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Phylogenetic comparative methods are often used to test functional relationships between traits. However, million-year

macroevolutionary observational datasets cannot definitively prove causal links between traits—correlation does not equal cau-

sation and experimental manipulation over such timescales is impossible. Although this caveat is widely understood, it is less

appreciated that different phylogenetic approaches imply different causal assumptions about the functional relationships of traits.

To make meaningful inferences, it is critical that our statistical methods make biologically reasonable assumptions. Here we illus-

trate the importance of causal reasoning in comparative biology by examining a recent study by Avaria-Llautureo et al (2019).

that tested for the evolutionary coupling of metabolic rate and body temperature across endotherms and found that these traits

were unlinked through evolutionary time and that body temperatures were, on average, higher in the early Cenozoic than they

are today. We argue that the causal assumptions embedded into their models made it impossible for them to test the relevant

functional and evolutionary hypotheses. We reanalyze their data using more biologically appropriate models and find support for

the exact opposite conclusions, corroborating previous evidence from physiology and paleontology. We highlight the vital need

for causal thinking, even when experiments are impossible.

KEY WORDS: Macroevolution, models/simulations, phylogenetics, physiology.

The evolutionary causes and consequences of endothermy have

fascinated biologists for decades. But this is naturally a difficult

thing to study: the evolutionary events we are interested in oc-

curred over the course of hundreds of millions of years. At this

scale, direct tests of causal hypotheses are impossible. Nonethe-

less by piecing together multiple lines of evidence, including

physiological experiments, mathematical theory, and the paleon-

tological record, we have gained a rich understanding of the re-

lationships between metabolic rates, body mass, and temperature

and how they might have evolved (Grigg et al. 2004; Clarke et al.

2010; Lovegrove 2017), even as mysteries remain.

Macroevolutionary comparative analyses complement these

approaches; by leveraging interspecific data in a phylogenetic

framework, we can potentially gain new insights into how phys-

iological processes (White et al. 2009; Uyeda et al. 2017; White

et al. 2019) and scaling relationships, more generally, evolve

(Hansen and Bartoszek 2012; Pélabon et al. 2014; Voje et al.

2014). And although developments in this area are tremendously

exciting, it is critical to keep in mind that inferences drawn from

phylogenetic statistical methods, just like many other statistical

methods, have embedded, and often implicit, causal assumptions

(Uyeda et al. 2018)—and one must always keep in mind the
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motivating theory for how variables are functionally related to

underlying causal processes and to assess whether we are in-

deed measuring the right thing (Houle et al. 2011). No matter

how elegant the method, if it is not appropriate for the theoret-

ical context, it is not going to tell you anything meaningful and

even worse, will likely be misleading. We argue that inferences

drawn in all comparative analyses should be carefully evaluated

in light of their relationship to hypothesized causal relationships,

and skeptically evaluated in light of the nature of our necessarily

simplistic models.

Our motivating case study is a recent study by Avaria-

Llautureo et al. (2019), which presents evidence from

phylogenetic models that provides a new perspective on the major

features of endothermic evolution, with the provocative conclu-

sion that metabolic rate and body temperature are decoupled—a

conclusion largely at odds with previous studies (Clarke et al.

2010). To support this conclusion, Avaria-Llautureo et al. (2019)

use statistical phylogenetic comparative methods inspired by sim-

ilar tests for convergence in selective pressures as demonstrated

by convergent evolutionary rates, which are commonly used in

molecular evolution (Chikina et al. 2016; Sackton et al. 2019).

Although superficially a reasonable analogy, we argue in this note

that the novel conclusions of Avaria-Llautureo et al. (2019) are

consequences of a failure to use models that reflect the processes

that are important in the evolution of endothermic traits—and

phenotypic traits more generally. Using process-based models

and simulating different causal scenarios, we demonstrate how

easily estimates from complex statistical models can become dis-

sociated from the underlying biological hypotheses. Although

our assumptions about cause and effect and/or biological con-

straints may be incorrect (e.g., if past processes are fundamen-

tally different from extant processes), we argue it is far superior to

make these assumptions explicit and part of the process of mak-

ing inference from comparative data.

Coupling of States or Rates?
It is well established that the basal metabolic rate (BMR) of an

organism is a function of its body mass M, its internal body tem-

perature Tb, and the temperature in which it lives (ambient tem-

perature; Ta) (Clarke et al. 2010, and references therein). These

relationships form the basis of several ecological theories (e.g.,

the Metabolic Theory of Ecology; Brown et al. 2004) and, more

broadly, are used for ensuring that BMR is measured in compa-

rable way across individuals, species, and studies. That is to say,

BMR, M, and Tb are known to be functionally coupled. For this

reason, the conclusion in Avaria-Llautureo et al. (2019) that there

is no evidence of evolutionary or functional coupling between

BMR and Tb may appear surprising.

However, here we look closer at how functional coupling can

be defined and how it relates to the evolutionary questions being

asked. In Avaria-Llautureo et al. (2019), they open their paper

discussing this expected covariation of the values of BMR, Tb,

and Ta, but then propose defining “coupling“ to mean the corre-

lation of evolutionary rates rather than states. This shift is subtle

but important. Indeed, consistent with previous analyses of the

same data, Avaria-Llautureo et al. (2019) do find evidence of a

positive association between Tb and BMR (Clarke et al. 2010),

and a negative association between Tb and Ta (Clarke et al. 2010).

We use this study as a motivating example to ask two questions

that are important to consider when choosing from the variety of

comparative methods available to test associations between traits.

First, are the coupling of rates and the coupling of states simply

alternative ways of measuring the same thing, or do they measure

different things altogether? And second, if they are different, how

does one choose a method that meaningfully corresponds to the

theoretical context under study?

We illustrate our points in two ways. We first simulate trait

data under three alternative and biologically plausible causal sce-

narios (depicted in Fig. 1 and described next) on the phylogeny

of mammals used by Avaria-Llautureo et al. (2019) and exam-

ine the resulting covariance structure in both the states and the

rates. We then use the simulated scenarios as reference points

for interpreting our reanalysis of the original empirical data of

Avaria-Llautureo et al. (2019).

• Scenario 1 is a multivariate Brownian motion (mvBM; Felsen-

stein 1985) model. Note that this model generates data with the

same distribution as a phylogenetic generalized least squares

(PGLS) model, though mvBM and PGLS depict different

causal scenarios that are not identifiable in extant-only data

(Blomberg et al. 2012). For simplicity, we simulate BMR and

Tb under mvBM where the two traits are correlated (ρ = 0.8)

but where there is no variation in rates across different lineages

(meaning there is no variation to detect a branch-wise correla-

tion in rates).

• In Scenario 2, we simulate uncorrelated states of Tb and BMR

by changing the correlation in the evolutionary rate matrix to

ρ = 0. However, we introduce correlations in branch-specific

rates by drawing shared branch scalars for both traits from a �

distribution (as is typical when capturing rate variation in phy-

logenetic studies) with shape parameter set to 1.1 and a scale

parameter set to 1. This results in collinear evolutionary rates

for both traits, but no correlation in states. In other words, even

though the traits are not correlated in any way, branches on

which there is rapid evolution in one trait are also branches in

which there is rapid evolution in the other trait. Perhaps surpris-

ingly, we consider the most straightforward process consistent

with this type of “rate-coupling” to be one in which there is
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Figure 1. Simulated (Rows 1–3) and Empirical (Row 4) relationships between Tb and BMR on the mammalian phylogeny used in Avaria-

Llautureo et al. (2019). (Row 1; Scenario 1): If Tb is direct cause of BMR or if both evolve under a common cause, Z, in a correlated fashion

(1A), then we observe a correlation in state (1B; dotted line = PGLS regression) despite an absence of rate variation (1C) (cf. Avaria-

Llautureo et al. 2019, Fig. 1a). (Row 2; Scenario 2): Multivariate Brownian motion (2A) where Tb and BMR are uncorrelated in state (2B)

but share the same source of rate variation (2C). Shared rate variation indicated by colored nodes/arrows. This is the scenario that Avaria-

Llautureo et al. (2019) define as evolutionary “coupling” (cf. Avaria-Llautureo et al. 2019, Fig. 1b), despite the fact that it can occur absent

a functional relationship between traits (e.g., evolution by genetic drift with Z representing time-varying effective population size).

(Row 3; Scenario 3) Tb is a direct cause of BMR and has rate variation, but Z is also a cause of BMR with independent rate variation (3A).

Rates in Z are 20× the rates in Tb. This results in highly significantly correlated states (3B), but nonsignificantly correlated rates (3C) (cf.

Avaria-Llautureo et al. 2019, Fig. 1C). Plotted rate scalars for simulated data are true parameter values, giving a best case scenario. Using

estimated rate scalars would drastically decrease power to detect significant rate correlations even further; particularly for methods that

“shrink” rate variation (like the variable-rate regression model—VRRM). However, state correlations will remain robustly estimated. (Row

4): Empirical data for birds and mammals used in Avaria-Llautureo et al. (2019) using phylogenetically mass-corrected log BMR. Rates are

estimated as the log of magnitude of the phylogenetic independent contrasts. P-values from full, best-fitting phylogenetic regression

models. The empirical data are consistent with the causal model in (3A), showing strong evidence of “evolutionary coupling” between

Tb and BMR. Details and complete R script are available on Dryad; https://doi.org/10.5061/dryad.z612jm6bj.
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a third factor, Z , affecting both traits (Row 2, Fig. 1). Should

such a scenario be evidence of functionally relevant “coupling”

as argued by Avaria-Llautureo et al. (2019)? We will return to

this shortly.

• Finally, in Scenario 3, we first simulate Tb with branch scalars

from �(shape = 10, rate = 10) and an overall Brownian mo-

tion rate of σ2
Tb

= 1. We then simulate another trait Z (which is

not measured at the tips of the phylogeny) with branch scalars

from the same �-distribution, but a higher rate of evolution

where σ2
Z = 20. For each tip i, we then generate data on BMR

by adding the effects of Z and Tb, such that

BMRi = βZ Zi + βTb Tb.i + εi,

where εi represents additional residual variation where ε ∼
N (0, σ2 = 1). Because Z is unmeasured at the tips, Z is sub-

sumed in the residual variation in the regression between BMR

and Tb. Here Z could represent body size or another related

variable. Because the range of variation in Z is greater than Tb,

we would expect that rate correlations between BMR and Tb

would be difficult to detect even if there is a true underlying

causal relationship, as is the case here (Row 3, Fig. 1).

These simulated scenarios guide our thinking on the mean-

ing and relationships between rate and state associations. With

these in mind, we reanalyzed the empirical datasets of Avaria-

Llautureo et al. (2019) in two different ways. First, we fit a

standard phylogenetic regression model (Martins and Hansen

1997) to estimate a correlation between states (Row 4, Fig. 1).

We found that, as expected, Tb and ln(BMR) are positively cor-

related in both birds and mammals using models that include

ln(M ) (and in the case of mammals, ln(M )2, because previous

studies have found curvature in this relationship; Kolokotrones

et al. 2010). We found the best model for the residual varia-

tion by comparing Brownian motion, Pagel’s λ (Pagel 1999),

and Ornstein–Uhlenbeck (OU; Hansen 1997) models with fixed

or random roots fit using the R package phylolm (Ho and Ané

2014). In mammals, we found very strong coefficients between

Tb and ln(BMR) (βTb = 10% increase in BMR per degree Celsius,

P < 0.001) and significant negative relationship between Ta and

Tb (βTa = −0.03◦C per ◦C of Ta, P < 0.01). In birds, the former is

marginally significant (P = 0.057) and also positive (βT b = 2%

increase in BMR per degree Celsius), and the latter is nonsignifi-

cant (P = 0.45). We note that very little variation exists for avian

Tb and that proper analysis of these correlations would likely

require careful accounting of measurement error (Hansen and

Bartoszek 2012). These results are consistent with previous anal-

yses of these relationships (Clarke et al. 2010).

Second, we estimate the evolutionary correlation in rates.

We note that rate correlations are considerably more difficult to

estimate than state correlations because we cannot actually mea-

sure these in any organism and must infer them from model

parameters; furthermore, even perfectly estimated rates carry

only information about the magnitude—not the direction—of

change. In their analyses, Avaria-Llautureo et al. (2019) es-

timated branch-specific rates using a variable-rate regression

model (VRRM) (Venditti et al. 2011) fit using Bayesian re-

versible jump Markov Chain Monte Carlo (Green 1995). The

model they fit is quite complex; as such, to visualize the essence

of their results without getting mired in the details (e.g., choice

of priors, assessment of convergence, etc.) we plot the sig-

nal for rate correlations in branch-specific rates using the log-

arithm of the absolute value of independent contrasts com-

puted at each node (Garland et al. 1992). Although an imper-

fect measure, the expected value of each contrast will increase

with increasing evolutionary rate and thus we can test whether

these node-wise estimates of rates are correlated between dif-

ferent sets of traits. For ln(BMR), we again took the residuals

of the best-fitting phylogenetic regression with log body mass

(and for mammals, ln(M )2) to calculate these contrasts. To ver-

ify that correlated rate scalars can be identified using this ap-

proach, we simulated scenarios of rates with shared shift loca-

tions on the mammal phylogeny with correlations in rates rang-

ing from 0 to 1 and evaluated whether significantly positive re-

gressions were obtained (see Supporting Information on Dryad,

https://doi.org/10.5061/dryad.z612jm6bj).

For mammals, there is weak but marginally significant ev-

idence that ln(BMR) and Tb have correlated evolutionary rates

(ρ = 0.10, P = 0.03 − 0.08, depending on how contrasts of 0 are

treated; Fig. 1.4C). Our simulations indicate that this value of the

slope is consistent with the conclusion of a weak to moderate cor-

relation between rates (Supporting Information). For birds, there

is no apparent relationship (ρ = 0.04, P = 0.58, Fig. 1.4C). Both

these results are qualitatively in-line with the findings of Avaria-

Llautureo et al. (2019) and we do not dispute their results in this

regard. Instead, we wish to highlight the importance of the inter-

pretation of rate correlations, rather than to dispute the methods

themselves. Rather, we argue that the presence or absence of as-

sociations of rates can occur with or without functional coupling,

and care should be taken in their interpretation. For metabolic

rate and body temperature, we consider that the combination of

strong state coupling and weakly detectable rate-coupling using

contrasts, and the VRRM in Avaria-Llautureo et al. (2019), to

be consistent with our Scenario 3. We therefore read the evi-

dence to suggest that Tb is functionally coupled with BMR, but

that metabolic rate is also strongly affected by other traits with

additional, independent rate variation.

Furthermore, our Scenario 2 clearly illustrates that shared

rate variation can exist even if there is no functional or evo-

lutionary association between the traits (cf. Avaria-Llautureo

et al.’s (2019) definition of “coupling”; their Fig. 1B, our
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Figure 2. Relationship between pathwise rates estimated from (A) empirical data (cf. Avaria-Llautureo et al. 2019, Fig. 4) and (B) 10

simulated datasets with increasing Tb over time. This negative slope was used by Avaria-Llautureo et al. (2019) to support their conclusion

that Tb and Ta had decreased over the evolutionary history of mammals and birds. Analyses of data with the variable-rate regression

model (VRRM) in bayestraits (green) and in bayou (blue) are shown with dotted lines indicating the phylogenetic regression. When

the true simulated process includes constraints (instead of purely unconstrained BM) under realistic macroevolutionary landscapes, we

recover negative relationships between pathwise rates and trait values, despite an overall increasing trend (from the root value of 25◦C
to an optimum of 38◦C). This macroevolutionary landscape was represented by the Sharpe–Schoolfield thermal-performance curve (gray

dotted line), which has a harder bound at high temperatures than at low temperatures. Pathwise rates should never be interpreted as

reconstructing ancestral states when the trait in question shows evidence of strongly constrained evolution, as constrained evolution

will erase phylogenetic signal and measured rates will simply either reflect asymmetries in the macroevolutionary landscape (as depicted

here) and/or asymmetries in diversification/taxonomic sampling (e.g., trait-dependent diversification, likely the case for Ta). Data were

simulated with the R package BBMV Boucher et al. (2017). Supporting Information and complete scripts and data are available on Dryad,

https://doi.org/10.5061/dryad.z612jm6bj.

Table 1. Phylogenetic signal estimated using an OU model of

adaptive (i.e., constrained) evolution.

Clade Trait
Phylogenetic
half-lifea

�AIC
over BM

Mammals
Tb 0.26 46.3
BMRb 0.16 86.0
Ta 0.10 141.2

Birds
Tb 0.01 132.4
BMRb 0.01 382.4
Ta 0.01 168.8

aHalf-life ( ln(2)
α

) measures the time it takes for a lineage to evolve halfway to

theOUoptimum in units of tree height. Values of 0 indicate constrained evo-

lution with no phylogenetic signal; while values >1 indicate BM-like evolu-

tion and strong phylogenetic signal. All traits strongly reject the BM model

(�AIC > 4).
bMass-corrected log BMR.

Fig. 1.2A–C). For example, consider if both traits were evolving

with rates jointly set by a third factor (Z). This could occur if rates

of change in traits evolving via genetic drift are all jointly set by

effective population size (Z = Ne; Walsh and Lynch 2018), even

when traits are functionally uncoupled. Thus, we observe that

strong and easily detectable causal relationships between traits

can be found by state associations (as we observed in the empir-

ical data), even when coupling of rates are too weak to be de-

tectable (Fig. 1). Furthermore, tests of rate-coupling can produce

positive results even when traits are not interdependent—which

seems to us the most relevant questions to the evolutionary and

ecological theories that motivate interest in these traits—but in-

stead whether an additional causal factor might be driving shared

rate variation among the two traits.

It is worth noting that a number of researchers investigat-

ing molecular evolution have interpreted “convergent rates” in

molecular sequence evolution as possible evidence of shared

functional significance (Hu et al. 2019; Smith et al. 2020). Rather

than assessing convergent states (e.g., Li et al. (2010)), such
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studies ask whether shared selective pressures cause joint shifts

in substitution rates across genes–which corresponds closely to

our Scenario 2. Although not the focus of the present manuscript,

we think it is worth thinking carefully about the underlying logic

of such tests for convergence in molecular evolution. Importantly,

studies examining genomic characters have the advantage that

additional data is often available to support claims of evolution-

ary coupling, such as the enrichment for meaningful functional

annotations against a large sample of background rates and

a priori hypotheses of specific causal factors (Chikina et al.

2016; Sackton et al. 2019). Although these additional data make

evaluating shared function via coupled rates a more meaningful

inference, we would strongly caution against interpreting a lack

of evidence for joint shifts in substitution rates as evidence

of an absence of functional relationship between molecular

sequences—consistent with the arguments we have made here.

Given the existing evidence and known mechanism for how

Tb and BMR are coupled, combined with the ease of testing

state relationships with continuously varying traits (as opposed

to the complexities of evaluating convergent states in molecular

sequences), the evidence and test for functional coupling here is

much more direct. In the context of metabolism, we believe that

subsequent evaluation of Scenario 2 in this case, at least with-

out reference to a background suite of traits or a specific causal

factor, is largely meaningless. We acknowledge that we may not

have fully understood the causal model envisioned by Avaria-

Llautureo et al. (2019). For this reason, we think it is critical

that practitioners of phylogenetic comparative methods present

graphical causal models of their hypotheses to make clear how

the inferences drawn relate to the evidence presented.

Coupled Trends or Model
Inadequacy?
Thinking clearly about the traits under study also requires that

we consider the causal processes that affect their evolution. This

choice of process model can critically affect how we interpret

the data, and helps explain another somewhat surprising feature

of metabolic evolution found by Avaria-Llautureo et al. (2019):

they find that Tb has decreased consistently throughout the Ceno-

zoic. Of course, the vast amount of evidence from both phys-

iology and paleontology strongly supports the conclusions that

endotherms originated from ectotherms (Grigg et al. 2004; Love-

grove 2017)—this statement is not controversial and it would

be extraordinary if this was found to be incorrect. Neverthe-

less, a plausible alternative is that Avaria-Llautureo et al. (2019)

identified a signal of endotherms rapidly increasing to high av-

erage body temperatures and subsequently decreasing over the

Cenozoic.

To evaluate these alternatives, we first recognize that all

models are simplifications of reality, and necessarily make sim-

plifying assumptions. Despite this caveat, we believe that flawed

models can often be used to make robust macroevolutionary in-

ferences. We argue that the key to progress despite imperfect

tools is to consider carefully how such traits are expected to

evolve given our knowledge of their function, dynamics, and

constraints—knowledge that comes from outside of macroevo-

lutionary statistical models. Here, we reexamine the conclusions

of Avaria-Llautureo et al. (2019) to demonstrate our view of this

process, and how our expectations can easily explain the observed

patterns with entirely expected violations of standard macroevo-

lutionary models.

As stated above, Avaria-Llautureo et al. (2019) used a

VRRM based on a BM model of evolution, where traits evolve

in an undirected and unbounded manner as they would under ge-

netic drift or randomly varying selection (Hansen and Martins

1996). This seems entirely inappropriate for traits such as BMR

that are biophysically constrained to stay close to an optimum

value (West et al. 2002; Glazier 2005, 2010; Clarke et al. 2010).

Although far from perfect, the “adaptation” (or OU) model pro-

posed by Hansen (1997) better captures this biological reality.

Analyzing the data of Avaria-Llautureo et al. (2019) bears this

out: OU is a much better fit than BM for Tb, Ta, and mass-specific

BMR in both mammals and birds (Table 1). Birds are especially

strongly constrained with little variation in these traits and virtu-

ally no phylogenetic signal; this is consistent with both the ba-

sic physiology involved and with previous phylogenetic analy-

ses (Uyeda et al. 2017). We note that the models we used for

this comparison are much simpler than the ones used by Avaria-

Llautureo et al. (2019); comparing variable OU processes (Uyeda

et al. 2017) with variable BM processes is beyond the scope of

this article, but we argue that the simple case captures the essence

of the problem.

So how could the choice of Brownian models over constraint

models affect the apparent trend in Tb? Let us assume for the mo-

ment that there is no rate variation in the data and that the evolu-

tionary dynamics of Tb and Ta do indeed resemble that of an OU

process. One feature of evolutionary processes that follow an OU

model is that because the amount of divergence is constrained,

the overall rate one would measure if one fits a BM model would

depend strongly on the length of the branch itself (the denomi-

nator of any estimate of rate); therefore if one uses a Brownian

model to fit data generated under an OU-like process, rates will

be estimated to be higher on short terminal branches, whereas

deeper and longer branches will have lower estimates of rate (for

mathematical explanation, see Uyeda et al. 2015). If one com-

putes, as Avaria-Llautureo et al. (2019) did, the total pathwise

rates (summing the rates on all the branches from the root to a

given tip), one will detect highest pathwise rates in any trait that
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is correlated with short terminal branches. Avaria-Llautureo et al.

(2019) interpret correlations between pathwise rates and the tip

state to be evidence of a secular evolutionary trend. But given

the likely dependence on the rate estimates for Tb and Ta with

branch lengths, any association between these traits and diversi-

fication will result in longer pathwise rates. For example, there

is abundant evidence that terminal branches are shorter in tem-

perate regions than in the tropics for these taxa owing to higher

species turnover in temperate regions (Weir and Schluter 2007;

Schluter 2016; Schluter and Pennell 2017). Thus, we think a far

more likely explanation is that this trend is an artifact of fitting

Brownian models to constrained data.

Indeed, we are able to recover the exact same pattern of

decreasing Tb over time as Avaria-Llautureo et al. (2019) find

in their Figure 4, even when we simulate a true trend of in-

creasing Tb over time. For example, starting from a low ances-

tral body temperature of (25◦C), it is straightforward to obtain

negative relationships between pathwise rates and body temper-

ature under biologically realistic macroevolutionary landscapes

(Fig. 2). Specifically, we used a constrained macroevolutionary

landscape that reflects standard enzymatic and temperature pref-

erence curves for organisms in which high temperatures impose a

stronger constraint on organismal performance than low temper-

atures (i.e., the Sharpe–Schoolfield equation, Schoolfield et al.

1981, see Supporting Information for details of simulations). In

other words, this model is similar to an OU model in that di-

vergence is constrained within high-performance regions of the

macroevolutionary landscape, but allows asymmetry that is ex-

pected given well-known physiological performance curves for

Tb (Huey and Kingsolver 1989). We simulated data on this land-

scape with the R package BBMV (Boucher et al. 2017). These

asymmetries are expected to generate a negative relationship be-

tween Tb and the pathwise rates of Tb even if there is a true trend

towards higher body temperatures towards the present. This also

could explain why Avaria-Llautureo et al. (2019) conclude that Ta

and Tb follow the same trajectory toward decreasing temperature

over time (cf. Fig. 1.2A–C), despite evidence they are negatively

correlated with each other when we consider state correlations

(Clarke et al. 2010)—which likely results from the well-known

phenomenon of countergradient selection (Schultz et al. 1996;

Fangue et al. 2009).

Although estimation of ancestral states under a VRRM may

be possible if the trait approaches unconstrained BM-like evolu-

tion, we caution interpretation of ancestral states even in the best

circumstances—and especially with evidence of constrained evo-

lution and when trends are expected. The inability to estimate the

ancestral states for constrained traits is a special case of the “Dar-

winian uncertainty principle” (Gascuel and Steel 2019), which

describes the trade-off in estimating ancestral states versus the

rates of the evolutionary process. Just as in the case of molecu-

lar sequence data, quantitative traits with high rates that explore

a constrained macroevolutionary landscapes will progressively

erase evolutionary history, eroding any confidence we should

have in already uncertain ancestral state estimates (Boucher et al.

2017).

Conclusions
Phylogenetic comparative datasets cannot be generated from ex-

perimentation, and as such causal claims are viewed with ap-

propriate skepticism. However, it is vital to not throw away our

causal and process-based evolutionary thinking when applying

the increasingly complex and sophisticated statistical toolkit of

comparative methods. Instead, our recommendation is to make

explicit the causal reasoning that justifies the use of a particu-

lar macroevolutionary model—even when such models are likely

gross simplifications of reality. Furthermore, we recommend crit-

ically evaluating the conclusions of that model in light of likely

model violations from the known biology of the trait, even when

evaluating these assumptions may be impossible. In our specific

example, we examined the relationships between metabolic rate

and temperature. Although these relationships have been stud-

ied by physiologists for decades, we certainly think there is po-

tential for novel phylogenetic comparative methods to provide

new insights into the problem (White et al. 2009; Uyeda et al.

2017; White et al. 2019). However, the causal assumptions of

inferences drawn from statistical methods, which are often im-

plicit, must be consistent with the fundamental biology underly-

ing the data (Uyeda et al. 2018). This is especially true because

complex phylogenetic comparative models can have many-to-one

mappings of interpretations to patterns (Louca and Pennell 2020).

Realizing the potentially large extent of such issues in macroevo-

lution, we believe that it is vital to carefully consider how plau-

sible biological causal processes would map onto macroevolu-

tionary patterns, even when definitively inferring causation from

observational data alone is impossible. This step we think is too

often ignored in macroevolutionary models, and by no means

unique to the question and study examined here. We hope that

our exploration has provided a useful model for how we can make

not just our methods and data analyses reproducible, but also our

reasoning and inferences.

We demonstrate in this note that we are at odds with the

interpretation found in Avaria-Llautureo et al. (2019) who con-

cluded that (1) BMR and Tb are evolutionarily decoupled; (2)

this decoupling is likely related to positive correlations between

cooling ambient global temperatures and decreasing Tb; and (3)

that Tb and Ta have decreased since the origin of endothermy.

We present evidence that these three major claims rely on, in

our opinion, a flawed mapping of statistical methods to rele-

vant causal processes and fitting models that are fundamentally
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inconsistent with the biological context. By applying (admit-

tedly, also flawed) models that capture key components of the

underlying process and its constraints, we conclude that (1) Tb

and BMR are strongly coupled in evolutionary state and possi-

bly weakly in evolutionary rate; (2) Tb is negatively correlated to

Ta in mammals; and (3) that evidence for a decrease in Tb over

the course of endotherm evolutionary history could likely be a

spurious result of model inadequacy and the constraints imposed

by physiology. More broadly, we want to encourage researchers

to recognize the limitations of phylogenetic comparative models

and think critically about how to model well-studied biological

processes. That is to say, we must choose our statistical tools

based on biology rather than let our view of biology be shaped

by our choice in statistical tools.
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