
Preprint

DEEP GRAPH LIBRARY: A GRAPH-CENTRIC, HIGHLY-
PERFORMANT PACKAGE FOR GRAPH NEURAL NET-
WORKS

Minjie Wang 2,3, Da Zheng 1, Zihao Ye 2, Quan Gan 2, Mufei Li 2, Xiang Song 2,
Jinjing Zhou 2, Chao Ma 2, Lingfan Yu 3, Yu Gai 2, Tianjun Xiao 2, Tong He 2,
George Karypis 1, Jinyang Li 3 & Zheng Zhang 2,4

1 Amazon Web Services, 2 AWS Shanghai AI Lab
3 New York University, 4 NYU Shanghai

ABSTRACT

Advancing research in the emerging field of deep graph learning requires new tools
to support tensor computation over graphs. In this paper, we present the design
principles and implementation of Deep Graph Library (DGL)1. DGL distills the
computational patterns of GNNs into a few generalized sparse tensor operations
suitable for extensive parallelization. By advocating graph as the central program-
ming abstraction, DGL can perform optimizations transparently. By cautiously
adopting a framework-neutral design, DGL allows users to easily port and leverage
the existing components across multiple deep learning frameworks. Our evaluation
shows that DGL significantly outperforms other popular GNN-oriented frameworks
in both speed and memory consumption over a variety of benchmarks and has little
overhead for small scale workloads.

1 INTRODUCTION

Graph neural network (GNN) generalizes traditional deep learning to capture structural information
in the data by modeling a set of node entities together with their relationships (edges). Its application
range is broad, including molecules, social networks, knowledge graphs and recommender systems
(Zitnik et al., 2018; Schlichtkrull et al., 2018; Hamilton et al., 2018; Ying et al., 2018), or in general
any datasets that have structural information. As a vibrant and young field, accelerating research
on GNN calls for developing domain packages that are simultaneously flexible and powerful for
researchers, and efficient and performant for real-world applications.

Meeting both requirements are challenging: there are significant semantic gaps between the tensor-
centric perspective of today’s popular deep-learning (DL) frameworks and that of a graph, and
performance gaps between the computation/memory-access patterns induced by the sparse nature of
graphs and the underlying parallel hardware that are highly optimized for dense tensor operations.

This paper gives an overview of the design principles and implementation of Deep Graph Library
(DGL), an open-source domain package specifically designed for researchers and application devel-
opers of GNN. Specifically, we make the following contributions:

• DGL distills the computational patterns of GNNs into a few user-configurable message-passing
primitives; these primitives generalize sparse tensor operations and cover both the forward infer-
ence path and the backward gradient computing path. As such, they not only serve as the building
blocks optimized for today’s hardware, but also lay the foundation for future optimizations as
well. In addition, DGL identifies and explores a wide range of parallelization strategies, leading
to speed and memory efficiency.

• DGL makes graph the central programming abstraction. The graph abstraction allows DGL to
simplify user programming by taking full control of the messy details of manipulating graph data.

1Project site: https://www.dgl.ai

1

ar
X

iv
:1

90
9.

01
31

5v
2

 [c
s.L

G
]

25
 A

ug
 2

02
0

https://www.dgl.ai

Preprint

• A full GNN application takes more than a GNN model; the other components (e.g. data pre-
processing and feature extraction) are outside the scope of DGL. As such, DGL strives to be
as framework neutral as possible. DGL runs on top of PyTorch (Paszke et al., 2019), Tensor-
Flow (Abadi et al., 2016), MXNet (Chen et al., 2015) and leverages their capability as much it
can, while minimizing the effort it takes to port a model across frameworks. Many choices we
made are applicable to other domain packages that share the same aspiration.

The rest of the paper is organized as follows. We first introduce the backgrounds about GNN message
passing in Sec. 2. We formulate these computations as two computational patterns – g-SpMM
and g-SDMM, and discuss the parallelization strategies in Sec. 3. Sec. 4 describes the design and
implementation of the DGL framework. We discuss some related works in Sec. 5 and evaluate DGL
in Sec. 6.

2 GRAPH NEURAL NETWORKS AND MESSAGE PASSING

There have been a significant development in extending deep neural networks to non-euclidean data
such as graphs and manifolds. Many efforts (Scarselli et al., 2009; Bruna et al., 2013; Defferrard
et al., 2016; Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018) are made to
formulate appropriate model architectures for learning on graphs, which gave birth to the Graph
Neural Networks (GNNs) family. Recent studies (Gilmer et al., 2017; Battaglia et al., 2018) manage
to unify different GNN variants into the message passing paradigm. Let G(V , E) be a graph with
nodes V and edges E ; Let xv ∈ Rd1 be the feature for node v, and we ∈ Rd2 be the feature for edge
(u, e, v)2. The message passing paradigm defines the following node-wise and edge-wise computation
at step t+ 1:

Edge-wise: m(t+1)
e = φ

(
x(t)
v ,x(t)

u ,w(t)
e

)
, (u, e, v) ∈ E . (1)

Node-wise: x(t+1)
v = ψ

(
x(t)
v , ρ

({
m(t+1)
e : (u, e, v) ∈ E

}))
. (2)

In the above equations, φ is a message function defined on each edge to generate a message by
combining the edge feature with the features of its incident nodes; ψ is an update function defined on
each node to update the node feature by aggregating its incoming messages using the reduce function
ρ. In GNNs, the message and update functions are parameterized by neural network modules, and ρ
can be any set function such as sum, mean, max/min, or even an LSTM network (Hamilton et al.,
2017).

3 GNN MESSAGE PASSING AS GENERALIZED SPMM AND SDDMM.

There is a strong connection between the message passing paradigm to sparse matrix operations.
For example, given the node feature matrix X ∈ R|V|×d and the adjacency matrix A of a graph,
the node-wise computation in the graph convolutional network (GCN) (Kipf & Welling, 2017) is
a sparse-dense matrix multiplication (SpMM) Y = AX. For the edge-wise computation, many
GNN models (Veličković et al., 2018; Kepner et al., 2016) calculate an attention weight on each
edge. One popular formulation of calculating attention weight is by a dot product between the source
and destination node features (Vaswani et al., 2017). This corresponds to a sampled dense-dense
matrix multiplication (SDDMM) operation W = A� (XXT): semantically, it multiplies two dense
matrices, followed by an element-wise multiplication with a sparse mask matrix, and output a sparse
matrix.

An important characteristic of SDDMM is that it maps the representation of an edge’s incident nodes
to the representation on the edge. Similarly, SpMM aggregates the representation of a node’s inbound
edges into a node representation. Both of them can be extended. Given a graph G(V , E),

• A generalized SDDMM (g-SDDMM) defined on graph G with message function φm is a function

g-SDDMMG,φm
: R|V|×d1 ,R|V|×d2 ,R|E|×d3 7→ R|E|×d4

2We use a slightly different notation than a traditional (u, v) pair, where e is the ID associated with the edge.

2

Preprint

where the output edge representations M = g-SDDMMG,φm
(X,Y,W) are computed from the

edges’ own features, as well as features of their incident nodes:

me = φm (xu,yv,we) , ∀(u, e, v) ∈ E .

• A generalized SpMM (g-SpMM) defined on graph G with message function φz and reduce function
ρ is a function

g-SpMMG,φz,ρ
: R|V|×d1 ,R|V|×d2 ,R|E|×d3 7→ R|V|×d4

where the output node representations Z = g-SpMMG,φz,ρ
(X,Y,W) are computed from the

nodes’ inbound edge features, the node features themselves, and the neighbor features:

zv = ρ ({φz (xu,yv,we) : (u, e, v) ∈ E}) , ∀v ∈ V .

These two primitives play an essential role in GNN computations; the forward path essentially
applies a series of g-SpMM (and g-SDMM if attention is involved, as in GAT) to derive a stack of
node representations. One can prove that the gradient of the objective function w.r.t. g-SDDMM
and g-SpMM inputs can be expressed as another g-SDDMM and g-SpMM (see the supplementary
materials for the full proof):
Theorem 1. Given M = g-SDDMMG,φm

(X,Y,W) and Z = g-SpMMG,φz,ρ
(X,Y,W) and an

objective function L = `(M,Z). Then

• The partial derivative ∂L
∂W can be computed by a g-SDDMM on graph G.

• The partial derivative ∂L
∂X can be computed by a g-SpMM on the reverse graph G̃(V , Ẽ), Ẽ =

{(u, e, v) : (v, e, u) ∈ E}.

• The partial derivative ∂L
∂Y can be computed by a g-SpMM on graph G.

The benefits of such formulation are two. First, consolidating all the GNN computations into two
patterns lays a foundation for system optimizations such as parallelization and auto-tuning. Second,
g-SpMM naturally avoids generating intermediate storage for messages, and g-SDDMM avoids
copying node representations to edges. Later, we will show that such fused computation is the key
reason for a superior training speed and memory efficiency (Sec. 6).

3.1 PARALLELIZING G-SPMM AND G-SDDMM ON TENSORIZED HARDWARE

Modern hardware like GPUs and TPUs utilizes large-scale multi-threading to achieve high throughput
while hiding memory access latency. This requires the workload to have two characteristics. First,
the computation-to-memory-access ratio must be high so that the cost of one memory operation
is amortized over many floating point operations. Second, the workload should have sufficient
parallelism to take advantage of the massive parallelization power in the hardware..

By these criteria, g-SpMM and g-SDDMM are inherently challenging workloads. First, each node’s
data is only used by its neighbors. With little data reuse, the resulting computation-to-memory-access
ratio is low. Second, although there exist multiple ways to parallelize the g-SpMM and g-SDDMM
operations – by node, edge or feature, different strategies have pros and cons and there is no jack
of all trades. Feature parallelization lets each thread compute on one feature and different ones
can run in parallel. Although it is free of synchronization, the parallelism is limited by hidden size.
For parallelization on nodes and edges, the optimal performance depends on numerous factors (see
Table 1), including the preferred storage format, the specific computation pattern (i.e., g-SpMM or
g-SDDMM), fine-grained synchronization to ensure atomicity (if required), degree of parallelism,
and thus is ultimately both data and model dependent. DGL’s current strategy is based on heuristics –
using node parallel for g-SpMM but edge parallel for g-SDDMM, and there is ample room to apply
machine learning for performance optimization.

4 DGL SYSTEM DESIGN

We now describe two important strategies we adopted in the development of DGL: 1) using graph
as the central, user-friendly abstraction to allow deep optimization and 2) achieving maximum
framework neutrality to enable seamless application integration.

3

Preprint

Node Parallel Edge Parallel

Schedule Each thread is in charge of the entire
adjacency list of a node.

Each thread is in charge of one edge.

Viability Any g-SpMM or g-SDDMM. Any g-SDDMM and any g-SpMM
with commutative and associative ρ.

Preferred Format Compressed sparse row (CSR) due to
fast lookup of adjacency list.

Coordinate list (COO) due to fast
lookup of incident nodes.

Need for synchronization No No for g-SDDMM; g-SpMM requires
atomic instructions for aggregating re-
sults to destination node memory.

Workload Distribution Depend on node degrees Balanced

Parallelism Depend on number of nodes Depend on number of edges

Table 1: Summary of the node and edge parallel strategies.

Figure 1: Computing graph convolution on a subgraph in DGL and PyG.

4.1 GRAPH AS A FIRST-CLASS CITIZEN

For a domain package designed for GNNs, it is natural to define graph as the central representation.
While this is the consensus among different packages (Fey & Lenssen, 2019; Battaglia et al., 2018;
Zhu et al., 2019; Alibaba, 2019), DGL differs in a number of places. First, it fully embraces an
object-oriented programming style at the graph level. Second, recognizing the fact that research work
on graphs are diverse and have developed a rich set of tools, it adopts an interface familiar to graph
analytic experts. Third, the package exposes necessary low-level structures to advanced users when
necessary. The fourth point, which we will discuss in Section 4.2, is its extensive use of tensor data
structure to allow seamless integration with base DL frameworks.

Figure 1 compares the programming model of DGL and PyTorch Geometric (PyG) (Fey & Lenssen,
2019). In DGL, DGLGraph is the key data structure created by the dgl.graph API (line 3). Different
models (e.g., GraphConv for graph convolution (Kipf & Welling, 2017), GATConv for graph attention
model (Veličković et al., 2018)) operate on a DGLGraph directly (line 15); sampling, too, returns a
DGLGraph object (line 10). The returned subgraph object automatically extracts the features needed,
saving the effort to manually slice from tensors (line 12–13). Consolidating graph operations in
an object-oriented manner not only improves software consistency, but also enables performance
enhancement transparent to users. For example, DGL automatically switches to use CSR or CSC
formats for g-SpMM depending on whether it is forward or backward propagation, and uses COO for
g-SDDMM.

4

Preprint

GNN Model Change Type Change /
TotalI II III

GCN (Kipf & Welling, 2017) 4 12 14 30 / 103
GAT (Veličković et al., 2018) 4 26 7 37 / 95
GraphSage (Hamilton et al., 2017) 4 13 8 25 / 85
GIN (Xu et al., 2018) 4 4 0 8 / 37
SGC (Wu et al., 2019) 4 4 4 12 / 50

Table 2: The categorized number of lines of codes (LoC) need to change when porting a GNN layer in DGL
from PyTorch to TensorFlow. Code comments are excluded.

Integrating graph with deep learning is a relatively young concept, but graph analytics has been a
long-standing research field. There exist many sophisticated tools and packages. Many DGL APIs
took inspiration from NetworkX (Hagberg et al., 2008) – the NumPy-equivalent python package
in graph analytics. Examples are topological query APIs implanted as class member functions
such as g.in_degree for getting node indegrees of a graph g . The two methods g.edata and
g.ndata for accessing edge and node features are similarly inspired, with a dictionary-like interface
that allows named tensors. Importantly, those APIs, while sharing naming convention with their
NetworkX counterparts, have batched versions using tensor data structure. For example, NetworkX’s
g.in_degree only supports querying the degree of one node at a time, while DGL supports querying
multiple nodes by providing a tensor of node IDs. Finally, we note that these APIs are more than
a matter of convenience. For instance, a heterogeneous graph can have nodes or edges of different
types, which can further have unaligned feature dimensions; it will be cumbersome to store them
compactly in one tensor.

Finally, to maintain expressiveness and flexibility, it is important to expose internal structures so users
can innovate beyond the APIs that DGLGraph offers. For instance, there have been a diverse number
of studies (Kotnis & Nastase, 2017; Lukovnikov et al., 2017) on negative sampling strategies for the
link prediction task. Users can craft these negative edges using the internal adjacency matrix of a
DGLGraph object via the g.adj API (line 17–19 in Figure 1).

To define new GNN models, users can invoke the g-SpMM and g-SDDMM kernels via the
g.update_all(φ, ρ) and g.apply_edges(φ) calls on a DGLGraph , with user-defined φ and
ρ. In principle, a powerful compiler can parse any given functions and generate a fused kernel for
execution. As the technique is yet to be developed (and thus is an active research), DGL provides a
set of most common φ and ρ as built-ins and generates kernels for each of the combination. Note all
these kernels avoid materializing edge data to save memory, which is important for all GNN models
where edge features are needed (Sec. 6). For more complex user-defined functions (e.g., LSTM as a
reduction function), DGL gathers node features to edges so users can compute messages in a batch.
For the reduce phase, DGL groups nodes of the same degree into one bucket so that the received
messages in each bucket can be stored in a dense tensor. DGL then invokes the user-defined reduce
function repetitively on each bucket. This catch-all strategy makes it easy for quickly prototyping
model ideas on graphs of small sizes.

4.2 FRAMEWORK-NEUTRAL DESIGN

A natural way to build a domain package is to build it on top of one of the DL frameworks (e.g.,
PyTorch, TensorFlow, and MXNet). These mature frameworks already provide high-performance
differentiable dense tensor operators, rich neural network modules and optimizers; there is scarcely
any reason to reinvent the wheel. DGL makes a conscious decision to extend multiple frameworks
and, consequently, to be as framework-neutral as possible. Our belief is that a real-world, end-to-end
GNN application will require other modules outside of GNN, and that they can be, or have already
been, implemented in any framework of users’ choice. In addition, users may favor a particular
framework simply because of its unique features.

Note that being framework-neutral is different from framework-agnostic. That is, while DGL has
both PyTorch and TensorFlow backends, a PyTorch DGL model still needs to be modified if it is
to be run in TensorFlow. Being completely framework-agnostic requires putting a shim over all
conceivable operators across different frameworks, the cost of which is prohibitive. Instead, we adopt

5

Preprint

a practical approach and reduce framework dependencies as much as possible, while providing clear
guidelines as where the changes are to be made. Importantly, DGL can achieve a high degree of
framework neutrality in part due to the abstraction and implementation of DGLGraph . As we shall
describe below and quantify through the models that we have implemented, the changes are often
local and trivial.

A complete GNN application includes data loading and preprocessing, GNN model setup, training
loop and evaluation. In theory, they are all framework dependent. The goal of our design is to make
model specification as portable as possible. Versions of the same model for different frameworks
differ in three categories: (I) model class inheritance (e.g., using tensorflow.keras.layer.Layer
instead of torch.nn.Module); (II) sub-modules used inside the model and parameter initialization;
(III) framework-specific operators (e.g., using tensorflow.matmul instead of torch.matmul). A
mini-porting guide and example codes are included in the supplementary materials.

Table 2 shows the number of lines of code to change when we port several GNN layers from PyTorch
to TensorFlow in DGL. They account for roughly 20%–40% of the entire model implementations.
Most of them are trivial modifications and are easy for developers versed in both frameworks.
Importantly, all graph-related operations are unified and stay identical in different versions.

To achieve this level of framework neutrality with a minimum performance impact, DGL must decide
what functionalities to delegate and re-direct to base frameworks, and otherwise judiciously take
over the control. We summarize the main principles below; most of them shall be applicable to other
domain packages that share the same aspiration.

Owning the minimum & the critical. From our experience, a domain package must maintain
control at places where performance or usability matters the most. For DGL, it means sparse tensor
storage management and operations. This leads to the decision of defining DGLGraph (see Section 4.1).
The first release of DGL used dense operations from frameworks to express sparse operations in
GNNs and performed poorly. We decided to implemented sparse operations ourselves.

Leverage and delegate otherwise. Most of DGL’s APIs take framework tensors as input and
perform dense operations on them. DGL defines a shim to map dense tensor operations to their
framework-specific implementations. For instance, summing up the hidden state of all nodes is
a common readout function for graph-level classification. To batch this readout operation we
define a shim function unsorted_1d_segment_sum , which translates to unsorted_segment_sum in
Tensorflow and scatter_add in PyTorch. Such remapping is in spirit similar to ONNX (onn, 2018),
but is designed specifically for DGL.

To enable auto-differentiation, all computation involving node/edge features must be expressed with
differentiable functions and operators. DGL defines custom functions that directly take the DGLGraph
as well as node/edge features as inputs, and return node/edge features as outputs. These operators are
then registered as PyTorch/Tensorflow/MXNet auto-differentiable functions.

DGL also takes advantage of DLPack (dlp, 2017), an open-source in-memory tensor structure
specification for sharing tensors among deep learning frameworks, to directly process and return
DL framework tensors without data copying. Many frameworks, including Pytorch, MXNet, and
TensorFlow, natively support DLPack.

The above functionality calls for memory allocation and management. DGL delegates memory
management to the base frameworks. A base framework usually implements sophisticated memory
management (e.g., to reduce memory allocation overhead and memory consumption), which is
especially important for GPU memory. Because the output shape of a graph kernel is well determined
before execution, DGL calculates the output memory size, allocates memory from the frameworks
for the output tensors and pass the memory to the kernel for execution.

5 RELATED WORK

Due to the rising interests in GNNs, frameworks designed specifically for expressing and accelerating
GNNs are developed. PyTorch-Geometric (PyG) (Fey & Lenssen, 2019) is an extension for geometric
deep learning to the PyTorch framework. PyG’s programming model is centered around sparse tensor
abstraction. During message passing, it first gathers node features to edges, applies user-defined

6

Preprint

message function and then scatters them to the target nodes for aggregation. This scatter-gather
pattern is inefficient due to generating large intermediate message tensors. GraphNet (Battaglia
et al., 2018) and AliGraph (Zhu et al., 2019) are two TensorFlow packages for building GNN models.
Both frameworks allow customizable message functions but the reducers are limited to TensorFlow’s
operators for segment reduction. Euler (Alibaba, 2019) focuses on sampling-based mini-batching
training on large graphs but lacks GPU support. NeuGraph (Ma et al., 2019) accelerates GNN training
by partitioning graphs to multiple GPUs. All of these systems are tied to one specific base DL
framework.

There is a long line of work for optimizing sparse matrix operators such as sparse matrix-vector
multiplication (SpMV) or sparse matrix-matrix multiplication (SpMM) on both CPU and GPU. These
techniques range from studying and innovating new sparse matrix formats (Bell & Garland, 2008;
Filippone et al., 2017), advanced parallel pattern (Yang et al., 2018) to tiling and reordering (Yang
et al., 2011; Baskaran & Bordawekar, 2009) in the context of graph analytics (Ashari et al., 2014;
Wang et al., 2016) or scientific computing applications (LeVeque, 2007), just to name a few. Our
work formally connects the area to GNN applications through the notions of generalized SpMM and
SDDMM. We present the emerging challenges and hope to open up new innovations in this domain.

6 EVALUATION

In this section, we compare DGL with other popular GNN frameworks: PyTorch-Geometric v1.5.0
(PyG) with PyTorch v1.5.0 as backend and GraphNet v1.1.0 with TensorFlow v2.2.0 as backend.3

6.1 TRAINING SPEED

We consider two benchmark tasks: node classification and link prediction, and two training methods:
full graph training and mini-batch training. Node classification datasets include the REDDIT graph
from (Hamilton et al., 2017), the OGBN-ARXIV, OGBN-PROTEIN, and OGBN-PRODUCT graphs from
the Open Graph Benchmarks (OGB) (Hu et al., 2020). For link prediction, we use benchmarks from
MOVIELENS(ML) (Harper & Konstan, 2015), the OGBL-CITATION and OGBL-PPA graphs from
OGB.

To demonstrate the generality of DGL’s optimizations, we benchmark a variety of state-of-the-
art GNN models, including GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), R-GCN (Schlichtkrull et al., 2017) and GCMC (Berg et al., 2017). All
the node classification tasks use cross entropy loss on the node representations learned by the GNN
models while the link prediction tasks perform edge predictions by computing the dot-product of
the source and destination node representations. For mini-batch training, we experiment with two
sampling methods: neighbor sampling (NS) (Hamilton et al., 2017) and cluster sampling (CS) (Chiang
et al., 2019). The supplementary material includes additional details about the datasets and model
configurations.

All experiments record the training time of one epoch averaged over 10 runs. For full graph training,
we measure the training time on both CPU and GPU. The testbeds are one AWS EC2 p3.2xlarge
instance (one NVidia V100 GPU with 16GB GPU RAM and 8 VCPUs) and one m5n.16xlarge
instance (64 VCPUs and 256GB RAM) for experiments on GPU and CPU respectively. For mini-
batch training, we perform sampling on CPU and copy the sampled subgraphs and features to GPU
for training. The testbed is a p3.2xlarge instance.

Table 3 shows the results of full graph training. For GraphSAGE on GPU, both DGL and PyG use the
vendor-provided cuSPARSE (Naumov et al., 2010) library for computing SpMM so the performance
is similar. DGL is slower by a small margin (2–11%) due to framework overhead. For GAT, DGL is
1.68× faster than PyG on OGBN-ARXIV because DGL’s g-SpMM kernel avoids generating message
tensors while PyG’s scatter-gather kernel does. This also explains PyG running out-of-memory on
OGBN-PROTEIN due to the graph being the densest one among all and having edge features. Link
prediction benchmarks show similar results. DGL is slower on small graphs (e.g., ML-100K) but is
1.83× faster on ML-1M. DGL can train on ML-10M while PyG runs out of memory. On CPU, DGL
outperforms PyG on all benchmarks by 1.9×–64×. This is attributing to the high CPU utilization

3Benchmark scripts are available at https://github.com/dglai/dgl-0.5-benchmark/

7

https://github.com/dglai/dgl-0.5-benchmark/

Preprint

Dataset Model CPU GPU
DGL PyG DGL PyG

Node Classification

REDDIT SAGE 13.80 99.47 0.432 0.403
REDDIT GAT 9.15 OOM 0.718 OOM

OGBN-ARXIV SAGE 3.31 8.389 0.104 0.098
OGBN-ARXIV GAT 1.237 43.21 0.086 0.234

OGBN-PROTEIN R-GCN 26.31 373.8 0.706 OOM

Link Prediction

ML-100K GCMC 0.064 1.569 0.021 0.012
ML-1M GCMC 0.351 40.47 0.045 0.103

ML-10M GCMC 5.08 OOM 0.412 OOM

Table 3: Epoch running time in seconds (full graph
training). OOM means out-of-memory.

Dataset Model DGL PyG

Node Classification

REDDIT SAGE w/ NS 19.90 20.45
REDDIT GAT w/ NS 21.07 21.89

OGBN-PRODUCT SAGE w/ NS 33.34 35.00
OGBN-PRODUCT GAT w/ NS 67.0 187.0
OGBN-PRODUCT SAGE w/ CS 8.887 8.614
OGBN-PRODUCT GAT w/ CS 14.50 58.36

Link Prediction

OGBL-CITATION GCN w/ CS 5.772 6.287
OGBL-CITATION GAT w/ CS 6.081 8.290

OGBL-PPA GCN w/ CS 5.782 6.421
OGBL-PPA GAT w/ CS 6.224 8.198

Table 4: Epoch running time in seconds for mini-
batch training using neighbor sampling (NS) and
cluster sampling (CS).

20K 40K 60K
Number of nodes

0

2

4

6

8

10

12

M
em

or
y

(G
B)

DGL
PyG

(a)

1 4 8
Negative-positive samples ratio

0

2

4

6

8

M
em

or
y

(G
B)

DGL
PyG

(b)

Figure 2: Memory usage of PyG and DGL. (a) GAT on synthetic graphs;
(b) GCN w/ CS on OGBL-CITATION.

104 105 106 107

Number of nodes
0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

1.17
1.11

0.94 0.94
0.83 0.79

0.71 0.73

PyG over DGL-PT
GraphNets over DGL-TF

Figure 3: Raw framework speedup of
PyG and GraphNets over DGL.

(50%) of DGL’s g-SpMM and g-SDDMM kernels using multi-threading compared with PyG’s (only
10%). The large gap of ML-1M is further caused by the huge intermediate message tensor, resulting
in a lot of time spent in memory traffic.

Table 4 evaluates the performance of mini-batch training. Compared with full graph training, the
total training time also depends on the cost in sample preparation including the sampling operations
and data movement from CPU to GPU. For neighbor sampling (NS), sample generation and data
movement can occupy up to 85% of the total training time, which explains why DGL and PyG have
similar performance. By contrast, cluster sampling (CS) is much faster and the benefit from DGL’s
optimized kernels gives an 1.56× speedup for training GAT. DGL beats PyG in all link prediction
benchmarks due to the use of g-SDDMM kernel in computing predictions on edges.

6.2 MEMORY CONSUMPTION

To illustrate the advantage of DGL’s g-SpMM and g-SDDMM kernels in reducing memory traffic,
we further studied the memory usage of DGL and PyG. We trained a 3-layer GAT model with one
attention head on a set of synthetic graphs of different scales. The average degree is fixed at 20 so
the number of edges grows linearly with the number of nodes. Figure 2a shows that PyG consumes
6.3× more memory than DGL and runs out of memory on graphs of more than 60K nodes. DGL
manages to keep a low memory footprint due to its g-SpMM kernel fusing the message computation
with aggregation. We further investigate the case of link prediction using a 3-layer GCN model with
cluster sampling on the OGB-CITATION dataset. The model computes a prediction on each edge
by performing a dot-product of its source and destination node representations, which is a typical
SDDMM operation. Figure 2b shows the memory usage by increasing the number of negative edges
per positive ones at each mini-batch. DGL’s memory consumption stays the same regardless of the
number of negative samples while PyG quickly runs out of memory. Since negative sampling is
universal in link prediction tasks, we expect the phenomenon to appear in other benchmarks as well.

8

Preprint

6.3 FRAMEWORK OVERHEAD

We compared DGL’s framework overhead with both PyG and GraphNets using PyTorch and Ten-
sorFlow as backends, respectively. In order to eliminate the impact of message passing kernels, we
trained an one-layer GCN over a synthetically generated chain graph and measured the epoch time.
We varied the number of nodes and plotted the speedup of PyG and GraphNets over DGL in Figure 3.
Ideally, the speedup should be one. We observed a 17% overhead compared with PyG when the
graph is very small, but as the graph size increases, the overhead becomes negligible. The overhead
is due to DGL registering message passing kernels via Python to keep implementation independent
of frameworks while PyG can register them in C++. Interestingly, DGL-TF is faster than GraphNets,
which uses native TensorFlow operators, demonstrating the viability of a framework-neutral package
with low overhead.

7 CONCLUSION

We present Deep Graph Library (DGL), a system specialized for deep learning models on graphs.
DGL identifies the connection between sparse matrix computation and the message passing paradigm
in graph neural networks, and consolidates these operations into generalized sparse-dense matrix
multiplication (g-SpMM) and sampled dense-dense matrix multiplication (g-SDDMM). DGL explores
a wide range of parallelization strategies, leading to its superior speed and memory efficiency. DGL
presents two design principles. By having graph as the core programming abstraction, DGL can hide
cumbersome details from users and perform optimization transparently. DGL’s lessons in designing a
framework-neutral domain package with low overhead shall also be applicable to other packages of
the same kind.

REFERENCES

Dlpack. https://github.com/dmlc/dlpack, 2017.

Open neural network exchange format. https://github.com/onnx/onnx, 2018.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pp. 265–283, 2016.

Alibaba. Euler. https://github.com/alibaba/euler, 2019.

Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarath, and P Sadayappan. Fast
sparse matrix-vector multiplication on gpus for graph applications. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
781–792. IEEE, 2014.

Muthu Manikandan Baskaran and Rajesh Bordawekar. Optimizing sparse matrix-vector multiplication
on gpus. IBM Research Report RC24704, (W0812-047), 2009.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on cuda. Technical
report, Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

9

https://github.com/dmlc/dlpack
https://github.com/onnx/onnx
https://github.com/alibaba/euler

Preprint

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. CoRR,
abs/1903.02428, 2019.

Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo. Sparse matrix-
vector multiplication on gpgpus. ACM Transactions on Mathematical Software (TOMS), 43(4):
1–49, 2017.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. In Advances in Neural Information Processing Systems, pp. 2030–
2041, 2018.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti, John Gilbert, Dylan
Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, et al. Mathematical founda-
tions of the graphblas. In 2016 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–9. IEEE, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Bhushan Kotnis and Vivi Nastase. Analysis of the impact of negative sampling on link prediction in
knowledge graphs. arXiv preprint arXiv:1708.06816, 2017.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems, volume 98. Siam, 2007.

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. Neural network-based question
answering over knowledge graphs on word and character level. In Proceedings of the 26th
international conference on World Wide Web, pp. 1211–1220, 2017.

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. Neugraph:
parallel deep neural network computation on large graphs. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), pp. 443–458, 2019.

M Naumov, LS Chien, P Vandermersch, and U Kapasi. Cusparse library. In GPU Technology
Conference, 2010.

10

Preprint

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pp. 8024–8035, 2019.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems, pp.
5099–5108, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. arXiv preprint
arXiv:1703.06103, 2017.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593–607. Springer, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D Owens.
Gunrock: A high-performance graph processing library on the gpu. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 1–12, 2016.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix multiplication on
the gpu. In European Conference on Parallel Processing, pp. 672–687. Springer, 2018.

Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan. Fast sparse matrix-vector
multiplication on gpus: implications for graph mining. arXiv preprint arXiv:1103.2405, 2011.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. KDD, 2018.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: a comprehensive graph neural network platform. Proceedings of the VLDB Endowment,
12(12):2094–2105, 2019.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

11

Preprint

APPENDIX A NOMENCLATURES

In the Appendix we adopt the following nomenclatures for representing different mathematical
objects:

• a: a scalar
• a: a (column) vector
• A: a matrix
• ai: the i-th row of matrix A

• Rm×n: the set of real matrices with m rows and n columns.
• {x : y} the set with all mathematical objects x that satisfies condition y.
• f(·, ·, . . .): a function.
• f : X 7→ Y: a function that maps from set X to Y
• ∂y

∂x or ∇xy: the Jacobian of y with respect to x, in numerator layout.

• ∂f
∂x : the partial derivative of scalar function f with respect to vector x, in numerator layout.

Note that in numerator layout ∂f∂x =
[
∂f
∂x1

∂f
∂x2

· · ·
]

is a row vector.

• ∂f
∂A : the partial derivative of scalar function f with respect to matrix A.

• [A;B; · · ·] = [A B . . .]: horizontal concatenation of matrices.

APPENDIX B GRADIENT OF G-SPMM AND G-SDDMM

We go by reviewing the definition of g-SpMM and g-SDDMM:
Definition 1. A generalized SDDMM (g-SDDMM) defined on graph G with message function φm is
a function

g-SDDMMG,φm
: R|V|×d1 ,R|V|×d2 ,R|E|×d3 7→ R|E|×d4

where the output edge representations M = g-SDDMMG,φm
(X,Y,W) are computed from the

edges’ own features, as well as features of their incident nodes:

me = φm (xu,yv,we) , ∀(u, e, v) ∈ E .
Definition 2. A generalized SpMM (g-SpMM) defined on graph G with message function φz and
reduce function ρ is a function

g-SpMMG,φz,ρ
: R|V|×d1 ,R|V|×d2 ,R|E|×d3 7→ R|V|×d4

where the output node representations Z = g-SpMMG,φz,ρ
(X,Y,W) are computed from the nodes’

inbound edge features, the node features themselves, and the neighbor features:

zv = ρ ({φz (xu,yv,we) : (u, e, v) ∈ E}) , ∀v ∈ V .

We also review the formal definition of the reverse graph.

Definition 3. Given the graph G = (V, E), the reverse graph G̃ = (V, Ẽ), where Ẽ =
{(u, e, v) : (v, e, u) ∈ E} contains the corresponding edges reversing directions.

We then show that the gradient of g-SpMM and g-SDDMM functions can also be expressed as
g-SpMM and g-SDDMM functions.
Lemma 1. Assume we are given the g-SDDMM function

M = g-SDDMMG,φm
(X,Y,W)

defined on graph G with message function φm and the objective function L = `(M). There exists a
function

φ′w : R|V|×d1 ,R|V|×d2 ,R|E|×(d3+d4) 7→ R|E|×d3
such that

∂L
∂W

= g-SDDMMG,φ′
w

(
X,Y,

[
W;

∂L
∂M

])

12

Preprint

Proof. By chain rule, for each (u, e, v) ∈ E we have:

∂L
∂we

=
∂L
∂me

∂me

∂we
=

∂L
∂me

∇we
φm (xu,yv,we)

Lemma 2. Assume we are given the g-SDDMM function

M = g-SDDMMG,φm
(X,Y,W)

defined on graph G with message function φm and the objective function L = `(M). There exists
functions φ′x and φ′y

φ′x : R|V|×d1 ,R|V|×d2 ,R|E|×(d3+d4) 7→ R|V|×d1

φ′y : R|V|×d1 ,R|V|×d2 ,R|E|×(d3+d4) 7→ R|V|×d2

such that
∂L
∂X

= g-SpMMG̃,φ′
x,
∑(X,Y, [W;

∂L
∂M

])
∂L
∂Y

= g-SpMMG,φ′
y,
∑(X,Y, [W;

∂L
∂M

])
where G̃ represents the reverse graph of G, and

∑
denotes the summation as a reduce function of the

g-SpMMs.

Proof. By chain rule, for each u, v ∈ V we have:

∂L
∂xu

=
∑

e′,v′:(u,e′,v′)∈E

∂L
∂me′

∂me′

∂xu

=
∑

e′,v′:(u,e′,v′)∈E

∂L
∂me′

∇xu
φm (xu,yv′ ,we′)

=
∑

e′,v′:(v′,e′,u)∈Ẽ︸ ︷︷ ︸
reduce function

∂L
∂me′

∇xu
φm (xu,yv′ ,we′)︸ ︷︷ ︸

message function on the reverse graph

∂L
∂yv

=
∑

u′,e′:(u′,e′,v)∈E

∂L
∂me′

∂me′

∂yv

=
∑

u′,e′:(u′,e′,v)∈E︸ ︷︷ ︸
reduce function

∂L
∂me′

∇yvφm (xu′ ,yv,we′)︸ ︷︷ ︸
message function

Lemma 3. Assume we are given the g-SpMM function

Z = g-SpMMG,φz,ρ
(X,Y,W)

defined on graph G with message function φz and reduce function ρ and the objective function
L = `(Z). There exists a function φ′w

φ′w : R|V|×d1 ,R|V|×(d2+d4),R|E|×d3 7→ R|E|×d3

such that
∂L
∂W

= g-SDDMMG,φ′
w

(
X,

[
Y;

∂L
∂Z

]
,W

)

13

Preprint

Proof. Let me = φz (xu,yv,we) for all (u, e, v) ∈ E . Since me only participates in computation
of zv , we have

∂L
∂we

=
∂L
∂zv

∂zv
∂me

∂me

∂we
=

∂L
∂zv
∇me

ρ ({me′ : (u
′, e′, v) ∈ E})∇we

φ (xu,yv,we)

Lemma 4. Assume we are given the g-SpMM function

Z = g-SpMMG,φz,ρ
(X,Y,W)

defined on graph G with message function φz and reduce function ρ and the objective function
L = `(Z). There exists functions φ′x and φ′y

φ′x : R|V|×d1 ,R|V|×(d2+d4),R|E|×d3 7→ R|V|×d1

φ′y : R|V|×d1 ,R|V|×(d2+d4),R|E|×d3 7→ R|V|×d2

and set functions ρ′x, ρ′y , such that

∂L
∂X

= g-SpMMG̃,φ′
x,ρ

′
x

(
X,

[
Y;

∂L
∂Z

]
,W

)
∂L
∂Y

= g-SpMMG,φ′
y,ρ

′
y

(
X,

[
Y;

∂L
∂Z

]
,W

)
where G̃ represents the reverse graph of G.

Proof. We first show the correctness for ∂L
∂Y .

Let me = φz (xu,yv,we) for all (u, e, v) ∈ G. Since yv only takes part in the computation of zv,
we have

∂L
∂yv

=
∂L
∂zv

∂zv
∂yv

=
∂L
∂zv

∑
u′,e′:(u′,e′,v)∈E

∂zv
∂me′

∂me′

∂yv

=
∑

u′,e′:(u′,e′,v)∈E

∂L
∂zv
∇me′ρ ({me′′ : (u

′′, e′′, v) ∈ E})∇yv
φz (xu′ ,yv,we′)

To derive ∂L
∂X , we need to sum over all successors of u:

∂L
∂xu

=
∑

e′,v′:(u,e′,v′)∈E

∂L
∂zv′

∂zv′

∂xu

=
∑

e′,v′:(u,e′,v′)∈E

∂L
∂zv′

∂zv′

∂me′

∂me′

∂xu

=
∑

e′,v′:(u,e′,v′)∈E

∂L
∂zv′
∇me′ρ ({me′′ : (u

′′, e′′, v′) ∈ E})∇xu
φz (xu,yv′ ,we′)

=
∑

e′,v′:(v′,e′,u)∈Ẽ

∂L
∂zv′
∇me′ρ

({
me′′ : (v

′, e′′, u′′) ∈ Ẽ
})
∇xuφz (xu,yv′ ,we′)

We can see that for each node v, ∂L
∂yv

is only a function of its own features, the predecessors’ features,
and the features of inbound edges. Therefore, ∂L∂Y can be computed via a g-SpMM defined on graph
G.

Similarly, for each node u, ∂L
∂xu

is only a function of its own features, the successors’ features, and
the features of outbound edges. It can be computed via a g-SpMM defined on the reverse graph G̃

14

Preprint

Proof of Theorem 1. The theorem can be proved trivially from the lemmas above, as the addition of
two g-SDDMM functions on the same graph is still a g-SDDMM function on the same graph. The
same holds for g-SpMM functions as well.

APPENDIX C DATASET STATISTICS

Dataset # Nodes # Edges # Node
Features

Edge
Features

Node Classification

REDDIT 232,965 11,606,919 602 0
OGBN-ARXIV 169,343 1,166,243 128 0
OGBN-PROTEIN 132,534 39,561,252 0 8
OGBN-PRODUCT 2,449,029 61,859,140 100 0

Link Prediction

ML-100K 943 users
1,682 movies 100,000 943 (user)

1,682 (movie) 0

ML-1M 6,040 users
3,706 movies 1,000,209 6,040 (user)

3,706 (movie) 0

ML-10M 69,878 users
10,677 movies 10,000,054 69,878 (user)

10,677 (movie) 0

OGBL-CITATION 2,927,963 30,561,187 128 0
OGBL-PPA 576,289 30,326,273 58 0

Table 5: Statistics of all datasets used in Sec. 6

For ML-100K, ML-1M and ML-10M, we use separate one-hot encoding for user and movie nodes.

APPENDIX D EXPERIMENT CONFIGURATIONS

D.1 FULL GRAPH TRAINING

Here we list the hyper-parameter configurations used in comparing training speed between DGL and
PyG (Sec. 6.1).

Node classification.

• The GraphSAGE model on REDDIT has two layers, each with 16 hidden size and the aggregator
is summation.
• The GAT model on REDDIT has three layers, each with 16 hidden size and one attention head.
• The GraphSAGE model on OGBN-ARXIV has three layers, each with 256 hidden size and the

aggregator is summation.
• The GAT model on OGBN-ARXIV has three layers, each with 16 hidden size and four attention

heads.
• The R-GCN model on OGBN-PROTEIN has three layers with 32 hidden size. The graph has 8

edge features in the range of [0, 1], which can be viewed as connectivity strength for 8 relations.
The RGCN model takes the following formulation:

H(l+1) = σ

(
8∑
r=1

D−1r ArH
(l)W (l)

r +H(l)W
(l)
0

)
,

where H(l) is the node representations after the l-th RGCN layer, σ is the ReLU activation
function, Dr is the degree matrix for relation r, Ar is the adjacency matrix for relation r, and
W

(l)
r ,W l

0 are learnable weights. H(0) is the initial node features. Since the graph does not have
raw node features, we use a scalar 1 for each node. The original Ar’s are binary adjacency
matrices and they become weighted in the case of OGBN-PROTEIN.

15

Preprint

103 104

In degree
100

101

102

103

104

Co
un

t

Reddit

1 2 4 8 16 32 64128
Feature size

0

100

200

300

GF
LO

PS
(S

PM
M

)

Reddit
EP(COO)
NP(CSR)

1 2 4 8 16 32 64128
Feature size

0

100

200

300

GF
LO

PS
(S

DD
M

M
)

Reddit
EP(COO)
EP(CSR)

32
In degree

103

104

105

106

Co
un

t

k-NN Graph

1 2 4 8 16 32 64128
Feature size

0

100

200

300

GF
LO

PS
(S

PM
M

)

k-NN Graph
EP(COO)
NP(CSR)

1 2 4 8 16 32 64128
Feature size

0

100

200

300

GF
LO

PS
(S

DD
M

M
)

k-NN Graph

EP(COO)
EP(CSR)

Figure 4: Throughput of SpMM and SDDMM with different parallel strategies, sparse formats on two input
graphs. We fix the number of heads to 8 and vary the feature size of each head. The figures in the upper row are
for the REDDIT dataset while the ones in the lower row are for the k-NN graph. NP stands for node parallel
while EP stands for edge parallel.

Link prediction. The GCMC models on ML-100K, ML-1M and ML-10M all adopt an encoder-
decoder architecture as proposed in the original paper. The input is a one-hot encoding of the movie
and item nodes. The encoder has one graph convolution layer which projects the input encoding to a
layer of 500 units with summation as the message aggregator, and one fully-connected layer which
outputs a layer of 75 units. All the models use a bi-linear model as the decoder and the number of
basis is set to two.

D.2 MINI-BATCH TRAINING

Node classification.

• For training with neighbor sampling on the REDDIT graph, we use a batch size of 1024 and the
sampling fanouts are 25 and 10 from the first to the last layer. Both the GraphSAGE and the GAT
models used have three layers and a hidden size of 16. The GAT model has 8 attention heads.
• For training with neighbor sampling on the OGBN-PRODUCT graph, we use a batch size of 1024

and sampling fanouts of 15, 10, 5 for GraphSAGE, and a batch size of 128 and sampling fanouts
of 10, 10, 10 for GAT. Both the GraphSAGE and the GAT models have three layers with a hidden
size of 256. The GAT model has 8 attention heads.
• For training with cluster sampling on the OGBN-PRODUCT graph, we first partition the graph

into 15000 clusters. The training batch size is 32, meaning each mini-batch contains the induced
subgraph of nodes from 32 clusters. Both the GraphSAGE and the GAT models have three layers
with a hidden size of 256. The GAT model has 8 attention heads.

Link prediction. For all the experiments, we first partition the input graph into 15000 clusters. The
training batch size is 256, meaning each mini-batch contains the induced subgraph of nodes from 256
clusters. All the models adopt an encoder-decoder architecture. The encoder models (i.e., GCN or
GAT) all have three layers with a hidden size of 256. The GAT models all have one attention head.
The decoder model predicts edges by a dot product between the representations of the incident nodes.
By default, only one negative sample is generated per positive sample by corrupting one end-point of
the edge.

APPENDIX E KERNEL SENSITIVITY TO GRAPH AND MODEL CONFIGURATION

We studied how graph structures and model configurations influence the speed of g-SpMM and
g-SDDMM kernels and thus the choice of parallel strategies (i.e., node or edge parallel). We bench-
marked a g-SpMM and a g-SDDMM kernel on two input graphs, the REDDIT graph from (Hamilton
et al., 2017) and a nearest neighbor graph generated by (Qi et al., 2017), with varying feature sizes.

16

Preprint

1 from torch import nn
2
3 class SAGEConv(nn.Module):
4 def __init__(self, in_feat, out_feat,
5 feat_drop=0., activation=None):
6 pass
7 def forward(self, tensor):
8 pass

(a) PyTorch

1 from tensorflow.keras import layers
2
3 class SAGEConv(layers.Layer):
4 def __init__(self, in_feats, out_feats,
5 feat_drop=0., activation=None):
6 pass
7 def call(self, tensor):
8 pass

(b) TensorFlow

Figure 5: Module classes inherit from different classes in PyTorch and TensorFlow.

1 from torch import nn
2 fc = nn.Linear(in_feat, out_feat)
3 gain = nn.init.calculate_gain(’relu’)
4 nn.init.xavier_uniform_(fc, gain=gain)

(a) PyTorch

1 import tensorflow as tf
2 from tensorflow.keras import layers
3 xinit = tf.keras.initializers.VarianceScaling(
4 scale=np.sqrt(2), mode="fan_avg",
5 distribution="untruncated_normal")
6 fc = layers.Dense(out_feats, kernel_initializer=xinit)

(b) TensorFlow

Figure 6: Create a fully connected sub-module in PyTorch and TensorFlow.

The two graphs have very different degree frequencies, with REDDIT (Figure 4 upper row) having
power-law degree distribution while the k-NN graph (Figure 4 lower row) having a constant indegree
equal to 32. The g-SpMM kernel is extracted from the Graph Attention Network (GAT) (Veličković
et al., 2018) model; it multiplies a neighbor node’s representation xu with the attention weight αe
on the edge during message aggregation. With multiple attention heads (8 in our experiment), the
formulation of each head h is as follows:

zv,h =
∑

(u,e,v)∈E

αe,hxu,h

The g-SDDMM kernel computes the attention weight by a dot-product of the source and destination
nodes:

αe,h = 〈xu,h,xv,h〉, ∀(u, e, v) ∈ E

The kernel throughput (in GFLOPS) measured on a NVIDIA V100 GPU is shown in Figure 4. It
shows that the optimal choice of edge parallel or node parallel relies on graph structure, feature size
and the sparse format in use. For SpMM, edge parallel is slightly better than node parallel for small
feature size but eventually becomes worse when the feature size scales up due to the overhead from
atomic aggregation. For SDDMM, edge parallel on COO outperforms CSR by a large margin up to
feature size equal to 16 but again becomes worse afterwards because of the better memory locality of
CSR.

APPENDIX F GUIDE FOR PORTING GNN MODELS ACROSS DEEP LEARNING
FRAMEWORKS

DGL provides a framework-neutral design and allows users to develop GNN models on different deep
learning frameworks, such as PyTorch, TensorFlow and MXNet. Assume a user finds an existing
GNN model in one framework and wishes to port it to another one that s/he is familiar with. Such
porting needs to address three categories of differences in the deep learning frameworks.

Porting models usually involves in three steps.

17

Preprint

1 from torch import nn
2
3
4 class SAGEConv(nn.Module):
5 def __init__(self, in_feat, out_feat,
6 feat_drop=0., activation=None):
7 super(SAGEConv, self).__init__()
8 src_feat, dst_feat = expand_as_pair(in_feat)
9 self.feat_drop = nn.Dropout(feat_drop)

10 self.activation = activation
11 self.fc_self = nn.Linear(dst_feat, out_feat)
12 self.fc_neigh = nn.Linear(src_feat, out_feat)
13 gain = nn.init.calculate_gain(’relu’)
14 nn.init.xavier_uniform_(
15 self.fc_self.weight, gain=gain)
16 nn.init.xavier_uniform_(
17 self.fc_neigh.weight, gain=gain)
18
19 def forward(self, graph, feat):
20 feat_src = feat_dst = self.feat_drop(feat)
21 graph.srcdata[’h’] = feat_src
22 graph.update_all(fn.copy_u(’h’, ’m’),
23 fn.mean(’m’, ’neigh’))
24 h_neigh = graph.dstdata[’neigh’]
25 rst = self.fc_self(feat_dst)
26 + self.fc_neigh(h_neigh)
27 return self.activation(rst)

(a) PyTorch

1 import tensorflow as tf
2 from tensorflow.keras import layers
3
4 class SAGEConv(layers.Layer):
5 def __init__(self, in_feats, out_feats,
6 feat_drop=0., activation=None):
7 super(SAGEConv, self).__init__()
8
9 self.feat_drop = layers.Dropout(feat_drop)

10 self.activation = activation
11 xinit = tf.keras.initializers.VarianceScaling(
12 scale=np.sqrt(2), mode="fan_avg",
13 distribution="untruncated_normal")
14 self.fc_self = layers.Dense(
15 out_feats, kernel_initializer=xinit)
16 self.fc_neigh = layers.Dense(
17 out_feats, kernel_initializer=xinit)
18
19 def call(self, graph, feat):
20 feat_src = feat_dst = self.feat_drop(feat)
21 graph.srcdata[’h’] = feat_src
22 graph.update_all(fn.copy_u(’h’, ’m’),
23 fn.mean(’m’, ’neigh’))
24 h_neigh = graph.dstdata[’neigh’]
25 rst = self.fc_self(feat_dst)
26 + self.fc_neigh(h_neigh)
27 return self.activation(rst)

(b) TensorFlow

Figure 7: The implementation of GraphSAGE in PyTorch and TensorFlow.

• Step 1 is to change model class inheritance. For example, when porting from Pytorch to
TensorFlow, the model class should inherit from tensorflow.keras.layer.Layer instead of
torch.nn.Module . Figure 5 shows such an example.
• Step 2 is to change the sub-modules used inside the model. These sub-modules are usually defined

in the initialization method of the model class. Different frameworks usually define similar
sub-modules but with different sub-module names and different arguments. They also initialize
the parameters in the sub-modules differently. For example, the fully connected layer in Pytorch
is defined in nn.Linear but it is defined in layers.Dense in TensorFlow. The arguments of
the sub-modules are also different. We always need to define the input and output dimensions
for the Pytorch sub-modules but only need to define the output dimensions for the TensorFlow
sub-modules. In addition, PyTorch initializes parameters after the definition of nn modules,
while TensorFlow specifies initialization method together with layer definition. Figure 6 shows an
example of such differences.
• Step 3 is to replace the framework-specific operators. Similar to sub-modules, different frame-

works define similar tensor operators but with different names and different input arguments. For
example, matrix multiplication is defined in tensorflow.matmul in TensorFlow and is defined
in torch.matmul in Pytorch.

Figure 7 shows a complete example of porting GraphSAGE from PyTorch to TensorFlow. We
place the code side by side to contrast the key differences. As shown above, the PyTorch version
of SAGEConv needs to inherit from torch.nn.Module while the TensorFlow version inherits from
tensorflow.keras.layers.Layers . Most of the modifications are in the __init__ function of the
class, where we change the members defined as nn modules to TensorFlow’s counterparts. In this
example, the forward function (cf. call function in TensorFlow) only invokes DGL’s message
passing computation via update_all . Because no tensor operators are explicitly invoked, there are
no modifications for tensor operators.

18

	1 Introduction
	2 Graph neural networks and message passing
	3 GNN message passing as generalized SpMM and SDDMM.
	3.1 Parallelizing g-SpMM and g-SDDMM on tensorized hardware

	4 DGL system design
	4.1 Graph as a first-class citizen
	4.2 Framework-neutral design

	5 Related Work
	6 Evaluation
	6.1 Training speed
	6.2 Memory consumption
	6.3 Framework overhead

	7 Conclusion
	A Nomenclatures
	B Gradient of g-SpMM and g-SDDMM
	C Dataset Statistics
	D Experiment configurations
	D.1 Full graph training
	D.2 Mini-batch training

	E Kernel sensitivity to graph and model configuration
	F Guide for porting GNN models across deep learning frameworks

