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Abstract— The virtues of being maneuverable, efficient, and
lifelike have made robotic fish an appealing choice in a wide range
of applications. Their agile locomotion can be partially attributed
to their bio-inspired propulsion methods. Pectoral fins have in
particular become an important form of propulsion for robotic
fish, as they play a vital role in achieving agile maneuvering at
low swimming speeds. Despite the benefits it offers, pectoral fin-
based locomotion presents significant challenges in the control
of robotic fish. The range constraint of the fin movement can
often inhibit the robot from generating thrust in a direction
required for maneuvering. The latter could necessitate the fin
moving first in a direction opposite to the desired one (which in
turn generates unwanted drag) in order to “back up” and create
enough room for accelerating. While seeming natural for fish or
humans, such fin maneuvers are difficult to engineer with existing
control design methods. To overcome these challenges and achieve
quick maneuvering control, in this paper, we propose a dual-loop
control approach, composed of a backstepping-based controller
in the outer loop and a fin movement-planning algorithm in
the inner loop. In particular, for the inner loop, we propose
a model-predictive planning scheme based on a randomized
sampling algorithm that accommodates the fins’ constraints
and “intelligently” determines the necessary fins’ movements to
produce a desired thrust despite the fins’ current configuration.
Simulation results are presented to demonstrate the performance
of the proposed scheme via comparison with a nonlinear model
predictive controller in rapid velocity maneuvering.

I. INTRODUCTION

In recent years, bio-inspired underwater robots that propel

and maneuver themselves like real fish, often called robotic

fish, have emerged as promising platforms for a myriad of

applications, such as aquatic environmental monitoring, search

and rescue, and robot-animal interactions [1]–[3]. Their effi-

ciency, maneuverability, and stealth are some of the charac-

teristics that have made robotic fish an attractive choice over

traditional propeller-driven underwater vehicles [4].

A variety of different fish swimming modes have been

explored in the design of robotic fish, including the use of

tail (caudal) fin [5], paired pectoral fins [6], a combination of

both movements [7], and undulatory motion of the whole body

[8]. While caudal fins have proven to be an efficient propulsion

mode at higher speeds, pectoral fins provide remarkable ma-

neuvering and efficient propulsion at lower swimming speeds

and have thus become a useful actuation mechanism for robotic

fish [9].

Pectoral fin motions can generally be classified into three

modes based on the axis of rotation: rowing, feathering and
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flapping, where the axes of rotation are vertical, transverse,

and longitudinal, respectively. Rowing motion is classified as a

“drag-based” swimming mechanism, where the drag element of

fluid dynamics generates the thrust, and it is often regarded as

an effective type of motion for achieving a number of in-plane

locomotion and maneuvering tasks, such as forward swimming,

sideway swimming, and turning [10], [11]. The rowing motion

of pectoral fins comprises two sub-movements during the fin-

beat cycle, namely, a power stroke and a recovery stroke.

During the power stroke, the pectoral fin moves backward to

produce thrust through induced drag on the pectoral fin surface,

while during the recovery stroke, the fin moves toward the front

of the body, ideally with minimal loading, to get ready for the

next fin-beat cycle.

Although beneficial in maneuvering, utilizing rowing motion

for propulsion gives rise to challenges for the control of

robotic fish. The challenge lies with the actuation constraints

(i.e., angular position, velocity, and acceleration limitations) as

well as the mechanism in which the “drag-based” swimming

method is used to generate thrust. For example, forward thrust

can only be generated during the power stroke; however,

when the pectoral fin reaches its maximum angular position,

it has to recover in order to be able to generate forward

thrust again. During the recovery phase, the fin will actually

produce a “negative” thrust, thus opposing the objective of

producing forward thrust. While such “backing-up” behavior

seems natural to human understanding and is widely used by

live fish, it is challenging to incorporate this behavior through

systematic, rigorous controller synthesis.

While there is extensive literature available on the design

and modeling of pectoral fin-actuated robotic fish [8], [9],

[12]–[18], limited work has been reported on the control of

these robots. Some of the work in this area has focused on

open-loop motion control, i.e., the generation of coordinated

movements of the actuation components to produce some

fish-like swimming gaits [19]–[21]. In terms of closed-loop

control, several authors have proposed sensory-feedback Cen-

tral Pattern Generators (CPGs) for target tracking or obstacle

avoidance control [22], [23]. Similarly, in [24] the authors

proposed a control strategy composed of two layers: an upper

decision-making layer that used a finite state machine to

determine the appropriate swimming gait and a layer that uses

a CPG to implement the desired gait. Fuzzy rule-based control

laws were proposed in [25] to control fin-beat parameters to

drive a robotic fish to perform rendezvous and docking in a

three-dimensional workspace. The authors in [18] implemented

geometric-control methods for closed-loop depth control of a

robotic fish using pectoral fins undergoing feathering motion.

All of the aforementioned work utilized cyclic fin actuation for
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B. Drag and Lift on the Robot Body

The lift force FL, drag force FD, and drag moment MD

acting on the robotic fish can be captured by ([18], [27])

FD =
1

2
ρ|Vc|

2SACD (7)

FL =
1

2
ρ|Vc|

2SACLα (8)

MD =− CMω
2
zsgn(ωz) (9)

where |VC | is the linear velocity magnitude of the body in the

body-fixed frame and is defined as |Vc| =
√

V 2
cx

+ V 2
cy

, SA

is the wetted surface area for the robot, CD is the drag force

coefficient, CL is the lift force coefficient, CM is the drag

moment coefficient, and sgn(·) is the signum function.

C. Hydrodynamic Forces from Rowing Pectoral Fins

As shown in Fig. 1(b), we consider the pectoral fins to

be rectangular with span length Sp, and chord length Dp,

and assume they perform pure rowing motion. To evaluate its

hydrodynamic forces we adopt the procedure proposed in [28].

Furthermore, we illustrate the force calculations using only the

right pectoral fin, since they can be trivially extended to the

left pectoral fin.

The hydrodynamic forces on the pectoral fin have both span-

wise and normal components. However, the fins are considered

to have pure rowing motion which implies that the span-wise

force that arises from friction is very small and can thus be

neglected [29]. Using blade theory, we can then calculate the

differential normal force dFn(s, t) on each blade element ds

on the pectoral fin at time t as

dFnR(s, t) =
1

2
Cn(ϕ(s, t))ρDp|~vp(s, t)|

2ds (10)

where Cn(ϕ(s, t)) = λ sinϕ is the normal force coefficient,

which depends of the angle of attack of each arbitrary blade,

ϕ(s, t), and λ is a parameter that can be evaluated empirically

through experiments. The velocity and acceleration at the point

s along the fin are then given by

vpR
(s, t) =sγ̇Rn̂

R (11)

aR(s, t) =sγ̈Rn̂
R − sγ̇2Rm̂

R (12)

where γ̇R and γ̈R indicate the first and second time derivatives

of γR, respectively. m̂R and n̂R are the unit vectors that define

the coordinate system that is attached to the pectoral fin. The

relationship between these unit vectors and the robotic fish

body-fixed coordinates is given by

m̂R =cos γRx̂− sin γRŷ (13)

n̂R =− sin γRx̂− cos γRŷ (14)

The total hydrodynamic force acting on each pectoral fin

is calculated by integrating the force density along the span

length of the fin such that

FnR
(t) =

∫ Sp

0

dFnR(s, t) (15)

The total force acting on the right fin is determined by

~FR = FnR
n̂R − ~FA0R = mpaR(s, t)

∣

∣

s=
SP
2

(16)

where ~FA0
represents the force applied by the rigid pectoral fin

on the servo joint, and mp is the effective mass of the rigid fin

(the fin mass mpf and the added mass, where the added mass

is calculated based on a rigid plate moving in water [30]).

The moment of the fin relative to its pivot point (A0R) is

given by

~MnR
=

∫ Sp

0

sm̂R × dFnR
(17)

Finally, the force and moment exerted on the robotic fish

body by the right pectoral fin is given by

fhxR = < ~FA0R, x̂ > (18)

fhyR = < ~FA0R, ŷ > (19)

τhzR =Cpŷ × ~FA0
= CpfhxRk̂ (20)

For a more comprehensive derivation of the hydrodynamic

forces, we refer the reader to [28]. By letting γ̈R = ω̇R,

γ̈L = ω̇L, u1 = ω̇R and u2 = ω̇L, and by considering the

kinematic equations of the robotic fish, the dynamic model

can be summarized as follows:
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with

f1(Vcx , Vcy , ωz) =
m2

m1

Vcyωz −

c1

m1

Vcx

√

V 2
cx

+ V 2
cy
+

c2

m1

Vcy

√

V 2
cx

+ V 2
cy

arctan(
Vcy

Vcx

)
(22)

f2(Vcx , Vcy , ωz) =−

m1

m2

Vcxωz −

c1

m2

Vcy

√

V 2
cx

+ V 2
cy

−

c2

m2

Vcx

√

V 2
cx

+ V 2
cy

arctan(
Vcy

Vcx

)
(23)

f3(Vcx , Vcy , ωz) =
(m1 −m2)

J3

VcxVcy − c4ω
2

z
sgn(ωz) (24)

where m1 = mb −max
, m2 = mb −may

, J3 = Jbz − Jaz
,

c1 = 1
2ρSCD, c2 = 1

2ρSCL, c4 = 1
(J3)

CM . Note that fhx
=

fhxR + fhxL, fhy
= fhyR + fhyL and τhz = τhzR + τhzL.

III. DUAL-LOOP FIN CONTROL SCHEME

A. Velocity Tracking Problem

The velocity tracking problem involves controlling the robot

to track desired body-fixed velocity trajectories that are pa-

rameterized in time t. Given the underactuated nature and
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V. CONCLUSION

In this work, a systematic approach for maneuvering control

of a pectoral-fin actuated robotic fish was proposed. Specifi-

cally, we proposed a dual loop control scheme consisting of

an outer-loop backstepping controller and an inner loop fin

movement-planning algorithm. In particular, the outer loop

backstepping-controller finds the thrust and moment required

to stabilize the velocity tracking error, while the inner loop

plans the motion of the fin for a given time-interval to produce

a thrust and a moment close to their desired values by utilizing

a randomized sampling algorithm. To illustrate the challenges

in control, the velocity tracking problem with abrupt velocity

changes for a robotic fish was considered. Simulation results

showed the effectiveness of the proposed scheme and and its

superiority over an alternative employing an NMPC in the

inner loop.

For future work, the proposed scheme will be optimized to

accommodate the trade-off between performance and compu-

tational efficiency. Furthermore, the algorithm will be extended

to other tasks such as trajectory tracking, which requires

addressing the challenge of under-actuation and input coupling.

Finally, experiments will be implemented on a robotic fish

prototype to verify the effectiveness of the proposed approach.
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