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βi = −
cdρAi

2m
(7)

Define angle-of-attack αi as

αi = ∠v1i,r − φi (8)

For a 2-rudder drifter, the translational dynamics can then
be expressed as

d2

dt2
p0 =

[

β1|sinα1|‖v
0

1,r‖v
0

1,r+

β2|sinα2|‖v
0

2,r‖v
0

2,r

]

(9)

3. ADAPTIVE PARAMETER ESTIMATION

This section outlines the formulation of an adaptive pa-
rameter estimator for the drifter model parameter βi,
i = 1, 2. Equation (9) can be rewritten as

d2

dt2
p0 =

[

|sinα1|‖v
0

1,r‖v
0

1,r, |sinα2|‖v
0

2,r‖v
0

2,r

]

[

β1

β2

]

(10)

where β1 and β2 are assumed to be unknown. It is
assumed that the drifter’s position and velocity, but not
acceleration, are available. Define a polynomial Λ(s)

Λ(s) = s2 + λ1s+ λ2 (11)

where λ1, λ2 > 0 and s represents the Laplace variable.
One can then rewrite equation (10) using the hybrid time-
domain and Laplace-domain notation described by Tao
(2003):

s2

Λ(s)
p0 =

1

Λ(s)

[

|sinα1|‖v
0

1,r‖v
0

1,r, |sinα2|‖v
0

2,r‖v
0

2,r

]

[

β1

β2

]

(12)

To follow the nomenclature convention for the gradient
descent algorithm we define

y =
s2

Λ(s)
p0

ΦT =
1

Λ(s)

[

|sinα1|‖v
0

1,r‖v
0

1,r, |sinα2|‖v
0

2,r‖v
0

2,r

]

(13)

Θ∗ =

[

β1

β2

]

(14)

With these definitions, the system can be expressed as

y = ΦTΘ∗ (15)

These definitions view the filtered position of the drifter
as the system output, and express it as a product of a

regressor matrix Φ with a vector of unknown quantities
Θ∗.

Because Θ∗ consists of unknown values β1 and β2, the pre-
dicted system output ŷ cannot use these values. Instead, ŷ
is formed from the current estimate of these parameters,
Θ, as follows:

ŷ = ΦTΘ (16)

Defining the error

ε = ŷ − y (17)

One can apply the gradient descent algorithm to estimate
Θ:

Θ̇ = −
ΓΦε

k2
(18)

where Γ ∈ R
2×2 is the adaptive gain, and k is a normalizing

factor defined as

k =
√

1 + ‖Φ‖2 (19)

Defining Θ0 as an initial estimate of the true parameters
Θ∗, one can obtain the current estimate of Θ at time t:

Θ(t) = Θ0 +

∫ t

t0

Θ̇dt (20)

Typical applications of the gradient descent algorithm use
a regressor vector to estimate the unknown parameters.
The regressor matrix Φ given by equation (13) is composed
of two such vectors, corresponding to the two position com-
ponents, respectively. The resultant adaptation Θ̇ is the
sum of the adaptations in both directions. This is thought
to provide a more robust parameter estimator because if
either scalar adaptation would achieve convergence, then
the vector adaptation should as well.

4. SIMULATION RESULTS

The highly nonlinear dynamics of the drifter poses signif-
icant challenges in predicting the adaptation behavior. In
this section simulation is conducted for different rudder
(system input) settings and ambient flow conditions to
gain insight into parameter convergence properties of the
proposed parameter estimation algorithm. Table 1 lists the
physical parameters used in the simulation.

Table 1. Simulation parameters.

cd 1.2

ρ 1000 kg/m3

m 15 kg

I 2.5 kg m2

A1 0.105 m2

A2 0.095 m2

The dynamic model for the drifter is simulated in a
simplified model of a river with two different flow profiles,
a parabolic flow and a uniform flow. The parabolic flow
profile, illustrated in Fig. 2, achieves a maximum velocity
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of 0.68 m/s in the center, and is 4 meters wide. For both the
uniform and parabolic flow profiles, the river is modeled
as perfectly straight.

Fig. 2. Illustration of parabolic flow: longitudinal river flow
velocity vs. lateral drifter position in river.

For all cases simulated, the drifter is started at position
p0 = [0, 0]T , with an initial velocity of d

dt
p0 = [0, 0]T and

an initial angular velocity of ω = 0.

The true value of Θ∗ can be calculated from the physical
parameters:

Θ∗ =

[

β1

β2

]

=

[

−4.2
−3.8

]

(21)

An important question is the region of attraction for the
initial parameter estimate. For this study, we consider the
range of initial parameter estimate as

β1 ∈ [−3.7,−4.7] (22)

β2 ∈ [−3.3,−4.3] (23)

The adaptation gain matrix is selected as:

Γ = 5× 105I2 (24)

where I2 is the 2-dimensional identity matrix. The filter
polynomial Λ(s) is chosen as

Λ(s) = s2 + s+ 1 (25)

First, the drifter is simulated with constant rudder angles
φ equal to:

φ =









π

2
− 0.1

π

2
+ 0.1









(26)

These rudder angles are chosen as they drive the drifter in
a stable trajectory described by Gaskell and Tan (2020),
and present a small initial angle of attack on both panels.
With a small angle of attack, the drifter takes longer to
catch up to the speed of the river, which is beneficial for

improving the excitation level of the regressors. Once the
drifter’s velocity approaches that of the river, no rudder
angle will change the drifter’s acceleration, and thus no
information can be gained for adaptation. Convergence
time is defined as the minimum time t1 such that:

‖Θ∗ −Θ‖ < 0.01 (27)

If the system does not achieve convergence within 30
seconds, the adaptation is considered a failure. Analysis
of the frequency content of the regressor suggests that
adaptation will either occur earlier than this, or is unlikely
to occur.

4.1 Adaptation Under Parabolic Flow

The steerable drifter system is first simulated under each
input case in a parabolic flow.

Initial estimates for β1, β2 are selected as an evenly spaced
101×101 grid spanning the ranges given by Eqs. (22) and
(23). The convergence times are then found for each initial
estimate of β1, β2, and plotted in Fig. 3.

Fig. 3. Map of convergence time vs. initial parameter
estimate for constant rudder angles in a parabolic
flow, where the true parameter values are marked with
a triangle.

The mean time to converge under these conditions over
the selected β1, β2 is found to be 6.98 seconds.

Simulation is then conducted with the same parameters
but under the following oscillatory rudder angles:

φ =









π

2
− 0.1 + 0.1 sin (t)

π

2
+ 0.1 + 0.1 sin(2t)









(28)

The extra sinusoidal variation in φ1, φ2 is chosen to add
to the frequency content of the control input.

The time to converge under sinusoidally varying input is
then plotted in Fig. 4. For sinusoidally varying rudder
angles over the selected β1, β2, the mean time to converge
is found to be 5.71 seconds.
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Fig. 4. Map of convergence time vs. initial parameter
estimate for sinusoidally varying rudder angles in a
parabolic flow, where the true parameter values are
marked with a triangle.

4.2 Adaptation Under Uniform Flow

The steerable drifter system is then simulated under each
input case in a uniform flow with velocity of 0.34 m/s. This
is chosen as half of the peak velocity of the parabolic flow
profile, and is meant to approximate a wide, slow river.

Under the uniform flow, for many initial estimates, the pa-
rameter estimate fails to converge within the allowed time
(30 s). For initial estimates that do result in parameter
convergence, the convergence times are plotted in Fig. 5 for
constant rudder angles and Fig. 6 for sinusoidally varying
rudder angles. Due to the large regions where parameter
adaptation fails to converge, the mean convergence times
under uniform flow are not plotted.

Fig. 5. Map of convergence time vs. initial parameter
estimate for constant rudder angles in a uniform flow,
where the true parameter values are marked with a
triangle.

For all cases simulated, there is a clear pattern to the
data. On average, under the parabolic flow, varying the
rudder angles results in parameter convergence 1.27 sec-
onds faster. However, under the uniform flow, sinusoidally
varying the input dramatically reduces the region in initial
parameter estimate for which convergence is achieved. For

Fig. 6. Map of convergence time vs. initial parameter
estimate for sinusoidally varying rudder angles in a
uniform flow, where the true parameter values are
marked with a triangle.

all cases, there is a clear trench in the parameter space,
passing through the true values, where the convergence
time is significantly faster than other regions. For the
constant rudder angle inputs under the parabolic flow,
there are also regions of extremely slow convergence in
the corners farthest from this trench.

4.3 Spectral Analysis of the Regressor

In order to gain insight into the behavior of this adaptive
system, spectral analysis is performed on the contents of
the regressor. The frequency content is evaluated against
time for each element of the regressor matrix using a
sliding window of 10 s. Fig. 7 illustrates the frequency
content of Φ22 for each input and flow case. It is interest-
ing to note that, due to the highly nonlinear dynamics,
the regressor signals contain a rich spectrum even under
constant rudder angles. This explains why the parameter
estimate converges in most cases despite the seemingly
“unexciting” inputs.

For each input and flow case, the regressor has a rich
spectrum of frequencies at the beginning that quickly
fades by around t = 10s, and the spectral plots each
have a similarly banded structure. Under the parabolic
flow, the peaks of the spectra are higher than those under
the uniform flow. Furthermore, under the parabolic flow,
sinusoidally varying the input seems to sharpen the peaks
of the spectrum over a constant input. However, varying
the input under the uniform flow caused the frequency
spectrum to decay faster, without significantly enriching
the spectrum.

Because the drifter primarily drifts with the river in the
p0,2 direction, the spectra of Φ1,2,Φ2,2 have a greater
magnitude than the spectra of Φ1,1,Φ2,1. This suggests
that adaptation could be performed along this direction
only, to reduce computational complexity.

5. CONCLUSION

In this paper parameter estimation for a steerable drifter
was studied under a gradient descent adaptation scheme.
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Fig. 7. Frequency spectrum vs. time for Φ22 under each
flow and input case.

In particular, the parameter convergence behavior under
different combinations of flow conditions and rudder inputs
was explored via simulation, where the regions of attrac-
tion for the initial parameter estimate were studied.

A trench was identified in the plots of convergence time
for each case. If the initial parameter estimate was close
to this trench, the adaptation would occur very rapidly. If
the initial parameter estimate was too far from this trench,
the adaptation would take significantly longer or fail to
converge. This information may prove useful for informing
initial guesses for unknown parameters. A bias term may
be added to the initial guess to avoid regions of slow
convergence, or move toward regions of rapid convergence.

It was found that convergence was more reliable under a
parabolic flow than a uniform flow. It was also found that
for a parabolic flow, adding an oscillatory term to the input
improved the adaptation. However, under a uniform flow,
a varying input hurt the adaptive performance.

The spectrum of the regressor was then analyzed over time.
It was found that under a uniform flow, varying the input
caused the spectrum to decay faster without significantly
enriching the regressor. However, under a parabolic flow,
varying the input enriched the regressor enough to improve
the adaptive performance. It was also found that elements
of the regressor corresponding to the drifter’s longitudinal
position in the river were much greater than elements
corresponding to the lateral position. This suggests that
longitudinal position may be used for adaptation alone,
without lateral position, to reduce computational complex-
ity.

We note from the spectral analysis of the regressors that
the regressors under drifting tend to zero within finite
time, which motivates faster adaptation algorithms. Part
of our future work involves the exploration of accelerated
learning algorithms (see, e.g., Gaudio et al. (2020)) for this
problem. In addition, the adaptive parameter estimation
proposed in this work is the first step toward designing
an adaptive control scheme, which we are also pursuing.

Because of the nonlinearities present in the drifter model,
the work by Kanellakopoulos et al. (1992) in designing
controllers that avoid hard nonlinearities is of particular
interest. Finally, we plan to experimentally verify the
adaptive estimation and control methods on a steerable
drifter prototype.
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