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Abstract—Attacks against the domain name system (DNS) have
long plagued the Internet, requiring continual investigation and
vigilance to prevent the abuse of this critical infrastructure.
Among these attacks, DNS hijacking has repeatedly asserted itself
as one of the most serious threats. In recent years, the severity of
DNS hijacking has motivated renewed interest in developing more
robust defenses. The size, dynamism, and diversity of the DNS
ecosystem present nontrivial challenges to crafting an effective
and scalable defense. Further, the relative rarity of documented
DNS hijacking attacks makes them difficult to study in-depth.
In this paper, we attempt to address the challenges in two
thrusts. We first conduct an analysis based on the reports of
confirmed DNS hijacking attacks and passive DNS records to
characterize known DNS hijacking attacks and identify features
for building defense mechanisms. Then we explore the extent
to which the characteristic features can be used to build a DNS
hijacking detection mechanism and evaluate its effectiveness from
the perspective of a network gateway.

Index Terms—DNS, Passive DNS, DNS Hijacking

I. INTRODUCTION

DNS hijacking attacks have garnered substantial attention
over the past few years, leading to a renewed drive to create
and strengthen defenses against this type of event. The Sea
Turtle campaign has been somewhat of a catalyst in this area.
It has prompted several groups involved in security research to
publish details of the attacks, recommendations for defenses,
and warnings that this incident could be a forerunner of new
and increasingly serious DNS-focused attacks [4], [24], [30].
At the onset of the COVID 19 pandemic, some of these
concerns resurfaced. With millions of individuals working
from home, VPNs became even more vital to the day-to-day
operations of many organizations. As the Sea Turtle campaign
included VPNs as a primary target, this shift called attention
to VPN security issues related to the DNS [33]. Given the
interest in this area, we expect to see many new or improved
methods of DNS hijacking detection and prevention researched
and implemented over the next few years. Several challenges
exist to work in this area, however. In this paper, we consider
two of these.

The first challenge we address is a lack of clarity in
threat models related to DNS hijacking. Efficiently addressing
any attack requires a well-defined threat model, but in the

Chase Cotton
University of Delaware
ccotton @udel.edu

Haining Wang
Virginia Tech
hnw@vt.edu

case of DNS hijacking, we find some confusion surrounding
factors necessary to construct such a model. The term “DNS
hijacking” itself is a bit broad; we see it applied to an
ISP’s practice of redirecting NXDOMAIN responses [9], to
manipulation caused by infected home routers reaching out
to rogue DNS resolvers [53], or to attacks involving the
unauthorized change of records in authoritative DNS servers
[30]. Undertaking defenses against all of these with a single
mechanism is unlikely to be practical. One must distinguish
between the various flavors of DNS hijacking and understand
how each can play a role in attacks leading to the compromise
of protected resources.

The second challenge is the lack of in-depth research into
certain types of DNS hijacking attacks. Although there are
some, such as MITM attacks, that have been studied closely,
others, such as domain hijacking are unpredictable, and short-
lived, although they can have serious impacts even in that short
time. These attacks are inherently difficult to study. Reports
of them have appeared over several years, but, to the best of
our knowledge, no work has examined them in-depth, or as a
whole to evaluate what existing or potential defenses are most
promising as mitigation.

In this work, we make the first attempts to address these
challenges, in hopes of bridging the gap between the focus of
academic research and the characteristics of real-world attacks.
We present a taxonomy of DNS hijacking that aligns different
attack vectors with the DNS infrastructure. Then, by skimming
over security incidents from 2008 to 2020, we identified 34
relevant incidents from news stories, retrieved over 27,000
Indicators of Compromises (IOCs), and augmented them with
passive DNS data from Farsight’s DNSDB, which informs
us when an attack happens, how records were changed by
the attacker, efc. By conducting quantitative and qualitative
analysis on this dataset, we identified features that help to
detect the presence of DNS hijacking, whose effects were
examined with the real-world attacks logged by the dataset.

The rest of this paper is organized as follows. Section II
reviews the basics of DNS hijacking attacks. An analysis of the
characteristics of known DNS hijacking attacks is presented
in Section III. Section IV describes our experiments exploring
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Fig. 1: The flow of a typical DNS resolution and attack variants.

DNS hijacking detection. Limitations and future work are
discussed in Section V, and related works are surveyed in
Section VI. Finally, Section VII summarizes our work.

II. BACKGROUND

The DNS is a distributed database containing the informa-
tion users need to find the IP addresses of the hosts with
which they wish to communicate. As shown in Figure la, to
conduct a DNS resolution, a client known as a stub resolver
first initiates a DNS query to a recursive resolver that will
check its own cache for the answer to the query. If no cached
answer is found, the recursive resolver will iteratively traverse
the DNS hierarchy until receiving an answer from authoritative
nameservers. That answer is then returned to the stub resolver.

The distributed nature of the DNS makes it scalable, but also
creates challenges in ascertaining the integrity of responses.
Because responsibility for domains is delegated to their own-
ers, no party except the owner can know for sure when changes
to a domain’s DNS records are legitimate. Attackers exploit
this situation and various weaknesses in the system to conduct
DNS hijacking attacks. In such attacks, the attacker tricks
end users into accepting incorrect responses to DNS queries,
redirecting these users to servers of the attacker’s choice.

A. DNS Hijacking Variations

DNS hijacking attacks tend to follow two basic approaches.
The first involves infecting user devices and having them send
DNS queries to malicious recursive resolvers. Attacks using
this approach could be identified by checking DNS settings,
or observing queries to unexpected or perpetually misbehaving
resolvers [19], [49]. In the second approach, attackers convince
a legitimate resolver — usually the recursive resolver — to
accept malicious records. In this study, we focus on this
second type of attack, which would be substantially harder
to identify. Attacks that fall into this scenario follow a few
different methods based on the position and capability of the
attacker:

Off-path Spoofing. Off-path spoofing (illustrated in Figure
1b) refers to attacks in which an attacker cannot directly
manipulate the traffic between a DNS resolver and name-
servers but tricks the resolver into accepting a fake record.
As long as the malicious record is cached, all parties using
the resolver will be redirected when they send a query for the
target domain. Most research into off-path spoofing attacks
and defenses has focused on recursive resolvers. In the past
two years, researchers have also demonstrated these attacks
against stub resolvers and forwarders [6], [56].

Man-in-the-Middle (MITM). Between end users and
nameservers, DNS communication may be manipulated by
parties controlling the infrastructure traversed. Middlebox op-
erations and redirection by both open and local recursive
resolvers have been widely observed [10], [11], [32], [51].
Figure 1c illustrates this type of attack.

Domain Hijacking. Domain hijacking attacks have played
out in a few ways. For example, an attacker may obtain
unauthorized access to a registrar or a DNS management ser-
vice and alter a domain’s zone file. Alternatively, the attacker
can leverage vulnerabilities in a registrar’s processes to gain
control over a domain’s DNS records. Another approach may
be to compromise a victim domain’s account with a registrar
or DNS management provider. Whatever the specific method,
the result, as shown in Figure 1d, is that malicious answers
appear to come from a legitimate authoritative nameserver.

B. Defenses

Means of preventing or detecting DNS hijacking attacks
exist, but fail to adequately cover all relevant scenarios, par-
ticularly those involving domain hijacking. First, available de-
fenses often are not or cannot practically be used. DNSSEC is
the primary example [18], [22], but other measures, e.g., strong
passwords or two-factor authentication are often neglected, and
some may be impractical (e.g., registry locks [46]). Also, even
after domain owners detect the issue and regain control of their
domain, it may take days for malicious records to be expunged
from resolver caches, during which time victims may continue



TABLE I: Hijacking Categories

Category # Attacks  Description

Activism and Mischief 24 All of these are defacements, usually of popular websites. Of these 24, one third were defacements
of regional versions of Google. One of these domains was defaced twice on separate occasions 5
years apart.

Malware and 4 In 3 cases, domains were used to distribute exploit kits or other malware. In 1, domains were used

Spam Distribution to send spam.

Financial Gain 4 These attacks included 3 targeting domains related to cryptocurrency, and 1 targeting a bank.

Espionage 2 One case targeted a security firm, and the ultimate motivation may have been financial gain. One

Information Stealing

case (Sea Turtle) was apparently a state-sponsored hijacking.

to be exploited. This situation indicates the need for defense in
depth. However, most defenses apply only to domain owners,
and few are available to other stakeholders, such as network
defenders.

In response to this scenario, we focus on assessing what
methods parties other than the domain owner might use to
defend against domain hijacking. We take the perspective of
a defender whose goal is to protect resources within a local
area network (LAN), e.g., an enterprise network, and detect if
changes in DNS responses entering the LAN indicate a DNS
hijacking attack. In such a scenario, detecting DNS hijacking
attacks against any and every domain is impractical, if not
impossible. We consider that the defender will thus either
monitor a fixed set of domains, or domains that become
of interest due to the context in which they appear (e.g.,
those from which mail is received). Thus, as we examine the
problem of DNS hijacking attacks, we consider not only what
features of these attacks may be used in detection systems, but
what types of domains are targeted and how they are used.

III. MEASUREMENTS AND ANALYSIS

In this section, we leverage the Indicators of Compromises
(IOCs) gathered from known domain hijacking attacks to
perform an in-depth analysis using passive DNS (PDNS) data.
We investigate these attacks from three perspectives. First, we
look for trends in the different groups of IOCs across attacks.
Second, we take some general measurements to characterize
patterns across multiple attacks. Finally, we examine a few
individual attacks that are particularly noteworthy because of
their impact or interesting characteristics they exhibit.

A. Dataset

We thoroughly examined the previous measurement studies
that are related to DNS hijacking. Most of the research works
we found were designed to measure the extent, causes, or
impacts of censorship [3], [10], [11], [13], [14], [34], [36],
[38]. Others measured more general DNS manipulation, usu-
ally focusing on NXDOMAIN redirection [31], [32], [51]. In
news stories, we found primarily reports of domain hijacking
attacks or attack campaigns. We identified 34 such incidents
that occurred over a period of 12 years, from 2008 to 2020.
We grouped these attacks into 4 categories according to the
attackers’ apparent motivation: activism or mischief, financial
gain, distributing malware or spam, and stealing information
or credentials. Table I briefly describes these groups. These

TABLE II: IOCs per Attack

[PA NSA FQDNH ApeacH
Angler 454 0 22,571 5,249
Spammy Bear 1 0 4,007 4,007
Sea Turtle 33 5 30 21
Other 34 41 65 65

I P4 = Attacker IP addresses, NS4 = Attacker nameservers,
FQDNy = Hijacked FQDNs, Apexy = Apex domain of
hijacked FQDNs

motivations provide a framework for understanding some of
the different behaviors observed in DNS hijacking attacks.

We retrieved over 27,000 IOCs related to the domain
hijacking incidents described above, summarized in Table II.
Two campaigns, Angler and Spammy Bear, account for the
vast majority of these. Many of the hijacked fully qualified
domain names (FQDNs) were under the same apex domains.
This was generally the case for Angler, where some domains
had hundreds of subdomains in the lists. Thus, the number of
hijacked domains (9,342) was much smaller than the FQDNs
(26,673). To examine these attacks in detail, we retrieved data
for the hijacked domains and nameservers from Farsight’s
Passive DNS database (DNSDB) [21].

B. Passive DNS

In this section, we provide definitions for the fields in
the PDNS records that we retrieve. These are based on the
definitions given in [20].
o rrname: the name of the domain for which information
(e.g., IP addresses) was requested

o rdata: the records returned in a response

« rrtype: the type of resource record included in a response
(e.g., A, NS, MX, or CNAME);

o time_first: the first time a response appeared in the PDNS

dataset

« time_last: the last time a response appeared in the PDNS

dataset

« count: the number of times a response has been captured

by the PDNS sensors

Timestamps provide the epoch time at which a record was
captured with seconds precision.

C. 10C Analysis

IOCs are analyzed according to the groups presented in
Table II: victim FQDNs, attacker nameservers, and attacker
IP addresses.
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Hijacked FQDNs. We first considered the characteristics
of the hijacked FQDNs in order to understand what kinds
of domains have been hijacked, and for what purpose. This
information is relevant to threat modeling, as a defender
may need to make decisions about what domains to monitor.
We used VirusTotal [50] to collect ranking and category
information for each apex domain. Most hijacked domains
did not have a high rank. For Angler and Spammy Bear,
the lists of hijacked domains included only a few (3 and
1, respectively) domains with an Alexa rank. Of these, the
highest rank was 306,818. In addition, among the domains in
other attacks, we found 53 that did appear in the Alexa list,
although only 10 of these were in the top 1,000. All but one
of these were targets of attacks involving defacement; in the
other case, the domain was used to distribute malware [2]. This
pattern highlights some expectations for the kinds of attacks
against different types of domains. Attacks against popular
domains are unlikely to remain undetected or unaddressed by
their owners for very long. Therefore, the attackers need to be
able to accomplish their goals in a short time. This scenario
is fine for activists, as they can get the desired attention with
relatively little effort, and in a short time. The scenario can
also be effective for distributing malware, allowing attackers
to have a high impact, albeit over a short time.

Figure 2 shows the Forcepoint ThreatSeeker categories
for the hijacked domains, excluding those in the Angler
and Spammy Bear attacks (of which the vast majority were
“uncategorized” or “unknown”). Most domains (10) labeled
as “uncategorized” are region-specific versions of popular
domains under the ccTLDs .cr or .nz. Three are from
the Sea Turtle campaign, and one was associated with a
cryptocurrency wallet. All the domains in the government
category were associated with Sea Turtle. The categories
largely reflect two of the groups summarized in Table I:
information gathering (“Government” category), and financial
gain (“Business and Economy”, “Financial Data and Services”
categories), reinforcing the importance of these patterns as a

;; first seen: 2013-08-27 20:20:13 -0000

last seen: 2013-08-28 03:18:15 -0000
nytimes.com. IN NS nsl.syrianelectronicarmy.com.
nytimes.com. IN NS ns2.syrianelectronicarmy.com.

;; first seen: 2013-08-27 20:20:13 -0000
last seen: 2013-08-28 03:18:15 -0000
nytimes.com. IN A 141.105.64.37

;; first seen: 2013-06-17 08:01:54 -0000
last seen: 2013-08-28 02:11:40 -0000
nsl.syrianelectronicarmy.com. IN A 141.105.64.37

;; first seen: 2013-06-17 08:01:54 -0000
last seen: 2013-08-28 02:11:41 -0000
ns2.syrianelectronicarmy.com. IN A 141.105.64.37
Fig. 3: Example of shared hosting between malicious DNS

servers and web servers

consideration for building threat models.

Attacker Nameservers. We observe two general strategies
for the nameservers used by attackers. In some cases, at-
tackers replaced legitimate nameservers with their own hosts,
while in others they leveraged DNS services provided by
a third party. In cases where the attackers used their own
nameservers, sometimes the new server’s domain name clearly
gave away the attack through an association with hacker
groups (e.g., madleets.com, syrianelectricarmy.com).
In the case of Sea Turtle, the names were more subtle (e.g.,
cloudnamedns.com, lcjcomputing.com). Both the PDNS
data and accounts of the campaign suggest that the nameserver
domains in this attack were either unregistered or unused
(possibly parked) before the attack [4]. In both cases, a little
research into the age or reputation of the nameservers should
have shown them to be suspicious. This distinction may be
much harder in the case where third-party nameservers are
used. In one scenario, the attackers used nameservers from a
provider that the hijacked domain was already using. Although
two new nameservers did appear in the domain’s NS records,
they were under the same apex domain as those the hijacked
domain was already using, so they do not appear particularly
unusual. In this case, and at least three others, the attacker
used Cloudflare nameservers. Because Cloudflare is a popular
provider of various legitimate services, such attacks cannot
be blocked simply based on a list or nameserver reputation,
and may be very difficult to detect, even for a subject-matter
expert. This scenario is not exclusive to Cloudflare, and we
expect detecting such situations, if possible, would require an
in-depth examination of information outside the DNS.

Attacker Infrastructure. We here consider whether at-
tackers clearly favored certain networks as platforms for
their attacks. We used RouteViews [41] BGP historic data
to identify autonomous system numbers (ASNs) for networks
used in the attacks and found 89 ASNs containing IPs used by
rogue DNS servers or malicious hosts. Most ASNs (83) were
associated with only one DNS hijacking attack, and none was
associated with more than two. The results suggest no common
trends between domain hijacking attacks in terms of the ASN
used. External evidence of ASN reputation may be helpful,
but relying on this indicator too much will likely lead to many
false negatives.



Another interesting pattern that appeared in the attacker’s
use of IP addresses was related to shared hosting. That is, the
attackers used the same machine to host both an authoritative
DNS server, and a proxy or web server. (See Figure 3 for
an example.) This sharing manifests itself in DNS records
where both a domain and its authoritative nameserver resolve
to the same IP address. The pattern was noted in reports of
the Sea Turtle campaign [4], but we observed it in several
other cases. Unfortunately, using this behavior as an indication
of malicious activity is not straightforward. Investigating the
nameservers for the hijacked domains we studied, we observed
many legitimate cases of an apex or subdomain resolving
to the same IP address as its associated nameservers within
overlapping time frames.! There appeared to be two main
scenarios for these cases: either the domain belongs to an
organization that manages its own DNS servers, or the domain
is relying on cloud providers. In both cases, the servers
operated by the domain owner would be assigned IP addresses
from the same block. Thus, this pattern of shared hosting
is not inherently suspicious, and requires a more nuanced
understanding of a domain’s DNS deployment before it would
be useful as a feature.

New rrnames. In the DNS hijacking scenarios we consider,
the attacker cannot directly control what domains are queried.
If the attacker is actively using the domains as part of a wider
campaign to deliver malware (e.g., Angler) or to distribute
spam (e.g., Spammy Bear), he or she can initiate queries
indirectly. However, if the attacker is using the domain in a
more passive manner, the attacker depends on users accessing
the hijacked domain or its subdomains. Thus, where new
rrnames appear in records associated with an attack, it may
be helpful to understand how these are generated, and if this
information can be leveraged to identify the attack.

To answer this question, for each hijacked domain, we
checked for A records indicating an attack (i.e., the item in
the rdata field was in the list of attacker IOCs). We then
checked if the FQDN in the rrname field had appeared in
previous records, and if so, which records. Of the 4,258
A records manifesting attacker activities, the vast majority
(4,149) were associated with craigslist.org. The domains
craigslist.com and craigslist.org were hijacked in
November 2014 and redirected to IP addresses under three
ISPs not previously associated with the domains. As discussed
below, this surge in the number of records appears to be
closely tied to the attacker’s use of a wildcard record. About
44% of FQDNs (1,864) appeared before the attack only in
CNAME records. Of all the remaining instances, 431 con-
tained an FQDN in the rrname field that had not been seen
previously in the rrname field of any of the RRs. Subdomains
of craigslist.org dominated all groups. In most cases, the
CNAMES previously used in resolving the given FQDNs were
under domains distinct from these FQDNs. To receive requests
associated with the given FQDNs, the attackers needed to

IWe filtered out those cases where the nameserver was itself (e.g.,
nsl.example.com for example.com).
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Fig. 4: Change in DNS patterns with attackers’ use of wildcard

replace the CNAME records — thus the appearance of new A
records. Disregarding instances associated with Craigslist, only
two attacks appeared where the CNAMEs replaced were under
the same domain as the associated FQDN. In one case, the day
before the attack, new CNAME records appeared for some of
these domains, redirecting them to the apex domain. It seems
likely that the attack actually started a few hours earlier than
indicated in our sources, and that these changes were initiated
by the attacker. In the second case, there is no clear reason
why the attacker chose to respond with A records rather than
CNAME:s, since it controlled the resolution either way. In any
case, this pattern of “centralizing” control by circumventing
CNAME records is sufficiently common that we consider it
worth evaluating when assessing changes to the DNS.

For those instances where the FQDN had not previously
appeared in any records, we checked the reasons. Most of
the cases were also related to the attack on Craigslist. The A
records for the domains on the day of the Craigslist hijacking
show that attackers created a wildcard record for the hijacked
domain. This action suggests that while attackers wanted to
ensure that they received all traffic, they were not sure what
queries to expect, or they did not want to spend the time
to build an extensive zone file. This led to a huge spike in
the number of new A records seen for the first time that day
(see Figure 4). This surge was mainly due to the appearance
of queries for many domains that seem to be created by a
DGA (Domain Generation Algorithm). While the source of
these queries is unclear, it seems possible that such queries did
exist before the date of the attack, and received NXDOMAIN
responses (which do not appear in the PDNS dataset we
used). Once the attack was initiated, queries for these domains
received a legitimate response, thus inflating the number of
new domains seen in the A records for the day.

Most of the other incidents were associated with the Sea
Turtle campaign. Several of the subdomain names (imap,
pop, outlook, efc.) highlight the fact that the attackers were
interested in intercepting emails. The fact that these rrnames
did not previously appear in the PDNS data does not mean
they did not exist previously. It seems more likely that they
existed, but were not visible. Since the Sea Turtle attacks
generally involved the use of new authoritative nameservers,
queries for these domains would have started following new



paths, possibly intercepting PDNS sensors for the first time.
The same reasoning holds for two other attacks, targeting
google.ps and google.cr, where the subdomains that
appear redirected did not previously show up in records. In
the one remaining case, the defacement of nytimes.com, the
attackers created new nameservers under the hijacked domain:
sead.nytimes.com and sea.nytimes.com.

D. Case Studies

To examine these attacks in detail, we used a passive DNS
dataset from Farsight. For three attacks no records were found,
presumably because these attacks occurred before 2010, the
first year in which records in the DNSDB were collected.
The remaining 31 attacks included data for over 9,000 target
domains, of which most (all but 68) were associated with
Angler or Spammy Bear. We begin our analysis with a high-
level view of certain attacks and their patterns.

Angler. Angler is an exploit kit that was active largely
between 2011 and 2016, and made extensive use of domain
shadowing. Domain shadowing involves creating subdomains
under domains whose registrar accounts have been compro-
mised, and using those subdomains for the attacker’s purposes
[15]. Based on the PDNS data for the domains targeted in
the attack, it does not appear that the hijackings involved any
change in nameservers. Indeed 4,155 of the 5,230 compro-
mised domains in the list of Angler IOCs that yielded NS
records used nameservers under only 1 apex domain. Spot-
checking the PDNS data for 10 of the shadowed domains
showed that in half the cases, no A records appeared prior to
the attack, which is consistent with reports that these domains
were largely dormant prior to the attack.

Spammy Bear. Spammy Bear is the name given to attackers
responsible for campaigns running from mid-2018 to early
2019 that used hijacked domains to send “sextortion” mes-
sages and emails containing bomb threats with demands for
ransom. According to reports of the incident, attackers did not
actually compromise any accounts. Instead, they leveraged a
weakness in a popular domain registrar to hijack about 4,000
domains [29]. Similar to the case of Angler, most (2,536 out
of 4,001 with NS records) of the hijacked domains report
nameservers under one apex domain, again indicating that the
attackers did not change NS records. One interesting aspect
of this attack was that attackers apparently created thousands
of MX, SPF, DMARC, and DKIM records to support the
spam campaign. This behavior highlights that certain defense
measures based on the DNS become ineffective once an at-
tacker controls the domain, suggesting the need for innovative
detection methods.

Sea Turtle. The Sea Turtle campaign involved a series of
domain hijacking attacks that appeared at least as early as
2017, and were still active in 2019. Attackers targeted domains
for organizations that managed DNS or communication for
other domains. These targets included government and private
organizations largely in the Middle East and North Africa
[5], [30]. Attacks were not constant, but periodically enabled
[30]. The PDNS data for some of the domains reported to be
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hijacked show the hijackings occurring over a year apart, and
the individual attacks lasting a relatively short period. Several
of the hijacked domains appear to have used only the local or
internal infrastructure to host their content prior to the attacks.
The IPs used by the attackers belonged to cloud providers in
other regions of the world. The attacks were evidently subtle
enough to avoid immediate detection, since they continued to
occur over an extended period. However, they stand out from
the regular patterns of the PDNS data markedly because of
the characteristics of the hijacked domains and the relatively
low diversity in their IP addresses prior to the attacks.

Summary. While analysis of individual attacks provides
helpful insights into the dynamics of those attacks, they also
highlight that domain hijacking attacks are quite dissimilar in
the patterns they create in DNS records. Some attacks may
generate a spike in the number of responses or records for
the target domain that appear in the data. Others might be
so subtle as to avoid attention, even by domain owners (for
a time at least). The behavior seen depends on factors such
as the popularity of the domains, attackers’ tactics, and how
attackers leveraged the hijacked domains.

IV. DNS HIJACKING DETECTION
A. Threat Model

The basis of our threat model is a defender whose goal is
to detect if changes in DNS resolutions entering an enterprise
network may indicate a DNS hijacking attack. As shown in
Figure 5, the defender views DNS traffic between a local
resolver and authoritative nameservers. This traffic would
allow the defender to detect MITM or spoofing attacks directed
against resolvers within the LAN. The defender specifically
aims to detect DNS hijacking attacks directed against a set
of domains of interest. These may include popular or high-
risk domains, or those accessed frequently by users within the
LAN. Since changes in domains’ infrastructure are expected to
occur periodically even under normal circumstances, detection
is likely to require active measures extending beyond the DN'S
in some cases. Our goal is to examine if detection based on
the DNS may be used to decisively flag at least some DNS
hijacking attacks, or reduce the need for potentially expensive
active probing (either automatic or manual).

B. System Design

In the system we explore, sensors capture DNS responses
between a recursive resolver and authoritative nameservers.
The system takes these responses as input, in addition to
information from a block list, BGP Routing Information Base
(RIB) data, and PDNS data. The PDNS data may include
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data collected within the network, data retrieved from third-
party databases, or both. The system produces a subset of the
observed responses that have been flagged as needing further
verification. Figure 6 gives an illustration of the detector’s
stages, which we discuss in greater detail as follows.

Filtering. In the filtering stage, the system rejects responses
that are incorrectly formatted or that can easily be marked
as wrong answers. This filtering should implement standard
checks against forged responses, such as those defined in
RFC 5452 [26]. Also, the system should eliminate spoofed
responses that can be identified with bailiwick checks [27]. Fi-
nally, responses with private IP addresses would be discarded.?

Data Augmentation. In the data augmentation stage,
records are transformed to facilitate feature extraction. For
NS, MX, and CNAME records, this includes adding a field
indicating the apex domain of the item in the rdata field. For
MX records, it will also add a field for the preference. The A
records are the focus of this stage, however, as IP addresses
are a rich source of information about the organizations and
countries associated with a domain. The information added in-
cludes ASN, ASN owner and country, as well as the frequency
with which an ASN has appeared in a public block list.

Feature Extraction. In this stage, augmented data is used
to extract a set of features for the changes to be classified.
An instance in our system comprises all the new records seen
for a given domain on a given day, and the statistics of this
group of new records are extracted and then used as features.
Section IV-C discusses the details of the features selected.

Classification. The classification module ingests feature
vectors generated by the previous stage and produces a list of
flagged responses. Different algorithms may be used for this
stage. We explore the results using two fundamental models,
Random Forest and SVM. Given that domains may have
widely disparate profiles, this stage may actually consist of
multiple classifiers, each of which handles different groups of
incoming responses, based on the characteristics of the domain
in the rrname field.

C. Generalizing Characteristic Features: Changes per Day

Many of the DNS hijacking attacks manifested themselves
in changes to multiple RR types. That is, RRs of multiple types
(usually A and NS) were changed on the date of the hijacking.
To evaluate these patterns, we divided the records by the date

2Responses containing private IP addresses may indicate other attacks (e.g.,
DNS rebinding). We ignore them, as they are not within our threat model.

TABLE III: Attack Type Counts and IOCs
Attack Date

Not Attack Date

RRTYPES changed % Days RRTYPES changed % Days
A 29.63 A 32.23
NS A 20.99 A AAAA 19.69
NS CNAME A MX 11.11 CNAME 14.93
NS CNAME A 6.17 AAAA 7.09
NS A SOA 4.94 A CNAME 6.01
A AAAA 3.70 MX 5.69
NS 3.70 A MX 1.88
NS A AAAA SOA 3.70 A AAAA CNAME 1.56
NS A MX 2.47 AAAA MX 1.52
NS CNAME A 247 NS SOA A AAAA 082
AAAA SOA CNAME

NS A MX SOA 2.47 CNAME MX 0.81
NS CNAME A 247 NS A CNAME 0.70
AAAA MX SOA

of their first seen timestamp. Excluding the domains targeted
in the Angler and Spammy Bear Campaigns, for 55 domain
names we identify 81 attack dates that appear in the dataset
(attack dates are identified if the date is given in a report of the
attack, or an attacker IOC appears in the in a domain’s records
on that date). On only 35.0% of these dates, no more than one
new record type appeared. For all 68 hijacked domains with
data (including those for which we found no attack dates),
of the dates in which no attack appeared, 62% (out of over
55,300 measured) involved only one record type.

Table III shows the top 12 RRTYPE groups for attack dates
and normal dates on which no attack has occurred. Since most
analyses of attacks focus on the A and NS records, we explored
if and how attackers are using other types of records. We
focused on MX, SOA, AAAA and CNAME RRs. A brief
inspection of a few cases suggested that MX and CNAME
records are used to point mail and popular subdomains (e.g.,
www) to the apex domain, whose IP address has already been
changed. The preference of new MX records was sometimes
changed to 0 (highest priority), even when that preference may
have never been used before in the domain’s MX records.
In the SOA record, the names in the RNAME and MNAME
fields were often under the same domain as that of malicious
nameservers.

In our detection, features are calculated in two steps. Given
a domain, dom;, and date day; for which we would extract
features, we first measure statistics of the DNS records that
appeared for that domain on the day we wish to evaluate and
for all days within a year prior to that date. These statistics
include, for A, NS, and MX records, the number of records
of each type that appeared that day, the number of new
FQDNs or IP addresses in the rdata fields, and the number of
domains, ASNs, ASN owners, and countries associated with
those FQDNs and IP addresses. In addition, we also track
the preference of the new MX records and monitor whether
the new NS records are attached to the domain itself (or
its subdomain). More generally, we keep track of how many
record types appeared in the new data for the day, and how
many rrnames were in the records of all types (excluding
CNAME records). Having measured these statistics, we then



TABLE IV: Features. Each of the features represents statistics of the RRs that appear for a domain on a particular date.

Feature Group Description

Count

New A RRs

Previously unused IP addresses in the new A RRs

New A Record Features

Previously unused countries associated with the IP addresses in the new A RRs 5

Previously unused ISPs associated with the IP addresses in the new A RRs
The number of ASNs associated with the IP addresses in the new A RRs used by malware

New NS RRs

Previously unused nameservers in the new NS RRs

New NS Record Features
New NS RRs for the apex domain
New NS RRs for a subdomain

Previously unused domains for nameservers in the new NS RRs 5

New MX RRs
New MX Record Features

Previously unused mail server in the new MX RRs

Previously unused mail server domains in the new MX RRs
Minimum mail server preference in the new MX RRs

Number of previously seen A RRs

Previous RR Featuress

Number of previously seen NS RRs

Number of ISPs in previously seen A RRs
Number of nameserver domains in previously seen NS RRs

General Features

New RRs (not A, NS, MX or CNAME) and new rrnames 2

compare the statistics for the domain of interest against those
of the 21 preceding days. If we find we don’t have at least
21 samples in those 21 days, we expand the window to 42
days, then to all previous days. For each statistic measured,
the associated feature is obtained by finding the difference
between the value of that statistic on day; with the median or
minimum value of a statistic in previous days, and normalizing
by the maximum of the two values.

Along with the characteristics identified in Section III-C,
Table IV summarizes all the features we use to explore the
DNS hijacking detection.

D. Classifiers

We evaluated two classification algorithms, Random Forest
and SVM, with a 10-fold cross validation.® For the classifiers,
we used Scikit-learn version 0.23.2 [39]. We used Scikit-learn
because its simplicity, thorough documentation, and flexibility
made it ideal at this point in our research, as we were
interested in efficient exploration of simple models. In the
future, tools that provide benefits such as greater scalability
(e.g., MLib [35]) or statistical analysis (e.g., Statsmodels [45])
would likely provide more powerful options. Exploring these
would be an interesting area of future work.

Random Forest classifiers are “ensemble methods” which
combine the results from several simpler, less robust classifiers
to obtain a final prediction. The algorithm in an SVM essen-
tially attempts to find a boundary in a given feature space such
that the boundary efficiently separates instances of different
classes. In our work, we used the Scikit-learn SVC (C-Support
Vector Classification) classifier specifically.

The Scikit-learn implementations of Random Forests and
SVMs have several parameters. In our case, all of these except
class weights were left at their default values. Here we review
a few of the most relevant parameters here. A more thorough

3In early tests, we also explored using unsupervised learning but found this
yielded poor results, so did not fully develop this approach.

discussion is available in the Scikit-learn documentation [39].
For Random Forests:

o n_estimators is the number of decision trees whose
predictions are combined to obtain the final result. The
default value is 100.

« criterion is the approach used to quantify how well a split
divides the data. The default criteria is gini impurity.

o bootstrap, if set to true, indicates that instances are to be
sampled to build decision trees. Otherwise, all instances
are used for each tree. The default is true.

o max_features sets the number of features to consider
when determining how to split data. The default is to use
the square root of the total number of features.

Some of the most relevant parameters for the SVM we used
are as follows:

o kernel: The kernel function used. The default is the
Radial Basis Function (RBF).

o C: Regularization is inversely proportional to C. The
default value is 1.

o gamma: The kernel coefficient. The default value is
1/(number of featuresxvariance of the input data).

E. Experiment

We here examine how the features we examined can be
leveraged to build a detection model for DNS hijacking at a
LAN gateway.

1) Dataset: Our dataset consists of PDNS records from the
Farsight DNSDB. In addition to the data for domains known
to have been hijacked, we also retrieved PDNS records for 816
other domains which were selected to represent three groups:
Alexa Top, Alexa Business, and Alexa Regional domains. The
Alexa Top domains include 96 of the Alexa top 100 [7]. Four
of the domains in the list of hijacked domains were also in the
top 100 from the list; we generally treat these separately from
the rest of the Alexa top 100. Alexa Business domains were
taken from the categorized Alexa Top Sites lists [8]. The Alexa
Regional domains were domains with ccTLDs that appeared



in the Alexa top list and that had a corresponding domain
with a generic TLD in the top 100 (e.g., google.com.bd).
We retrieved over 650 million unique records (rrname, rrtype,
rdata) tuples covering a period of 10 years (2010-2020).

2) Approach: With the process of filtering and augmenting
the data (Section IV-B), we label the dataset and extract the
features to build the detector. In our experiments, one instance
represented the changes in DNS records that occurred for a
single domain on a single day. Thus, we evaluated changes
on a per-day, per-domain basis. Labeling the occurrence of
domain hijacking was straightforward using reported attack
dates and checking where known IOCs appeared in records.
In order to identify benign instances, we used the following
approach for each domain, D, in our dataset:

o Find “trusted” nameservers, mail servers, and CNAMEs.
For example, in an NS record for D, we first extracted the
apex domain of the nameserver. If that domain appeared
in NS RRs spanning a period of over 26 weeks, we
marked all nameservers under that apex as trusted for
D. We used the same process for MX and CNAME RRs.

o Find “trusted” ASN owners. For each A record, using
MaxMind [1], we identified the ASn owner associated
with the IP address in that record. If IPs belonging to the
ASN owner were seen in A records spanning a period of
over 26 weeks, we marked all records with IPs associated
with that ASN owner as trusted for D.

e For each instance, if all NS, CNAME, and MX domains
and ASN owners in new records are trusted for D, we
marked the day as benign.

Any instances that could not be labeled as attack or benign
dates were marked as unknown and not used for validation.

3) Results: For evaluation, we divided the instances related
to attacks into three groups by the year in which they oc-
curred: 2010-2012 (15 instances), 2013-2015 (17 instances),
and 2016-2021 (47 instances). For each of these time periods,
we also sampled 10,000 benign instances from the same time
period. We ran the test with each group using stratified cross-
validation, so that malicious instances were divided between
training and test folds in each round of validation.

For attacks spanning multiple days, features derived for the
second and subsequent days incorporate information from the
first day, contributing to false negatives. To explore the impact
of these cases, we assessed the results if we assumed such
attacks were detected the first day, thus allowing the prevention
of further incidents. If our classifier detected a hijacking for a
domain on a given day, we checked for attacks involving that
domain in the following 21 days. If any such instances exist
and were not detected, we calculate performance (precision,
recall, and false negatives) as if those cases had been identified.

Table V provides details of classifier performance. The
false positive rate (FPR) is between 0.02% and 0.08%, and
the false negative rate (FNR) is between 12% and 30%.
These results are more than adequate, especially given that
the system we have designed is intended to be a first step
prior to additional probing. We note that since most of the

TABLE V: Results of cross validation

Years in AUC

Precision* Recall* FPR FN*
Dataset -PR

g 2010-2013  0.85(0.86) 0.73 (0.8) 0.85 0.02% 4 (3)
g § 2013-2016  0.85(0.88) 0.65(0.82) 0.73 0.02% 6 (3)
:52 £ 2016-2020 0.87 (0.89) 0.57 (0.7) 0.71 0.04% 20 (14)
= 2010-2013  0.88 (0.88) 0.93 (1.0) 0.67 0.02% 1 (0)
S 2013-2016  0.72 (0.76) 0.76 (0.94) 0.73 0.05% 4 (1)
@ 2016-2020 0.7 (0.75) 0.4 (0.51) 0.5 0.08% 28 (23)

*Values in parentheses show results when assuming early detection of
multi-day attacks, as described in Section IV-E3.

false positives involve legitimate changes in the DNS, it might
be possible to verify changes easily, simply by checking if
previously used nameservers are still operating, and if so, do
they agree with new nameservers.

Most of the false negatives we identified were associated
with the Sea Turtle campaign. Further inspection reveals a
good bit of “noise” within the records, possibly associated
with other attacks. In some cases, this noise includes large
numbers of NS records where the rrname or rdata field look
like something created by DGAs. In others, the noise comes
from known or suspected hijacking attacks. Both cases could
contribute to false negatives. To be conservative, we have
purposefully not attempted to remove other attacks from the
data when building features, and the measurements from these
days will affect those of subsequent days. Such an approach
likely gives a worse case scenario, and these results could
likely be improved by using more rules to filter previous
attacks when extracting features that involve comparisons
between new and old records.

4) Feature Importance: We investigate feature importance
using permutation importance [39]. We observed that both
the SVM and Random Forest classifiers rely heavily on the
feature indicating if new NS records have appeared for the
apex domain. The SVM relies almost entirely on this feature,
while the Random Forest includes several others, including
the change in the number of new ASN owners, and how
many nameservers the domain had used previously. As such,
we conclude that the only consistent discernible differences
between most changes in the DNS and those caused by DNS
hijacking attacks involve changes in nameserver. While we
anticipated NS changes would be important, it appears they are
definitive, and that improving automatic detection will involve
further characterizing NS changes.

V. DISCUSSION
A. Limitations

In our study, both our experiments and proposed defense
strategies depend heavily on the appearance of new name-
servers and AS owners in a domain’s DNS records. However,
an attacker may be able to gain access to nameservers under
the same apex domain as those used previously by a domain.
For example, the attacker could leverage third-party platforms
to hide the true identity or location of its own nameservers.



Further, given the growing adoption of cloud platforms, an
attacker may more easily gain access to machines located
in the same AS or belonging to the same ISP as that of
the hijacked domain, resulting in the ineffectiveness of the
proposed features. We note, however, that even a human expert
would likely be unable to identify such attacks based simply on
DNS traffic, so we do not see this as a significant shortcoming
of our approach.

The performance of our system in cross-validation was satis-
factory, but it may require further development to be usable in
a real-world setting. In particular, we have little information on
the scalability or latency of the system. Our main goal of this
detection experiment is to evaluate if the features we derived
based on previous hijacking attacks are useful, and understand
what additional features might be needed. Building on these
insights, we will compare our approach with those of other
systems in future work.

B. Ethical Considerations

In our experiments, we considered ethical issues surround-
ing the use of PDNS data. Concerns about passive DNS mainly
focus on users’ privacy, although issues of internal DNS
disclosure or zone reconstruction are also important [16], [48].
As noted in [48], a well-configured PDNS collection will not
infringe on individuals’ privacy. In any case, the data that we
receive from Farsight has been stripped of all client and server
IP addresses, making it impossible for us to associate DNS
traffic with users or locations. Regarding privacy issues related
to the domains themselves, we do not attempt to leverage
the data to obtain information not immediately relevant to
the threat we study. Where we have analyzed a domain’s
DNS usage in depth, our purpose has been to attempt to
identify attacks and patterns that can be generalized to describe
normal changes, and we do not construct detailed models of
a domain’s infrastructure.

VI. RELATED WORK

While many works have explored a single type of DNS
hijacking attack or a specific tactic, few have considered
these collectively and clarified the distinctions. In the wake
of Kaminsky’s disclosures regarding the potential of cache
poisoning attacks, several works focused on addressing off-
path spoofing [17], [23], [28], [37], [54]. Many have measured
common MITM attacks [3], [10], [11], [13], [14], [34], [36],
[38], usually in the context of studying censorship or detecting
NXDOMAIN redirection.

A few works have highlighted the distinctions between
different types of domain hijacking. In [23], authors note that
identifying whether an attacker is using off-path spoofing or an
MITM approach is the first step in evaluating defenses against
cache poisoning. They do not explicitly consider domain
hijacking. In [47], authors mention all three types of attack that
we have examined, but do not address distinct characteristics
of these. Finally, in [52], the author addresses different root
causes for incorrect responses from authoritative nameservers.
This primarily focuses on errors rather than attacks.

Several works have proposed novel approaches or features
for detecting bogus DNS responses. In [49], researchers iden-
tify misbehaving resolvers used by clients within a network.
Their features largely focus on frequency distributions of DN'S
response parameters. Systems relying on historical DNS and
agreement between multiple resolvers to detect DNS manip-
ulation are proposed in [40], [54], [S5]. These systems could
all at least theoretically detect off-path spoofing and MITM
attacks, but are not designed to address domain hijacking.

In contrast, the system in [28] leverages historical DNS
logs from a single vantage point, and Whois records to iden-
tify potential domain hijacking attacks. Their heuristics-based
approach relies primarily on checking if unusual responses
did arrive from an appropriate authoritative nameserver, and
that the nameserver itself can be validated via Whois records.
Although some domain owners chose to change their authori-
tative nameservers without updating their Whois records [42],
this approach would likely be effective. However, the use of
Whois records suggests this approach is somewhat unscalable,
and is perhaps best applied to cases that have already passed
other filters for suspicious behavior.

Another system that could, by design, detect various types
of DNS manipulation is Anax [12], which relies on back-
ground information extracted from PDNS datasets to evaluate
new changes. The features Anax uses largely focus on the
diversity of domains resolving to IPs in a BGP prefix, and
on what portion of these are associated with CDNs. Authors
in [44], follow a similar approach to evaluating whether an
IP address should be trusted for a particular domain. Their
approach is based on similarity between that domain and
others resolving to the IP address in question. The features and
filters we have proposed are complementary to their approach,
as we consider mechanisms and features beyond those that
can be extracted from A records, and information regarding
IP addresses.

VII. CONCLUSIONS

In this work we extensively studied the characteristics of
DNS hijacking attacks and explored the detection of such
attacks from the position of a party defending a local network
from attacks originating outside the network, including off-
path spoofing, MITM, and domain hijacking attacks. We
analyze previous studies or reports of known attacks. Based
on measurements related to these, we derived a set of features
that might be used to identify unusual changes in a domain’s
DNS that require further inspection or blocking. We tested our
approach on a large passive DNS dataset containing several
million records collected for a period of over 10 years. The
results of validation and testing have a low FPR, consistently
less than 1%. Examining feature importance highlights the
importance of focusing on nameserver changes, suggesting a
promising area for future work.
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TABLE VI: Hijacked domains

Group

Domains

Activism and Mischief

Banks and Bitcoin

Credential or
Information Stealing

comcast.net (5/28/2008), icann.com, iana.com (6/26/2008), hsbc.co.nz, linux.co.nz, sony.co.nz, coca-
cola.co.nz, xerox.co.nz, fanta.co.nz, f-secure.co.nz, windowslive.co.nz, bitdefender.co.nz, msn.co.nz, mi-
crosoft.co.nz, hotmail.co.nz, live.co.nz, msn.org.nz, msdn.co.nz (04/21/2009), twitter.com (12/18/2009),
baidu.com (1/12/2010), secunia.com (11/25/2010), google.com.bd (1/8/2011, 12/21/2016), theregister.co.uk,
telegraph.co.uk, ups.com, nationalgeographic.com, acer.com, betfair.com, ning.com (9/4/2011), google.ro,
yahoo.ro, microsoft.ro, paypal.ro, kaspersky.ro, windows.ro, hotmail.ro (11/28/2012), google.com.om
(4/21/2013), google.ps (8/26/2013), nytimes.com (8/27/2013), leaseweb.com (10/5/2013), google.com.my
(10/10/2013), google.cr, yahoo.cr, ebay.co.cr, youtube.co.cr, yahoo.co.cr, flickr.co.cr, amazon.co.cr, msn.co.cr
(10/13/2013), eccouncil.org (2/22/2014), craigslist.org, craigslist.com (11/24/2014), lenovo.com (2/25/2015),
google.com.vn (2/23/2015), google.com.br (1/3/2017), wikileaks.org (8/31/2017), linux.org (12/7/2018),
escrow.com (3/31/2020)

stlouisfed.org (4/24/2015), blockchain.info (10/12/2016), blackwallet.co (1/13/2018), wavesplatform.com
(7/24/2018)

shish.gov.al, mfa.gov.eg, apc.gov.ae, mgov.ae, mea.com.lb, meacorp.com.lb, nsa.gov.iq, dgca.gov.kw,
mea.aero, petroleum.gov.eg, e-albania.al, embassy.ly, adpolice.gov.ae, cyta.com.cy, mod.gov.eg, mail.gov.ae,

gid.gov.jo, owa.gov.cy, mofa.gov.ae, asp.gov.al, finance.gov.lb (2017-2019) fox-it.com, (9/19/2017)

Malware and Spam
Distribution

scrt.ch (7/7/2017), crunchyroll.com (11/4/2017), Angler domains*, Spammy Bear domains*

* Angler and Spammy Bear both involved attacks on thousands of domains, which cannot all be shown here.

APPENDIX A
HIJACKED DOMAINS

The domains hijacked in the known domain hijackings
we observed are shown in Table VI. Note that Angler and
Spammy Bear were both campaigns that involved thousands
of domains.

APPENDIX B
PDNS DATA AND RETRIEVAL

A. PDNS Dataset

The Farsight DNSDB comprises DNS data contributed from
sensors located around the world, and from zone transfer files.
The dataset has been in construction since 2010 [21]. A report
summarizing the dataset at the end of 2019, noted that the
DNSDB contained over 130 billion unique RRsets with data
for more than 51 billion FQDNs [43]. Farsight filters data
to remove responses associated with cache poisoning [42].
The maximum number of RRsets that can be retrieved for a
specific query to the database is four million. Farsight provides
free, limited access to its DNSDB, as well as research grants.
Given the details of domains we used and our methods of
retrieval, other researchers should be able recreate the same
dataset themselves and reproduce our results.

B. Initial Measurements

For the measurements discussed in Section III, we retrieved
records for known hijacked domains that were captured within
a time window specific to the attack. For attacks with a specific
date given in reports, we limited queries to records with a
time_first no later than one year after, and time_last no earlier
than one year before the date. For attacks spanning multiple
years, we queried for records with a time_last no earlier than
the first day of the first year, and time_first no later than the
last date of the last year. Finally, for attacks occurring within
a single year but without specific dates given, we used the

= RR within accepted time window
RR outside accepted time window

Minimum LTS Attack Maximum FT'S

Date Time

Fig. 7: Records retrieved from Farsight include those captured
within a given time window surrounding known attacks.

year of the attack to set the date range, making the time_last
no earlier than June of the preceding year and time_first no
later than June of the following year. Figure 7 illustrates this
approach.

C. Experiment

In the experiment, we expanded the time frame for which
we collected data for the hijacked domains to consider all
available data. We also retrieved PDNS records for several
popular domains. The latter have a great deal of PDNS data
available. As expected, for some of these domains we were
not able to retrieve all data within the DNSDB. For those
interested in recreating the dataset we used, more information
on which domains were in this group, etc., can be found
in [25].



