
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Conversion of an Unsupervised Anomaly Detection

System to Spiking Neural Network for Car Hacking

Identification

Yassine Jaoudi

Dept. of Electrical and Computer

Engineering

University of Dayton

Dayton, OH, USA
jaoudiy1@udayton.edu

Chris Yakopcic

Dept. of Electrical and Computer

Engineering

University of Dayton

Dayton, OH, USA
cyakopcic1@udayton.edu

Tarek Taha

Dept. of Electrical and Computer

Engineering

University of Dayton

Dayton, OH, USA
tarek.taha@udayton.edu

Abstract—Across industry, there is an increasing

availability of streaming, time-varying data, where it is

important to detect anomalous behavior. These data are found

in an enormous number of sensor-based applications, in

cybersecurity (where anomalous behavior could indicate an

attack), and in finance. Spiking Neural Networks (SNNs) have

come under the spotlight for machine learning applications due

to the extreme energy efficiency of their implementation on

neuromorphic processors like the Intel Loihi research chip. In

this paper we explore the applicability of spiking neural

networks for in vehicle cyberattack detection. We show

exemplary results by converting an autoencoder model to

spiking form. We present a learning model comparison that

shows the proposed SNN autoencoder outperforms a One Class

Support Vector Machine and an Isolation Forest.

Furthermore, only a slight reduction in accuracy is observed

when compared to a traditional autoencoder.

Keywords— Autoencoder, Spiking Neural Network, Intrusion

detection, Controller area network, Conversion, Loihi,

Neuromorphic processor.

I. INTRODUCTION

Nowadays huge volumes of data are produced in the
form of high-speed streams, which calls for efficient and
scalable algorithms for efficient analysis. Real-time analysis
of this data to detect anomalies is very useful in many
applications including cybersecurity, finance, fault detection,
medicine, agriculture, and social media [1]. Anomaly
detection aims to discover unexpected events or rare items in
data. Time series anomaly detection is a relevant field in
computer science and data mining [2-4]. Furthermore,
anomaly detection has become essential in the industrial
environment, as undetected anomalies can lead to serious
damage and revenue loss.

With the development of automotive technology and shift
toward autonomous vehicles, advanced electronic devices
are installed in vehicles, leading to more complex
information traveling throughout the vehicle. Therefore,
there is a great amount of research tackling the matter of how
to secure the vehicle network, and not putting the driver be at
risk due to the malicious attacks performed by hackers. The
in-vehicle controller area network (CAN) bus is a
standardized serial communication protocol widely used in
automobile internal control systems [5]. However, alongside
the intriguing benefits of all the recently added functionality
in vehicles comes an increased exposure and vulnerability.
Attackers could access the automotive network in order to
inject messages, manipulate data, or access confidential

information. For instance, a hacker could send malicious
packets that will result in change of steering wheel position,
engage the braking system, or engage acceleration, any of
which would deviate from the normal driving behavior of the
car's owner. In addition, the Identity Document (ID) in the
CAN bus protocol only represents the priority of the
message, and there is no original address in the protocol. The
receiving electronic control unit (ECU) cannot confirm
whether the received data is original data or not. Herein, we
seek to develop trainable and deployable systems to detect
abuses of communication protocols that do not require
retraining the neural network every time a new packet type
needs to be classified.

The rest of the paper is structured as follows. We first
provide a summary of some previous work in this area in
Section II. In Section III, we discuss the fundamentals of the
CAN bus communication protocol and the pre-processing of
the dataset used in our experiments. In Section IV, we
introduce the network architecture used in the anomaly
detection system proposed. DNN-to-SNN conversion is
performed using the Nengo Loihi framework. Evaluation
metrics and results of all performed experiments are also
discussed in this section. Concluding remarks are provided in
Section V.

II. RELATED WORKS

The future of intelligent cars is heading toward the
direction of unmanned driving and network communication.
An in-vehicle network carries critical messages that are
essential vehicle function; thus, the security vulnerabilities in
the network are a safety problem. Therefore, the
establishment of an in-vehicle information anomaly detection
system is extremely necessary.

In the literature [6], a novel intrusion detection system is
proposed, which utilizes a DNN for training. This system
extracts a feature vector from original CAN data packets, and
provides a classification probability that is used to identify
normal and abnormal packets. Several studies focused on
protecting the in-vehicle network by utilizing the
characteristics of the CAN protocol. Each CAN ID has a
particular frequency at which the ECU sends messages
periodically. According to Miller et al. the frequency of a
specific CAN ID does not fluctuate. Thus, they asserted that
attacks could easily be detected by monitoring frequency
levels [7]. Similarly, Muter et al. [5] proposed an entropy
based anomaly detection method. They defined the entropy
on the CAN bus and detected attacks by comparing the

entropy to the reference set. Song et al. [8] introduced a
light-weight IDS based on timing analysis of the occurrence
of CAN messages. Kang et al. [9] used a deep belief network
(DBN) structure to construct a classifier and tested it on a
simulated dataset. Taylor et al. [10] used a long short-term
memory (LSTM) network-based model and tested it on a
CAN traffic log collected from a real vehicle. DBN and
LSTM networks are generally considered to be more costly
while training the model when compared to CNNs. Seo et al.
[11] proposed a novel method to train an anomaly detection
model using a generative adversarial network. They trained
the detection model using normal CAN traffic data and
generated noisy data similar to the CAN traffic data. Wang et
al. [12] proposed a distributed anomaly detection system
using hierarchical temporal memory (HTM). The authors
designed a predictor based on the HTM algorithm and used a
logarithmic loss function to compute the anomaly score.

III. TIMESERIES DATA

A. Controller Area Network

The controller area network (CAN) is a bus
communication protocol which defines a standard for
reliable transmission between in-vehicle nodes in real-time
developed in 1985 by Bosch. CAN messages such as RPM,
steering angle, and current speed, are broadcast through a bus
from a transmitter to other nodes with no validation
procedure for either the source or the destination. This makes
the CAN an easy target for security hackers that can inject
messages, leading to vehicle malfunctions. CAN messages
are identified by a CAN ID and are composed according to
the structure shown in Fig. 1. This structure includes a 1-bit
start of frame (SOF) which informs the start of the
transmission to all nodes, followed by an arbitration field
that uses 11 bits for an identifier (ID) and 1 bit for a Remote
Transmission Request (RTR) which is dependent on the kind
of CAN frame. Then a 6-bit control field is present that
indicates the data length code, followed by up to 8 bytes in a
data field that contains the actual transferred data. This is
followed by a 16-bit cyclic redundancy code (CRC), which
guarantees the validity of the message. A 2-bit acknowledge
field (ACK) replaces the ACK part with a dominant bit or
retains a recessive bit in the case of a normal message.
Lastly, a recessive 7-bit end of frame is present that
terminates the message followed by a 3-bit spacing.

Fig. 1. CAN frame structure.

In this work, we present an anomaly detection system
that can detect cyberattacks aimed to cause car malfunction,
thus making the CAN bus broadcasting protocol safer. We
will be using the Car-Hacking Dataset by HCR Lab [13]. Lee
et al. used a real vehicle to build this car hacking dataset.
They utilized two customized Raspberry Pi devices for
logging network traffic and for injecting malicious packets.
They were connected through the OBD-II port to the in-
vehicle network and contained four attack types: Denial-of-
Service (DoS), a fuzzy attack, drive gear spoofing, and RPM
gauge spoofing. For the DoS attack, they injected CAN
messages with a CAN ID of 29 zero bits, which is the most
dominant CAN ID in the CAN bus, every 0.3 ms. The fuzzy
attack is similar to the DoS attack; however, the difference is

that the CAN ID and data values of messages are entirely
random in the fuzzy attack. In this case random messages
were injected every 0.5 ms. The spoofing data were achieved
by injecting messages of a certain CAN ID every 1 ms.
These messages contained information involving either the
drive gear or the RPM gauge depending on the attack
applied.

B. Data pre-processing

The packets collected from the Raspberry Pi have the
structure shown in Fig. 1, in addition to a timestamp
reference in milliseconds. Table. I shows an example of the
raw data collected from the Raspberry Pi. The CAN dataset
contains three separate text files, one for DoS attacks, one for
Fuzzy attacks, and one for Impersonation attacks. In each of
these files, normal packets are also present and are randomly
interspersed with the attack type.

Table I. Raw CAN data with DoS type of attacks.

Relative to our proposed system, a number of unessential
characters were present in the data that needed to be
removed. The most valuable information from the CAN
packets are in the arbitration field and the data field, so this
was the only data that was used by the system proposed. All
other data in the packets was simply removed. Next, the data
field can be up to 8 bytes, but when the data field in a given
packet contains fewer than 8 bytes, entries were zero padded
to uphold data uniformity. This data is hexadecimal, but was
converted to decimal processing. When converting the data
field, these 8 byte segments were converted to decimal, and
each data byte was normalized by column relative to all other
packets in the dataset. Then, all data bytes were summed
together resulting in a single decimal value.

Overall, pre-processing provides two data in two
columns, one for timestamp and one for the data value. This
puts the data in a time series format acceptable to the
autoencoder model shown in Fig. 2. We built a python
function that generates data sequences, combining time steps
and contiguous data values to be used as training and testing
data. An example input sample that was generated can be
seen in Fig. 3.

Fig. 2. Autoencoder architecture.

IV. EXPERIMENTAL SETUP

A. Timeseries Autoencoder using Keras

In this section we describe the architecture of the neural
network used in this experiment. The architecture
implemented to train the network before converting it to an
SNN is an autoencoder with one-dimensional convolution
layers. The inputs are compressed in the encoder phase of the
network produces the encoding at the bottleneck layer. Then
the one-dimensional transpose convolution layers in the

decoder section of the autoencoder reconstruct the input only
using the encoding produced at the bottleneck layer. The
autoencoder is been able to reconstruct the input sample as
demonstrated in Fig. 3, and the parameters used in the
experiment are provided in Table II.

Fig. 3. Input sample and predicted output of AE model.

Table II. Parameter specification employed in simulation.

B. Conversion to Spiking Neural Network

The DNN-to-SNN conversion approach shows promising
results in terms of accuracy and consistency between the
original DNN and the converted SNN [14]. As part of this
work, we take advantage of NengoDL for converting the
Keras based autoencoder model that processes the incoming
timeseries data. The NengoLoihi package can also be used
for compiling the model to run on Intel's Loihi neuromorphic
chip [15]. We converted the Keras-based AE model to
spiking form, and executed a simulation using spiking
rectified linear neurons, similar to what would be executed
on the Loihi chip.

When converting the autoencoder into its equivalent
spiking model via NengoDL [16], the toolbox extracts the
relevant information from the autoencoder, discarding layers
that are irrelevant in the inference phase such as Dropout and
Batch Normalization. Then the parsed model is then
transformed into a spiking neural network model by applying
a normalization process that adapts the weights and biases.

Thus, the SNN converted autoencoder is ready to be
simulated using NengoLoihi framework.

C. Pre-Training

In this system, the training process does not use labels

for learning the packets types. The training computation

tracks the vector distance D between the input and output

samples.

Fig. 4. Mean absolute error training loss and threshold.

 Fig .4 provides a mean absolute error loss distribution of
the training over all samples and its calculated threshold. If
the reconstruction loss for a sample is greater than the
computed threshold. Therefore, the model recognizes a
pattern that it isn’t familiar with which labels it as anomaly.

D. Evaluation Metrics

We measured precision, recall, and F1-score for
comparison with other algorithms. Precision is the fraction of
actual attack frames among the frames detected as attacks.
High precision implies a low False Positive (FP) rate.
Frequent false alarms annoy and distract users; therefore they
should be managed to improve the quality and efficiency of
the system. Precision is calculated using the Eq. (1).

 PrecisionPPFP) 

Recall is a fraction of the correctly detected attack frames

Table III. Performance metrics for the neural network algorithms executed for comparison to the proposed system.

Fig. 5. Execution results when executing the proposed SNN autoencoder network.

and represents the true positive rate (TPR). It is computed
using Eq. (2).

 RecallPPFN) 

TP (true positive) and TN (true negative) are the numbers
of packets that are classified correctly as attacks and normal
data respectively. FP (false positive) and FN (false negative)
are the numbers of packets that are classified incorrectly as
attacks and normal data respectively.

The F-score represents a balance between precision and
recall. The F-score is typically used to measure classification
performance when a dataset has uneven class distribution,
and is computed using Eq. (3).

 F1 PrecisionRecall)/(Precision + Recall) 

V. RESULTS

We evaluated three different models for this application
including a One Class Support Vector Machine, an Isolation
Forest, and an Autoencoder, in addition to the spiking
autoencoder proposed. Once the spiking-model was
constructed we evaluated the autoencoder in an inference
mode using Nengo Loihi. The performance metrics of the
three learning models, as well as the SNN autoencoder are
reported in Table III, and the performance of the SNN
autoencoder is also visually demonstrated in Fig. 5. Fig. 6
provides an average of the precision, recall, and F-score for
each attack type using the four different models.

As Fig. 6 shows the performance, we can clearly see that
the autoencoder and its spike-based converted models are
being very precise compared to the OCSVM and Isolation
forest. When the cost of False Positive is high, this makes
our proposed detection system identify a normal packet as an
anomaly therefore having a high precision is valuable in our
case so that the vehicle will not lose a packet that is
necessary.

Fig. 6. Performance metrics for the four models compared in this study.

VI. CONCLUSION

Unsupervised anomaly detection has been studied in a
traditional autoencoder, as well as a SNN based autoencoder

that was generated using the NengoLoihi framework. The
SNN-based model was able to successfully reproduce the
performance of the Keras-based autoencoder with a slight
reduction in accuracy.

ACKNOWLEDGMENT

The work was supported through the National Science
Foundation under grant number 1718633.

REFERENCES

[1] Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised
real-time anomaly detection for streaming data. Neurocomputing,
262, 134-147.

[2] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3), 1-58.

[3] Fu, T. C. (2011). A review on time series data mining. Engineering
Applications of Artificial Intelligence, 24(1), 164-181.

[4] Habeeb, R. A. A., Nasaruddin, F., Gani, A., Hashem, I. A. T., Ahmed,
E., & Imran, M. (2019). Real-time big data processing for anomaly
detection: A survey. International Journal of Information
Management, 45, 289-307.

[5] Müter, M., & Asaj, N. (2011, June). Entropy-based anomaly detection
for in-vehicle networks. In 2011 IEEE Intelligent Vehicles
Symposium (IV) (pp. 1110-1115). IEEE

[6] Zang, D., Liu, J., & Wang, H. (2018, June). Markov chain-based
feature extraction for anomaly detection in time series and its
industrial application. In 2018 Chinese Control And Decision
Conference (CCDC) (pp. 1059-1063). IEEE.

[7] Miller, C., & Valasek, C. (2013). Adventures in automotive networks
and control units. Def Con, 21, 260-264.

[8] Song, H. M., Kim, H. R., & Kim, H. K. (2016, January). Intrusion
detection system based on the analysis of time intervals of CAN
messages for in-vehicle network. In 2016 international conference on
information networking (ICOIN) (pp. 63-68). IEEE.

[9] Kang, M. J., & Kang, J. W. (2016). Intrusion detection system using
deep neural network for in-vehicle network security. PloS one, 11(6),
e0155781.

[10] Taylor, A., Leblanc, S., & Japkowicz, N. (2016, October). Anomaly
detection in automobile control network data with long short-term
memory networks. In 2016 IEEE International Conference on Data
Science and Advanced Analytics (DSAA) (pp. 130-139). IEEE.

[11] Seo, E., Song, H. M., & Kim, H. K. (2018, August). Gids: Gan based
intrusion detection system for in-vehicle network. In 2018 16th
Annual Conference on Privacy, Security and Trust (PST) (pp. 1-6).
IEEE.

[12] Wang, C., Zhao, Z., Gong, L., Zhu, L., Liu, Z., & Cheng, X. (2018).
A distributed anomaly detection system for in-vehicle network using
HTM. IEEE Access, 6, 9091-9098.

[13] Lee, H., Jeong, S. H., & Kim, H. K. (2017, August). OTIDS: A novel
intrusion detection system for in-vehicle network by using remote
frame. In 2017 15th Annual Conference on Privacy, Security and
Trust (PST) (pp. 57-5709). IEEE.

[14] Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., & Liu, S. C. (2017).
Conversion of continuous-valued deep networks to efficient event-
driven networks for image classification. Frontiers in neuroscience,
11, 682.

[15] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[16] Rasmussen, D. (2019). NengoDL: Combining deep learning and
neuromorphic modelling methods. Neuroinformatics, 17(4), 611-628.

