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Phylogenetic comparative methods are often used to test functional relationships between traits. However, million-year
macroevolutionary observational datasets cannot definitively prove causal links between traits—correlation does not equal cau-
sation and experimental manipulation over such timescales is impossible. Although this caveat is widely understood, it is less
appreciated that different phylogenetic approaches imply different causal assumptions about the functional relationships of traits.
To make meaningful inferences, it is critical that our statistical methods make biologically reasonable assumptions. Here we illus-
trate the importance of causal reasoning in comparative biology by examining a recent study by Avaria-Llautureo et al (2019).
that tested for the evolutionary coupling of metabolic rate and body temperature across endotherms and found that these traits
were unlinked through evolutionary time and that body temperatures were, on average, higher in the early Cenozoic than they
are today. We argue that the causal assumptions embedded into their models made it impossible for them to test the relevant
functional and evolutionary hypotheses. We reanalyze their data using more biologically appropriate models and find support for
the exact opposite conclusions, corroborating previous evidence from physiology and paleontology. We highlight the vital need
for causal thinking, even when experiments are impossible.
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The evolutionary causes and consequences of endothermy have
fascinated biologists for decades. But this is naturally a difficult
thing to study: the evolutionary events we are interested in oc-
curred over the course of hundreds of millions of years. At this
scale, direct tests of causal hypotheses are impossible. Nonethe-
less by piecing together multiple lines of evidence, including
physiological experiments, mathematical theory, and the paleon-
tological record, we have gained a rich understanding of the re-
lationships between metabolic rates, body mass, and temperature
and how they might have evolved (Grigg et al. 2004; Clarke et al.
2010; Lovegrove 2017), even as mysteries remain.

Macroevolutionary comparative analyses complement these
approaches; by leveraging interspecific data in a phylogenetic
framework, we can potentially gain new insights into how phys-
iological processes (White et al. 2009; Uyeda et al. 2017; White
et al. 2019) and scaling relationships, more generally, evolve
(Hansen and Bartoszek 2012; Pélabon et al. 2014; Voje et al.
2014). And although developments in this area are tremendously
exciting, it is critical to keep in mind that inferences drawn from
phylogenetic statistical methods, just like many other statistical
methods, have embedded, and often implicit, causal assumptions
(Uyeda et al. 2018)—and one must always keep in mind the
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motivating theory for how variables are functionally related to
underlying causal processes and to assess whether we are in-
deed measuring the right thing (Houle et al. 2011). No matter
how elegant the method, if it is not appropriate for the theoret-
ical context, it is not going to tell you anything meaningful and
even worse, will likely be misleading. We argue that inferences
drawn in all comparative analyses should be carefully evaluated
in light of their relationship to hypothesized causal relationships,
and skeptically evaluated in light of the nature of our necessarily
simplistic models.

Our motivating case study is a recent study by Avaria-
(2019),
phylogenetic models that provides a new perspective on the major

Llautureo et al. which presents evidence from
features of endothermic evolution, with the provocative conclu-
sion that metabolic rate and body temperature are decoupled—a
conclusion largely at odds with previous studies (Clarke et al.
2010). To support this conclusion, Avaria-Llautureo et al. (2019)
use statistical phylogenetic comparative methods inspired by sim-
ilar tests for convergence in selective pressures as demonstrated
by convergent evolutionary rates, which are commonly used in
molecular evolution (Chikina et al. 2016; Sackton et al. 2019).
Although superficially a reasonable analogy, we argue in this note
that the novel conclusions of Avaria-Llautureo et al. (2019) are
consequences of a failure to use models that reflect the processes
that are important in the evolution of endothermic traits—and
phenotypic traits more generally. Using process-based models
and simulating different causal scenarios, we demonstrate how
easily estimates from complex statistical models can become dis-
sociated from the underlying biological hypotheses. Although
our assumptions about cause and effect and/or biological con-
straints may be incorrect (e.g., if past processes are fundamen-
tally different from extant processes), we argue it is far superior to
make these assumptions explicit and part of the process of mak-
ing inference from comparative data.

Coupling of States or Rates?

It is well established that the basal metabolic rate (BMR) of an
organism is a function of its body mass M, its internal body tem-
perature Tj, and the temperature in which it lives (ambient tem-
perature; 7,) (Clarke et al. 2010, and references therein). These
relationships form the basis of several ecological theories (e.g.,
the Metabolic Theory of Ecology; Brown et al. 2004) and, more
broadly, are used for ensuring that BMR is measured in compa-
rable way across individuals, species, and studies. That is to say,
BMR, M, and T, are known to be functionally coupled. For this
reason, the conclusion in Avaria-Llautureo et al. (2019) that there
is no evidence of evolutionary or functional coupling between
BMR and T, may appear surprising.

1098 EVOLUTION MAY 2021

However, here we look closer at how functional coupling can
be defined and how it relates to the evolutionary questions being
asked. In Avaria-Llautureo et al. (2019), they open their paper
discussing this expected covariation of the values of BMR, T;,
and T, but then propose defining “coupling® to mean the corre-
lation of evolutionary rates rather than states. This shift is subtle
but important. Indeed, consistent with previous analyses of the
same data, Avaria-Llautureo et al. (2019) do find evidence of a
positive association between 7, and BMR (Clarke et al. 2010),
and a negative association between 7}, and T, (Clarke et al. 2010).
We use this study as a motivating example to ask two questions
that are important to consider when choosing from the variety of
comparative methods available to test associations between traits.
First, are the coupling of rates and the coupling of states simply
alternative ways of measuring the same thing, or do they measure
different things altogether? And second, if they are different, how
does one choose a method that meaningfully corresponds to the
theoretical context under study?

We illustrate our points in two ways. We first simulate trait
data under three alternative and biologically plausible causal sce-
narios (depicted in Fig. 1 and described next) on the phylogeny
of mammals used by Avaria-Llautureo et al. (2019) and exam-
ine the resulting covariance structure in both the states and the
rates. We then use the simulated scenarios as reference points
for interpreting our reanalysis of the original empirical data of
Avaria-Llautureo et al. (2019).

e Scenario 1 is a multivariate Brownian motion (mvBM; Felsen-
stein 1985) model. Note that this model generates data with the
same distribution as a phylogenetic generalized least squares
(PGLS) model, though mvBM and PGLS depict different
causal scenarios that are not identifiable in extant-only data
(Blomberg et al. 2012). For simplicity, we simulate BMR and
T, under mvBM where the two traits are correlated (p = 0.8)
but where there is no variation in rates across different lineages
(meaning there is no variation to detect a branch-wise correla-
tion in rates).

e In Scenario 2, we simulate uncorrelated states of 7, and BMR
by changing the correlation in the evolutionary rate matrix to
p = 0. However, we introduce correlations in branch-specific
rates by drawing shared branch scalars for both traits from a I
distribution (as is typical when capturing rate variation in phy-
logenetic studies) with shape parameter set to 1.1 and a scale
parameter set to 1. This results in collinear evolutionary rates
for both traits, but no correlation in states. In other words, even
though the traits are not correlated in any way, branches on
which there is rapid evolution in one trait are also branches in
which there is rapid evolution in the other trait. Perhaps surpris-
ingly, we consider the most straightforward process consistent
with this type of “rate-coupling” to be one in which there is
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Figure 1. Simulated (Rows 1-3) and Empirical (Row 4) relationships between T, and BMR on the mammalian phylogeny used in Avaria-
Llautureo et al. (2019). (Row 1; Scenario 1): If T is direct cause of BMR or if both evolve under a common cause, Z, in a correlated fashion
(1A), then we observe a correlation in state (1B; dotted line = PGLS regression) despite an absence of rate variation (1C) (cf. Avaria-
Llautureo et al. 2019, Fig. 1a). (Row 2; Scenario 2): Multivariate Brownian motion (2A) where T, and BMR are uncorrelated in state (2B)
but share the same source of rate variation (2C). Shared rate variation indicated by colored nodes/arrows. This is the scenario that Avaria-
Llautureo et al. (2019) define as evolutionary “coupling” (cf. Avaria-Llautureo et al. 2019, Fig. 1b), despite the fact that it can occur absent
a functional relationship between traits (e.g., evolution by genetic drift with Z representing time-varying effective population size).
(Row 3; Scenario 3) Ty is a direct cause of BMR and has rate variation, but Z is also a cause of BMR with independent rate variation (3A).
Rates in Z are 20x the rates in T. This results in highly significantly correlated states (3B), but nonsignificantly correlated rates (3C) (cf.
Avaria-Llautureo et al. 2019, Fig. 1C). Plotted rate scalars for simulated data are true parameter values, giving a best case scenario. Using
estimated rate scalars would drastically decrease power to detect significant rate correlations even further; particularly for methods that
“shrink” rate variation (like the variable-rate regression model—VRRM). However, state correlations will remain robustly estimated. (Row
4): Empirical data for birds and mammals used in Avaria-Llautureo et al. (2019) using phylogenetically mass-corrected log BMR. Rates are
estimated as the log of magnitude of the phylogenetic independent contrasts. P-values from full, best-fitting phylogenetic regression
models. The empirical data are consistent with the causal model in (3A), showing strong evidence of “evolutionary coupling” between
T, and BMR. Details and complete R script are available on Dryad; https://doi.org/10.5061/dryad.z612jmébj.
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a third factor, Z, affecting both traits (Row 2, Fig. 1). Should
such a scenario be evidence of functionally relevant “coupling”
as argued by Avaria-Llautureo et al. (2019)? We will return to
this shortly.

* Finally, in Scenario 3, we first simulate 7}, with branch scalars
from I'(shape = 10, rate = 10) and an overall Brownian mo-
tion rate of 0%) = 1. We then simulate another trait Z (which is
not measured at the tips of the phylogeny) with branch scalars
from the same I'-distribution, but a higher rate of evolution
where 02 = 20. For each tip i, we then generate data on BMR
by adding the effects of Z and 7, such that

BMR; = BzZ; + Br,Tpi + €,

where ¢; represents additional residual variation where € ~
N(0, 6> = 1). Because Z is unmeasured at the tips, Z is sub-
sumed in the residual variation in the regression between BMR
and T,. Here Z could represent body size or another related
variable. Because the range of variation in Z is greater than 7j,,
we would expect that rate correlations between BMR and 7,
would be difficult to detect even if there is a true underlying
causal relationship, as is the case here (Row 3, Fig. 1).

These simulated scenarios guide our thinking on the mean-
ing and relationships between rate and state associations. With
these in mind, we reanalyzed the empirical datasets of Avaria-
Llautureo et al. (2019) in two different ways. First, we fit a
standard phylogenetic regression model (Martins and Hansen
1997) to estimate a correlation between states (Row 4, Fig. 1).
We found that, as expected, 7}, and In(BMR) are positively cor-
related in both birds and mammals using models that include
In(M) (and in the case of mammals, In(M)?, because previous
studies have found curvature in this relationship; Kolokotrones
et al. 2010). We found the best model for the residual varia-
tion by comparing Brownian motion, Pagel’s N (Pagel 1999),
and Ornstein—Uhlenbeck (OU; Hansen 1997) models with fixed
or random roots fit using the R package phylolm (Ho and Ané
2014). In mammals, we found very strong coefficients between
T}, and In(BMR) (B7, = 10% increase in BMR per degree Celsius,
P < 0.001) and significant negative relationship between 7, and
T, (Br, = —0.03°Cper °Cof T,,, P < 0.01). In birds, the former is
marginally significant (P = 0.057) and also positive (Br, = 2%
increase in BMR per degree Celsius), and the latter is nonsignifi-
cant (P = 0.45). We note that very little variation exists for avian
T, and that proper analysis of these correlations would likely
require careful accounting of measurement error (Hansen and
Bartoszek 2012). These results are consistent with previous anal-
yses of these relationships (Clarke et al. 2010).

Second, we estimate the evolutionary correlation in rates.
We note that rate correlations are considerably more difficult to
estimate than state correlations because we cannot actually mea-
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sure these in any organism and must infer them from model
parameters; furthermore, even perfectly estimated rates carry
only information about the magnitude—not the direction—of
change. In their analyses, Avaria-Llautureo et al. (2019) es-
timated branch-specific rates using a variable-rate regression
model (VRRM) (Venditti et al. 2011) fit using Bayesian re-
versible jump Markov Chain Monte Carlo (Green 1995). The
model they fit is quite complex; as such, to visualize the essence
of their results without getting mired in the details (e.g., choice
of priors, assessment of convergence, etc.) we plot the sig-
nal for rate correlations in branch-specific rates using the log-
arithm of the absolute value of independent contrasts com-
puted at each node (Garland et al. 1992). Although an imper-
fect measure, the expected value of each contrast will increase
with increasing evolutionary rate and thus we can test whether
these node-wise estimates of rates are correlated between dif-
ferent sets of traits. For In(BMR), we again took the residuals
of the best-fitting phylogenetic regression with log body mass
(and for mammals, In(M)?) to calculate these contrasts. To ver-
ify that correlated rate scalars can be identified using this ap-
proach, we simulated scenarios of rates with shared shift loca-
tions on the mammal phylogeny with correlations in rates rang-
ing from O to 1 and evaluated whether significantly positive re-
gressions were obtained (see Supporting Information on Dryad,
https://doi.org/10.5061/dryad.z612jm6bj).

For mammals, there is weak but marginally significant ev-
idence that In(BMR) and T, have correlated evolutionary rates
(p =0.10, P = 0.03 — 0.08, depending on how contrasts of O are
treated; Fig. 1.4C). Our simulations indicate that this value of the
slope is consistent with the conclusion of a weak to moderate cor-
relation between rates (Supporting Information). For birds, there
is no apparent relationship (p = 0.04, P = 0.58, Fig. 1.4C). Both
these results are qualitatively in-line with the findings of Avaria-
Llautureo et al. (2019) and we do not dispute their results in this
regard. Instead, we wish to highlight the importance of the inter-
pretation of rate correlations, rather than to dispute the methods
themselves. Rather, we argue that the presence or absence of as-
sociations of rates can occur with or without functional coupling,
and care should be taken in their interpretation. For metabolic
rate and body temperature, we consider that the combination of
strong state coupling and weakly detectable rate-coupling using
contrasts, and the VRRM in Avaria-Llautureo et al. (2019), to
be consistent with our Scenario 3. We therefore read the evi-
dence to suggest that T}, is functionally coupled with BMR, but
that metabolic rate is also strongly affected by other traits with
additional, independent rate variation.

Furthermore, our Scenario 2 clearly illustrates that shared
rate variation can exist even if there is no functional or evo-
lutionary association between the traits (cf. Avaria-Llautureo
et al.’s (2019) definition of “coupling”; their Fig. 1B, our
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Figure 2. Relationship between pathwise rates estimated from (A) empirical data (cf. Avaria-Llautureo et al. 2019, Fig. 4) and (B) 10
simulated datasets with increasing T, over time. This negative slope was used by Avaria-Llautureo et al. (2019) to support their conclusion
that T, and T, had decreased over the evolutionary history of mammals and birds. Analyses of data with the variable-rate regression
model (VRRM) in bayestraits (green) and in bayou (blue) are shown with dotted lines indicating the phylogenetic regression. When
the true simulated process includes constraints (instead of purely unconstrained BM) under realistic macroevolutionary landscapes, we
recover negative relationships between pathwise rates and trait values, despite an overall increasing trend (from the root value of 25°C
to an optimum of 38°C). This macroevolutionary landscape was represented by the Sharpe-Schoolfield thermal-performance curve (gray
dotted line), which has a harder bound at high temperatures than at low temperatures. Pathwise rates should never be interpreted as
reconstructing ancestral states when the trait in question shows evidence of strongly constrained evolution, as constrained evolution
will erase phylogenetic signal and measured rates will simply either reflect asymmetries in the macroevolutionary landscape (as depicted
here) and/or asymmetries in diversification/taxonomic sampling (e.g., trait-dependent diversification, likely the case for T,). Data were
simulated with the R package BBMV Boucher et al. (2017). Supporting Information and complete scripts and data are available on Dryad,
https://doi.org/10.5061/dryad.z612jm6bj.

Table 1. Phylogenetic signal estimated using an OU model of Fig. 1.2A-C). For example, consider if both traits were evolving
adaptive (i.e., constrained) evolution. with rates jointly set by a third factor (Z). This could occur if rates

of change in traits evolving via genetic drift are all jointly set by

Clade Trait E:ﬁﬁgfenc c?vlgcléM effective Population s%ze (Z = N,; Walsh and Lynch 2018), even
when traits are functionally uncoupled. Thus, we observe that
Mammals strong and easily detectable causal relationships between traits
T, 0.26 46.3 can be found by state associations (as we observed in the empir-
BMR® 0.16 86.0 ical data), even when coupling of rates are too weak to be de-
. T 0.10 141.2 tectable (Fig. 1). Furthermore, tests of rate-coupling can produce
Birds T 001 1324 positive results even when traits are not interdependent—which
BMRP 0.01 3824 seems to us the most relevant questions to the evolutionary and
T, 0.01 168.8 ecological theories that motivate interest in these traits—but in-
stead whether an additional causal factor might be driving shared

aHalf-life (@) measures the time it takes for a lineage to evolve halfway to rate variation among the two traits.
the OU optimum in units of tree height. Values of 0 indicate constrained evo- It is worth noting that a number of researchers investigat-

lution with no phylogenetic signal; while values >1 indicate BM-like evolu- . . . « .
. L . . ing molecular evolution have interpreted “convergent rates” in
tion and strong phylogenetic signal. All traits strongly reject the BM model . . .
(AAIC > 4). molecular sequence evolution as possible evidence of shared
bMass-corrected log BMR. functional significance (Hu et al. 2019; Smith et al. 2020). Rather

than assessing convergent states (e.g., Li et al. (2010)), such
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studies ask whether shared selective pressures cause joint shifts
in substitution rates across genes—which corresponds closely to
our Scenario 2. Although not the focus of the present manuscript,
we think it is worth thinking carefully about the underlying logic
of such tests for convergence in molecular evolution. Importantly,
studies examining genomic characters have the advantage that
additional data is often available to support claims of evolution-
ary coupling, such as the enrichment for meaningful functional
annotations against a large sample of background rates and
a priori hypotheses of specific causal factors (Chikina et al.
2016; Sackton et al. 2019). Although these additional data make
evaluating shared function via coupled rates a more meaningful
inference, we would strongly caution against interpreting a lack
of evidence for joint shifts in substitution rates as evidence
of an absence of functional relationship between molecular
sequences—consistent with the arguments we have made here.

Given the existing evidence and known mechanism for how
T, and BMR are coupled, combined with the ease of testing
state relationships with continuously varying traits (as opposed
to the complexities of evaluating convergent states in molecular
sequences), the evidence and test for functional coupling here is
much more direct. In the context of metabolism, we believe that
subsequent evaluation of Scenario 2 in this case, at least with-
out reference to a background suite of traits or a specific causal
factor, is largely meaningless. We acknowledge that we may not
have fully understood the causal model envisioned by Avaria-
Llautureo et al. (2019). For this reason, we think it is critical
that practitioners of phylogenetic comparative methods present
graphical causal models of their hypotheses to make clear how
the inferences drawn relate to the evidence presented.

Coupled Trends or Model
Inadequacy?

Thinking clearly about the traits under study also requires that
we consider the causal processes that affect their evolution. This
choice of process model can critically affect how we interpret
the data, and helps explain another somewhat surprising feature
of metabolic evolution found by Avaria-Llautureo et al. (2019):
they find that T}, has decreased consistently throughout the Ceno-
zoic. Of course, the vast amount of evidence from both phys-
iology and paleontology strongly supports the conclusions that
endotherms originated from ectotherms (Grigg et al. 2004; Love-
grove 2017)—this statement is not controversial and it would
be extraordinary if this was found to be incorrect. Neverthe-
less, a plausible alternative is that Avaria-Llautureo et al. (2019)
identified a signal of endotherms rapidly increasing to high av-
erage body temperatures and subsequently decreasing over the
Cenozoic.
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To evaluate these alternatives, we first recognize that all
models are simplifications of reality, and necessarily make sim-
plifying assumptions. Despite this caveat, we believe that flawed
models can often be used to make robust macroevolutionary in-
ferences. We argue that the key to progress despite imperfect
tools is to consider carefully how such traits are expected to
evolve given our knowledge of their function, dynamics, and
constraints—knowledge that comes from outside of macroevo-
lutionary statistical models. Here, we reexamine the conclusions
of Avaria-Llautureo et al. (2019) to demonstrate our view of this
process, and how our expectations can easily explain the observed
patterns with entirely expected violations of standard macroevo-
lutionary models.

As stated above, Avaria-Llautureo et al. (2019) used a
VRRM based on a BM model of evolution, where traits evolve
in an undirected and unbounded manner as they would under ge-
netic drift or randomly varying selection (Hansen and Martins
1996). This seems entirely inappropriate for traits such as BMR
that are biophysically constrained to stay close to an optimum
value (West et al. 2002; Glazier 2005, 2010; Clarke et al. 2010).
Although far from perfect, the “adaptation” (or OU) model pro-
posed by Hansen (1997) better captures this biological reality.
Analyzing the data of Avaria-Llautureo et al. (2019) bears this
out: OU is a much better fit than BM for 7, T, and mass-specific
BMR in both mammals and birds (Table 1). Birds are especially
strongly constrained with little variation in these traits and virtu-
ally no phylogenetic signal; this is consistent with both the ba-
sic physiology involved and with previous phylogenetic analy-
ses (Uyeda et al. 2017). We note that the models we used for
this comparison are much simpler than the ones used by Avaria-
Llautureo et al. (2019); comparing variable OU processes (Uyeda
et al. 2017) with variable BM processes is beyond the scope of
this article, but we argue that the simple case captures the essence
of the problem.

So how could the choice of Brownian models over constraint
models affect the apparent trend in 7,? Let us assume for the mo-
ment that there is no rate variation in the data and that the evolu-
tionary dynamics of 7}, and T, do indeed resemble that of an OU
process. One feature of evolutionary processes that follow an OU
model is that because the amount of divergence is constrained,
the overall rate one would measure if one fits a BM model would
depend strongly on the length of the branch itself (the denomi-
nator of any estimate of rate); therefore if one uses a Brownian
model to fit data generated under an OU-like process, rates will
be estimated to be higher on short terminal branches, whereas
deeper and longer branches will have lower estimates of rate (for
mathematical explanation, see Uyeda et al. 2015). If one com-
putes, as Avaria-Llautureo et al. (2019) did, the total pathwise
rates (summing the rates on all the branches from the root to a
given tip), one will detect highest pathwise rates in any trait that
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is correlated with short terminal branches. Avaria-Llautureo et al.
(2019) interpret correlations between pathwise rates and the tip
state to be evidence of a secular evolutionary trend. But given
the likely dependence on the rate estimates for 7;, and 7, with
branch lengths, any association between these traits and diversi-
fication will result in longer pathwise rates. For example, there
is abundant evidence that terminal branches are shorter in tem-
perate regions than in the tropics for these taxa owing to higher
species turnover in temperate regions (Weir and Schluter 2007,
Schluter 2016; Schluter and Pennell 2017). Thus, we think a far
more likely explanation is that this trend is an artifact of fitting
Brownian models to constrained data.

Indeed, we are able to recover the exact same pattern of
decreasing T, over time as Avaria-Llautureo et al. (2019) find
in their Figure 4, even when we simulate a true trend of in-
creasing Ty, over time. For example, starting from a low ances-
tral body temperature of (25°C), it is straightforward to obtain
negative relationships between pathwise rates and body temper-
ature under biologically realistic macroevolutionary landscapes
(Fig. 2). Specifically, we used a constrained macroevolutionary
landscape that reflects standard enzymatic and temperature pref-
erence curves for organisms in which high temperatures impose a
stronger constraint on organismal performance than low temper-
atures (i.e., the Sharpe—Schoolfield equation, Schoolfield et al.
1981, see Supporting Information for details of simulations). In
other words, this model is similar to an OU model in that di-
vergence is constrained within high-performance regions of the
macroevolutionary landscape, but allows asymmetry that is ex-
pected given well-known physiological performance curves for
T, (Huey and Kingsolver 1989). We simulated data on this land-
scape with the R package BBMV (Boucher et al. 2017). These
asymmetries are expected to generate a negative relationship be-
tween T, and the pathwise rates of 7}, even if there is a true trend
towards higher body temperatures towards the present. This also
could explain why Avaria-Llautureo et al. (2019) conclude that 7,
and T}, follow the same trajectory toward decreasing temperature
over time (cf. Fig. 1.2A—-C), despite evidence they are negatively
correlated with each other when we consider state correlations
(Clarke et al. 2010)—which likely results from the well-known
phenomenon of countergradient selection (Schultz et al. 1996;
Fangue et al. 2009).

Although estimation of ancestral states under a VRRM may
be possible if the trait approaches unconstrained BM-like evolu-
tion, we caution interpretation of ancestral states even in the best
circumstances—and especially with evidence of constrained evo-
lution and when trends are expected. The inability to estimate the
ancestral states for constrained traits is a special case of the “Dar-
winian uncertainty principle” (Gascuel and Steel 2019), which
describes the trade-off in estimating ancestral states versus the
rates of the evolutionary process. Just as in the case of molecu-

lar sequence data, quantitative traits with high rates that explore
a constrained macroevolutionary landscapes will progressively
erase evolutionary history, eroding any confidence we should
have in already uncertain ancestral state estimates (Boucher et al.
2017).

Conclusions

Phylogenetic comparative datasets cannot be generated from ex-
perimentation, and as such causal claims are viewed with ap-
propriate skepticism. However, it is vital to not throw away our
causal and process-based evolutionary thinking when applying
the increasingly complex and sophisticated statistical toolkit of
comparative methods. Instead, our recommendation is to make
explicit the causal reasoning that justifies the use of a particu-
lar macroevolutionary model—even when such models are likely
gross simplifications of reality. Furthermore, we recommend crit-
ically evaluating the conclusions of that model in light of likely
model violations from the known biology of the trait, even when
evaluating these assumptions may be impossible. In our specific
example, we examined the relationships between metabolic rate
and temperature. Although these relationships have been stud-
ied by physiologists for decades, we certainly think there is po-
tential for novel phylogenetic comparative methods to provide
new insights into the problem (White et al. 2009; Uyeda et al.
2017; White et al. 2019). However, the causal assumptions of
inferences drawn from statistical methods, which are often im-
plicit, must be consistent with the fundamental biology underly-
ing the data (Uyeda et al. 2018). This is especially true because
complex phylogenetic comparative models can have many-to-one
mappings of interpretations to patterns (Louca and Pennell 2020).
Realizing the potentially large extent of such issues in macroevo-
lution, we believe that it is vital to carefully consider how plau-
sible biological causal processes would map onto macroevolu-
tionary patterns, even when definitively inferring causation from
observational data alone is impossible. This step we think is too
often ignored in macroevolutionary models, and by no means
unique to the question and study examined here. We hope that
our exploration has provided a useful model for how we can make
not just our methods and data analyses reproducible, but also our
reasoning and inferences.

We demonstrate in this note that we are at odds with the
interpretation found in Avaria-Llautureo et al. (2019) who con-
cluded that (1) BMR and 7, are evolutionarily decoupled; (2)
this decoupling is likely related to positive correlations between
cooling ambient global temperatures and decreasing 75; and (3)
that 7;, and T, have decreased since the origin of endothermy.
We present evidence that these three major claims rely on, in
our opinion, a flawed mapping of statistical methods to rele-
vant causal processes and fitting models that are fundamentally
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inconsistent with the biological context. By applying (admit-
tedly, also flawed) models that capture key components of the
underlying process and its constraints, we conclude that (1) 7;
and BMR are strongly coupled in evolutionary state and possi-
bly weakly in evolutionary rate; (2) 7, is negatively correlated to
T, in mammals; and (3) that evidence for a decrease in 7}, over
the course of endotherm evolutionary history could likely be a
spurious result of model inadequacy and the constraints imposed
by physiology. More broadly, we want to encourage researchers
to recognize the limitations of phylogenetic comparative models
and think critically about how to model well-studied biological
processes. That is to say, we must choose our statistical tools
based on biology rather than let our view of biology be shaped
by our choice in statistical tools.

CONFLICT OF INTEREST
The authors have no conflict of interest to declare.

AUTHOR CONTRIBUTIONS
JCU and MWP conceived of the manuscript. JCU, NB, and SM per-
formed analyses. JCU, NB, SM, JR, and MWP wrote the manuscript.

ACKNOWLEDGMENTS

We thank Luke Harmon, Barbara Neto-Bradley, Martha Muiioz, Graham
Slater, Joel McGlothlin, and two anonymous reviewers for providing in-
sight and feedback. MWP was supported by an NSERC Discovery Grant.
JCU was support by NSF-DEB-1942717.

DATA ARCHIVING
Supporting Information and complete scripts and data are available on
Dryad, https://doi.org/10.5061/dryad.z612jm6bj.

LITERATURE CITED

Avaria-Llautureo, J., C. E. Herndndez, E. Rodriguez-Serrano, and C. Venditti.
2019. The decoupled nature of basal metabolic rate and body tempera-
ture in endotherm evolution. Nature 572:651-654.

Blomberg, S. P, J. G. Lefevre, J. A. Wells, and M. Waterhouse. 2012. Inde-
pendent contrasts and PGLS regression estimators are equivalent. Syst.
Biol. 61:382-391.

Boucher, F. C., V. Démery, E. Conti, L. J. Harmon, and J. Uyeda. 2017. A
general model for estimating macroevolutionary landscapes. Syst. Biol.
67:304-319.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004.
Toward a metabolic theory of ecology. Ecology 85:1771-1789.

Chikina, M., J. D. Robinson, and N. L. Clark. 2016. Hundreds of genes ex-
perienced convergent shifts in selective pressure in marine mammals.
Mol. Biol. Evol. 33:2182-2192.

Clarke, A., P. Rothery, and N. J. Isaac. 2010. Scaling of basal metabolic rate
with body mass and temperature in mammals. J. Anim. Ecol. 79:610-
619.

Fangue, N. A., J. E. Podrabsky, L. I. Crawshaw, and P. M. Schulte. 2009.
Countergradient variation in temperature preference in populations of
killifish Fundulus heteroclitus. Physiol. Biochem. Zool. 82:776-786.

Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat.
125:1-15.

1104 EVOLUTION MAY 2021

Garland, T., P. H. Harvey, and A. R. Ives. 1992. Procedures for the analysis
of comparative data using phylogenetically independent contrasts. Syst.
Biol. 41:18-32.

Gascuel, O., and M. Steel. 2019. A Darwinian uncertainty principle. Syst.
Biol. 69:521-529.

Glazier, D. S. 2005. Beyond the “3/4-power law”: variation in the intra-and
interspecific scaling of metabolic rate in animals. Biol. Rev. 80:611—
662.

Glazier, D.S. 2010. A unifying explanation for diverse metabolic scaling in
animals and plants. Biol. Rev. 85:111-138.

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika 82:711-732.

Grigg, G. C.,, L. A. Beard, and M. L. Augee. 2004. The evolution of en-
dothermy and its diversity in mammals and birds. Physiol. Biochem.
Zool. 77:982-997.

Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of
adaptation. Evolution 51:1341-1351.

Hansen, T. F,, and K. Bartoszek. 2012. Interpreting the evolutionary regres-
sion: the interplay between observational and biological errors in phy-
logenetic comparative studies. Syst. Biol. 61:413-425.

Hansen, T. F,, and E. P. Martins. 1996. Translating between microevolution-
ary process and macroevolutionary patterns: the correlation structure of
interspecific data. Evolution 50:1404-1417.

Ho, L. S. T., and C. Ané. 2014. Intrinsic inference difficulties for trait evo-
lution with Ornstein—Uhlenbeck models. Meth. Ecol. Evol. 5:1133—
1146.

Houle, D., C. Pélabon, G. P. Wagner, and T. F. Hansen. 2011. Measurement
and meaning in biology. Q. Rev. Biol. 86:3-34.

Hu, Z., T. B. Sackton, S. V. Edwards, and J. S. Liu. 2019. Bayesian detection
of convergent rate changes of conserved noncoding elements on phylo-
genetic trees. Mol. Biol. Evol. 36:1086-1100.

Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of
ectotherm performance. Trends Ecol. Evol. 4:131-135.

Kolokotrones, T., V. Savage, E. J. Deeds, and W. Fontana. 2010. Curvature in
metabolic scaling. Nature 464:753-756.

Li, Y., Z. Liu, P. Shi, and J. Zhang. 2010. The hearing gene prestin unites
echolocating bats and whales. Curr. Biol. 20:R55-R56.

Louca, S., and M. W. Pennell. 2020. Extant timetrees are consistent with a
myriad of diversification histories. Nature 508:502-505.

Lovegrove, B.G. 2017. A phenology of the evolution of endothermy in birds
and mammals. Biol. Rev. 92:1213-1240.

Martins, E. P, and T. F. Hansen. 1997. Phylogenies and the compara-
tive method: a general approach to incorporating phylogenetic in-
formation into the analysis of interspecific data. Am. Nat. 149:646—
667.

Pagel, M. 1999. Inferring the historical patterns of biological evolution.
Nature 401:877-884.

Pélabon, C., C. Firmat, G. H. Bolstad, K. L. Voje, D. Houle, J. Cassara, A. L.
Rouzic, and T. F. Hansen. 2014. Evolution of morphological allometry.
Ann. N. Y. Acad. Sci. 1320:58-75.

Sackton, T. B., P. Grayson, A. Cloutier, Z. Hu, J. S. Liu, N. E. Wheeler, P. P.
Gardner, J. A. Clarke, A. J. Baker, M. Clamp, et al. 2019. Convergent
regulatory evolution and loss of flight in paleognathous birds. Science
364:74-178.

Schluter, D. 2016. Speciation, ecological opportunity, and latitude: (Ameri-
can Society of Naturalists Address). Am. Nat. 187:1-18.

Schluter, D., and M. W. Pennell. 2017. Speciation gradients and the distribu-
tion of biodiversity. Nature 546:48-55.

Schoolfield, R. M., P. Sharpe, and C. E. Magnuson. 1981. Non-linear regres-
sion of biological temperature-dependent rate models based on absolute
reaction-rate theory. J. Theor. Biol. 88:719-731.



Schultz, E., K. Reynolds, and D. Conover. 1996. Countergradient variation

in growth among newly hatched Fundulus heteroclitus: geographic dif-
ferences revealed by common-environment experiments. Funct. Ecol.
10:366-374.

Smith, S. D., M. W. Pennell, C. W. Dunn, and S. V. Edwards. 2020. Phyloge-
netics is the new genetics (for most of biodiversity). Trends Ecol. Evol.
35:415-425.

Uyeda, J. C., D. S. Caetano, and M. W. Pennell. 2015. Comparative analysis
of principal components can be misleading. Syst. Biol. 64:677-689.

Uyeda, J. C., M. W. Pennell, E. T. Miller, R. Maia, and C. R. McClain. 2017.
The evolution of energetic scaling across the vertebrate tree of life. Am.
Nat. 190:185-199.

Uyeda, J. C., R. Zenil-Ferguson, and M. W. Pennell. 2018. Rethinking phylo-
genetic comparative methods. Syst. Biol. 67:1091-1109.

Venditti, C., A. Meade, and M. Pagel. 2011. Multiple routes to mammalian
diversity. Nature 479:393-396.

Voje, K. L., T. F. Hansen, C. K. Egset, G. H. Bolstad, and C. Pelabon.
2014. Allometric constraints and the evolution of allometry. Evolution
68:866-885.

Walsh, B., and M. Lynch. 2018. Evolution and selection of quantitative traits.
Oxford Univ. Press, Oxford.

Weir, J. T., and D. Schluter. 2007. The latitudinal gradient in recent speciation
and extinction rates of birds and mammals. Science 315:1574-1576.

West, G. B., W. H. Woodruff, and J. H. Brown. 2002. Allometric scaling of
metabolic rate from molecules and mitochondria to cells and mammals.
Proc. Natl. Acad. Sci. 99:2473-2478.

White, C. R., T. M. Blackburn, and R. S. Seymour. 2009. Phylogeneti-
cally informed analysis of the allometry of mammalian basal metabolic
rate supports neither geometric nor quarter-power scaling. Evolution
63:2658-2667.

White, C. R., D. J. Marshall, L. A. Alton, P. A. Arnold, J. E. Beaman, C. L.
Bywater, C. Condon, T. S. Crispin, A. Janetzki, E. Pirtle, et al. 2019. The
origin and maintenance of metabolic allometry in animals. Nat. Ecol.
Evol. 3:598-603.

Associate Editor: A. McAdam
Handling Editor: A. McAdam

EVOLUTION MAY 2021 1105



