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ABSTRACT
Performing inference on pre-trained neural network models must
meet the requirement of low-latency, which is often at odds with
achieving high throughput. Existing deep learning systems use
batching to improve throughput, which do not perform well when
serving Recurrent Neural Networks with dynamic dataflow graphs.
We propose the technique of cellular batching, which improves
both the latency and throughput of RNN inference. Unlike existing
systems that batch a fixed set of dataflow graphs, cellular batching
makes batching decisions at the granularity of an RNN “cell” (a sub-
graph with shared weights) and dynamically assembles a batched
cell for execution as requests join and leave the system. We imple-
mented our approach in a system called BatchMaker. Experiments
show that BatchMaker achieves much lower latency and also higher
throughput than existing systems.
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1 INTRODUCTION
In recent years, deep learning methods have rapidly matured from
experimental research to real world deployments. The typical life-
cycle of a deep neural network (DNN) deployment consists of two
phases. In the training phase, a specific DNN model is chosen after
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many design iterations and its parameter weights are computed
based on a training dataset. In the inference phase, the pre-trained
model is used to process live application requests using the com-
puted weights. As a DNN model matures, it is the inference phase
that consumes the most computing resource and provides the most
bang-for-the-buck for performance optimization.

Unlike training, DNN inference places much emphasis on low
latency in addition to good throughput. As applications often desire
real time response, inference latency has a big impact on the user
experience. Among existing DNN architectures, the one facing the
biggest performance challenge is the Recurrent Neural Network
(RNN). RNN is designed to model variable length inputs, and is a
workhorse for tasks that require processing language data. Example
uses of RNNs include speech recognition [3, 22], machine transla-
tion [4, 46], image captioning [44], question answering [40, 47] and
video to text [20].

RNN differs from other popular DNN architectures such as Multi-
layer Perceptrons (MLPs) and ConvolutionNeural Networks (CNNs)
in that it represents recursive instead of fixed computation. There-
fore, when expressing RNN computation in a dataflow-based deep
learning system, the resulting “unfolded” dataflow graph is not
fixed, but varies depending on each input. The dynamic nature
of RNN computation puts it at odds with biggest performance
booster—batching. Batched execution of many inputs is straight-
forward when their underlying computation is identical, as is the
case with MLPs and CNNs. By contrast, as inputs affect the depth
of recursion, batching RNN computation is challenging.

Existing systems have focused on improving training throughput.
As such, they batch RNN computation at the granularity of unfolded
dataflow graphs, which we refer to as graph batching. Graph batch-
ing collects a batch of inputs, combines their dataflow graphs into
a single graph whose operators represent batched execution of
corresponding operators in the original graphs, and submits the
combined graph to the backend for execution. The most common
form of graph batching is to pad inputs to the same length so that
the resulting graphs become identical and can be easily combined.
This is done in TensorFlow [1], MXNet [7] and PyTorch [34]. An-
other form of graph batching is to dynamically analyze a set of
input-dependent dataflow graphs and fuse equivalent operators to
generate a conglomerate graph. This form of batching is done in
TensorFlow Fold [26] and DyNet [30].

Graph batching harms both the latency and throughput of model
inference. First, unlike training, the inputs for inference arrive at
different times. With graph batching, a newly arrived request must
wait for an ongoing batch of requests to finish their execution com-
pletely, which imposes significant latency penalty. Second, when
inputs have varying sizes, not all operators in the combined graph
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can be batched fully after merging the dataflow graphs for different
inputs. Insufficient amount of batching reduces throughput under
high load.

This paper proposes a new mechanism, called cellular batching,
that can significantly improve the latency and throughput of RNN
inference. Our key insight is to realize that a recursive RNN compu-
tation is made up of varying numbers of similar computation units
connected together, much like an organism is composed of many
cells. As such, we propose to perform batching and execution at the
granularity of cells (aka common subgraphs in the dataflow graph)
instead of the entire organism (aka the whole dataflow graph), as
is done in existing systems.

We build the BatchMaker RNN inference system based on cellular
batching. As each input arrives, BatchMaker breaks its computation
graph into a graph of cells and dynamically decides the set of
common cells that should be batched together for the execution.
Cellular batching is highly flexible, as the set of batched cells may
come from requests arriving at different times or even from the
same request. As a result, a newly arrived request can immediately
join the ongoing execution of existing requests, without needing
to waiting for them to finish. Long requests also do not decrease
the amount of batching when they are batched together with short
ones: each request can return to the user as soon as its last cell
finishes and a long request effectively hitches a ride with multiple
short requests over its execution lifetime.

When batching and executing at the granularity of cells, Batch-
Maker also faces several technical challenges. What cells should be
grouped together to form a batched task? Given multiple batched
tasks, which one should be scheduled for execution next? When
multiple GPU devices are used, how should BatchMaker balance the
loads of different GPUs while preserving the locality of execution
within a request? How can BatchMaker minimize the overhead of
GPU kernel launches when a request’s execution is broken up into
multiple pieces?

We address these challenges and develop a prototype imple-
mentation of BatchMaker based on the codebase of MXNet. We
have evaluated BatchMaker using several well-known RNN mod-
els (LSTM [24], Seq2Seq [38] and TreeLSTM [39]) on different
datasets. We also compare the performance of BatchMaker with
existing systems including MXNet, TensorFlow, TensorFlow Fold
and DyNet. Experiments show that BatchMaker reduces the latency
by 17.5-90.5% and improves the throughput by 25-60% for LSTM
and Seq2Seq compared to TensorFlow and MXNet. The inference
throughput of BatchMaker for TreeLSTM is 4× and 1.8× that of Ten-
sorFlow Fold and DyNet, respectively, and the latency reductions
are 87% and 28%.

2 BACKGROUND
In this section, we explain the unique characteristics of RNNs, the
difference between model training and inference, the importance
of batching and how it is done in existing deep learning systems.

2.1 A primer on recurrent neural networks
Recurrent Neural Network (RNN) is a family of neural networks
designed to process sequential data of variable length. RNN is par-
ticularly suited for language processing, with applications ranging
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Figure 1: An unfolded chain-structured RNN. All RNN Cells
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Figure 2: An unfolded tree-structured RNN. There are two
types of RNN cells, leaf cell (grey) and internal cell (white).
All RNN cells of the same type share the same parameter
weights.

from speech recognition [3], machine translation [4, 46], to question
answering [40, 47].

In its simplest form, we can view RNNs as operating on an input
sequence, X = [x (1) ,x (2) , ...,x (τ )], where x (i ) represents the input
at the i-th position (or timestep). For language processing, the input
X would be a sentence, and x (i ) would be the vector embedding of
the i-th word in the sentence. RNN’s key advantage comes from
parameter sharing when processing different positions. Specifically,
let fθ be a function parameterized with θ , RNNs represent the
recursive computation h(t ) = fθ (h

(t−1) ,x (t ) ), where h(t ) is viewed
as the value of the hidden unit after processing the input sequence
up to the t-th position. The function fθ is commonly referred to as
an RNN cell. An RNN cell can be as simple as a fully connected layer
with an activation function, or the more sophisticated Long Short-
Term Memory (LSTM) cell. The LSTM cell [24] contains internal
cell state that store information and uses several gates to control
what goes in or out of those cell state and whether to erase the
stored information.

RNNs can be used tomodel a natural language, solving tasks such
as predicting the most likely word following an input sentence. For
example, we can use an RNN to process the input sentence “system
research is” and to derive the most likely next word from the RNN’s
output. Figure 1 shows the unfolded dataflow graph for this input.
At each time step, one input position is consumed and the calculated
value of the hidden unit is then passed to the successor cell in the
next time step. After unfolding three steps, the output will have
the context of the entire input sentence and can be used to predict
the next word. It is important to note that each RNN cell in the
unfolded graph is just a copy, meaning that all unfolded cells share
the same model parameter θ .

Although sequential data are common, RNNs are not limited
to chain-like structures. For example, TreeLSTM [39] is a tree-
structured RNN. It takes as input a tree structure (usually, the
parse tree of a sentence [36]) and unfolds the computation graph
to that structure, as shown in Figure 2. TreeLSTM has been used
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Figure 3: Latency vs. throughput for computing a single step
of LSTM cell at different batch sizes for CPU and GPU. The
value on the marker denotes the batch size.

for classifying the sentiment of a sentence [33] and the semantic
relatedness of two sentences [28].

2.2 Training vs. inference, and the importance
of batching

Deploying a DNN is two-phase process. During the offline training
phase, a model is selected and its parameter weights are computed
using a training dataset. Subsequently, during the online inference
phase, the pre-trained model is used to process application requests.

At a high level, DNN training is an optimization problem to
compute parameter weights that minimize some loss function. The
optimization algorithm is minibatch-based Stochastic Gradient De-
scent (SGD), which calculates the gradients of the model parame-
ters using a mini-batch of a few hundred training examples, and
updates the parameter weights along computed gradients for the
subsequent iteration. The gradient computation involves forward-
propagation (computing the DNN outputs for those training sam-
ples) and backward-propagation (propagating the errors between
the outputs and true labels backward to determine parameter gradi-
ents). Training cares about throughput: the higher the throughput,
the faster one can scan the entire training dataset many times to
arrive at good parameter weights. Luckily, the minibatch-based
SGD algorithm naturally results in batched gradient computation,
which is crucial for achieving high throughput.

DNN inference uses pre-trained parameter weights to process
application requests as they arrive. Compared to training, there’s
no backward-propagation and no parameter updates. However,
as applications desire real time response, inference must strive
for low latency as well as high throughput, which are at odds
with each other. Unlike training, there is no algorithmic need for
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(b) Graph batching in TensorFlow Fold and DyNet

Figure 4: Existing systems perform graph batching

batching during inference1. Nevertheless, batching is still required
by inference for achieving good throughput.

To see the importance of batching for performance, we conduct
a micro-benchmark that performs a single LSTM computation step
using varying batch sizes (b)2. The GPU experiment uses NVIDIA
Tesla V100 GPU and NVIDIA CUDA Toolkit 9.0. Figure 3 (bottom)
shows the execution time of a batch vs. the overall throughput,
for batch sizes b = 2, 4, ...2048. We can see that the execution
time of a batch remains almost unchanged first and then increases
sublinearlywithb.Whenb > 512, the execution time approximately
doubles as b doubles. Thus, setting b = 512 results in the best
throughput. We also ran CPU experiments on Intel Xeon Processor
E5-2698 v4 with 32 virtual cores. The LSTM cell is implemented
using Intel’s Math Kernel Library (2018.1.163). As Figure 3 (top)
shows, batching is equally important for the CPU. On both the GPU
and CPU, batching improves throughput because increasing the
amount of computation helps saturate available computing cores
and masks the overhead of off-chip memory access. As the CPU
performance lags far behind that of the GPU, we focus our system
development on the GPU.

2.3 Existing solutions for batching RNNs
Batching is straightforward when all inputs have the same compu-
tation graph. This is the case for certain DNNs such as Multi-layer
Perceptron (MLP) and Convolution Neural Networks (CNNs). How-
ever, for RNNs, each input has a potentially different recursion
depth and results in an unfolded graph of different sizes. This input-
dependent structure makes batching for RNNs challenging.

Existing systems fall into two camps in terms of how they batch
for RNNs:

(1) TensorFlow/MXNet/PyTorch/Theano:These systems pad
a batch of input sequences to the same length. As a result,

1The SGD algorithm used in training is best done in mini-batches. This is because the
gradient averaged across many inputs in a batch results in a better estimate of the true
gradient than that computed using a single input.
2We configure the LSTM hidden unit size h = 1024. The LSTM implementation
involves several element-wise operations and one matrix multiplication operation
with input tensor shapes b × 2h and 2h × 4h.
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each input has the same computation graph and the exe-
cution can be batched easily. An example of batching via
padding is shown in Figure 4a. However, padding is not a
general solution and can only be applied to RNNs that handle
sequential data using a chain-like structure. For non-chain
RNNs such as TreeLSTMs, padding does not work.

(2) TensorFlow-Fold/DyNet: In these two recent work, the
system first collects a batch of input samples and generates
the dataflow graph for each input. The system then merges
all these dataflow graphs together into one graph where
some operator might correspond to the batched execution
of operations in the original graphs. An example is shown
in Figure 4b.

Both above existing strategies try to collect a set of inputs to form
a batch and find a dataflow graph that’s compatible with all inputs
in the batch. As such, we refer to both strategies as graph batching.
Existing systems use graph batching for both training and inference.
We note that graph batching is ideal for RNN training. First, since
all training inputs are present before training starts, there is no
delay in collecting a batch. Second, it does not matter if a short
input is merged with a long one because mini-batch (synchronous)
SGD must wait for the entire batch to finish in order to compute
the parameter gradient anyway.

Unfortunately, graph batching is far from ideal for RNN inference
and negatively affects both the latency and throughput. Graph
batching incurs extra latency due to unnecessary synchronization
because an input cannot start executing unless all requests in the
current batch have finished. This is further exacerbated in practice
when inputs have varying lengths, causing some long input to
delay the completion of the entire batch. Graph batching can also
result in suboptimal throughput, either due to performing useless
computation for padding or failing to batch at the optimal level for
all operators in the merged dataflow graph.

3 OUR APPROACH: CELLULAR BATCHING
We propose cellular batching for RNN inference. RNN has the
unique feature that it contains many identical computational units
connected with each other. Cellular batching exploits this feature to
1) batch at the level of RNN cells instead of whole dataflow graphs,
and 2) let new requests join the execution of current requests and
let requests return to the user as soon as they finish.

3.1 Batching at the granularity of cells
Graph batching is not efficient for inference because it performs
batching at a coarse granularity–a dataflow graph. The recursive
nature of RNN enables batching at a finer granularity–an RNN cell.
Since all unfolded RNN cells share the same parameter weights,
there is ample opportunity for batching at the cell-level: each un-
folded cell of a request X can be batched with any other unfolded
cell from request Y. In this way, RNN cells resemble biological cells
which constitute all kinds of organisms. Although organisms have
numerous types and shapes, the number of cell types they have is
much more limited. Moreover, regardless of the location of a cell,
cells of the same type perform the same functionality (and can be
batched together). This characteristic makes it more efficient to
batch at cell level instead of the organism (dataflow graph) level.
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Figure 5: The timeline of graph batching and Cellular Batch-
ing when processing 8 requests from req1 to req8. The num-
ber shown in parenthesis is the request’s sequence length,
e.g. req1(2) means req1 has a sequence length of 2. Each row
marks the lifetime of a request starting from its arrival time.
Req1-4 are Running Requests as they arrive at time 0 and
have started execution. Req5-8 are Upcoming Requests that
arrive after the Req1-4.

More generally, we allow programmers to define a cell as a (sub-
)dataflow graph and to use it as a basic computation unit for express-
ing the recurrent structure of an RNN. A simple cell contains a few
tensor operators (e.g. matrix-matrix multiplication followed by an
element-wise operation); a complex cell such as LSTM not only con-
tains many operators but also its own internal recursion. Grouping
operators into cell allows us to make the unfolded dataflow graph
coarse-grained, where each node represents a cell and each edge
depicts the direction in which data flows from one cell to another.
We refer to this coarse-grained dataflow graph as cell graph.

There may be more than one type of cells in the dataflow graph.
Two cells are of the same type if they have identical sub-graphs,
share the same parameter weights, and expect the same number of
identically-shaped input tensors. Cells with the same type can be
batched together if there is no data dependency between them.

3.2 Joining and leaving the ongoing execution
In graph batching, the system collects a batch of requests, finishes
executing all of them and then moves on to the next batch. By
contrast, in cellular batching, there is no notion of a fixed batch
of requests. Rather, new requests continuously join the ongoing
execution of existing requests without waiting for them to finish.
This is possible because a new request’s cells at an earlier recursion
depth can be batched together with existing requests’ cells at later
recursion depths.

Existing deep learning systems such as TensorFlow, MXNet and
DyNet schedule an entire dataflow graph for execution. To support
continuous join, we need a different system implementation that
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can dynamically batch and schedule individual cells. More con-
cretely, our system unfolds each incoming request’s execution into
a graph of cells, and continuously forms batched tasks by grouping
cells of the same type together. When a task has batched sufficiently
many cells, it is submitted to a GPU device for execution. Therefore,
as long as an ongoing request still has remaining cells that have not
been executed, they will be batched together with any incoming
requests. Furthermore, our system also returns a request to the user
as soon as its last cell finishes. As a result, a short request is not
penalized with increased latency when it’s batched with longer
requests.

Figure 5 illustrates the different batching behavior of Cellular
Batching and graph batching when processing the same 8 requests.
We assume a chain-structured RNN model and that each RNN
cell in the chain takes one unit of time to execute. Each request
corresponds to an input sequence whose length is shown in the
parentheses. In the Figure, each row shows the lifetime of one
request, starting from its arrival time. The example uses a batch
size of 4.

In the beginning of time (t=0), the first 4 requests (req1-4) arrive.
Under graph batching, these 4 requests form a batch and their
corresponding dataflow graphs are fused together and submitted
to the backend for execution. The system does not finish executing
the fused graph until time t=5, as the longest request in the batch
(req4) has a length of 5. In the meanwhile, newly arrived requests
(req5-8) are being queued up and form the next batch. The system
starts executing the next batch at t=5 and finishes at t=12. Under
cellular batching, among the first 4 requests, the system forms two
fully batched tasks, each performing the execution of a single (4-
way batched) RNN cell. At t=2, the second task finishes, causing
req1 to complete and leave the system. Since a new request (req5)
has already arrived, the system forms its third fully batched task
containing req2-5 at t=2. After finishing this task, another two
existing requests (req2,req3) depart and two new ones are added
(req6, req7) to form the fourth task. As shown in this example,
cellular batching not only reduces the latency of each request (due
to less queuing), but also increases the overall system throughput
(due to tighter batching).

4 SYSTEM DESIGN
We build an inference system, called BatchMaker, based on cellular
batching. This section describes the basic system design.

4.1 User Interface
In order to use BatchMaker, users must provide two pieces of in-
formation: the definition of each cell (i.e. the cell’s dataflow graph)
and a user-defined function that unfolds each request/input into
its corresponding cell graph. We expect users to obtain a cell’s
definition from their training programs for MXNet or TensorFlow.
Specifically, users define each RNN cell using MXNet/TensorFlow’s
Python interface and save the cell’s dataflow graph in a JSON file
using existing MXNet/TensorFlow facilities. The saved file is given
to BatchMaker as the cell definition. In our current implementation,
the user-defined unfolding logic is expressed as a C++ function
which uses our given library functions to create a dataflow graph
of cells.
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Figure 6: The system architecture of BatchMaker. In the
cell graph, black means computed nodes, grey means nodes
whose input is ready, and white means input dependency is
not satisfied.

4.2 Software Architecture
BatchMaker runs on a single machine with potentially many GPU
devices. Its overall system architecture is depicted in Figure 6. Batch-
Maker has two main components: Manager and Worker. The man-
ager processes arriving requests and submits batched computation
tasks to workers for execution. Depending on the number of GPU
devices equipped, there may be multiple workers, each of which is
associated with one GPU device. Workers execute tasks on GPUs
and notify the manager when its tasks complete.

System initialization. Upon startup, BatchMaker loads each cell’s
definition and its pre-trained weights from files. BatchMaker “em-
beds” the weights into cells so that weights are part of the internal
state as opposed to the inputs to a cell. For a cell to be considered
batchable, the first dimension of each of its input tensors should be
the batch dimension. BatchMaker identifies the type of each cell by
its definition, weights, and input tensor shapes.

The workflow of a request. The manager consists of two submod-
ules, request processor and scheduler. The request processor tracks
the progress of execution for each request and the scheduler deter-
mines which cells from different requests would form a batched
task, and selects a worker to execute the task.

When a new request arrives, the request processor runs the user-
code to unfold the recursion and generates the corresponding cell
graph for the request. In this cell graph, each node represents a cell
and is labeled with a unique node id as well as its cell type. Request
processor will track and update the dependencies of each node.
When a node’s dependencies have been satisfied (aka its inputs are
ready), the node is ready to be scheduled for execution (§4.3). The
scheduler forms batched tasks among ready nodes of the same cell
type. Each type of cell has a desired maximum batch size, which is
determined through offline benchmarking. Once a task has reached
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a desired batch size, it is pushed into the task queue of one of the
workers.

Workers execute tasks on GPUs. Since the GPU kernel execution
is asynchronous, the worker moves a task from the task queue
to the in-progress queue once the task’s corresponding GPU ker-
nel has been issued. The worker uses a pooling mechanism to see
whether some task has finished. It pops the finished task from the
in-progress queue and pushes it into the completion queue in the
request processor. The request processor updates node dependen-
cies based on the completed task, and checks whether a request is
finished. If so, its result is immediately returned.

We give a more detailed example of the request workflow in §4.4.

4.3 Batching and Scheduling
The scheduler needs to make decisions on what nodes should be
batched together to form a task and what tasks to be pushed to
which workers. The design must take into account three factors,
locality, priority, and utilization of multiple GPUs, which are often
in conflict with each other.

Locality refers to the preference that 1) the same set of requests
should be batched together if they are to execute the same sequence
of nodes, and 2) the execution of that sequence of nodes should stick
to the same GPU. The reason for both 1) and 2) is to avoid memory
copy. Prior to execution, the batched inputs of a cell must be laid
out in contiguous GPU memory. Since the batched outputs of the
execution are also stored in contiguous memory, there is no need for
memory copy before each individual cell execution when executing
the same set of requests on the same GPU. Conversely, if the batch
of requests changes between two successive cell execution, one
must do memory copy, called “gather”, to ensure contiguous inputs.
Furthermore, if the execution of successive cells switch from one
GPU to another, one must copy data from one GPU to another.

Priority refers to the ability to prefer the execution of one type of
cell over another. Many practical RNN models have multiple types
of cells. For example, as shown in Figure 2, TreeLSTM has leaf
cells and internal cells. The popular RNN-based Seq2Seq model has
encoder cells and decoder cells. For these models, one can achieve
better latency by preferentially executing DNN types that occur
later in the computation graph. Therefore, in TreeLSTMs, inter-
nal nodes should be given preference over leaf nodes. In Seq2Seq
models, decoder nodes should have priority over encoder nodes.

We design a simple scheduling policy to make the trade-off
between locality, priority and good utilization of multiple GPUs.
We support the locality preference by constructing and scheduling
a batched task containing multiple node invocations instead of a
single one. To enable this, the request processor analyzes the cell
graph of a request to find a subgraph to pass to the scheduler. A
subgraph contains a single node or a number of connected nodes
with the property that all external dependencies to other parts of
the graph have been satisfied. Furthermore, all nodes of a subgraph
must be of the same cell type. For example, in the case of Seq2Seq,
a sequence of encoders cells forms one subgraph and the sequence
of decoder cells forms another subgraph.

Scheduling subgraphs. The scheduling algorithm is shown in
Algorithm 1. For each type of cell, scheduler maintains a queue of
subgraphs (the type of a cell is the same as the type of nodes in the

Algorithm 1: Scheduling and Batching Algorithm
1 Bsizes: a set of supported batch sizes.
2 CellTypes: a set of cell types, each associated with a priority.
3 MaxTasksToSubmit: the maximum number of tasks that can

be submitted to a worker.

4 def Schedule(worker):
5 S ← {ct ∈ CellTypes | ct .NumReadyNodes() ≥

Bsizes.Max()};
6 if S .Size() = 0 :
7 S ← {ct ∈ CellTypes | ct .NumRunningTasks() = 0 and

ct .NumReadyNodes() > 0};
8 if S .Size() = 0 :
9 S ← { ct ∈ CellTypes | ct .NumReadyNodes() > 0};

10 ct ← GetCellTypeWithMaxPriority(S);
11 Batch(ct, worker);

12 def Batch(ct, worker):
13 num_tasks ← 0;
14 while num_tasks < MaxTasksToSubmit :
15 batch← FormBatchedTask(ct, worker);
16 if batch.Size() >= Bsizes.Min() or num_tasks = 0 :
17 SubmitBatchedTask(batch, worker);
18 UpdateNodesDependency(batch);
19 num_tasks++;
20 for subgraph ∈ batch :
21 subдraph.pinned ← worker .id ;

# pinned is unset once subдraph has no

task running

22 else:
23 break;

24 def FormBatchedTask(ct, worker):
25 batch← { };
26 for subgraph ∈ ct.subgraphs :
27 if subgraph.pinned ∈ {None, worker.id} :
28 for node ∈ subgraph’s ready nodes :
29 batch← batch

⋃
{node};

30 if batch.Size() = Bsizes.Max() :
31 return batch;
32 return batch;

subgraphs). The scheduler’s “Schedule”’ function (line 4) is invoked
whenever some worker becomes idle, and it picks a cell type ct for
execution in the following order: (a) ct whose queue contains more
ready nodes (meaning nodes whose data dependency is satisfied)
than the maximum batch size (line 5); (b) ct whose queue contains
some ready nodes but that has no running tasks (line 6-7); (c) ct
whose queue contains some ready nodes (line 8-9). If there are
multiple choices from the same criterion, the scheduler chooses
the one with the highest cell priority (line 10). Once a cell type is
chosen, scheduler invokes “Batch” to form batched tasks (line 11).

Batching subgraphs. Given a cell type, “Batch” function (line
12) selects nodes from subgraphs in the cell’s queue to form a
batched task (line 15) and to submit to the device for execution (line
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17). “FormBatchedTask” function (line 24) scans the queue to select
nodes whose dependencies are satisfied (line 28) for a batched task.
Each invocation of “FormBatchedTask” forms at most one batched
task. For better locality, the scheduler submits several tasks to the
same worker for execution. The number of tasks submitted is lim-
ited by the configurable parameter “MaxTasksToSubmit” (line 14).
Setting the limit to a small number (default is 5) avoids forming too
many tasks belonging to one cell type, which gives other types of
cell a chance to be scheduled, allows new requests to join execution,
and avoids the decrease in effective batch size if one cell type does
not have enough ready nodes.

Once a batched task is submitted to the GPU worker, the sched-
uler updates the dependencies of those nodes in the batch (line 18)
so a new set of cell nodes can be scheduled in subsequent batched
tasks. Additionally, the scheduler pins those subgraphs to the same
worker (line 20-21) to avoid scheduling the subsequent nodes in
those subgraphs to a different worker (line 27). This is crucial to the
correctness of the scheduling algorithm because tasks involving
the same subgraph have data dependency. Tasks submitted to the
same device will execute in the order of submission, and thus their
dependency is fulfilled. By contrast, there is no such guarantee for
tasks submitted to different workers. Besides, this also improves
locality because all nodes in the same subgraph are preferentially
scheduled to the same worker. The scheduler maintains a counter
for each subgraph to count how many batched tasks contain nodes
from this subgraph. When this counter is decreased to zero, the
scheduler unpins the subgraph from a worker so that this subgraph
may be scheduled on other workers in the future.

4.4 An example of TreeLSTM scheduling
To give a concrete example, we show the detailed workflow of
a TreeLSTM request. When a TreeLSTM request x arrives at our
system, the request processor applies the user-defined unfolding
function to generate the cell graph for request x . Then the request
processor analyzes the cell graph and breaks it up into subgraphs
based on cell types. A TreeLSTM model has two types of cell: leaf
cell and internal cell. Suppose request x is a complete binary tree
with 16 leaf nodes. Then its cell graph will be partitioned into 17
subgraphs: one subgraph contains 31 internal tree nodes; each of
the other 16 subgraphs contains a single leaf node. The set of leaf
subgraphs are immediately passed to the scheduler because their
dependencies are satisfied, whereas the subgraph of internal nodes
remains at the request processor.

The scheduler maintains two queues, one for the internal cell
type, the other for the leaf cell type. When the leaf cell type is
scheduled, leaves of x will be put into potentially several batched
tasks with leaf nodes from other requests. Batched tasks are pushed
to the worker and executed. The request processor is notified when
subgraphs finish. When all the leaf subgraphs of request x finish,
the subgraph containing x ’s internal nodes has its dependencies
satisfied and is then passed to the scheduler. When the internal cell
type is scheduled, the scheduler puts the cells of x at successive
levels of the tree in successive batched tasks to ensure that their
dependencies are obeyed. The number of nodes from request x
decreases at higher tree levels. But the scheduler will batch nodes
from request x with nodes from other requests to keep the batch size

close to the maximum allowed. Once all internal nodes of request
x finish execution, the request processor gets notified. When there
is no more subgraph to execute, request x departs immediately.

5 GPU OPTIMIZATION
The manager and workers threads in BatchMaker run on the CPU
and RNN cells are scheduled to execute on the GPUs. The syn-
chronization between CPU and GPU is non-trivial and has a big
impact on the utilization of GPUs. In this section, we explain two
optimizations in BatchMaker that are crucial for achieving good
performance on GPUs.

Keeping the GPU busy. One should not schedule a GPU kernel
for execution one at a time. Doing so is terrible for performance as
the GPU sits idle waiting for the next kernel to be scheduled and
launched. In BatchMaker, the worker asynchronously pushes all
GPU kernels for a given task to the GPU’s driver queue without
waiting for any to finish. To ensure that the dependencies of each
kernel are satisfied, the worker performs a topological sort of all
operators within the cell and pushes kernels according to the sort
order to the same GPU stream. This works because the GPU driver
guarantees that kernels in the same stream are executed in the FIFO
order. A worker may receive up to MaxTaskToSubmit number of
tasks from the scheduler. The order in which the workers receive
these tasks already correctly reflect the dependencies between cells.
Thus, the worker also launches the kernels for multiple tasks based
on their order in the task queue. By launching as many kernels
as possible while obeying dependencies, we effectively reduce the
kernel launch gap between operators and tasks.

Asynchronous Completion Notification. The worker cannot syn-
chronously wait for a task to finish execution on the GPU. Never-
theless, the worker must learn quickly when a task has finished so it
can inform the manager who will issue the next set of nodes to the
scheduler. Existing solutions supporting asynchronous notification
use the callback mechanism provided by GPU device drivers. How-
ever, these callback mechanisms have performance limitations. For
example, the NVIDIA CUDA driver’s callback mechanism blocks
all kernel execution until the callback function finishes[15].

In order to let theworker learn of task completion asynchronously,
we add a signaling kernel to the end of each task. The signaling GPU
kernel changes a signal variable, which is an unsigned integer in
our implementation. The signal variable is allocated in pinned host
memory which can be accessed by GPU using zero copy. Whenever
a task finishes execution, the signaling kernel will execute next and
increase the signal variable by one, which means the GPU has fin-
ished the execution of one more task. On the worker side, it pushes
the tasks that have been issued to GPU in a FIFO queue called in-
progress queue. The worker uses a thread to continuously poll the
status of the signal variable. Once the signal variable changes, the
worker learns that the task at the top of the in-progress queue has
been finished. It then pushes the completed task to the manager’s
completion queue.

6 IMPLEMENTATION
We implemented our system using the codebase of MXNet (version
0.10.0). In our current prototype, users need to provide the definition
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of each cell in a JSON file exported by MXNet’s Python API. Users
also need to provide a user-defined C++ function to generate the
unfolded cell graph for each request.

During initialization, BatchMaker aims to materialize all the cells
for each supported batch size on every available GPU device. Such
materialization requires knowledge of the type and shape informa-
tion of each operator’s input/output tensors in order to allocate
GPU memory and perform other compiler-level optimizations such
as those done by NNVM [10], TensorFlow XLA [11].

We reuse the MXNet parsing mechanism to perform type and
shape inference for each type of cell. However, in order to do that,
BatchMaker needs to know how cells can be connected, and how the
outputs of one cell may be used by other cells. Ideally, BatchMaker
should learn this knowledge on the fly when real requests come
in. To simplify implementation, our current prototype requires the
user to provide an example request so that BatchMaker can apply
the user-defined unfolding function to generate an example cell
graph. This allows BatchMaker to perform type and shape inference
and materialize cells during initialization.

During inference, BatchMaker re-use materialized cells over and
over. For example, to execute an LSTM chain with length 5, our
worker will execute the same materialized LSTM cell for 5 times.

7 EVALUATION
We evaluate BatchMaker on microbenchmarks and several popular
RNN applications with real-world datasets. Our evaluation shows
that BatchMaker provides significant performance advantages over
existing systems (including MXNet, TensorFlow, TensorFlow Fold
and DyNet).

The highlights of our results are:
• BatchMaker achieves much lower latency than existing sys-
tems. Undermoderate load (meaning that the load is less than
half of baseline system’s peak), we reduce the 90-percentile
latency by 37.5%-90.5% (for LSTM) and 17.5%-82.6% (for
Seq2Seq) compared to TensorFlow and MXNet. For TreeL-
STM, we reduce 90-percentile latency by 28% and 87% com-
pared to DyNet and TensorFlow Fold respectively.
• BatchMaker also provides good throughput improvements.
The throughput improvement over MXNet and TensorFlow
is 25% (for LSTM) and 60% (for Seq2Seq). For TreeLSTM, the
throughput of BatchMaker is 1.8× that of DyNet and 4× that
of TensorFlow Fold.
• Our latency improvement mainly comes from reducing the
queuing time of new requests. The performance advantage of
BatchMaker is increased when the variance in the sequence
length is large.

7.1 Experimental Setup
The Testbed. We run our tests on a Linux server with 4 NVIDIA

TESLA V100 GPU cards connected by NVLink; each GPU has 16GB
memory. The operating system is Ubuntu 16.04.1 LTS with Linux
kernel version 4.13.0. NVIDIA CUDA Toolkit version is 9.0.

Applications, datasets, andworkloads. We choose three pop-
ular RNN applications, LSTM, Seq2Seq, and TreeLSTM. All RNN
cells used in these applications use hidden state size 1024. LSTM
and Seq2Seq are both chain-structured RNNs. We use WMT-15 [42]

Europarl German-English translation as our dataset. For LSTM,
we randomly sample 100k English sentences. For Seq2Seq, we ran-
domly sample 100k German-English sentence pairs. The maximum
sentence length is 330 and the average length is 24. For TreeLSTM,
We use Stanford’s TreeBank [37] dataset with 10K parse trees of
English sentences.

When evaluating an application, we sample a request from the
dataset and issue it to the system with Poisson inter-arrival times.
We adjust the average inter-arrival time to test the system’s perfor-
mance under varying load.

Comparison systems. We compare against MXNet (v0.12.0),
TensorFlow (v1.4), TensorFlow Fold (v0.0.1) andDyNet (v2.0). MXNet
and TensorFlow are representative systems that rely on padding
to achieve batching. TensorFlow Fold and DyNet are two existing
systems that perform graph batching by dynamically merging a
set of dataflow graphs. For chain-structured RNNs, MXNet and
TensorFlow achieve much better performance than TensorFlow
Fold and DyNet and thus we focus on comparing BatchMaker to
these two systems for LSTM and Seq2Seq benchmarks. As padding
does not work with tree-structured RNNs, we focus on compar-
ing BatchMaker to TensorFlow Fold and DyNet for the TreeLSTM
benchmarks.

Bucketing optimization forMXNet and TensorFlow. Since
padding wastes computation, we reduce the amount of padding
in MXNet and TensorFlow by only batching requests of similar
lengths. We refer to this as the “bucketing” strategy. Specifically,
we assign each incoming request to a bucket based on its length.
The width of a bucket refers to the maximum difference in lengths
among requests in a bucket. We use the bucket width of 10 by
default, which gives the best performance for our applications
(§7.2). Since the WMT-15 dataset has a maximum sentence length
of 330, using a width of 10 results in 33 buckets in total. The i-th
bucket handles requests of length in the range (i*10,(i+1)*10]. We
perform round-robin scheduling across buckets. To reduce latency
when running in MXNet and TensorFlow, we materialize a dataflow
graph for each bucket during initialization. This is because the cost
of materializing a dataflow graph is substantial, owing to compiler
optimization and GPU memory allocation.

Batching configuration and optimization. Unless otherwise
mentioned, we set the maximum batch size to be bmax = 512,
which optimizes for throughput based on Figure 3 (bottom). In
our evaluation of MXNet and TensorFlow, we do not use explicit
timeouts when accumulating requests to form a batch; rather, even
if it’s not full, a batch can start execution (as a smaller batch) as
long as some GPU device is idle and it is the batch’s turn to execute
according to the round-robin policy. As a result, when the request
rate is low, the actual batch size executed in a system could be
lower than the configured maximum. As we will demonstrate in
(§7.2), this enables a large bmax to achieve the same low latency
as a small bmax . Additionally, we found that this strategy achieves
lower latency than any configuration of the timeout-based strategy.

7.2 Application Performance: LSTM
We evaluate LSTM inference performance on the WMT-15 Europarl
dataset and compare BatchMaker with MXNet and TensorFlow.
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(b) LSTM with maximum batch size 64

Figure 7: LSTM performance on the WMT-15 Europarl
dataset using 1 GPU. The figures plot the 90-percentile la-
tency with error bars measuring the 99p and 50p latency.
MXNet and TensorFlow use the bucket width of 10.

Figure 7 shows the throughput vs. latency results of all systems as
the load increases (by reducing the request inter-arrival time). We
set the bucket width of 10 by default for MXNet and TensorFlow.

Latency. Figure 7 (a) shows the 90-percentile latency vs. through-
put (bmax = 512). The error bars represent the 50-percentile and
the 99-percentile latency. As can be seen in the figure, BatchMaker
achieved significantly lower latency than MXNet and TensorFlow.
The 90p-latency of BatchMaker stays unchanged (12ms) when the
throughput is less than 8K req/sec, and goes slightly up afterwards
until peak throughput (20K req/sec). This is because when the load
is moderate(< 8K req/sec), BatchMaker executes most requests in
batch sizes no larger than 64. And as the throughput goes up, the
batch sizes increase (up to bmax = 512), leading to the gradual in-
crease in latency. By comparison, the smallest 90p-latency ofMXNet
and TensorFlow is 25ms and the latency increases quickly as the re-
quest rate increases. BatchMaker reduces latency because it allows
incoming requests to join the currently executing batch, resulting
in less queuing time. By comparison, in MXNet and TensorFlow, a
new request may need to wait for multiple batches from different
buckets to finish execution. Thus, the latency of MXNet and Ten-
sorFlow is much higher and increases quickly with increasing load.
The latency variance for BatchMaker is also much smaller and is
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Figure 8: LSTM performance using MXNet with different
bucket widths (bw-*). The maximum batch size is 512.
For readability, we omit error bars and only show the 90-
percentile latency.

caused by varying request sequence lengths. In § 7.3, we conduct
additional experiments to confirm the reasons for BatchMaker’s
latency improvements.

Throughput. In Figure 7 (a), the peak throughput of Batch-
Maker is 20K req/sec (bmax = 512), higher than those of MXNet
and TensorFlow. As the load increases in MXNet and TensorFlow,
a request must wait for more buckets to finish execution and each
bucket also executes a larger batch of requests at a time. This causes
the overall latency to shoot up beyond 500ms as the load increases
to 16K req/sec. By contrast, BatchMaker is able to maintain a low
queuing delay while packing more requests into a batch as the input
load increases, resulting in much a higher peak throughput.

Effect of differentmaximum batch sizes. Figure 7 (b) shows
the latency vs. throughput results using a smaller maximum batch
size, bmax = 64. 64 and 512 are interesting batch size choices,
because any batch size b < 64 has similar latency (for executing
one step of LSTM) but lower throughput (than that of b = 64), and
any batch size b > 512 has similar throughput but higher latency
(than that of b = 512), as shown micro-benchmark in Figure 3
(bottom). Comparing Figure 7 (a) with (b), we see that bmax =

512 achieves similar latency as bmax = 64 (at low to moderate
load) but much higher throughput. This is because at low load, all
systems execute with effective batches sizes much smaller than the
configured maximum. Therefore, the optimal configuration for all
systems is to set the maximum batch size that optimizes for the
throughput.

The bucketwidth trade-off inMXNet andTensorFlow. The
granularity of buckets creates a trade-off between throughput and
latency. Fine-grained bucketing reduces padding and wasteful com-
putation. However, fine-grained bucketing uses a large number of
buckets. This causes a batch for any given bucket to wait longer
for batches from other buckets to finish execution before it catches
its turn under the round-robin policy. By contrast, coarse-grained
bucketing uses fewer buckets which results in shorter waiting time
but increases the amount of padding and wasteful computation.
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Figure 9: Request queuing and computation time for LSTM
on WMT-15 Europarl dataset under low load (5K req/sec).

Figure 8 shows the latency vs. throughput for MXNet under
varying bucket widths. As the figure shows, coarse-grained buck-
eting (width 40) achieves better latency under low load (due to
less waiting) but its peak throughput is also lower (due to more
padding). On the contrary, using the smallest bucket width of 1 has
the best peak throughput, but at the cost of higher latency for low
to moderate load. Using the bucket width of 10 achieves a good
tradeoff of low latency and high peak throughput.

7.3 Reasons for the performance gain
We investigate inmore details the reasonswhy BatchMaker achieves
better latency and throughput over baseline systems.

Reasons for the latency improvement. BatchMaker reduces
the latency of a request in two aspects: 1) it reduces the queuing
time by allowing a newly arrived request to join the execution
of existing requests. 2) it reduces computation time by allowing
shorter requests to be returned immediately upon completion with-
out waiting for the longer ones. Figure 9 (a) and (b) shows the CDF
of queuing time and computation time for LSTM on the WMT-15
Europarl dataset. Queuing time is measured from a request’s arrival
to its start of execution. Computation time is measured from a re-
quest’s start of execution to the return of the execution result by the
system. The lines in Figure 9 correspond to the points in Figure 7
(a) where the throughputs of all three systems are 5̃K req/sec. The
x-axis is shown in log scale.

In Figure 9(a), the 99-percentile queuing time for BatchMaker
is 1.38 milliseconds, compared to > 100 milliseconds for MXNet
and TensorFlow. In BatchMaker under low load, a newly arrived
request waits for the current set of tasks to finish before joining
the execution of existing batch of requests. With the input load 5K
req/sec, we find that BatchMaker executes LSTM cells with batch
size 64 most of the time, which takes takes about 185 microseconds
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Figure 10: CDF of the sequence length in the WMT-15 Eu-
roparl dataset.

in microbenchmarks (Figure 3(bottom)). Due to scheduling and
gathering overhead, BatchMaker needs about 250 microseconds
to execute an LSTM step. Since BatchMaker submits at most 5
steps of LSTM cell to GPU (by setting the “MaxTasksToSubmit” in
Algorithm 1 line 3), the incoming request canwait up to 0.25*5 = 1.25
milliseconds, which roughly matches BatchMaker’s 99-percentile
queuing time (1.38ms). The queuing time ofMXNet and TensorFlow
is much larger; not only an incoming request has to wait for many
buckets (out of 33 total buckets) to complete execution, but also
each bucket’s execution takes as many LSTM steps as the longest
sequence in the batch.

As Figure 9 (b) shows, the computation time of BatchMaker is
also less than that of MXNet and TensorFlow. Bucketing results in
CDF lines with “jumps”, as sequences with different lengths within
the range of a bucket will be padded to the identical length to form
a batch and complete their execution at the same time. When the
bucket width is set to 10 for MXNet and TensorFlow, a request
of length 21 will be padded to length 30, resulting in almost 50%
padding overhead and latency increase. By contrast, BatchMaker
allows any request that has completed its execution to be returned
immediately, with the tradeoff of having to incur scheduling and
gathering overhead in the middle of a request execution.

Comparing Figure 9(a) and (b), we can see that reduced queu-
ing time is the more dominant factor for BatchMaker’s latency
improvement.

The impact of variable-length sequences. We examine how
BatchMaker and baseline systems perform on artificial datasets
with different variance of sequence lengths. Figure 10 shows the
sequence length CDF of the WMT-15 Europarl dataset. We can
see that about 99 percent of sequences have length less than 100.
And the longest sequence length is 330. We generate an artificial
dataset with fixed sequence length 24, which is the average se-
quence length of the WMT-15 dataset. Additionally, we sample two
different datasets with different variance in sequence length from
the WMT-15 dataset by clipping the maximum sequence length to
be no longer than 50, and 100 respectively.

Figure 11 shows the performance of different systems under
fixed-length inputs, and inputs with maximum length of 50, or 100.
We can see that increasing the variance of input length causes the
latency and throughput of baseline systems to get much worse.
The increase in latency is due to requests waiting for more buckets
as inputs with higher variance in length use more buckets. The
decrease in throughput is due to baseline systems executing with
smaller effective batch sizes when inputs with higher variance in
length are spread across more buckets. By contrast, BatchMaker



Low Latency RNN Inference with Cellular Batching EuroSys ’18, April 23–26, 2018, Porto, Portugal

0
50

100
150
200
250
300
350
400

La
te

nc
y 

(m
s)

0
50

100
150
200
250
300
350
400

La
te

nc
y 

(m
s)

0 5000 10000 15000 20000 25000 30000
Throughput (req/sec)

0
50

100
150
200
250
300
350
400

La
te

nc
y 

(m
s)

BatchMaker TensorFlow MXNet

Figure 11: Performance under different sequence length
variations. From top to bottom, the experiments use an ar-
tificial dataset of identical sequence length (24), a sampled
WMT-15 dataset withmaximum sequence length 50, and an-
other one with maximum sequence length 100.
can maintain the same latency under low to moderate load despite
increased input length variance.

Using the fixed-length artificial dataset, the baseline systems
achieve better throughput than BatchMaker. Under the high load,
baseline systems can form a full batch of 512 fixed-length inputs. As
the execution time of one LSTM cell is approximately 784 microsec-
onds for the batch size 512, one can execute at most 1

784∗10−6∗24 = 53
batches/sec for inputs with length 24. Thus, the maximum sys-
tem throughput is about 27136 req/sec, which is closely matched
by those of the baseline systems. By contrast, the throughput of
BatchMaker is about 87% of the maximum throughput, due to the
overhead of scheduling and gathering. Although it is hard to see
from the figure, BatchMaker still achieves better latency than base-
line systems under low load by allowing new requests to join the
execution of currently executing ones.

7.4 Application Performance: Sequence to
Sequence

Background on Seq2Seq. Sequence to Sequence (Seq2Seq as
an abbreviation) is a widely used RNNmodel in machine translation.
A basic Seq2Seqmodel contains two types of RNN cells: encoder and
decoder, as depicted in Figure 12. The encoder takes in a sequence of
words as input. In each step, the encoder and decoder will convert
a word to a vector by doing an embedding lookup, then feed this
vector to an RNN Cell. The first decoder cell takes in the output

Encoder 
Cell

Encoder 
Cell

Decoder 
Cell

Decoder 
Cell

Decoder 
Cell

<go>

<eos>

input

T0 T1

input

state

output output

Figure 12: Seq2Seq with “feed previous” decoder

state of encoder and a < дo > symbol as input, and computes states,
which are passed to the succeeding decoder cell. In addition to the
state, the decoder cell outputs a word as well, which is obtained by
applying a linear transformation and an argmax3 [12]. The output
word is also fed to the next step as the input. When the decoder
outputs the < eos > symbol, it means the decoder has finished, and
there will be not any more decoder steps.

In our evaluation, we use LSTM as the RNN cell. Encoder and
decoder cells do not share weights. We use the sampledWMT-15 Eu-
roparl German to English translation dataset with vocabulary size
30K. When doing inference using Seq2Seq, the decoded sequence
length is not known a priori. Deployed systems typically configure
the maximum decoding length to be the input sequence length plus
a fixed threshold of extra steps. Decoding terminates when either
the < eos > symbol is generated or when the maximum decoding
length is reached. For simplicity, in our Seq2Seq experiments, for
a given input German sentence, we decode for a number of steps
equal to the corresponding English sequence length. We do not
use the knowledge of decoding length in any of our batching or
scheduling decisions.

Batching and bucketing configuration. Seq2Seqmodel is dif-
ferent from LSTM in that it has two phases and the computation
is very unbalanced. The decoding phase constitutes about 75% of
the entire computation due to performing the output projection
from the hidden dimension to the vocabulary dimension, which
contains a large matrix multiplication. Our microbenchmarks show
that batch size 256 is the best for decoder cells while 512 remains
the best for encoder cells. Since graph batching requires that all
operators in the dataflow graph use the same batch size, we use
bmax = 256 for MXNet and TensorFlow to optimize for decoder
performance. As BatchMaker supports different batch sizes for dif-
ferent cells, we evaluate two configurations; one using bmax = 256
for both encoders and decoders, and the other using bmax = 512
for encoders and bmax = 256 for decoders. We have also evaluated
different bucketing choices for the baseline systems, and found that
using the bucket width of 10 produces the best performance for
baseline systems.

Multi-GPU performance. In the presence of more than one
type of cells, BatchMaker can make more interesting scheduling
choices when there are multiple GPU devices. Figure 13 shows
the performance of various systems using 2 or 4 GPUs. Compared
to baseline systems, the peak throughput of BatchMaker is much
higher at around 8.5K req/sec for 2 GPUs and 17K req/sec for 4 GPUs.
The latency of BatchMaker is also much lower; it is mostly flat at

3Argmax operator is not optimized in MXNet and TensorFlow, resulting in unaccept-
ably slow performance. We implemented an optimized argmax CUDA kernel for all
systems.



EuroSys ’18, April 23–26, 2018, Porto, Portugal Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Throughput (req/sec)

0

100

200

300

400

500

600

700

800

La
te

nc
y 

(m
s)

BatchMaker-512,256
BatchMaker-256,256
TensorFlow
MXNet

(a) Seq2Seq on 2 GPUs
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(b) Seq2Seq on 4 GPUs

Figure 13: Performance of Seq2Seq on the WMT-15 Eu-
roparl German-to-English dataset using 2 and 4 GPUs.
BatchMaker-x,y denotes configuring our system to use max-
imumbatch size x for the encoder andy for the decoder. Ten-
sorFlow andMXNet usemaximumbatch size 256 and bucket
width 10.

the beginning and goes up slowly until the throughput reaches the
peak. By comparison, the latency of other systems goes up quickly
as the load increases. We don’t repeat the detailed performance
breakdown analysis here as in section 7.3. One interesting feature
of BatchMaker worth pointing out is that a request can leave the en-
coding phase sooner and also commence the execution of decoding
earlier than baseline systems, thereby magnifying BatchMaker’s
performance improvement.

Configuring different bmax for encoding and decoding cells re-
sults in a small throughput improvement for BatchMaker (3.5− 6%).
Although using bmax = 512 improves the throughput of LSTM
encoding cell execution by 20% (Figure 3), the overall throughput
improvement is much less because the encoding phase constitutes
only 25% of the overall computation.

7.5 Application Performance: TreeLSTM
As padding does not support batching for non-sequential inputs,
we compare against TensorFlow Fold and DyNet for the TreeLSTM
experiments.
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Figure 14: TreeLSTM performance on the TreeBank dataset
with maximum batch size 64.

We use the popular Stanford TreeBank dataset [37]. Although
all systems under evaluation can support arbitrary tree structure,
the TreeBank dataset [37] contains only binary tree samples.

Baseline system configuration and optimization. We per-
form microbenchmarks using various input batch sizes and find
that batching at most 64 input trees achieves the best performance
for TensorFlow Fold and DyNet. We note that the batch size config-
ured for DyNet and TensorFlow Fold bounds the maximum number
of input trees rather than the number of operators merged into a
single batched operator. For instance, even if a batch only contains
one request which is a complete binary tree with 16 leaf nodes,
TensorFlow Fold can concatenate all 16 leaf nodes together and
execute the leaf TreeLSTM cell at batch size 16. It can execute the
level above the leaf layer with batch size 8, and so on with the
root level executed with batch size 1. As this example shows, the
amount of batching decreases at higher levels of the trees. To be
fair to baseline systems, BatchMaker is also configured to limit the
number of batched cells in a task to 64.

TensorFlow Fold and DyNet perform batching by first gener-
ating the dataflow graph for each request and then merging the
dataflow graphs together. For TensorFlow Fold, this step takes
much longer than performing the actual computation. We optimize
TensorFlow Fold by overlapping its graph construction/merging
with actual execution4. We did not implement similar optimization
for DyNet because of its code complexity. We note that DyNet’s
graph construction/merging overhead is much smaller than that of
TensorFlow Fold,

TensorFlow Fold does not work with the latest TensorFlow ver-
sion (v1.4) and is only compatible with v1.05. Hence, we evaluate
TensorFlow Fold using TensorFlow v1.0 and CUDA 8.06. To see
the performance disadvantage of using older versions, we conduct
microbenchmarks on a single LSTM step using both versions, and
find that using the older versions (TensorFlow v1.0 and CUDA 8.0)
has a slow down of about 20%.

Performance on the TreeBank dataset. Figure 14 shows the
latency vs. throughput for TreeLSTM on the TreeBank dataset. Due

4The overlapping is not perfect due to Python’s poor multi-threading support.
5https://github.com/tensorflow/fold/issues/57
6TensorFlow v1.0 does not support CUDA 9
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Figure 15: TreeLSTM performance on a synthetic dataset
where each sample has the identical binary tree structure.
The ideal line represents the ideal performance of execut-
ing these identical samples in maximum batch size of 64.

to its slow graph construction and merging, the throughput and
latency of TensorFlow Fold are much worse than DyNet. Under
moderate load (at 1K req/sec), the 90-percentile latency of Batch-
Maker is 6.8ms, compared to 9.5ms for DyNet. BatchMaker achieves
much better peak throughput than DyNet (3.1K req/sec vs. 2.1K
req/sec). The throughput difference is to due to DyNet’s overhead
in performing runtime dataflow graph merging and insufficient
amount of batching at the higher levels of the trees.

Performance on a synthetic dataset of identical input trees.
How does the variance in input tree structures contribute to Batch-
Maker’s performance improvement? To understand this, we con-
duct experiments using a fake dataset whose input requests have
the identical tree structure (a complete binary tree of 16 leaf nodes).
We implement an ideal baseline system by hardcoding in Tensor-
Flow a dataflow graph matching the fixed binary tree structure.
Each node in this dataflow graph can execute up to 64 correspond-
ing operations, one for each input in a batch size of 64. We evaluate
the performance of all systems including the ideal baseline using
the fixed tree dataset. The results are shown in Figure 15. As the
figure shows, the peak throughput of BatchMaker is approximately
30% less than that of the ideal baseline. Note that the ideal base-
line’s latency is higher than that of BatchMaker and DyNet. This is
because the ideal baseline executes a series of 31 TreeLSTM cells
for a batch of inputs. By comparison, DyNet can batch cells within
a request together if they are at the same tree depth; BatchMaker
can additionally batch cells from different requests together if they
arrive at different times.

8 RELATEDWORK
Batching via padding. Theano [5], Caffe [25], TensorFlow [1],

MXNet [7], Torch [8], PyTorch [34] and CNTK [13] are widely-used
deep learning frameworks. Theano, TensorFlow, MXNet, and CNTK
require users to build a static dataflow graph before training or infer-
ence. PyTorch is more imperative and allows the computation graph
to be built dynamically as execution happens [41]. Gluon [9] is a
recent package for MXNet supporting dynamic computation graph.
When handling variable-sized inputs, all of these systems support

batching via padding. CNTK [18] additionally introduce an opti-
mization on padding that tries to fill up padded space with shorter
requests. Doing so can improve system throughput by reducing the
amount of wasted computation due to padding. As we mentioned
earlier, padding does not work for non-chain-structured RNNs such
as the TreeLSTM. Therefore, these systems do not natively support
batching for the TreeLSTM.

Batching bymerging dataflowgraphs dynamically. As non-
chain-structured RNNs such as TreeLSTM become popular, Ten-
sorFlow Fold [26] and DyNet [30] are developed to support batch-
ing for TreeLSTMs. Both systems use a similar approach to batch
TreeLSTMs (called Dynamic Batching and on-the-fly batching [31]
respectively). They first generate a dataflow graph for each data
sample and then attempt to merge all dataflow graphs into one
graph by combining nodes corresponding to the same operation
while maintaining the data dependency. Graph batching allows
both systems to support batched execution of variable computa-
tion graphs without padding, including TreeLSTM. The difference
between them is that TensorFlow Fold, like our system, batches at
the granularity of a cell whereas DyNet batches at the granularity
of a single dataflow operator. Both TensorFlow Fold and DyNet
try to batch a fixed set of dataflow graphs at a given time. By con-
trast, BatchMaker batches at the cell level and allows a request to
dynamically join and leave the ongoing requests.

Systems specialized for inference. There are several frame-
works that address the challenges during inference. LASER [2] and
Velox [16] are systems that focus on optimizing the training and
serving pipeline for traditional machine learning models such as
logistic regression and matrix factorization. LASER and Velox ad-
dress issues such as how to re-train models quickly upon observing
additional data during deployment, how to balance exploration vs.
exploitation to gain useful feedback while maintaining good user
experience. These issues are orthogonal to the problem addressed
by our system, namely, how to reduce the latency of batched execu-
tion for RNN inference. Clipper [17] is a general-purpose serving
system that supports a variety of machine learning system back-
ends, such as TensorFlow, Spark MLlib [29], and Caffe [25]. It uses
existing batching techniques to achieve good throughput and addi-
tionally performs dynamic batch size adjustment to match requests’
latency objective.

TensorFlow-Serving [32] is a recent system developed for serving
TensorFlow models. TensorFlow-serving introduces “Batch” and
“Unbatch” operators to TensorFlow’s dataflow graphs. It is claimed
that these operators “bear similarities to the batching approach
of DyNet” [32]. The current implementation for these operators
is not yet ready for deployment and thus we have not compared
BatchMaker with TensorFlow-Serving.

Optimization for deep learning computation. TensorRT [14]
is a deep learning inference optimizer and runtime for deep learning
applications. For a given neural network, its optimizer and runtime
will generate fused kernel to reduce the kernel launch overhead
and memory footprint. TensorFlow XLA [11] is a domain-specific
compiler that optimizes TensorFlow computation. It also applies op-
timization like kernel fusion to reduce the kernel launch overhead.
These optimizations are orthogonal to our work, and can be applied
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to optimize the execution of each cell in our system. Persistent
RNN [19] exploits the weight-sharing feature of RNN to accelerate
the computation. In particular, persistent RNN store weights in the
on-chip memory of GPU (e.g. register files) and reuse them across
many timesteps. Doing so avoids loading weights from the global
memory (which is much more expensive than on-chip memory)
at each time step. Weight persistence reduces but does not elimi-
nate the need for batching. Thus, it is complementary to cellular
batching; both can be used together for additional performance
improvements.

Batching andpipelined execution in other systems. In data-
base systems, one query may contain many operators like scan, join,
sort, aggregate, etc. Instead of executing independent queries sepa-
rately, there are many systems[6, 21, 23, 27, 35, 43] that batch the
execution of certain operators from different queries. Since the
results of these operators can be reused for different queries, the
database throughput can be improved. However, multi-query batch-
ing in database systems does not always improve performance, e.g.
when the load is light and there is little or no overlap in the data
processed by different queries. By contrast, the recursive nature of
RNNs result in completed overlapped computation across different
inputs, and we leverage this feature to guarantee improved latency
and throughput in all scenarios. Additionally, a key feature of cel-
lular batching is to enable a new request to join the execution of
existing requests, which is not done in multi-query batching in the
database.

Compared with traditional pipelining (in the context of hard-
ware pipeline and software pipelining, e.g. SEDA[45]), our system is
different in two aspects: 1) Traditional pipelining involves multiple
processing elements each of which is sequential and operates inde-
pendently of each other. By contrast, each GPU device represents a
single processing element that is massively parallel and thus is best
utilized using a kernel that performs batched execution. Cellular
batching improves latency by allowing new requests to dynamically
join existing requests in a series of batched kernel execution. 2)
Different processing elements in a hardware pipeline have different
functionalities. In our setting, different GPU devices have the same
functionalities and can be used interchangeably. Therefore, instead
of dictating a fixed pipelined path of execution across different GPU
devices, it is better for performance and load balancing to use a
general task scheduler to assign kernels to different GPUs, as is
done in BatchMaker.

9 CONCLUSION
In this paper, we present a novel approach, called cellular batching,
to achieve low-latency inference on Recurrent Neural Network
models. cellular batching batches the execution of an inference
request at the granularity of an RNN cell. Doing so allows a new
request to join the execution of a batch of existing requests and to
be returned as soon as its computation finishes without waiting
for others in the batch to complete. We have built an RNN serving
system called BatchMaker using cellular batching. Experiments on
three popular RNN applications using real world dataset show that
BatchMaker reduces latency by 17.5-90.5% and improves through-
put by 25-80% compared with state-of-the-art systems including
TensorFlow, MXNet, TensorFlow Fold, and DyNet.

We note that cellular batching is only beneficial for RNN in-
ference. It does not improve the performance of training because,
unlike inference, all training inputs are ready at the same time
and the weight update algorithm typically requires waiting for all
inputs within a batch to finish. Furthermore, our evaluation shows
that BatchMaker benefits workloads whose inputs vary in length
or structure (e.g. natural language sentences, parse trees etc.) Thus,
we hypothesize that cellular batching would not improve inference
for DNNs with fixed inputs such as CNNs and MLPs.
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