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Abstract: Pectoral fins play an important role in the locomotion and maneuvering of robotic
fish. Considering the cyclic nature of typical actuation modes, it is of interest to develop a
dynamic average model that is amenable to controller design, where the control inputs are
actuation pattern parameters. In this work, we propose a scaling-based approach to develop
a nonlinear dynamic average model for a robotic fish propelled by a pair of rowing pectoral
fins. In particular, the fin-generated hydrodynamic forces and moment, modeled using blade
element theory, are scaled with functions of the fin-beat parameters, and classical averaging
is then conducted over the corresponding modified dynamics. To determine proper scaling
functions with minimal complexity, we propose a novel estimation scheme employing a nonlinear
model predictive control formulation paired with a multivariate nonlinear regression scheme.
Experimental and simulation results comparing the predictions from the dynamic and averaged

models are presented to support the efficacy of the averaged modeling approach.
Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
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Keywords: Averaging, modeling, underwater vehicles, robotic fish, pectoral fins.

1. INTRODUCTION

In the past few decades, robotic fish have received substan-
tial attention due to their efficiency, maneuverability, and
lifelike features. These characteristics make them an at-
tractive choice for a myriad of aquatic applications such as
environmental monitoring, search and rescue, and robot-
animal interactions (Tan, 2011; Zhang et al., 2016; Marras
and Porfiri, 2012). These robots have used various bio-
inspired propulsion methods, from oscillating caudal or
pectoral fins to undulation of the entire body (Sfakiotakis
et al., 1999). While caudal fins are typically used for
efficient propulsion at higher speeds, pectoral fins are vital
in assisting propulsion and achieving agile maneuvering at
low swimming speeds (Behbahani, 2016).

Pectoral fin motions can generally be classified into three
modes depending on the axis of rotation: rowing, feather-
ing, and flapping, where the axes of rotation are vertical,
transverse, and longitudinal, respectively. The rowing mo-
tion is classified as a “drag-based” swimming mechanism,
and is particularly effective in achieving a number of in-
plane locomotion and maneuvering modes. Its fin-beat cy-
cle comprises two sub-movements: the power stroke when
the fin moves backward to produce thrust through induced
drag on the pectoral fin surface, and the recovery stroke
when the fin moves toward the front of the body, ideally
with minimal loading, to get ready for the next fin-beat
cycle.

* This research was supported in part by the National Science
Foundation (DGE 1424871, IIS 1715714, IIS 1848945).

There is extensive literature available on the prototype
design and modeling of pectoral fin-actuated robotic fish
(Sitorus et al., 2009; Palmisano et al., 2007; Ye et al., 2017;
Kato, 1998; Lachat et al., 2006; Deng and Avadhanula,
2005; Mittal et al., 2006; Low and Willy, 2006; Behbahani,
2016; Lauder et al., 2006; Zhong et al., 2018; Duraisamy
et al., 2019). Some of these works have focused on devel-
oping Computational Fluid Dynamics (CFD) models to
carry out numerical analysis of the robot’s hydrodynamic
characteristics and the force generation of the fins. Despite
being instrumental in studying pectoral fins’ propulsive
mechanism, CFD-based models are not suitable for con-
trol design. Some efforts have also gone into developing
analytical models to study the propulsive mechanism and
gait analysis. For example, Singh et al. (2019) and Bi et al.
(2014) utilized blade element theory (BET) to evaluate the
quasi-static hydrodynamic forces generated by undulating
and rowing fins, respectively, and Liu et al. (2013) utilized
Euler-Lagrange equation methods to develop a dynamic
model for batoid swimming robots. Others have focused
on developing modeling frameworks for analyzing the ef-
fects of different pectoral fin designs and materials on the
robot’s swimming performance and mechanical efficiency
(Behbahani, 2016; Kodati et al., 2008; Sitorus et al., 2009;
Kato and Inaba, 1998; Kato and Furushima, 1996), but
these models are not amenable to controller design.

Given the rhythmic nature of the robotic fish’s body
and fin movements, averaging has proven to be a useful
approach in obtaining control-affine models (Sanders et al.,
2007; Bullo and Lewis, 2019), and studying the effect of

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2021.11.162



Maria L. Castaiio et al. / IFAC PapersOnLine 54-20 (2021) 114-121 115

the input parameters on its dynamics and fins movement
(Morgansen et al., 2002; Wang and Tan, 2015; Morgansen
et al., 2007). Furthermore, in practical applications, it is
more natural to control the parameters for periodic fin
beats than directly controlling the fin position at every
moment, which makes an averaged model best suited for
trajectory planning and tracking control. To the best
of our knowledge, the use of averaging has not been
explored in developing control-affine models for pectoral
fin-actuated robotic fish.

In this work, we present a nonlinear dynamic average
model for robotic fish propelled by a pair of rigid pec-
toral fins undergoing rowing motion. In particular, we
consider the robot undergoing planar motion, with its
original dynamics incorporating pectoral fin-generated hy-
drodynamic forces evaluated via the blade element theory.
Inspired by the work in Wang and Tan (2015), which deals
with averaged dynamics for tail-actuated robotic fish, we
seek scaling factors, as functions of fin-beat parameters,
for the original hydrodynamic forces and moment, such
that when classical averaging is applied to the resulting
modified dynamics, the obtained average model produces
locomotion behaviors close to those of the original dynamic
model. One fundamental step in identifying the scaling
functions is estimating the scaling values for a given fin-
beat pattern. Wang and Tan (2015) used a trial-and-error
approach for the tail-actuated robotic fish, which is time-
consuming. We propose a systematic approach to finding
optimal scaling values by formulating a novel nonlinear
model-predictive control (NMPC) problem, which can be
readily solved with NMPC packages. Once the scaling
values are found for a set of fin-beat patterns, nonlinear
regression is used to determine the scaling functions with
minimal complexity. Simulation comparison between the
averaged model and the original dynamic model, under fin-
beat patterns not used in identifying the scaling functions,
supports the efficacy of the developed averaged model.
Furthermore, we conduct experiments on a pectoral fin-
actuated robotic fish and compare the experimental results
with simulation predictions when considering the forward
swimming motion, where both fins are actuated symmet-
rically.

The rest of the paper is organized as follows. We first
review the dynamic model of the pectoral fin-actuated
robotic fish in Section 2. In Section 3 we present the
development of the proposed averaged model. In Section 4
we present the scheme to determine the averaged scaling
functions, as well as the experimental and simulation
validation of the resulting average model. Finally, we
provide some concluding remarks in Section 5.

2. REVIEW OF THE DYNAMIC MODEL FOR
PECTORAL FIN-ACTUATED ROBOTIC FISH

2.1 Rigid Body Dynamics

We consider the robot to be a rigid body with rigid
pectoral fins that are actuated at the base, and we assume
that the robot operates in an inviscid, irrotational, and
incompressible fluid within an infinite domain.

As illustrated in Fig. 1(a), we define [X,Y,Z]Tand [%, 7, 2]
as the inertial coordinate system and the body-fixed coor-
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Fig. 1. (a) Top view of the pectoral fin-actuated robotic
fish undergoing planar motion; (b) side view and blade
element of the right pectoral fin with its parameters
and variables; (c) top view of the pectoral fin with its
associated forces and angles.

dinate system, respectively. We only consider the robot’s
planar motion, so the system only has three degrees of
freedom, surge (v, ), sway (v, ), and yaw (w.). We let «
denote the angle of attack, formed by the direction of V,
the linear velocity vector of the center of mass in the body-
fixed coordinate, with respect to the z-axis, and is given by

a= arctan(%). Let ¢ denote the heading angle, formed

by the Z-axis relative to the X-axis, C, be the distance
between the pectoral fin and the body’s center of mass,
while Agr, and Agr denote the pivot points for the left
and right fin, respectively. Finally, v, and ygr represent
the angles between the left pectoral fin and the body-fixed
Z-axis and the right pectoral and the body-fixed Z-axis,
respectively. Furthermore, we assume that we can neglect
the inertial coupling between yaw, sway and surge motions
(Aureli et al., 2009), and arrive at the following equations
of planar motion

(mb — Ma, )i)cm = (mb — May,, )vcywz

— Fp cos(a) + Fr, sin(a) + fh,

(1)

(my — May )oe, = —(Mpy — May )Vep W2 @)
— Fpsin(a) — Fp sin(a) + fr,
(Joz = Ja, )wz = (Ma,, — May )Ve, Ve, + Th, + Mp (3)

where my is the mass of the body, Jp. is the inertia of the
body about the z-axis, m,,, and m,, are the hydrody-
namic derivatives that represent the added masses of the
robotic fish along the £ and ¢ directions, respectively, J,,
represents the added inertia effect of the body about the
% direction, and fy,, fn,, and 74, are the hydrodynamic
forces and moment transmitted to the robot’s body by the
right and left pectoral fins. Finally, Fp, F, and Mp are
the body drag, lift, and moment, respectively, and can be
captured by (Wang et al., 2015; Morgansen et al., 2007)

1
Fp :§P|W:|25ACD (4)
1
Fp, =§p|Vc|25ACLOé (5)
MD = — C’ngsgn(wz) (6)

where p is the density of water, |V,[ = ,/vZ + 2 is the
linear velocity magnitude of the body in the body-fixed
frame, S 4 is the wetted surface area for the robot, Cp is
the drag force coefficient, C7, is the lift force coefficient, C'y,
is the drag moment coefficient, and sgn(-) is the signum
function.
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2.2 Hydrodynamic Forces from Rowing Pectoral Fins

As shown in Fig. 1(b), we consider the pectoral fins to
be rectangular with span length S, and chord length D,,.
We adopt the procedure presented by Behbahani and Tan
(2016), and illustrate the force calculations using the right
pectoral fin. However, it can be readily extended to the
left pectoral fin.

We consider a coordinate system with unit vectors 7 and
7% that are attached to the pectoral fin (see Fig. 1) and
are related to the robotic fish body-fixed coordinates as
follows

mf = cosyri — sinyr{ (7)

Aft = — sinyr# — cos gy (8)

In the following calculations we assume an anchored
robotic fish body, often adopted in literature as it simplifies
calculation without incurring significant error (Behbahani,
2016; Valdivia y Alvarado and Youcef-Toumi, 2005). The
velocity and acceleration at the point s along the fin are
then given by

Upp(s,t) =syrA" (9)

ar(s,t) =sypnl — syEmb (10)
where ¥r and 4gr indicate the first and second time
derivative of vg, respectively.

The hydrodynamic forces on the pectoral fin are composed
of both span-wise and normal components. However, since
the fins are considered to have pure rowing motion, the
span-wise component that arises from friction is very small
and can thus be neglected (Drucker et al., 2005). Using
blade element theory, we can then calculate the differential
normal force dF,r(s,t) on each blade element ds on the
pectoral fin at time ¢ as

1 R
anR(Sat) = _icn(@R(Svt))PDp|UpR(5:t)|2d5 Al (11)

where Cp(¢r(s,t)) = Asingpr is the normal force co-
efficient, which depends on the angle of attack of each
arbitrary blade, pr(s,t), and A is a parameter that can
be evaluated empirically through experiments. The angle
of attack of the right pectoral fin at each point, pr(s,t),
is defined as

< Vpp(s,t), Al >
< Upp(s,t), mf >
where < -,- > denotes the inner product.

tanppr(s,t) = (12)

The total hydrodynamic force F,, and moment M,,
(relative to its pivot point Agg ) acting on the right
pectoral fin are given by

Sp
Fng :/ dF,Rr(s,t) (13)
0
Sp
My g :/ smp X dFy g (14)
0

The total force acting on the right fin is determined by

Fr=F,, 2" — Far= mpaR(s,t)|S=sTP (15)

where F4,r represents the force applied by the rigid
pectoral fin on the servo joint, and m, is the effective
mass of the rigid fin (the fin mass m,; and the added
mass, where the added mass is calculated as shown in

Dong (1978)). Finally, the force and moment exerted on
the robotic fish body by the right pectoral fin are given by

fhmR:<FA0Rai'> (16)
Jhyr =< Fa,r,§ > (17)
Thr =Cpll X Fagr = —Cp fn,rk (18)

where < - > denotes the inner product. By considering the
kinematic equations of the robotic fish, the final dynamic
model can be summarized as follows:

Ve, COSY — v, SinY i
X Ve, SINY + v, cOSY
. w
Y 4
. JrorR + froL
v’(/) _ fl(vezavcyawz) + W (19)
Ca hyR + Jh,L
’[]cy fQ(ch;a’Unywz) + UTQU
W, Thp + Th
I f3(vcmyvcy7wz)+% |

where

ma
F1(Vey s Vey ,wz) =—vc, wz —
v y
mq

C1

— Ve, \/VE, + V2, +
mi

co Ve,
— e, /v2, + V2 arctan(—%)
mi Y Vey

my c1
_ 2 2
J2(Veg,Vey,wz) = — oo, VegWz — oo, Ve, V3, + 02, (20)
c2 Vey
— =, \/V2, + V2, arctan(—=)
m2

Vey,

(m1 — m2)

2
; VegVey — cawisgn(wz)
3

f3(vey s vey ,wz) =

with my = mp —mq,, ma = my —mg,, J3 = Jp. —
1 1 1
c1 = 5pSCp, ca = 5pSCL, ¢4 = WCM'

Ja.

3. AVERAGING WITH SCALED FORCING
3.1 Awveraged Model

In order to generate a net thrust over each cycle, the
pectoral fins need to be actuated differently in the power
and recovery strokes. For example, to generate forward
thrust the fin has to be actuated faster in the power stroke
than in the recovery stroke. We specify the fin beat pattern
as

’YO—’VACOS[TF(CTLl)ﬂ, 0<t< Tpl
() = ) (<+1)(: T, TpC+ et
Y0 + A cos[m T, - §+1)}’ 11 <t<Ty

(21)
where g is the fin-beat bias, 4 is the fin-beat amplitude,
Tp is the fin-beat period, and ( is a parameter defining
the ratio of angular velocities of the fin during the power
and recovery strokes, respectively.

Under this periodic fin movement, averaging can be a
useful tool for gaining insight into the effect of the input
parameters (such as the beat bias g, amplitude 4,
period T, and ratio ¢) on the dynamics and for designing
controllers. First-order averaging (Bullo and Lewis, 2019)
tends to generate prohibitively complex model for control
(Wang and Tan, 2015). On the other hand, classical
averaging (directly averaging the vector field over one
period of the fin-beat) cannot be directly applied since
the dynamics is not slow in typical scenarios as shown
in Wang and Tan (2015). Therefore, we first scale the
original forcing terms with functions that are potentially
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dependent on the fin-beat parameters, and then apply
classical averaging over the modified dynamics.

Specifically, let the original system (19) be modified as
Ve, =f1(Veys Ve, ,w2) + Ky, rR(V0R, VAR, TpR, CR) - froR(t)
+ Ky, (vor,vaL, Tpr,CL) - fh,L(t)
(22)
Ve, =f2(vVe, s Ve, ,wz) + Ky, rR(YoR, VAR TpR, CR) * fr,R(1)
+ Ky, (oL, AL, Tpr,CL) - fn,L(1)
(23)
U:)z :f?)(vq75 5 vcyawz) + KmR (’YORy YAR, TpR7 CR) *Thr (t)
+ K, (Yor, vaL, Tpr,CL) - Thy (T)
(24)
where Ky, r(-), K, r(+), Kmp (), Kp, (), Kf, (), Km, ()
are scaling functions to be determined later (Section 4.3),

and are {vor,var, Tpr,Cr} and {Yor,var,Tpr,CL} are
the fin-beat parameters of the right fin and left fin,
respectively. For brevity, the arguments of the functions
f1(), f2(+), f3(-) and the scaling functions are omitted
in the remainder of the paper, and the calculations are
illustrated using only the right fin since they can be
extended for the left fin in a straightforward manner.

To avoid the integration of nested sin functions and
facilitate the computation of the averaging, we first use the
second-order Taylor series expansion to approximate the
cos(y) and sin(y) terms that appear in the forcing terms
in fp, and fp,, . After conducting classical averaging, the
following averaged system is obtained
Ve, =f1 + Kp,r* fnor(Yor: VAR, TpRr: CR)
+ Ky, fn,(YoL, vaL, Tpr,CL)
U, =f2+ Ks,r - fn,rR(Yor, VAR, TpR, CR)
+ Ky, 1 - fn,2(vor,vAL: Tpr,CL)
W, =f3+ Kmp - Thy(Yor: YAR Tpr, CR)
+ Koy - Thy (Yoo, varL, Tpr, )

(25)

where

; _ DpAB ST py0vs (=498 — 3(=8 + 73 (=1 +¢?) (26)
haft = 288¢T2

f _ —’Y,Qa;lpﬂj
R T 96T2¢
Dp(=8 +73)MEp(—1+ () — 4yfmy (1 + () (27)

— 3v07Amp (1 +<)2>

~ _ CpDpAlm? pyoyi (=493 = 3(=8 +72))(=1 + (%) (28)
hr 288(T72

(4Dp'y§/\l12,p(—1 +¢H+

Note that the model (25) can be expressed in a control-
affine form if one defines the control inputs as a; =
Ky, rfn,r, 02 = Kf,1fn, 1, a3 = Ky, rfn,r and aq =
Ky, 1 fn,r- As an example, we refer the reader to Castaio
and Tan (2019), where the authors show how one can
express an averaged model for a trail-actuated robotic
fish in a control-affine form and use it to design a model-
predictive controller.

4. SIMULATION AND EXPERIMENTAL RESULTS

In order to validate the presented averaged model, we
must first identify the model hydrodynamic parameters

Camera

Tail Fin

Pectoral Fin

Fig. 2. The experimental setup. During experiments the
pectoral-fin actuated robotic fish swims within the
enclosed area (denoted by the yellow lines) in the
tank, and the overhead Logitech camera captures a
video of the robot swimming. An image processing
algorithm detects the red and blue markers placed
on top of the robot to localize it and determine its
heading.

(Cp, CL, and Cyy), the fin parameter (A), and the scaling
functions (Kme, KfyR7 Ky, Kme, KfyL7 KmL)~ In this
section we present the experimental setup and discuss the
experimental identification and validation of the hydrody-
namic and fin model parameters and present an estima-
tion scheme to obtain the scaling coefficients. Finally, we
present simulation and experimental results to evaluate
the effectiveness of the proposed averaged model.

4.1 Ezperimental Setup

To validate the presented averaged model, we conduct
experiments on the free-swimming robotic fish depicted
in Fig. 2. The robot consists of a rigid-shell body, a tail
and two rigid pectoral fins, which were all 3D-printed.
Although the robot also has a servo-actuated caudal fin,
the tail-actuation is not included in this work. The body
and fins dimensions are shown in Tab. 1. Two Tenergy Li-
Ton rechargeable batteries (7.4V, 3350mAh) are used to
power the robot, and two Hitec digital micro waterproof
servos (HS-5086WP) are used to actuate the pectoral fins
according to (21). A Microchip Digital Signal Processor
and Controller (DSPIC30F6014) is used to realize the
control of the servos and a Xbee module is used for wireless
communication with a computer.

The robotic fish is run in a 1.15 m by 2.30 m space enclosed
within a tank equipped with an overhead Logitech C930E
camera as seen in Fig. 2. To obtain the robotic fish’s
position and orientation in the tank, two markers were
attached to the anterior and posterior of the robotic fish
body. An overhead video of the robotic fish swimming in
the tank is captured using the camera, and Visual C++
with the OpenCV library is used to implement an image
processing algorithm. The algorithm detects the positions
of the two markers and uses their average to obtain the
center position of the robotic fish. In addition, the heading
angle of the robot is estimated using the positions of the
two markers, and a high gain observer is used to estimate
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the linear and angular velocities of the robot based on the
measured position and heading.

4.2 Original Dynamics Parameter Identification

Before identifying the scaling functions and validating the
averaged model, the hydrodynamic parameters present
in the dynamic and averaged model must first be iden-
tified. These parameters are either measured directly or
calculated based on measurements and are summarize in
Tab. 1. As typically done in literature (Aureli et al., 2009;
Behbahani and Tan, 2016), the body inertia about Z-axis
is evaluated as Jp, = %mb(a2 +¢?), where a = w

and ¢ = M are the semiaxis lengths. Furthermore,

the added masses, added inertia, and wetted surface are
calculated based on a prolate spheroid approximation of
the robotic fish body (Aureli et al., 2009; Fossen, 1994).

The fin normal force coefficient A\, as well as the body
drag and lift coefficients (Cp, Cr, and C)yy) are identified
empirically from data collected using the robotic fish
described above. In particular, we consider only turning
motions which are achieved by activating only one fin at
a time. To determine the body drag, lift and moment
coefficients (Cp, Cr, and Cyps), we let the robotic fish
swim for some time (approximately 35 s) to reach the
steady-state motion, and then stop actuating the pectoral
fin such that the robot slowly halts to a stop. We use the
captured video along with the image processing algorithm
to determine the body-fixed velocities for different sets
of fin amplitudes (yvar): 15°, 18°, 20°, 25°, 30°; biases
(vor): 80°, 90°, 100°, 110°; periods (T,r): 0.5, 0.66, 1 s;
and power/ recovery stroke ratios (¢ ) 5, 6. Using the
measured body-fixed velocities along with the dynamic
equations (19) and a high gain observer to estimate the
body-fixed acceleration, a parameter estimation algorithm
is then employed to estimate the parameters. Furthermore,
to estimate the fin parameter A\, we collect the robotic
fish steady-state body-fixed velocities for another set of
fin amplitudes (yagr): 8°, 10°, 13°, 15°, 18°; biases (Yor):
85°, 93°, 98°, 100°, 103°; periods ( pR). 0.5, 0.66 s ;
and power/ recovery stroke ratios (¢): 4, 5, and in a
similar fashion estimate the parameter A. The resulting
coefficients are listed in Tab. 1. These parameters are then
used in independent model validation for the dynamic and
averaged models.

To validate the dynamic model, we conduct experiments
based on different fin actuation parameters in both forward
swimming and turning. In the forward swimming case both
left and right fins are actuated in sync with the same fin-
beat patterns. We compare the steady state swimming
speeds predicted by the model and those obtained from
experiments in the forward swimming case, whilst in
the turning cases we compare the turning radius and
period. Each experiment is repeated four times to obtain
the average and standard deviation. Tab. 2 and Tab. 3
lists the percent errors between the values obtained from
experiments and those obtained from simulation using the
parameters estimated earlier. The comparison indicates
that the dynamic model has acceptable accuracy.

Table 1. IDENTIFIED MODEL PARAMETERS.

Robot Body
Parameter Value unit
Body Length 0.198 m
Body Height 0.1 m
Body Width (Cp) 0.03 m
Mass (my) 0.795 kg
Inertia (Jp.) 4.26x10~*  kg-m?
- 0.095 kg
—May 0.1794 kg
—Jaz 2.7x107%  kg/m?
Wet surface area (S4) 0.325 m?
Drag coef. (Cp) 0.3870 -

Lift coef. (Cp) 0.0808 -
Moment coef. (Cy) 8.5 x1072  kg/m?
Pectoral Fin

Parameter Value unit
Fin Length (Sp) 0.061 m

Fin Heigth (D)) 0.041 m

Fin Mass (mpy) 0.008 kg
Effective mass (mp) 0.008 kg
Water density (p) 1000 kg/m3
A 4.1464 -

Table 2. MODEL VALIDATION RESULTS: RELA-
TIVE MODEL PREDICTION ERROR FOR TURN-
ING RADIUS AND TURNING PERIOD.

(vor,vAL,Tpr,Cr)  Turning Radius Error(%)  Turning Period Error(%)
(85°,18°,1s,4) 10.96 5.96
(85°,18°,15,3) 4.66 17.92
(80°,22°,1s,4) 12.67 4.91
(80°,22°,1s,3) 16.15 2.12
(85°,22°, 15, 4) 2.60 1.39
(85°,22°, 15,3 ) 13.61 4.82

Table 3. MODEL VALIDATION RESULTS: SURGE

VELOCITIES PREDICTED BY THE ORIGINAL

MODEL AND MEASURED FROM EXPERIMENTS,
AND THEIR RELATIVE ERROR

(voL,vaL, Tpr,CL) Surge Velocity(Experiments)  Surge Velocity(Model)  Error (%) ‘

(95°,12°,1s,4) 0.0383 0.0397 3.60
(95°, 12°,0.66 s, 5 ) 0.0423 0.0449 5.77
(100°, 12°, 0.8 5,4 ) 0.0536 0.0494 8.52
(100°, 12°, 0.8 8,5 ) 0.0614 0.0558 9.96
(100°, 12°, 0.66 s, 5 ) 0.0490 0.0447 9.74

4.8 Identification of Scaling Functions

To identify the corresponding scaling functions for the
averaged model, we conduct simulations using the original
dynamic model (with the experimentally identified param-
eters) considering only one fin (the right fin) actuated with
a given fin-beat pattern, and seek the corresponding values
of the scaling functions (i.e., Ky, r, Kt r, Kmy) such that
the resulting average model (25) produces the best match
in the turning radius and turning period with those of the
original dynamics (19).

Under a given fin actuation pattern, instead of conducting
blanket-search of the scaling parameters as done in Wang
and Tan (2015), we propose a novel formulation that
treats the scaling values for the given actuation pattern as
constant control inputs to the averaged model and solve
for these values through nonlinear model predictive control
(Allgower et al., 2004), such that the averaged system
tracks the surge, sway, and angular velocities extracted
from the simulated trajectory of the original dynamics (19)
under the same fin-actuation pattern. We elaborate on this
below.
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Simulations are first conducted using the original dy-
namic model with different sets of fin-beat parameters
(70,74,Tp, (), where we use the identified body param-
eters (Tab. 1). Only the right fin is actuated, since the
scaling functions are considered left-right symmetric. In
particular, 560 simulations are conducted with the com-
bination of the following fin-beat patterns: 7 different
amplitudes (var) : 10°,15°,20°,22°,25°,28°,30°; 5 differ-
ent biases (yor): 50°,60°,70°,80°,90°; 4 different periods
(Tpr): 0.5, 0.66, 1, 2 s; and 4 different power/recovery
stroke ratios ({): 2, 3, 4, 5.

For each simulation, we extract the turning radius R,
turning period 7p (time taken to complete one turn)
and angle of attack « of the robot at the steady state,
and then use the following relationships to determine the
corresponding steady-state body-fixed linear (v, ,v.,) and
angular (w,) velocities for the original dynamics:

[012 2
2w ve, T v
T,=—, R= 71!, a = arctan —~ (29)
Wy Wy Ve,

These velocities (v, ,vc,,w.) are then considered as de-
sired values to be tracked by the averaged model: v, =
Vey, Uyr = Ve, ,W0p = w,. We further let uy = Ky g,us =

Ky, r,u3z = Ky, such that (25) can be rewritten as

Ve, =f1 +uifu.r (30)
e, =f2 + U2 fn,r (31)
W, =f3 4+ u3Thy (32)

We construct the velocity tracking error as

'Dcm - Eacr
€n = vcy — Uyr

Wy 7(-:)1“

(33)

The objective is to determine wui,us,us such that the
tracking error states of system (33) are driven to zero. To
do so, we define an objective function with the following
stage cost F(-) and terminal penalty E(-)

F(en,u) =en(1)" Qeq(r) (34)
E(en(t+T)) =(en(t + 1)) Qr(en(t+T))  (35)
where T is the prediction horizon, u(7) = [u; us u3]”, and

@ and Q7 are positive-definite weighting matrices that
penalize deviations from the desired values. By solving
the nonlinear model predictive control (NMPC) problem
(for example, using ACADO Model Predictive Control
Toolkit (Houska et al., 2011)), we obtain the optimal
inputs w1, ug, us and thus the values for Ky, g, Ky R, Kmp,
for a given fin-beat parameter combination. Specifically,
the following NMPC parameters are used in solving for
the scaling values:

Length of optimization horizon : T'= 10 s
Sampling interval : ¢t = 1's

Weighting matrix : @ = 200013

Terminal Penalty Weighting matrix : Q7 = 8013

where I3 is a 3 by 3 identity matrix. Fig. 3 shows
the resultant 3D surfaces of optimal coefficients obtained
for different fin amplitudes and fin biases when the fin
actuation period and power/recover stroke ratio are fixed
at some particular values. Results for other period and
ratio combinations are similar and thus omitted in the
interest of brevity.

Fig. 3. Obtained scaling values Ky, r, Ky r, Kmr versus
the amplitude v4, and bias vy,, for fixed actuation
period T}, =1 s and ratio ¢ = 2.

To obtain closed-form expressions for the relationships be-
tween each scaling coefficient and the fin-beat parameters,
we implement a multivariate nonlinear regression scheme
using the MATLAB command fitnlm, where we seek the
lowest-degree polynomials that provide adequate match
with the computed scaling coefficients, and obtain the
following;:

K, g =0.9801 — 0.06537.4,, + 0.082870,,
—0.0007Cx — 0.0069T, &

Ky,r =—529.240.6v4, + 1893.47, — 3.8v%,,
— 2500.675,, — 0.0000276¢% — 0.00013247 -5

+9.175%,, +1446.673, — 8.274,, — 309.175,,
(38)
K, =0.9869 — 0.40047.4,, + 0.066170,,

—0.0007Cx — 0005977 (39)

4.4 Validation of the Averaged Model

We first compare the turning radius and period predictions
between the averaged and the dynamic model for the
turning case. Tab. 4 lists the errors between the predictions
obtained from the averaged model and those obtained from
the dynamic model for different sets of fin parameters.
Furthermore, Fig. 5 depicts circular trajectories obtained
from experiments and simulation using the dynamic and
averaged models. From the figure, we can see how the
trajectory behavior and steady-state radius of the dynamic
and averaged model predictions match that of experi-
ments, which suggest that the average model is able to
capture well the behavior of the original dynamics and the
dynamics of the robot under the new actuation patterns.

To further validate the average model, we conduct sim-
ulations and experiments considering the forward swim-
ming motion. The forward swimming case was not used
in obtaining the scaling functions, and thus provides inde-
pendent validation for the proposed average model. Fig. 4
compares the simulated steady-state forward swimming
speeds predicted with the original dynamic and the av-
erage models, and those obtained from the experiments.
Note that the steady state is considered to be reached after
the first 15 s of the robot swimming. In the experiments,
for the given { = 4, to prevent exceeding the speed limit
of the servo motors, a maximum actuation frequency 1.75
Hz is used. We have extended the simulation results to
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Table 4. AVERAGED MODEL VALIDATION RE-
SULTS: RELATIVE MODEL PREDICTION ERROR
BETWEEN THE ORIGINAL AND AVERAGED
MODELS FOR TURNING RADIUS AND TURNING

PERIOD .
(vor»vAL>Tpr,¢r)  Turning Radius Error(%)  Turning Period Error(%)
(©90°, 22°, 15, 4) 351 0.21
(90°,22°, 15, 3) 3.58 3.13
(90°,20°, 15, 4) 3.45 1.34
(90°, 20°,1s,3) 3.77 5.58
(80°,22°, 15, 4) 2.93 1.84
(80°,22°, 15,3 ) 3.31 2.56
(80°,20°, 15,4 ) 2.86 0.73
(80°, 20°, 1,3 ) 3.78 2.17
(60°,22°, 15,4 ) 2.14 4.06
(60°,22°, 15, 3) 2.29 2.00
(60°,20°, 15, 4) 1.97 0.19
(60°,20°, 15, 3) 2.28 4.60
0.16 T T T

I—Experiments
H-Original Dynamics
> Averaged Dynamics
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Fig. 4. Comparison between experimental results and
the predictions of the steady-state forward swimming
speed based on the average model and the original
dynamic model. In this study the left and right
fins undergo symmetric actuation with the following
parameters fixed: 74 = 15°, 79 = 95° and ¢ = 4.

fin-beat frequency up to 2.75 Hz in order to capture the
performance trend of the robotic fish.

5. CONCLUSION

In this work, we presented a nonlinear dynamic average
model for a pectoral fin-actuated robotic fish. In partic-
ular, we proposed a scaling averaging scheme, where the
pectoral fin-generated hydrodynamic forces and moment
are first scaled using functions of the fin-beat parame-
ters, and classical averaging is then conducted over the
resulting dynamics. Furthermore, we proposed a novel
estimation scheme employing a nonlinear model predictive
controller and a multivariate nonlinear regression scheme
to determine the scaling functions. To evaluate the aver-
aged model, simulation comparing the predictions from the
original and average models were presented. Furthermore,
both models were validated with experimental results.

For future work, the proposed averaging model will be
utilized in a trajectory tracking control scheme to demon-
strate its utility in feedback control of pectoral fin-
actuated robotic fish. We will further explore the modeling
and control of a robotic fish actuated by both pectoral
and caudal fins, especially the optimal control policies to
balance objectives in accuracy and energy-efficiency under
different task requirements.

0.8
—_—
£ 0.6
b
>

0.4

0.8 1 1.2 1.4
x(m)
= Averaged Dynamics
== Original Dynamics

0.8
—_
£ 0.6
'
>

0.4

0.8 1 1.2 1.4
x(m)
Measurement Experiments  Original Model —Averaged Model
Turning Radius 0.169 m 0.17 m 0.18 m
Turning Period 26.59 s 31.55 s 32.44 s

Fig. 5. Circular trajectories captured in experiments and
predicted by the original and average dynamic mod-
els. In this case the right fin remains still and the left
fin undergoes actuation with the following parameters
fixed: var, = 22°, o = 85°, Tpr, =1 and ¢ = 4.
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