

where Lip1 is the set of 1-Lipschitz functions over M. We
note that the pair (P(M),W1) describes a metric space of
probability measures.

Heavy-Tailed Distributions: In this letter, we will utilize the
sub-Weibull model [19], introduced next.

Definition 1 (Sub-Weibull Random Variable): z is a sub-
Weibull random variable, denoted by z ∼ subW(θ, ν), if there
exists θ, ν > 0 such that ‖z‖k ≤ νkθ for all k ≥ 1.

The parameter θ measures the heaviness of the tail (higher
values correspond to heavier tails) and the parameter ν mea-
sures the proxy-variance [19]. In what follows, we will also
use the following equivalent characterization of a sub-Weibull
random variable: z ∼ subW(θ, ν) if and only if ∃ θ, ν′ >
0,P(|z| ≥ ε) ≤ 2 exp(−(ε/ν′))1/θ . As shown in [22], the two
characterizations are equivalent by choosing ν = ( θ2e )

θ ν′. The
class of sub-Weibull random variables enjoys the following
properties.

Proposition 1 (Closure of Sub-Weibull): Let
z ∼ subW(θ1, ν1) and y ∼ subW(θ2, ν2) be (possibly
coupled) sub-Weibull random variables and let c ∈ R. Then,
the following holds:

1) z + y ∼ subW(max{θ1, θ2}, ν1 + ν2);
2) zy ∼ subW(θ1 + θ2, ψ(θ1, θ2)ν1ν2), ψ(θ1, θ2) := (θ1 +

θ2)
θ1+θ2/(θ

θ1
1 θ

θ2
2 );

3) z + c ∼ subW(θ1, |c| + ν1);
4) cz ∼ subW(θ1, |c|ν1).
Proof: Properties 1) and 4) are proved in [19]; property 2)

is proved in [23]. To show 3), since c ∈ R, then for any k ≥ 1
‖c‖k = |c| ≤ |c|kθ . It follows that ‖z + c‖k ≤ ‖z‖k + ‖c‖k ≤
νkθ + |c|kθ ≤ (ν + |c|)kθ .

III. ONLINE PROJECTED GRADIENT DESCENT

In this section, we propose and study an OPGD method to
solve (1). In Section IV, we will leverage the results derived
in this section to analyze a the stochastic version OSPGD.

We begin by outlining our main assumptions.
Assumption 1 (Strong Convexity): For a fixed z ∈ Zt, the

map x �→ �t(x, z) is αt-strongly convex, where αt > 0, for all
t ∈ N0.

Assumption 2 (Joint Smoothness): For all t ∈ N0, x �→
∇x�t(x, z) is βt-Lipschitz continuous for all z ∈ Zt, and
z �→ ∇x�t(x, z) is βt-Lipschitz continuous for all x ∈ R

d.
Assumption 3 (Distributional Sensitivity): For all t ∈ N0,

there exists εt > 0 such that

W1(Dt(x),Dt(x
′)) ≤ εt‖x − x′‖2 (3)

for any x, x′ ∈ R
d.

Assumption 4 (Convex Constraint Set): For all t ∈ N0, the
set Ct is closed and convex.

A. Performatively Stable Points

Since the objective function and the distribution in (1)
both depend on the decision variable x, the problem (1) is
intractable in general, even when the loss is convex. For
this reason, we follow the approach of [6], [7] and seek
optimization algorithms that can determine the performatively
stable point, defined as follows:

x̄t ∈ arg min
x∈Ct

E
z∼Dt(x̄t)

[�t(x, z)]. (4)
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Convergence to a performatively stable point is desirable
because it guarantees that x̄t is optimal for the distribution
that it induces on z. The following result, adapted
from [7, Prop. 3.3], establishes existence and uniqueness of
a performatively stable point.

Lemma 1 (Existence of Performatively Stable Points)
[7, Prop. 3.3]: Let Assumptions 1-4 hold, and suppose that
εtβt
αt

< 1 for all t ∈ N0. Then, a sequence of performatively
stable points {x̄t}t∈N0 exists and is unique.

In general, performatively stable points may not coincide
with the optimizers of the original problem (1). However, an
explicit error bound can be derived, as formally stated next.

Lemma 2 (Error of Performatively Stable Points) [6]:
Suppose that the function z �→ �t(x, z) is γt-Lipschitz con-
tinuous for all x ∈ R

d and t ∈ N0. Then, under the same
assumptions of Lemma 1, it holds that

‖x̄t − x∗
t ‖ ≤ 2εtγtα

−1
t , for all ∈ N0. (5)

The proof Lemma 2 follows from [6, Ths. 3.5 and 4.3]. In
the remainder of this letter, we assume that the assumptions of
Lemma 1 are satisfied, so that the performatively stable point
sequence is unique. We illustrate the difference between x̄t and
x∗

t in the following example.
Example 1: Consider an instance of (1) where �(x, z) =

x2 + z, Ct = R, Dt(x) = N (μtx, σ 2
t ), μt, σt > 0. In this case,

the objective can be specified in closed form as: E
z∼Dt(x)

[x2 +
z] = x2 + μtx, and thus the unique performatively optimal
point is given by x∗

t = −μt/2. To determine the performatively
stable point, notice that ∇x�(x, z) = 2x, and thus x̄t satisfies

E
z∼Dt(x̄t)

[2x̄t] = 0, which implies x̄t = 0. The bound in (5) thus

holds by noting that εt = μt, γt = 1, and αt = 2.

B. Online Projected Gradient Descent

We now propose an OPGD that seeks to track the trajectory
of the performatively stable optimizer {x̄t}t∈N0 . To this end, in
what follows we adopt the following notation:

ft(x, ν) := E
z∼ν[�t(x, z)], (6)

for any x ∈ R
d, ν ∈ P(M), and t ∈ N0. Notice that when ν

is a distribution induced by the decision variable y, namely
ν = Dt(y), we will use the notation ft(x,Dt(y)). Moreover,
we denote by ∇ft(x, ν) the gradient of ft(x, ν) (we also note
that, according to the dominated convergence theorem, the
expectation and gradient operators can be interchanged).

The OPGD amounts to the following step at each t ∈ N0:

xt+1 = Gt(xt,Dt(xt)), (7)

where Gt(xt, ν) := projCt
(xt − ηt∇ft(xt, ν)), with ηt > 0

denoting a stepsize.
First, we note that a performatively stable point is a fixed

point of the algorithmic map (7), namely, x̄t = Gt(x̄t,Dt(x̄t)).
Next, we focus on characterizing the error between the
updates (7) and the performatively stable points {x̄t}t∈N0 . To
this aim, we denote the temporal drift in the performatively

stable points as ϕt := ‖x̄t+1 − x̄t‖, and the tracking error rela-
tive to the performatively stable points as et := ‖xt − x̄t‖. Our
error bound for OPGD is presented next.

Theorem 1 (Tracking Error of OPGD): Let Assumptions 1-
4 hold, suppose that εtβt

αt
< 1 for all t ∈ N0, and let {xt}t∈N0

denote a sequence generated by (7). Then, for all t ∈ N0, the
error et = ‖xt − x̄t‖ satisfies:

et+1 ≤ ate0 +
t∑

i=0

biϕi, (8)

where at := ∏t
i=1 ρi + ηiβiεi,

bi :=
{

1 if i = t,∏t
k=i+1 ρk + ηkβkεk if i �= t,

and ρt := max{|1 − ηtαt|, |1 − ηtβt|}. Moreover, if

ηt ∈
[

1 − r

αt + βtεt
,

1 + r

βt(1 + εt)

]
for all t ∈ N0, (9)

for some r ∈ (0, 1), then λ̃ := supt≥0{ρt + ηtβtεt} ≤ r and

lim sup
t→+∞

et ≤ (1 − λ̃)−1 sup
t≥0

{ϕt}, (10)

where ϕ̃ := supt≥0{ϕt}.
Before presenting the proof, some remarks are in order.
Remark 1: By application of Lemma 2, OPGD guarantees

that the error between the algorithmic updates and the per-
formatively optimal points is bounded at all times. Precisely,
the following estimate holds: lim supt→+∞ ‖xt − x∗

t ‖ ≤ (1 −
λ̃)−1ϕ̃ + 2 supt≥0{εtγtα

−1
t }.

Remark 2: When (9) holds, one can write the bound et+1 ≤
ate0 + (1 − λ̃)−1 supi{ϕi}; this is an exponential input-to-state-
stability (E-ISS) result [24], where {x̄t} are the equilibria of (7)
and ϕi is treated as a disturbance. ISS implies that et is
ultimately bounded as in (10).

Next, we present the proof of Theorem 1. The following
lemmas are instrumental.

Lemma 3 (Gradient Deviations): Under Assumption 2, for
any t ∈ N0, x ∈ R

d, and measures μ, ν ∈ P(M), the following
bound holds:

‖∇ft(x, μ)− ∇ft(x, ν)‖ ≤ βtW1(μ, ν). (11)

Lemma 4 (Contractive Map): Let Assumptions 1-2 and 4
hold. For any ν ∈ P(M), the map x �→ Gt(x, ν) is Lipschitz
continuous, namely, for any x, y ∈ R

d:

‖Gt(x, ν)− Gt(y, ν)‖ ≤ ρt‖x − y‖, (12)

where ρt = max{|1 − ηtαt|, |1 − ηtβt|}. Moreover, if ρt < 1
for all t ∈ N0, then x̄t is the unique fixed point of (7).

The proof of Lemma 3 follows by iterating the reasoning
in [7, Lemma 2.1] for all t ∈ N0; the proof of lemma 4 is
standard and is omitted due to space limitations.

Proof of Theorem 1: Note that xt ∈ Ct for all t ∈ N0 directly
follows by definition of Euclidean projection. By using the
triangle inequality, we find that

et+1 ≤ ‖xt+1 − x̄t‖ + ‖x̄t − x̄t+1‖
= ‖Gt(xt,Dt(xt))− Gt(x̄t,Dt(x̄t))‖ + ϕt
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≤ ‖Gt(xt,Dt(xt))− Gt(xt,Dt(x̄t))‖
+ ‖Gt(xt,Dt(x̄t))− Gt(x̄t,Dt(x̄t))‖ + ϕt,

where the first identity follows from the definition of Gt(·, ·)
and the second inequality follows by adding and subtracting
Gt(xt,Dt(x̄t)). Applying (11) and Lemma 4 yields:

et+1 ≤ ηt‖∇ft(xt, xt)− ∇ft(xt, x̄t)‖
+ ‖Gt(xt,Dt(x̄t))− Gt(x̄t,Dt(x̄t))‖ + ϕt

≤ ηtβtW1(Dt(xt),Dt(x̄t))+ ρtet + ϕt

≤ ηtβtεtet + ρtet + ϕt

= (ρt + ηtβtεt)et + ϕt. (13)

Thus we obtain the following by expanding the recursion:

et+1 ≤
(

t∏
i=0

λi

)
e0 + ϕt +

t−1∑
i=0

⎛
⎝ t∏

k=i+1

λk

⎞
⎠ϕi,

where we defined λt := ρt+ηtβtεt. The bound (8) then follows
by definition of the sequences {at} and {bt}.

To prove (10), we show that supt λt < 1 for appropriate ηt.
Fix r ∈ (0, 1). Then, by the definition of ρt, λt ≤ r holds if
the following two conditions are satisfied simultaneously:

|1 − ηtαt| + ηtβtεt ≤ r, and |1 − ηtβt| + ηtβtεt ≤ r. (14)

The first inequality holds if and only if −r + ηtβtεt < 1 −
ηtαt < r−ηtβtεt or, equivalently, 1−r ≤ ηt(αt +βtεt) ≤ 1+r.
The second inequality holds if and only if −r + ηtβtεt <

1 − ηtβt < r − ηtβtεt. By using αt ≤ βt, both inequalities are
satisfied when

1 − r

βt(1 + εt)
≤ 1 − r

αt + βtεt
≤ ηt ≤ 1 + r

βt(1 + εt)
≤ 1 + r

αt + βtεt
.

Thus, to satisfy the maximum, its sufficient to enforce that
ηt ∈ [ 1−r

αt+βtεt
, 1+r
βt(1+εt)

]. The result (10) follows by utilizing the
geometric series.

Finally, we observe that when the objective and constraints
are time-invariant, we recover the result of [7, Sec. 5] as
formalized next.

Corollary 1 (Tracking Error of OPGD for Time-Invariant
Problems): If the problem (1) is time independent and the
assumptions in Theorem 1 hold, then OPGD with fixed
step size η ∈ (0, 2/β(1 + ε)) converges linearly to the
performatively stable point.

Proof: When (1) is time independent, then for all t ∈ N0,
αt = α, βt = β, εt = ε, ρt = ρ, ϕt = 0. Accordingly,
the recursion (8) yields: et+1 ≤ λet with λ = ρ + ηβε. By
replacing strict inequality and r = 1 in (14), we conclude that
η < 2/β(1 + ε) implies λ < 1. Hence et+1/et ≤ λ < 1.

IV. ONLINE STOCHASTIC GRADIENT DESCENT

An exact expression for the distributional map xt �→ Dt(xt)

may not be available in general and, even if available, eval-
uating the gradient may be computational burdensome. We
consider the case where we have access to a finite number
of samples of zt at each time step t to estimate the gradient
∇ft(xt,Dt(xt)). For example, given a mini-batch of samples
{ẑi

t}Nt
i=1 of zt, the approximate gradient is computed as gt(xt) =

(1/Nt)
∑Nt

i=1 ∇�t(xt, ẑi); when Nt = 1 we have a “greedy”
estimate and when Nt > 1 we have a “lazy” estimate [17].
Accordingly, we consider an OSPGD described by:

xt+1 = Ĝt(xt), Ĝt(x) := projCt
(x − ηtgt(x)), (15)

where ηt > 0 is a stepsize. In the remainder, we focus on
finding error bounds in the spirit of Theorem 1 for OSPGD.

A. Bounds in Expectation and High-Probability

Throughout our analysis, we interpret OSPGD as an inexact
OPGD with gradient error given by the random variable:

ξt := ‖gt(xt)− ∇ft(xt,Dt(xt))‖. (16)

We make the following assumption.
Assumption 5 (Sub-Weibull Error): The gradient error ξt is

sub-Weibull; i.e., ξt ∼ subW(θ, νt) for some θ, νt > 0.
Assumption 5 allows us to describe a variety of sub-cases,

including scenarios where the error follows sub-Gaussian
and sub-Exponential distributions [20], or any distribution
with finite support. Further, notice that Assumption 5 does
not require the random variables {ξt}t∈N0 to be independent.
Examples of random variables that satisfy Assumption 5 are
described in Section IV-B. Our error bounds for OSPGD are
presented next.

Theorem 2 (Expectation and High-Probability Bounds for
OSPGD): Let Assumptions 1-4 hold, and suppose that εtβt

αt
< 1

for all t ∈ N0. Recall that et = ‖xt − x̄t‖. Then, the following
estimates hold for (15):

1) For all t ∈ N,

E
[
et+1

] ≤ ate0 +
t∑

i=1

bi(ϕi + ηi E [ξi]). (17)

2) If, additionally, Assumption 5 holds and δ ∈ (0, 1), then
with probability 1 − δ:

et+1 ≤
(

2e

θ

)θ
logθ

(
2

δ

)(
ate0 +

t∑
i=1

bi(ϕi + ηiνi)

)
,

(18)

where {at} and {bi} are as in Theorem 1.
Proof: Note that xt ∈ Ct for all t ∈ N directly follows by

definition of Euclidean projection. To show (17), we first find
a stochastic recursion. By the triangle inequality:

et+1 ≤ ‖Ĝt(xt)− Gt(x̄t,Dt(x̄t))‖ + ϕt

≤ ‖Ĝt(xt)− Gt(xt,Dt(xt))‖
+ ‖Gt(xt,Dt(xt))− Gt(x̄t,Dt(x̄t))‖ + ϕt,

where the second inequality follows by adding and subtract-
ing Gt(xt,Dt(xt)). By iterating (13), we have ‖Gt(xt,Dt(xt))−
Gt(x̄t,Dt(x̄t))‖ ≤ λtet + ϕt, where λt := ρt + ηtβtεt, and thus
et+1 ≤ ηt‖gt(xt)− ∇ft(xt,Dt(xt))‖ + λtet + ϕt. This yields the
stochastic recursion et+1 ≤ λtet + ϕt + ηtξt. Expanding the
recursion yields

et+1 ≤
(

t∏
i=0

λi

)
e0 + ϕt +

t−1∑
i=0

⎛
⎝ t∏

k=i+1

λk

⎞
⎠(ϕi + ηiξi),

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on December 30,2021 at 17:11:49 UTC from IEEE Xplore.  Restrictions apply. 



1650 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

or, equivalently,

et+1 ≤ ate0 +
t∑

i=0

bi(ϕi + ηiξi). (19)

Thus, (17) follows by taking the expectation on both sides.
To prove (18), we demonstrate that the righthand side

of (19) is sub-Weibull distributed. Since ξi ∼ subW(θ, νi),
Proposition 1 implies that bi(ϕi + ηiξi) ∼ subW(θ, bi(ϕi +
ηiνi)). By summing over i, we obtain:

t∑
i=0

bi(ϕi + ηiξi) ∼ subW

(
θ,

t∑
i=0

bi(ϕi + ηiνi)

)
.

Thus, by letting ωt := ate0+∑t
i=0 bi(ϕi+ηiξi), we conclude

that ωt ∼ subW(θ, υt), where υt = ate0 +∑t
i=0 bi(ϕi + ηiνi).

From Definition 1 we have

P(|ωt| ≥ ε) ≤ 2 exp

(
− θ

2e

(
ε

υt

) 1
θ

)
. (20)

Now let δ ∈ (0, 1) be fixed and set it equal to the right-
hand side of the above inequality. Solving for ε yields ε =
logθ ( 2

δ
)( 2e
θ
)θυt. Then, we have that ωt ≤ ( 2e

θ
)θ logθ ( 2

δ
)υt, with

probability 1−δ. Finally, (18) follows by substitution.
The bound (17) generalizes the estimate in Theorem 1 by

accounting for the gradient error. It is also worth pointing out
that (17) and (18) have a similar structure; indeed, (18) differs
only by a logarithmic factor and by the introduction of the tail
parameters νi (which replaces the expectation term).

Remark 3: An alternative high probability bound can be
obtained by using (17) and Markov’s inequality. For any
δ ∈ (0, 1), then Markov’s inequality guarantees that:

et+1 ≤ 1

δ

(
ate0 +

t∑
i=1

bi(ϕi + ηi E [ei])

)
, (21)

with probability at least 1 − δ. However, if we increase the
confidence of the bound by allowing δ → 0, the right-hand-
side of (21) grows more rapidly than (18).

Note that the bounds in Theorem 2 are valid for any t ∈ N.
The asymptotic behavior is noted in the next remark.

Remark 4: If (9) holds, then lim supt→+∞ et ≤ (1 −
λ̃)−1(ϕ̃ + η̃ξ̃ ) almost surely, where η̃ and ξ̃ are upper bounds
on the step size and E [ξt]; the proof is omitted because of
space limits, but follows arguments similar to [23].

B. Remarks on the Error Model

The class of sub-Weibull distributions allows one to consider
variety of error models. For instance, it includes sub-Gaussian
and sub-exponential as sub-cases by setting θ = 1/2 and
θ = 1, respectively. We notice that a sub-Gaussian assumption
was typically utilized in prior works on stochastic gradient
descent; for example, the assumption E[ exp(ξ2/σ 2)] ≤ e
in [25] corresponds to sub-Gaussian tail behavior. However,
recent works suggest that stochastic gradient descent may
exhibit errors with tails that are heavier than a sub-Gaussian
(see, e.g., [26]). To further elaborate on the flexibility offered
by a sub-Weibull model, we provide the following additional
examples.

Example 2: Suppose that each entry of the gradient error
gt(xt) − ∇ft(xt, xt) follows a distribution subW(θ, ν), i =
1, . . . , d for given θ, ν > 0. Then ‖ξt‖ is sub-Weibull with
‖ξt‖ ∼ subW(θ, 2θ

√
dν) [23].

Example 3: Suppose that an entry of the gradient error
gt(xt)− ∇ft(xt, xt) is Gaussian is zero mean and variance ς2;
then, it sub-Gaussian with sub-Gaussian norm Cς , with C
an absolute constant [20], and it is therefore a sub-Weibull
subW(1/2,C′ς) with C′ an absolute constant.

Example 4: Suppose that ξt is a random variable with mean
μt := E [ξt], such that ξt ∈ [ξ̄ , ξ ] almost surely. Then ξt−μt ∼
subW(1/2, (ξ − ξ̄ )/

√
2) [23].

V. APPLICATION TO ELECTRIC VEHICLE CHARGING

This section illustrates the use of the proposed algorithms in
an application inspired from [3], where the operator of a fleet
of electric vehicles (EVs) seeks to determine an optimal charg-
ing policy in order to minimize its charging costs. The region
of interest is modeled as a graph G = (V, E), where each node
in V represents a charging station (or a group thereof), and an
edge (i, j) in E allows vehicles to transfer from node i to j. We
assume that the graph is strongly connected, so that EVs can be
redirected from one node to any other node. We let xi ∈ R≥0
denote the energy requested by the fleet at node i ∈ V . We
assume that the net energy available is limited, and define the
set Ct := {x ∈ R

d :
∑

i∈V xi ≤ ct}, for a given ct ∈ R>0. Given
{xi}, the operator of the power grid strategically chooses a price
per unit of energy so as to optimize its revenue from selling
energy; we let zi ∈ R≥0 denote the selected price in region
i, and we hypothesise that zi ∼ N (μtxi, σ

2
t ), μt, σt ∈ R≥0

as an example. We note that, although the grid operator can
choose the price arbitrarily large to maximize its revenue, large
prices may compel the fleet operator to withdraw its demand,
thus motivating the use of a model where the mean grows
linearly with the energy demand. Accordingly, we model the
cost function of the EV operator as follows [3]:

�t(x, z) =
∑
i∈V

zixi,t − γi,txi + κi,tx
2
i , (22)

where γi,t ∈ R≥0, models the charging aggressiveness of the
fleet operator, and κi,tx2

i,t quantifies the satisfaction the fleet
operator achieves from consuming one unit of energy. In (22),
the term zi,txi,t describes the charging cost at station i, the
quantity γi,txi,t, and models the energy demand at the i-th sta-
tion. Notice that, because the displacement of vehicles can
change over time, we assume that the parameters γi,t and ξi,t

are time dependent. We note that: (i) because of the capac-
ity constraint xt ∈ Ct, the decision variables xi,t, i ∈ V, are
coupled, and (ii) although the optimization could be solved in
a distributed fashion since (22) is separable, our focus is to
solve it in a centralized way since the EV operator is unique.

We apply the proposed methods to a system of 10 homo-
geneous charging stations over 100 time steps with fixed net
energy (ct = 10). Namely, γi,t = −1/100|t − 50| + 1 and
κi,t = 2 for i ∈ {1, . . . , 10}. The charging cost distribution
is informed by μt and σt; in our case, μt is the time series
data of CAISO real-time prices deposited in Fig. 1 (taken
from http://www.energyonline.com) and σt = 1. Given these
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Fig. 1. Time series data representing the price of energy in dollars per
kilowatt hour (kWh). Each time step represents 5 minutes.

Fig. 2. Performance comparison of OPGD and OSPGD.

parameter values, the cost is αt-strongly convex and βt-jointly
smooth with αt = βt = 2. Following the results in [27], the
distributional maps are εt-sensitive with εt = μt. The sequence
of performatively stable points are computed in closed form
by solving the KKT equations.

For each experiment, we run OPGD and OSPGD with fixed
step size ηt = 0.3 by drawing initial state x0 uniformly from a
sphere of radius 5. For OSPGD, we compute the mean tracking
error for both greedy and lazy deployments. The mean tracking
error for each is computed via Monte Carlo simulation using
1, 000 realizations of the initial state.

In Fig. 2, we illustrate the tracking errors and corresponding
upper bounds presented in Theorems 1 and 2. “True” (i.e., true
gradient) refers to the OPGD, “greedy” to the OSPGD with
Nt = 1, and “lazy” to the OSPGD with Nt = 10. We notice that
the upper bound curve mimics the evolution of the tracking
error; yet, in the instance of OSPGD the relationship is looser
relative to the OPGD curves.

VI. CONCLUSION

This letter considered online gradient and stochastic gradi-
ent methods for tracking solutions of time-varying stochastic
optimization problems with decision-dependent distributions.
Under a distributional sensitivity assumption, we derived
explicit error bounds for the two methods. In particular, we
derived convergence in expectation and in high probability
for the OSPGD by assuming that the error in the gradient fol-
lows a sub-Weibull distribution. To the best of our knowledge,
our convergence results for online gradient methods are the

first in the literature for time-varying stochastic optimization
problems with decision-dependent distributions.
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