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Abstract: Steerable drifters are a promising energy-efficient environmental sampling platform
for aquatic environments with pronounced flows, such as rivers and lakes or oceans with
circulation structures. Due to aging and environmental variability, the dynamics of a drifter
are often uncertain, which poses challenges in achieving desired control of the robot. In this
paper online parameter estimation is explored for a drifter model that is highly nonlinear. With
a gradient descent method, the convergence behavior of the adaptation law is explored for two
different flow conditions, a parabolic flow and a uniform flow. The influence of the system input,
the rudder angles, is also examined for two cases, fixed and sinusoidally varying. The region
and speed of parameter convergence are studied in terms of the initial parameter estimate via
simulation, which results in a number of findings. For example, for the parabolic flow setting, the
region of convergence is much larger than that for the uniform flow setting, with a generally faster
convergence, and varying the input results in faster convergence than holding the input constant.
Furthermore, for each flow setting and input, there is a clear region of initial parameter estimates
for which convergence is achieved more quickly than other parameter estimates. Convergence
time is found to depend mostly on the distance of the initial parameter estimate from a trench
in the parameter space. This could be useful for informing initial parameter estimates. The
spectral content of the regressor is then examined to gain insight into the adaptive behavior.
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1. INTRODUCTION

Engineers have sought to automatically monitor the qual-
ity of waterways and marine ecosystems since at least
1958, when Cleary (1958, 1962) first proposed and later
developed a system of 6 stationary analyzers in the Ohio
River Valley. A solution preferred over stationary analyz-
ers is a drifting platform that can passively float and make
measurements at multiple points in a waterway. Due to
the necessity to tailor sensors to the waterway in order to
establish cause-and-effect relationships with water qual-
ity, as discussed by Rickert and Hines (1978), a drifting
platform could be outfitted with sensors selected to make
various measurements of scientific interest. Drifters have
been employed by Bishop et al. (2002, 2004) to measure the

floats drift underwater, making depth profiles of various
measurements on a 10 day cycle. The Argo Program has,
as of this writing, 30 member nations, each sharing data
in an open data policy. Acoustic data from a modified
Argo float has been used by Riser et al. (2008) to monitor
rainfall and infer monsoon signals in the Bay of Bengal.
Johnson et al. (2009) describes low-power sensors with
a long operational lifespan, allowing the Argo program
to collect massive amounts of data on a global scale,
potentially for years. Like other drifters, Argo floats drift
wherever currents take them, and take measurements at
their current position. A steerable drifter has an advantage
over current oceanographic technology, because it could
have more control over its trajectory.

effect of natural and artificial iron fertilization on marine
exosystems. Kieber et al. (1997) used free-floating drifters
to measure light fluxes and photochemical processes in
seawater. Because they are subject to drift wherever the
current takes them, low-cost GPS tracked drifters have
been used by Austin and Atkinson (2004) to take La-
grangian measurements of hydrodynamic forces.

The Argo Program is a collaborative, international effort
that also uses a somewhat more advanced drifting sensor
platform, as described by Roemmich et al. (2009). Argo
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Gaskell and Tan (2020) proposed a steerable drifter and
developed a dynamic model for its behavior. The proposed
drifter can alter its trajectory somewhat by modulating
hydrodynamic forces present on the rudders. While having
an accurate model is important to the precise control and
prediction of the drifter behavior, in practice the model
parameters often have uncertainties due to material aging
and variability in environmental conditions. It is thus of
interest to estimate/update the model parameters in real
time for precision control of steerable drifters.

In this paper adaptive parameter estimation is investigated
for the steerable drifter model proposed by Gaskell and
Tan (2020). A gradient descent approach for parameter es-
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timation, based on the position and velocity measurements
of the drifter, is formulated. The speed of the adaptation is
examined for constant and time-varying rudder angles and
under two different types of environmental flows (parabolic
flow and uniform flow). The convergence time is found to
depend mostly on the distance of the initial parameter es-
timate from a trench visible in the parameter space. Along
the trench, the adaptation occurs very quickly, but far
from the trench, the adaptation occurs very slowly. Under
the uniform flow, the adaptation often fails to converge,
but does not fail for any initial estimate simulated under
the parabolic flow. Furthermore, a sinusoidally varying
rudder angle input is found to improve the adaptation
speed under the parabolic flow, but appears to harm adap-
tation performance in the uniform flow. This conclusion is
then supported by examining the frequency content of the
regressor used for adaptation.

2. REVIEW OF THE DYNAMIC MODEL

Steerable drifters float in waterways and do not generate
thrust. Instead, they exert limited control over their mo-
tion by adjusting the angles (and thus drag forces expe-
rienced by) of two or more rudders. The drifter modeled
in this work is slightly modified from the configuration
proposed by Gaskell and Tan (2020). A schematic of the
drifter and model reference frames is shown in Fig. 1.

A
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Fig. 1. A) Drifter rudder configuration, inertial reference
frame ¥, and body-fixed reference frame ¥1; B) rear
view of the drifter.

Each rudder is assumed to rotate about the center of the
rudder, and thus the center position of each rudder in the
body- ﬁxed frame, expressed as r} , for rudder i, is constant.
This does not affect the express1onb for the dynarmcs of the
proposed drifter as established by Gaskell and Tan (2020).
The drifter is assumed to be constrained to planar motion
at the surface of the water. It is also assumed that drag
on the body of the drifter would be negligible compared
to the drag on the panels. For the purposes of analysis,
rudder angles are assumed quasi-static.

The drifter can be viewed as modulating the potential
drag force on each rudder. Each rudder experiences a drag
force in the direction of the relative velocity of the water,
proportional to the square of the relative velocity, and
proportional to the wetted area. By changing the rudder
angle, the drifter can control the wetted area, and thus
adjust the magnitude of the force seen by each rudder.

The rotation matrix RY between the body-fixed frame and
the inertial frame shown in Fig. 1 is given by

_|cos(0) —sin ()
Ry = [sin () cos(6) ] (1)

where 6 is the angle between the body-fixed frame and the
inertial frame. The relative velocity vg ,» of rudder ¢ to the
flow in the inertial frame is then:

d 01 d
U?,r = vz,c - U?,f = E[po] + |:1 O:| R z cdt [0] - ’U?’f (2)
where U,L . 18 the velocity of the center of rudder 7 in the

inertial frame, v v; s is the velocity of the water at the center

of rudder i in the inertial frame, p° is the position of the
center of mass of the drifter in the inertial frame, and r}
is the position vector of rudder 7 in the body-fixed frame.
The relative velocity in the inertial frame is related to
the relative velocity in the body-fixed frame through the
rotation matrix RY as follows:

= Rvi, 3)
where v}, is the velocity of rudder i relative to the flow in
the body-fixed frame. Note that

il = Ilvi . (4)

where || - || is the L?-norm. Equations (5) and (6) below
capture the linear and rotational dynamics of the drifter,
respectively:

d? c
Gt = o B [Ailsin (L], — o)l [o], o]+
Aolsin (203, = 62)[[03 . [v3,]  (5)
d2
a’ =
Cd 7|0 1
20 [ auin (2ot = on)llet 1 0107 | & 3] e

. 7|0 1
+ Aghin (20}, — oa) b, (01.)7 | ¥ g] e ©)

where Z denotes the angle of a vector, ¢1, ¢ are the rudder
angles as seen in Fig 1, ¢4 is the drag coefficient of the
rudders, p is the fluid density, m is the drifter’s added
mass, I is the drifter’s added moment of inertia, and A; is
the area of rudder i.

The physical drifter parameters can be collected into a
single term for each rudder, (3;, as follows:
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o capds
i = —S00L @
Define angle-of-attack «; as
Q= L’U'il,r - ¢z (8)

For a 2-rudder drifter, the translational dynamics can then
be expressed as

d? .
@po = [61 |Sln041 ‘ ”v?,rnvg,r—’_

Balsin az|[jvg,[[v3,] 9)
3. ADAPTIVE PARAMETER ESTIMATION

This section outlines the formulation of an adaptive pa-
rameter estimator for the drifter model parameter f;,
i =1,2. Equation (9) can be rewritten as

d2 0 _
ar? =

hmmW&M&ﬁm%W&W%w&] (10)

where (3, and (2 are assumed to be unknown. It is
assumed that the drifter’s position and velocity, but not
acceleration, are available. Define a polynomial A(s)

A(s) = s* + A\is+ Ao (11)
where A1, A2 > 0 and s represents the Laplace variable.
One can then rewrite equation (10) using the hybrid time-
domain and Laplace-domain notation described by Tao
(2003):

2
57 0

AP T

Jsin u[[v] . [[v7 ., [sin asl[|vs

ERNAE

To follow the nomenclature convention for the gradient
descent algorithm we define

1
A |

52 0
1 . .
® = o [l o, o0, s oo, [15,] (1)
* /61
0" = {52 (14)

With these definitions, the system can be expressed as

y=oT0" (15)

These definitions view the filtered position of the drifter
as the system output, and express it as a product of a

regressor matrix ® with a vector of unknown quantities

or.

Because ©* consists of unknown values 57 and (2, the pre-
dicted system output § cannot use these values. Instead, 3
is formed from the current estimate of these parameters,
O, as follows:

g=2aoTe (16)

Defining the error

e=9-y (17)

One can apply the gradient descent algorithm to estimate

I'de

O=——7 (18)

where I' € R?*? is the adaptive gain, and k is a normalizing
factor defined as

k=+/1+]2|?

Defining O as an initial estimate of the true parameters
©*, one can obtain the current estimate of © at time ¢:

(19)

t .
odt

to

O(t) = Oy + (20)

Typical applications of the gradient descent algorithm use
a regressor vector to estimate the unknown parameters.
The regressor matrix ® given by equation (13) is composed
of two such vectors, corresponding to the two position com-
ponents, respectively. The resultant adaptation O is the
sum of the adaptations in both directions. This is thought
to provide a more robust parameter estimator because if
either scalar adaptation would achieve convergence, then
the vector adaptation should as well.

4. SIMULATION RESULTS

The highly nonlinear dynamics of the drifter poses signif-
icant challenges in predicting the adaptation behavior. In
this section simulation is conducted for different rudder
(system input) settings and ambient flow conditions to
gain insight into parameter convergence properties of the
proposed parameter estimation algorithm. Table 1 lists the
physical parameters used in the simulation.

Table 1. Simulation parameters.

cq 1.2
p | 1000 kg/m?
m 15 kg

1 2.5 kg m?
Al 0.105 m?
Ag 0.095 m?

The dynamic model for the drifter is simulated in a
simplified model of a river with two different flow profiles,
a parabolic flow and a uniform flow. The parabolic flow
profile, illustrated in Fig. 2, achieves a maximum velocity
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of 0.68 m/s in the center, and is 4 meters wide. For both the
uniform and parabolic flow profiles, the river is modeled
as perfectly straight.

0.5

{m/s)

Flow Velocity i,'? 2,

0.5
-3 -2 1 o 1 2 3

Lateral River Position p™, (m)

Fig. 2. llustration of parabolic flow: longitudinal river flow
velocity vs. lateral drifter position in river.

For all cases simulated, the drifter is started at position
p? = [0,0]7, with an initial velocity of %po = [0,0]T and
an initial angular velocity of w = 0.

The true value of ©* can be calculated from the physical

parameters:
«_ || _ |42
o= 3] - [53

An important question is the region of attraction for the
initial parameter estimate. For this study, we consider the
range of initial parameter estimate as

(21)

b1 € [-3.7,—4.7] (22)
B2 € [—3.3,—4.3] (23)

The adaptation gain matrix is selected as:
I'=5x10°1I, (24)

where I is the 2-dimensional identity matrix. The filter
polynomial A(s) is chosen as

As)=s2+s+1 (25)

First, the drifter is simulated with constant rudder angles
¢ equal to:

s
~ 01
50
o=1_ (26)
~ 401
5 +0

These rudder angles are chosen as they drive the drifter in
a stable trajectory described by Gaskell and Tan (2020),
and present a small initial angle of attack on both panels.
With a small angle of attack, the drifter takes longer to
catch up to the speed of the river, which is beneficial for

improving the excitation level of the regressors. Once the
drifter’s velocity approaches that of the river, no rudder
angle will change the drifter’s acceleration, and thus no
information can be gained for adaptation. Convergence
time is defined as the minimum time ¢; such that:

|Io* — 8| < 0.01 (27)
If the system does not achieve convergence within 30
seconds, the adaptation is considered a failure. Analysis
of the frequency content of the regressor suggests that
adaptation will either occur earlier than this, or is unlikely
to occur.

4.1 Adaptation Under Parabolic Flow

The steerable drifter system is first simulated under each
input case in a parabolic flow.

Initial estimates for 31, B2 are selected as an evenly spaced
101x101 grid spanning the ranges given by Egs. (22) and
(23). The convergence times are then found for each initial
estimate of 1, B2, and plotted in Fig. 3.
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Fig. 3. Map of convergence time vs. initial parameter
estimate for constant rudder angles in a parabolic
flow, where the true parameter values are marked with
a triangle.
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The mean time to converge under these conditions over
the selected By, B2 is found to be 6.98 seconds.

Simulation is then conducted with the same parameters
but under the following oscillatory rudder angles:

g—01+ommu)
(25)
2 +0.140.Lsin(2¢)

The extra sinusoidal variation in ¢1, ¢2 is chosen to add
to the frequency content of the control input.

The time to converge under sinusoidally varying input is
then plotted in Fig. 4. For sinusoidally varying rudder
angles over the selected (1, 2, the mean time to converge
is found to be 5.71 seconds.
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46 44 42 4 3.8
&

Fig. 4. Map of convergence time vs. initial parameter
estimate for sinusoidally varying rudder angles in a
parabolic flow, where the true parameter values are
marked with a triangle.

4.2 Adaptation Under Uniform Flow

The steerable drifter system is then simulated under each
input case in a uniform flow with velocity of 0.34 m/s. This
is chosen as half of the peak velocity of the parabolic flow
profile, and is meant to approximate a wide, slow river.

Under the uniform flow, for many initial estimates, the pa-
rameter estimate fails to converge within the allowed time
(30 s). For initial estimates that do result in parameter
convergence, the convergence times are plotted in Fig. 5 for
constant rudder angles and Fig. 6 for sinusoidally varying
rudder angles. Due to the large regions where parameter
adaptation fails to converge, the mean convergence times
under uniform flow are not plotted.
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Fig. 5. Map of convergence time vs. initial parameter
estimate for constant rudder angles in a uniform flow,
where the true parameter values are marked with a
triangle.

For all cases simulated, there is a clear pattern to the
data. On average, under the parabolic flow, varying the
rudder angles results in parameter convergence 1.27 sec-
onds faster. However, under the uniform flow, sinusoidally
varying the input dramatically reduces the region in initial
parameter estimate for which convergence is achieved. For

o

Time (s)

=3

46 44 42 4 38

Fig. 6. Map of convergence time vs. initial parameter
estimate for sinusoidally varying rudder angles in a
uniform flow, where the true parameter values are
marked with a triangle.

all cases, there is a clear trench in the parameter space,
passing through the true values, where the convergence
time is significantly faster than other regions. For the
constant rudder angle inputs under the parabolic flow,
there are also regions of extremely slow convergence in
the corners farthest from this trench.

4.8 Spectral Analysis of the Regressor

In order to gain insight into the behavior of this adaptive
system, spectral analysis is performed on the contents of
the regressor. The frequency content is evaluated against
time for each element of the regressor matrix using a
sliding window of 10 s. Fig. 7 illustrates the frequency
content of @55 for each input and flow case. It is interest-
ing to note that, due to the highly nonlinear dynamics,
the regressor signals contain a rich spectrum even under
constant rudder angles. This explains why the parameter
estimate converges in most cases despite the seemingly
“unexciting” inputs.

For each input and flow case, the regressor has a rich
spectrum of frequencies at the beginning that quickly
fades by around ¢ = 10s, and the spectral plots each
have a similarly banded structure. Under the parabolic
flow, the peaks of the spectra are higher than those under
the uniform flow. Furthermore, under the parabolic flow,
sinusoidally varying the input seems to sharpen the peaks
of the spectrum over a constant input. However, varying
the input under the uniform flow caused the frequency
spectrum to decay faster, without significantly enriching
the spectrum.

Because the drifter primarily drifts with the river in the
p%? direction, the spectra of @12, P25 have a greater
magnitude than the spectra of ®; 1, ®, ;. This suggests
that adaptation could be performed along this direction
only, to reduce computational complexity.

5. CONCLUSION

In this paper parameter estimation for a steerable drifter
was studied under a gradient descent adaptation scheme.
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Fig. 7. Frequency spectrum vs. time for ®55 under each

flow and input case.

In particular, the parameter convergence behavior under
different combinations of flow conditions and rudder inputs
was explored via simulation, where the regions of attrac-
tion for the initial parameter estimate were studied.

A trench was identified in the plots of convergence time
for each case. If the initial parameter estimate was close
to this trench, the adaptation would occur very rapidly. If
the initial parameter estimate was too far from this trench,
the adaptation would take significantly longer or fail to
converge. This information may prove useful for informing
initial guesses for unknown parameters. A bias term may
be added to the initial guess to avoid regions of slow
convergence, or move toward regions of rapid convergence.

It was found that convergence was more reliable under a
parabolic flow than a uniform flow. It was also found that
for a parabolic flow, adding an oscillatory term to the input
improved the adaptation. However, under a uniform flow,
a varying input hurt the adaptive performance.

The spectrum of the regressor was then analyzed over time.
It was found that under a uniform flow, varying the input
caused the spectrum to decay faster without significantly
enriching the regressor. However, under a parabolic flow,
varying the input enriched the regressor enough to improve
the adaptive performance. It was also found that elements
of the regressor corresponding to the drifter’s longitudinal
position in the river were much greater than elements
corresponding to the lateral position. This suggests that
longitudinal position may be used for adaptation alone,
without lateral position, to reduce computational complex-
ity.

We note from the spectral analysis of the regressors that
the regressors under drifting tend to zero within finite
time, which motivates faster adaptation algorithms. Part
of our future work involves the exploration of accelerated
learning algorithms (see, e.g., Gaudio et al. (2020)) for this
problem. In addition, the adaptive parameter estimation
proposed in this work is the first step toward designing
an adaptive control scheme, which we are also pursuing.

108

Because of the nonlinearities present in the drifter model,
the work by Kanellakopoulos et al. (1992) in designing
controllers that avoid hard nonlinearities is of particular
interest. Finally, we plan to experimentally verify the
adaptive estimation and control methods on a steerable
drifter prototype.
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