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Abstract—Across industry, there is an increasing 

availability of streaming, time-varying data, where it is 

important to detect anomalous behavior. These data are found 

in an enormous number of sensor-based applications, in 

cybersecurity (where anomalous behavior could indicate an 

attack), and in finance. Spiking Neural Networks (SNNs) have 

come under the spotlight for machine learning applications due 

to the extreme energy efficiency of their implementation on 

neuromorphic processors like the Intel Loihi research chip. In 

this paper we explore the applicability of spiking neural 

networks for in vehicle cyberattack detection. We show 

exemplary results by converting an autoencoder model to 

spiking form. We present a learning model comparison that 

shows the proposed SNN autoencoder outperforms a One Class 

Support Vector Machine and an Isolation Forest. 

Furthermore, only a slight reduction in accuracy is observed 

when compared to a traditional autoencoder. 
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I. INTRODUCTION 

Nowadays huge volumes of data are produced in the 
form of high-speed streams, which calls for efficient and 
scalable algorithms for efficient analysis. Real-time analysis 
of this data to detect anomalies is very useful in many 
applications including cybersecurity, finance, fault detection, 
medicine, agriculture, and social media [1]. Anomaly 
detection aims to discover unexpected events or rare items in 
data. Time series anomaly detection is a relevant field in 
computer science and data mining [2-4]. Furthermore, 
anomaly detection has become essential in the industrial 
environment, as undetected anomalies can lead to serious 
damage and revenue loss. 

With the development of automotive technology and shift 
toward autonomous vehicles, advanced electronic devices 
are installed in vehicles, leading to more complex 
information traveling throughout the vehicle. Therefore, 
there is a great amount of research tackling the matter of how 
to secure the vehicle network, and not putting the driver be at 
risk due to the malicious attacks performed by hackers. The 
in-vehicle controller area network (CAN) bus is a 
standardized serial communication protocol widely used in 
automobile internal control systems [5]. However, alongside 
the intriguing benefits of all the recently added functionality 
in vehicles comes an increased exposure and vulnerability. 
Attackers could access the automotive network in order to 
inject messages, manipulate data, or access confidential 

information. For instance, a hacker could send malicious 
packets that will result in change of steering wheel position, 
engage the braking system, or engage acceleration, any of 
which would deviate from the normal driving behavior of the 
car's owner. In addition, the Identity Document (ID) in the 
CAN bus protocol only represents the priority of the 
message, and there is no original address in the protocol. The 
receiving electronic control unit (ECU) cannot confirm 
whether the received data is original data or not. Herein, we 
seek to develop trainable and deployable systems to detect 
abuses of communication protocols that do not require 
retraining the neural network every time a new packet type 
needs to be classified. 

The rest of the paper is structured as follows. We first 
provide a summary of some previous work in this area in 
Section II. In Section III, we discuss the fundamentals of the  
CAN bus communication protocol and the pre-processing of 
the dataset used in our experiments. In Section IV, we 
introduce the network architecture used in the anomaly 
detection system proposed. DNN-to-SNN conversion is 
performed using the Nengo Loihi framework. Evaluation 
metrics and results of all performed experiments are also 
discussed in this section. Concluding remarks are provided in 
Section V. 

II. RELATED WORKS 

The future of intelligent cars is heading toward the 
direction of unmanned driving and network communication. 
An in-vehicle network carries critical messages that are 
essential vehicle function; thus, the security vulnerabilities in 
the network are a safety problem. Therefore, the 
establishment of an in-vehicle information anomaly detection 
system is extremely necessary. 

In the literature [6], a novel intrusion detection system is 
proposed, which utilizes a DNN for training. This system 
extracts a feature vector from original CAN data packets, and 
provides a classification probability that is used to identify 
normal and abnormal packets. Several studies focused on 
protecting the in-vehicle network by utilizing the 
characteristics of the CAN protocol. Each CAN ID has a 
particular frequency at which the ECU sends messages 
periodically. According to Miller et al. the frequency of a 
specific CAN ID does not fluctuate. Thus, they asserted that 
attacks could easily be detected by monitoring frequency 
levels [7]. Similarly, Muter et al. [5] proposed an entropy 
based anomaly detection method. They defined the entropy 
on the CAN bus and detected attacks by comparing the 



entropy to the reference set. Song et al. [8] introduced a 
light-weight IDS based on timing analysis of the occurrence 
of CAN messages. Kang et al. [9] used a deep belief network 
(DBN) structure to construct a classifier and tested it on a 
simulated dataset. Taylor et al. [10] used a long short-term 
memory (LSTM) network-based model and tested it on a 
CAN traffic log collected from a real vehicle. DBN and 
LSTM networks are generally considered to be more costly 
while training the model when compared to CNNs. Seo et al. 
[11] proposed a novel method to train an anomaly detection 
model using a generative adversarial network. They trained 
the detection model using normal CAN traffic data and 
generated noisy data similar to the CAN traffic data. Wang et 
al. [12] proposed a distributed anomaly detection system 
using hierarchical temporal memory (HTM). The authors 
designed a predictor based on the HTM algorithm and used a 
logarithmic loss function to compute the anomaly score. 

III. TIMESERIES DATA 

A. Controller Area Network 

The controller area network (CAN) is a bus 
communication protocol which defines a standard for 
reliable transmission between in-vehicle nodes in real-time 
developed in 1985 by Bosch. CAN messages such as RPM, 
steering angle, and current speed, are broadcast through a bus 
from a transmitter to other nodes with no validation 
procedure for either the source or the destination. This makes 
the CAN an easy target for security hackers that can inject 
messages, leading to vehicle malfunctions. CAN messages 
are identified by a CAN ID and are composed according to 
the structure shown in Fig. 1. This structure includes a 1-bit 
start of frame (SOF) which informs the start of the 
transmission to all nodes, followed by an arbitration field 
that uses 11 bits for an identifier (ID) and 1 bit for a Remote 
Transmission Request (RTR) which is dependent on the kind 
of CAN frame. Then a 6-bit control field is present that 
indicates the data length code, followed by up to 8 bytes in a 
data field that contains the actual transferred data. This is 
followed by a 16-bit cyclic redundancy code (CRC), which 
guarantees the validity of the message. A 2-bit acknowledge 
field (ACK) replaces the ACK part with a dominant bit or 
retains a recessive bit in the case of a normal message. 
Lastly, a recessive 7-bit end of frame is present that 
terminates the message followed by a 3-bit spacing. 

 

Fig. 1. CAN frame structure. 

In this work, we present an anomaly detection system 
that can detect cyberattacks aimed to cause car malfunction, 
thus making the CAN bus broadcasting protocol safer. We 
will be using the Car-Hacking Dataset by HCR Lab [13]. Lee 
et al. used a real vehicle to build this car hacking dataset. 
They utilized two customized Raspberry Pi devices for 
logging network traffic and for injecting malicious packets. 
They were connected through the OBD-II port to the in-
vehicle network and contained four attack types: Denial-of-
Service (DoS), a fuzzy attack, drive gear spoofing, and RPM 
gauge spoofing. For the DoS attack, they injected CAN 
messages with a CAN ID of 29 zero bits, which is the most 
dominant CAN ID in the CAN bus, every 0.3 ms. The fuzzy 
attack is similar to the DoS attack; however, the difference is 

that the CAN ID and data values of messages are entirely 
random in the fuzzy attack. In this case random messages 
were injected every 0.5 ms. The spoofing data were achieved 
by injecting messages of a certain CAN ID every 1 ms. 
These messages contained information involving either the 
drive gear or the RPM gauge depending on the attack 
applied. 

B. Data pre-processing 

The packets collected from the Raspberry Pi have the 
structure shown in Fig. 1, in addition to a timestamp 
reference in milliseconds. Table. I shows an example of the 
raw data collected from the Raspberry Pi.  The CAN dataset 
contains three separate text files, one for DoS attacks, one for 
Fuzzy attacks, and one for Impersonation attacks. In each of 
these files, normal packets are also present and are randomly 
interspersed with the attack type. 

Table I. Raw CAN data with DoS type of attacks. 

 

Relative to our proposed system, a number of unessential 
characters were present in the data that needed to be 
removed. The most valuable information from the CAN 
packets are in the arbitration field and the data field, so this 
was the only data that was used by the system proposed. All 
other data in the packets was simply removed. Next, the data 
field can be up to 8 bytes, but when the data field in a given 
packet contains fewer than 8 bytes, entries were zero padded 
to uphold data uniformity. This data is hexadecimal, but was 
converted to decimal processing. When converting the data 
field, these 8 byte segments were converted to decimal, and 
each data byte was normalized by column relative to all other 
packets in the dataset. Then, all data bytes were summed 
together resulting in a single decimal value.  

Overall, pre-processing provides two data in two 
columns, one for timestamp and one for the data value. This 
puts the data in a time series format acceptable to the 
autoencoder model shown in Fig. 2. We built a python 
function that generates data sequences, combining time steps 
and contiguous data values to be used as training and testing 
data. An example input sample that was generated can be 
seen in Fig. 3. 

 

Fig. 2. Autoencoder architecture. 

IV. EXPERIMENTAL SETUP 

A. Timeseries Autoencoder using Keras 

In this section we describe the architecture of the neural 
network used in this experiment. The architecture 
implemented to train the network before converting it to an 
SNN is an autoencoder with one-dimensional convolution 
layers. The inputs are compressed in the encoder phase of the 
network produces the encoding at the bottleneck layer. Then 
the one-dimensional transpose convolution layers in the 



decoder section of the autoencoder reconstruct the input only 
using the encoding produced at the bottleneck layer. The 
autoencoder is been able to reconstruct the input sample as 
demonstrated in Fig. 3, and the parameters used in the 
experiment are provided in Table II. 

 

Fig. 3. Input sample and predicted output of AE model. 

 

Table II. Parameter specification employed in simulation. 

 

B. Conversion to Spiking Neural Network 

The DNN-to-SNN conversion approach shows promising 
results in terms of accuracy and consistency between the 
original DNN and the converted SNN [14]. As part of this 
work, we take advantage of NengoDL for converting the 
Keras based autoencoder model that processes the incoming 
timeseries data. The NengoLoihi package can also be used 
for compiling the model to run on Intel's Loihi neuromorphic 
chip [15]. We converted the Keras-based AE model to 
spiking form, and executed a simulation using spiking 
rectified linear neurons, similar to what would be executed 
on the Loihi chip. 

When converting the autoencoder into its equivalent 
spiking model via NengoDL [16], the toolbox extracts the 
relevant information from the autoencoder, discarding layers 
that are irrelevant in the inference phase such as Dropout and 
Batch Normalization. Then the parsed model is then 
transformed into a spiking neural network model by applying 
a normalization process that adapts the weights and biases. 

Thus, the SNN converted autoencoder is ready to be 
simulated using NengoLoihi framework. 

C. Pre-Training 

In this system, the training process does not use labels 

for learning the packets types. The training computation 

tracks the vector distance D between the input and output 

samples.  

 

Fig. 4. Mean absolute error training loss and threshold. 

 Fig .4 provides a mean absolute error loss distribution of 
the training over all samples and its calculated threshold. If 
the reconstruction loss for a sample is greater than the 
computed threshold. Therefore, the model recognizes a 
pattern that it isn’t familiar with which labels it as anomaly. 

D. Evaluation Metrics 

We measured precision, recall, and F1-score for 
comparison with other algorithms. Precision is the fraction of 
actual attack frames among the frames detected as attacks. 
High precision implies a low False Positive (FP) rate. 
Frequent false alarms annoy and distract users; therefore they 
should be managed to improve the quality and efficiency of 
the system. Precision is calculated using the Eq. (1). 

 PrecisionPPFP) 

Recall is a fraction of the correctly detected attack frames 

Table III. Performance metrics for the neural network algorithms executed for comparison to the proposed system. 

 
 

 
Fig. 5. Execution results when executing the proposed SNN autoencoder network. 

 



and represents the true positive rate (TPR). It is computed 
using Eq. (2). 

 RecallPPFN) 

TP (true positive) and TN (true negative) are the numbers 
of packets that are classified correctly as attacks and normal 
data respectively. FP (false positive) and FN (false negative) 
are the numbers of packets that are classified incorrectly as 
attacks and normal data respectively.  

The F-score represents a balance between precision and 
recall. The F-score is typically used to measure classification 
performance when a dataset has uneven class distribution, 
and is computed using Eq. (3). 

 F1 PrecisionRecall)/(Precision + Recall) 

V. RESULTS 

We evaluated three different models for this application 
including a One Class Support Vector Machine, an Isolation 
Forest, and an Autoencoder, in addition to the spiking 
autoencoder proposed. Once the spiking-model was 
constructed we evaluated the autoencoder in an inference 
mode using Nengo Loihi. The performance metrics of the 
three learning models, as well as the SNN autoencoder are 
reported in Table III, and the performance of the SNN 
autoencoder is also visually demonstrated in Fig. 5. Fig. 6 
provides an average of the precision, recall, and F-score for 
each attack type using the four different models. 

As Fig. 6 shows the performance, we can clearly see that 
the autoencoder and its spike-based converted models are 
being very precise compared to the OCSVM and Isolation 
forest. When the cost of False Positive is high, this makes 
our proposed detection system identify a normal packet as an 
anomaly therefore having a high precision is valuable in our 
case so that the vehicle will not lose a packet that is 
necessary.  

 

Fig. 6. Performance metrics for the four models compared in this study. 

VI. CONCLUSION 

Unsupervised anomaly detection has been studied in a 
traditional autoencoder, as well as a SNN based autoencoder 

that was generated using the NengoLoihi framework. The 
SNN-based model was able to successfully reproduce the 
performance of the Keras-based autoencoder with a slight 
reduction in accuracy. 
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