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Abstract

Evolutionary rates play a central role in connecting micro- and macroevolu-
tion. All evolutionary rate estimates, including rates of molecular evolution,
trait evolution, and lineage diversification, share a similar scaling pattern
with time: The highest rates are those measured over the shortest time
interval. This creates a disconnect between micro- and macroevolution,
although the pattern is the opposite of what some might expect: Patterns of
change over short timescales predict that evolution has tremendous poten-
tial to create variation and that potential is barely tapped by macroevolution.
In this review, we discuss this shared scaling pattern across evolutionary
rates. We break down possible explanations for scaling into two categories,
estimation error and model misspecification, and discuss how both apply
to each type of rate. We also discuss the consequences of this ubiquitous
pattern, which can lead to unexpected results when comparing rates
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over different timescales. Finally, after addressing purely statistical concerns, we explore a few
possibilities for a shared unifying explanation across the three types of rates that results from a
failure to fully understand and account for how biological processes scale over time.

1. INTRODUCTION

Evolutionary rates play a central role in the quest to bridgemicro- andmacroevolution (Gingerich
1983, 2009; Hansen &Martins 1996; Rolland et al. 2018). The central question is whether rates of
microevolutionary changes that we measure over a few generations are sufficient to explain the di-
versity of life that has accumulated on the planet over the past 4 billion years (Kinnison &Hendry
2001).Or, in slightly different terms, can we explain all the diversity of life viamodels of population
and quantitative genetics extrapolated along the branches of the tree of life (Charlesworth et al.
1982, Estes & Arnold 2007)? The opposing point of view is that we need special macroevolution-
ary phenomena, such as species selection or times of dramatically accelerated diversification, to
explain broadscale phenomena (Erwin 2000, Eldredge & Gould 1972, Hendry & Kinnison 2001,
Reznick & Ricklefs 2009, Rolland et al. 2018).Measuring and comparing rates of evolution across
timescales could provide some resolution for this debate.

Empirical measurements of evolutionary rates have revealed a remarkably consistent pattern
of scaling across micro- and macroevolutionary time. Rate estimates depend predictably on the
timescale over which they are measured, with the highest rates measured over the shortest time
interval (Henao Diaz et al. 2019,Ho et al. 2011,Uyeda et al. 2011). Across rates of molecular, trait,
and lineage diversification, the fastest rates tend to be measured over short time intervals, whereas
rates measured over longer time intervals tend to be slower (Figure 1). As a consequence, patterns
of change over short timescales predict that evolution has tremendous potential to create variation,
and that potentiality is barely tapped by the present-day diversity of life (Gould 1985). In other
words, the short-term potential of evolution, in terms of rates of change of DNA sequences, traits,
and the accumulation of species, is much greater than what is manifest over long timescales. The
causes of this ubiquitous scaling pattern remain mysterious and pose a challenge to the unification
of evolutionary studies.

There is one obvious candidate explanation for this scaling pattern: Perhaps evolution is con-
stantly accelerating. In a world where evolution is speeding up through time, we are making
our measurements when all evolutionary rates are at their long-term maximum. There are many
unique aspects of the world today, from human impacts to maximal levels of biodiversity, and
these could potentially explain long-term patterns of increasing rates. Indeed, some evolutionary
dynamics seem to be changing in the Anthropocene (Otto 2018).However, there are a few reasons
why one might be skeptical of this as an explanation for rate scaling. One primary counterargu-
ment is that the patterns of rate scaling are not limited to extant taxa and also appear in the fossil
record (Gingerich 1983, Henao Diaz et al. 2019, Uyeda et al. 2011); in other words, elevated re-
sults are common whenever time intervals are short, regardless of whether that short time interval
is particularly close to the present day. Instead, we view this pattern as an artifact caused by our
failure to accurately measure and model the world. Most of our review, then, is an analysis of this
artifact, although we do return to this idea of acceleration in Section 5.1.

In this review, we promote a view of evolutionary rates as model parameters whose interpreta-
tion depends on the accuracy and adequacy of the model used to estimate rates (Hunt 2012). To
that end, rate scaling can come from two main sources: estimation error, which involves statistical
error in the data or in the way the data is fit to a model, and model misspecification, in which the
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Figure 1

Rate-scaling patterns showing rate (y-axis) versus time interval (x-axis); insets are on a log-log scale. (a) Rates of molecular evolution
versus time interval. Estimated mean mitochondrial substitution rates compared with their calibration intervals or oldest sampled tip.
Rates were calculated on contemporaneous and ancient sequences using Bayesian or coalescent methods under the best substitution
model. Data compiled from Ho et al. (2007). (b) Rates of trait evolution versus time interval. Absolute morphometric divergence rate in
darwins compared with its measurement time interval estimated for 30 orders among tetrapods, arthropods, mollusks, radiolarians, and
foraminifera. Data replotted from Uyeda et al. (2011). (c) Rates of speciation versus time interval. Estimated speciation rates from 104
time-calibrated molecular phylogenies compared with a clade’s crown age (Henao Diaz et al. 2019); diversification rates were calculated
on representatives of seed plants, ferns, vertebrates, and invertebrates using Bayesian analysis of macroevolutionary mixtures (BAMM)
(Rabosky 2014) on representatives of seed plants, ferns, vertebrates, and invertebrates.

model does not capture the main behavior of the evolutionary process. Both of these phenomena
can lead to rate-scaling patterns, and authors sometimes argue past one another due to a lack of
understanding of these potential sources of scaling patterns. We advocate, then, a direct attempt
to consider estimation error and model misspecification when considering rates (see the sidebar
titled Statistical Issues and Misconceptions Associated with Scaling of Rates).

STATISTICAL ISSUES AND MISCONCEPTIONS ASSOCIATED WITH SCALING
OF RATES

Analyses of rate scaling with time intervals are subject to a particular type of estimation error, variously referred to as
spurious self-correlation ( Jackson&Somers 1991,Kenney 1982,Prairie&Bird 1989) or as amathematical coupling
of data (Moreno et al. 1986). The issue arises when one variable is plotted or regressed against another but both
share a common mathematical term (Long 1980). In this example, an evolutionary rate (amount of change/time)
is plotted against its own denominator (time) (Sheets & Mitchell 2001). The shared component of these coupled
variables can then lead to peculiar scaling relationships (Long 1980).

(Continued)
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One might be tempted to simply avoid coupled variables. However, in many cases, correlations between ratios
and their own denominators are of interest, even in spite of their mathematical coupling (Long 1980). The clearest
cases are when the ratio itself has particular meaning, as here when comparing evolutionary rates (Prairie & Bird
1989). However, we cannot ignore the presence of shared terms in our regression and scaling plots (Long 1980).

One can find three important take-home points in the extensive literature on this topic. First, we should expect a
relationship between rates (change/time; Y/X) and time (X)—a scaling rule—whenever the original variables (time
and amount of change) show no relationship (Kenney 1982). Such a finding redirects the question to,Why is there
no correlation between X and Y? In the case of evolutionary rates, we can evaluate this possibility by analyzing the
amount of evolutionary change (or species diversity accumulated) versus time. We find that in some cases—most
commonly in the case of lineage diversification—there is little or no relationship between the original variables,
such that the scaling rule emerges as a consequence of their shared term (Sheets & Mitchell 2001, Wiens 2011).
This lack of a relationship between the original variables, though, does not provide a mechanistic answer or even
tell us whether the result is due to estimation error or model misspecification. Additionally, sometimes there is a
relationship between X and Y, and even in that case, peculiar scaling patterns can still follow due to coupling.

Second, measurement and sampling error, particular types of estimation errors, can have a nonrandom effect
on comparisons of rates across time, resulting in spurious relationships under some circumstances (Long 1980).
Focusing on the case in which we relate Y/X to X, when measurement and/or sampling error is particularly high in
X compared with Y, then negative scaling relationships can emerge due to error alone. Therefore, it is particularly
important to explicitly account for the measurement of both variables when considering scaling relationships. In
the specific case of rates versus time, we should expect problems to emerge when the error in estimating time is
greater than the error in estimating the amount of change that has taken place (Long 1980). We see echoes of this
explanation for all three rates in Section 4 and conclude that this factor plays a prominent role in explaining the
ubiquity of scaling across rates.

Third, the fundamental question of any particular scaling pattern is, Why does the relationship take the partic-
ular form that it does? That is, why does the scaling plot show the particular shape and slope (Estes & Arnold 2007,
Gingerich 2019)?We believe that this answer is best addressed via assessment of model adequacy (Brown &Thom-
son 2018). For evolutionary rates, a wide range of evolutionary models predict change to accumulate with time.
The lack of relationship between change and time discussed in the first point deviates dramatically from many sim-
ple evolutionary models, whether they be based on constant-rate birth–death (diversification), time-homogeneous
stochastic substitution models (genetics), or Brownian motion (traits).We can explore this deviation by considering
the rate-scaling properties of macroevolutionary models as a consequence of model misspecification, and proceed
either analytically or via simulation (Pennell et al. 2015). For example, due to model misspecification, negative rela-
tionships may occur that are stronger than expected given the statistical properties of ratios even in cases where X
and Y are uncorrelated. In those cases, one can still detect deviations from a model—model inadequacy—by com-
paring the observed slope of the scaling with that expected under the null model (Henao Diaz et al. 2019).One must
then search for a different model that is adequate to explain the observed pattern. This type of approach also allows
one to separate scaling due to estimation error—that is, error due to the act of measuring nature to estimate evolu-
tionary rates—from scaling due to model misspecification. This distinction reflects the extremely common desire
in the literature to uncover the role of biological processes (as opposed to measurements and statistical analyses) in
driving observed patterns.

Our goal is to provide a unified statistical and biological perspective on the scaling of evolu-
tionary rates of molecular evolution, trait evolution, and diversification.We first review how each
type of rate is typically measured and then review the literature on rate scaling for that type of rate.
We discuss common explanations for scaling patterns, separating them into explanations based on
estimation error and model misspecification. In Section 6, we discuss the practical consequences
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of rate-scaling patterns. Scaling patterns have strong impacts on testing hypotheses about evolu-
tionary rates, especially when comparing different time periods. It is common for researchers to
compare speciation rates, for example, across lineages of different ages, and all such comparisons
are compromised by ubiquitous rate-scaling patterns. In Section 7, we conclude and attempt to
characterize and identify the potential causes of rate scaling. Although a definitive mechanism is
still lacking, we highlight a range of explanations that are likely candidates and discuss how they
can be evaluated. We hope that this review helps clarify work comparing rates across timescales,
suggests ways to improve models used to estimate rates, and, eventually, helps researchers identify
and describe the biological processes that affect long-term evolutionary patterns.

2. ESTIMATING RATES OF EVOLUTION

Estimating an evolutionary rate seems straightforward at first. After all, isn’t a rate simply the
amount of change divided by the time over which that change occurred? In this simplistic view,
rates are simply summary statistics of the net change divided by time. However, while the mea-
surements themselves are descriptors of net rate over a certain timescale, there is no particular
reason to think that rates are directly comparable over different timescales (Gingerich 2019). In-
deed, it is important to remember that a particular pattern of rate scaling may be explained by
many different models and dynamics of change, both biological and otherwise. Thus, inference
of process from scaling patterns of net change over time must be approached with caution, with
careful consideration given to alternative sources of rate scaling.

We draw a distinction between these summary statistics of net rate and parameter estimates
of rates obtained by fitting process-based models (Hunt 2012). Process-based models generally
assume constant (or at least locally constant), instantaneous rates of change that are thus indepen-
dent of timescale—so long as the model assumed is adequate and uniquely identifiable.We discuss
this in more detail in Sections 4 and 5.

2.1. Estimating Rates of Molecular Evolution

Following previous literature (Ho et al. 2005), when we discuss rates of molecular evolution, we
are focused on the nucleotide substitution rate, defined as the rate at which new mutations be-
come fixed in populations (Holmes et al. 2016). Rates of molecular evolution could be measured
simply by comparing two sequences, counting the number of differences between them, and di-
viding by time. This approach would underestimate rates, especially between older sequences, by
undercounting when multiple substitutions have occurred at a single site (Yang 2006). Even in
the early days of modeling sequence evolution, this was recognized as a potential problem ( Jukes
& Cantor 1969). Since then, rates of molecular evolution have generally been based on fitting
continuous-time Markov models (Gillespie 1986).

Continuous-time Markov models work by considering transitions among possible character
states at each locus independently. For DNA, these states are represented by A, C, T, and G.
Transitions between these states are described by a ratematrix (usually denotedQ) that contains, as
off-diagonal elements, the rates of transition from each state to the three others (e.g., qAG denotes
the transition rate from state A to state G),

Q =

⎡
⎢⎢⎢⎣

−qA qAG qAC qAT
qGA −qG qGC qGT
qCA qCG −qC qCT
qTA qTG qTC −qT

⎤
⎥⎥⎥⎦ .
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By convention, the diagonal elements are set so that the rows sum to zero. That is, for example,
qA = qAG + qAC + qAT (Yang 2006).

In the molecular evolution literature, various restricted forms of this Q matrix go by different
names (Yang 2006). For example, if all the rates are set equal to one another, the model is called
the Jukes-Cantor model ( Jukes & Cantor 1969); if each pair of states has a unique rate, but the
forward and reverse rates are equal (e.g., the rate of A→T is equal to the rate of T→A), then this is
called the general-time reversible model (Yang 2006).Modifications also allow rates to vary across
sites or across branches in the tree.

To obtain an overall rate, one estimates the best multiplier, r, such that the tree branch length
times r, applied to a normalized Q matrix, best predicts patterns of sequence divergence. If
time is measured in absolute units, say millions of years, then r gives average substitution rates
as the expected number of substitutions per site per million years. Using this protocol, one can
calculate rates for any specified model of molecular evolution (Yang 2006). Note that the proce-
dure here also works for any set of discrete characters evolving on a phylogeny under a Markov
process, including phenotypic traits (Lewis 2001). However, rate estimates for morphology are
more often measured from continuously valued data, which we address in Section 2.2.

2.2. Estimating Rates of Trait Evolution

In paleontology and evolutionary biology, it is common to study the rates of evolution of continu-
ously valued traits (Gingerich 2009,Hunt 2007).There are twomainways to estimate evolutionary
rates: either directly by using one of two expressions that measure change in trait values over time
or indirectly by estimating a model parameter that represents the instantaneous rate of change
(Harmon 2014).

There are two classic units for measuring evolutionary rates, darwins and haldanes (Gingerich
1983, Haldane 1949). These can be viewed as either summary statistics of net rate over a time
interval or an estimate of instantaneous evolutionary rate under a model of strict linear direc-
tional change. Darwins express change in proportional change per million years, and haldanes
express change in units of within-population phenotypic standard deviation per generation—the
scale that is more relevant when considering genetic constraints on evolutionary change (Harmon
2014). These two metrics have been widely used to quantify rates across a range of scales, from
single generations to millions of years over phylogenies (Hendry & Kinnison 1999). Importantly,
however, both darwins and haldanes can be interpreted only as an instantaneous rate under the
highly restrictive scenario of a linear trend in trait change over time. Under many other mod-
els, both of these rate metrics are expected to scale with the time interval over which they are
measured.

In most modern studies, rates of evolution are calculated as the parameters of a model of evo-
lution. The most common of these models is Brownian motion, a model in which trait change fol-
lows a random walk through time (Felsenstein 1973). Although sometimes equated with genetic
drift, Brownian motion can result from a range of evolutionary scenarios, including randomly
varying selection, drift, and other factors (Hansen & Martins 1996). For example, if populations
are under strong selection following a peak on the adaptive landscape, and that peak is changing
via Brownian motion, then we expect traits to also evolve following that same Brownian motion
model (Hansen & Martins 1996). Brownian motion can be described with two parameters: the
starting value, often denoted z0, and the rate parameter, σ 2. The latter parameter, σ 2, predicts the
differences that one will find among pairs of species after a certain amount of time has elapsed,
and it is this parameter that is often described as the rate of evolution. It is worth noting, though,
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that the Brownian motion rate is not strictly comparable to haldanes and darwins. For example,
because both darwins and haldanes are constant only under a linear trend, when these metrics are
calculated from data evolved under a Brownian motion model, both units show a negative depen-
dence on the time interval over which they are measured (Gingerich 1983, Hendry & Kinnison
1999). Likewise, if species change following a constant linear trend, rates of evolution estimated
assuming a Brownian motion model will have rate-scaling properties (Gingerich 2019).

2.3. Estimating Rates of Diversification

The simplest intuitive way to measure rates of speciation and extinction through time is to count
the number of such events over some interval and divide by the length of time. Although such
an approach does have some precedence in paleontology (Foote 2003), simply counting events
ignores the fact that the number of speciation and extinction events in an interval almost certainly
depends on the number of lineages alive in that interval (Raup 1985).Thus,mostmodern estimates
of speciation and extinction rates are measured on a per-lineage basis and are based on birth–death
models of diversification (Foote 2003, Raup 1985).

Under a birth–death model, each lineage has an origination rate λ and an extinction rateμ (and
thus a collection of n such lineages has overall rates of nλ and nμ (Kendall 1948). Speciation and
extinction events are assumed to occur randomly in time (i.e., are the result of a Poisson process),
such that the waiting times between events are exponentially distributed. If λ and μ are not equal,
then birth–death models predict that species numbers will change exponentially through time.
For this reason, some paleontological estimates are based on dividing the log-transformed num-
ber of events by the time interval, which then estimates λ and μ. Related metrics for phylogenetic
trees involve a method of moments estimator (Magallon & Sanderson 2001) that accounts for the
age and diversity of a clade. This estimator, in its simplest form for a pure-birth model with stem
age t and extant diversity n, is λ = log(n)/t. Modifications for including extinction, correcting
for sampling, and accounting for crown age rather than stem age are also possible (Magallon
& Sanderson 2001). The similar form of these equations from paleontology and phylogenetics
emphasizes the shared assumption of a birth–death model.

In both paleobiology and phylogenetic biology, most current diversification rate estimation
takes the form of estimating the parameters of such birth–deathmodels usingmaximum likelihood
or Bayesian inference (Harmon 2019, Nee 2006). This approach has the main advantage of using
all the information about births and deaths stored in the phylogenetic tree.Maximum likelihood–
based approaches for birth–deathmodels have an additional complexity that the proper equation—
and thus one’s result—depends precisely on what one conditions: the age of the crown (the most
recent common ancestor of extant lineages), the age of the stem (themost recent common ancestor
of all lineages, extant and extinct, in a clade), or the survival (or not) of the stem or crown lineage(s)
to the present day (MacPherson et al. 2020, Stadler 2013). This conditioning is essential because
the process of extinction and the lineages that we sample for phylogenetic reconstruction are
intimately linked (Höhna et al. 2011).

Many variations of birth–death models have been developed, including those that allow vari-
ation in rates through time (Etienne et al. 2012, Magee et al. 2020, Morlon et al. 2011, Rabosky
2014, Rabosky & Lovette 2008) and across clades (Alfaro et al. 2009, Höhna et al. 2019, Rabosky
2014) and those that allow rates to depend on organismal traits (FitzJohn 2010, Maddison et al.
2007) and/or the environment (Cantalapiedra et al. 2014, Condamine et al. 2019, Goldberg et al.
2011, Rolland et al. 2014). Each of these process-based models includes rate parameters that can
potentially be estimated from the branching structure of phylogenetic trees.
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3. TIME DEPENDENCE OF ALL EVOLUTIONARY RATES

All three rates of evolution,molecular, trait, and diversification, scale with time,with themost rapid
rates observed over the shortest time periods (Figure 1). This pattern has generated discussion
in the literature in all three cases, with controversy over both the existence of and the explanation
for rate-scaling patterns. Despite the striking similarity of all three relationships, we are unaware
of any paper giving a collective view of all three scaling patterns, so we present that here.

3.1. Time Dependence of Rates of Molecular Evolution

Rates ofmolecular evolution have been observed to scale with time.The earliest studies comparing
divergence and time suggested complex patterns (reviewed inGillespie 1986).The first suggestion
of a consistent overall trend toward negative rate scaling (that we are aware of ) traces to Wayne
et al. (1991), who measured faster rates of molecular evolution when comparing mammal lineages
with younger divergence times.Later, similar patterns were found in other organisms, such as birds
(e.g., García-Moreno 2004) and mammals (Albà & Castresana 2005; see also Elhaik et al. 2005).
The systematic pattern of molecular rates scaling with time was described by Ho et al. (2005,
2011). These studies show that estimates of rates are accelerated for comparisons of very recent
divergence. In contrast to the other rate-scaling patterns discussed in Sections 3.2 and 3.3, rates
of molecular evolution are thought to follow a J-shaped curve, flattening out after approximately
two million years rather than continuing to decline over the longest timescales (Penny 2005).

This main result of rate scaling pointed out by Ho et al. (2005) has attracted controversy, with
one review calling it a “tempest in a teapot” (Bandelt 2008, p. 1). Much of this argument has cen-
tered around whether the scaling patterns reflect statistics or interesting biological properties of
the system. For example, Emerson (2007) argues that errors in estimating sequence divergence,
biased sampling, and errors in calibration together explain the apparent scaling. In other words,
Emerson attributes the entirety of the scaling shown by Ho et al. (2005) to various types of esti-
mation errors, rendering the pattern ultimately uninteresting in terms of learning about biology.
A follow-up from Ho et al. (2011) used substantially better data and improved analyses, again ar-
guing in favor of rate scaling as evidence for interesting and general biological processes acting
over long timescales, in other words, as a consequence of model misspecification. This approach
was in turn disputed by Emerson & Hickerson (2015), again arguing for the primacy of estima-
tion error. It is worth emphasizing, though, that all rebuttals do not deny the empirical pattern;
instead, much of this discussion relates to whether this pattern is an artifact (i.e., driven by esti-
mation error) or reflects some nonmodeled biological process of interest (i.e., driven by model
misspecification). The bulk of the discussion of the latter argument centers around the distinction
between mutation rates and long-term substitution rates and in turn relates to purifying selection
and the time needed to rid populations of segregating neutral and deleterious mutations (Penny
2005). This debate, to our knowledge, remains unresolved.

3.2. Time Dependence of Rates of Trait Evolution

In a classic study of the rate scaling of trait evolution in macroevolution,Gingerich (1983) collated
a large dataset on evolutionary rates spanning a wide range of time intervals, from the fossil record
to contemporary rates of evolution in the laboratory. Plotting all those rate estimates together
revealed a scaling pattern that spanned seven orders of magnitude of time. Gingerich showed that
evolutionary rates correlated strongly with the time interval over which they were measured, with
the highest rates estimated over the shortest intervals; later analyses have confirmed these results
(Uyeda et al. 2011).
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Since this key paper, several reviews and compilations of rates of evolution have been pub-
lished in the literature. A large amount of overlap in the data is used for these reviews, as one
original data compiled by Gingerich (1983) has been reused and added to over time. In general,
follow-up studies confirm the basic pattern but differ in interpretation. For example, Kinnison
& Hendry (2001) combined the Gingerich data with information about evolutionary rates gath-
ered from more recent literature. They confirmed the negative scaling pattern and used a suite
of randomization tests to suggest that the pattern was stronger than expected due to estimation
error. Likewise, Uyeda et al. (2011) compiled data on evolutionary rates both from the Gingerich
dataset and from phylogenetic data in the tree of life. Their paper showed clear patterns of rate
scaling. Uyeda et al. (2011) emphasize an explanation based on model misspecification, demon-
strating that trait divergence among species shows fairly consistent differences, regardless of time
since divergence, for timescales less than one million years, accumulating only major differences
beyond that.

3.3. Time Dependence of Diversification Rates

Finally, diversification rates scale with the time interval over which they are measured, in a way
strikingly similar to rates of molecular and trait evolution. This pattern has been described in
the literature several times (Linder 2008, Magallon & Sanderson 2001, McPeek & Brown 2007,
Ricklefs 2006, Scholl &Wiens 2016). Two papers focused particular attention on the scaling pat-
tern but came to opposing conclusions about the cause. Marin & Hedges (2018) identified an
apparent acceleration in rates of diversification in young clades across a diversity of groups. They
attributed this pattern to estimation error, in particular the undersampling of genomes and con-
sequent underestimation of the ages of young nodes in the tree of life. Henao Diaz et al. (2019)
showed a similar pattern of apparent rapid diversification among young clades. Their paper also
showed that the pattern extended to the fossil record, with rates of formation and extinction of
genera inversely related to the time interval over which they were measured (Foote 1994, 2005).
This inclusion of fossils precludes any common explanation based on estimation error associated
with inferring phylogenetic trees from gene sequence data.

4. RATE SCALING AS A CONSEQUENCE OF ESTIMATION ERROR

We consider estimation error to be statistical errors that arise during analysis even when the as-
sumed biological process adequately describes nature. We focus in particular on three sources of
estimation error: biased sampling, measurement and sampling error, and parameter nonidentifi-
ability. With biased sampling, the entities that are compared to calculate rates are not a random
subset of the total population. Measurement and sampling error, by contrast, can result from sev-
eral types of errors, such as finite sample size or instrumental error, while measuring a desired
quantity from observed data, whether species traits, species richness, or the timing of evolution-
ary events. Finally, parameter nonidentifiability occurs when a rate parameter is misestimated
because it is not uniquely identified or only weakly estimable for a given dataset and model. All
three phenomena can affect rate estimates, regardless of the type.

4.1. Estimation Error and Rates of Molecular Evolution

DNA sequences can be reconstructed with error due to artifacts from amplification and/or se-
quencing. Because sequencing errors should be random, they might not show any relationship to
time since divergence, in turn leading to negative scaling of rates with time (Ho et al. 2011) (see
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the sidebar titled Statistical Issues and Misconceptions Associated with Scaling of Rates). Such
arguments are particularly compelling for ancient DNA, which might be especially susceptible to
errors in sequence reconstruction (Ho et al. 2011). Likewise, divergence times are also estimated
with error (Arbogast et al. 2002). As argued by Weir & Schluter (2008), this error tends to lead
to scaling artifacts when errors in estimating divergence times (X in the sidebar) are greater than
errors in estimating sequence divergence (Y in the sidebar).

4.2. Estimation Error and Rates of Trait Evolution

Both measurement error and biased sampling can lead to errors in estimating rates of trait evo-
lution that can again, in some cases, result in scaling patterns with time. Ignoring measurement
error will, on average, inflate differences among species, thereby elevating evolutionary rates. This
effect is most pronounced over the shortest time intervals, resulting in highly inflated rates when
age differences are small (Cooper et al. 2016, Silvestro et al. 2015). Thus, failing to account for
measurement error can lead to rate-scaling patterns. This argument applies equally well to time-
series and phylogenetic analyses, which frequently consider species means without considering
measurement error (Kostikova et al. 2016, Silvestro et al. 2015).Measurement error can also affect
our calculation of elapsed time and the timing of branching events in the phylogenetic tree. Simi-
lar to trait differences, ages are estimated with error, and that error is sometimes not accounted for
in calculations of rates of trait evolution. Unlike the case of measurement error for species’ traits,
random error in branch lengths should not lead to negative scaling of rates through time. Rate
scaling could result if ages were systematically biased (underestimated for younger comparisons,
overestimated for older ones, or some combination thereof ).Rate scaling can also arise when there
is error in both the numerator and the denominator of a rate, but the error in the denominator is
greater than that in the numerator (Long 1980). This seems highly likely for trait evolution and
almost certainly makes some contribution to the observed scaling patterns.

Biased sampling can also have an impact on scaling for rates of trait evolution. We can see
one example by Gould (1984, p. 994), who called the pattern of trait rates scaling with time a
“psychological and mathematical artifact.” Gould’s main argument was that paleontologists were
biased in what they measured when calculating rates. In the fossil record, two lineages might be
connected in a time-series dataset only if they are within some threshold of similarity. Any lineages
that are too different, then, are not used to calculate evolutionary rates. This difference could lead
to rate scaling through systematically underestimated rates over long timescales, as old, highly
divergent lineages are not likely to be included in rate calculations. Any pattern of biased sampling
that affects the expected distribution of species’ differences could lead to scaling, whether rates
are calculated from phylogenetic trees or fossil data.

4.3. Estimation Error and Rates of Diversification

Finally, timescaling in diversification rates may be due to estimation error of either the rates them-
selves or the divergence times/clade ages.Asmentioned in Section 2.2, one possible explanation for
this scaling relationship between rates and time is estimation error—either of the rates themselves
or of the divergence times/clade ages. For instance, it is well recognized that even with a lot of se-
quence data, there is still considerable uncertainty in divergence time estimates, particularly deep
in the tree (Graur & Martin 2004, Revell et al. 2005). Henao Diaz et al. (2019) show in the sup-
porting information of their article that such errors could lead to scaling patterns, echoing an early
point by Ricklefs (2006). A similar argument applies to misestimation of time intervals in the fossil
record.However, two considerations suggest that misestimated branch lengths are not the full ex-
planation for the observed patterns. First, the pattern remains despite substantial improvements in
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divergence time estimation, even as the size of analyzed clades has greatly increased (Henao Diaz
et al. 2019). Second, simulations fromHenaoDiaz et al. (2019) suggest that the scaling patterns due
to estimation error of branch lengths are not sufficient to explain the negative slope as observed.
Fortunately, it appears that estimated rates of diversification are generally quite robust to misspec-
ification of the clock model used to date nodes (Sarver et al. 2019,Wertheim & Sanderson 2011).

Diversification rate scaling can also be influenced by biased sampling. For phylogenetic trees,
one must decide on the clades for analysis, breaking up a single tree of life into monophyletic
clades. We do not yet know how this selection of clades affects diversification rates, although the
scaling pattern seems to persist through alternative selection schemes in Henao Diaz et al. (2019).
One clear effect is due to the exclusion of small clades: Trees are unlikely to be constructed or
considered for particularly species-poor (or monotypic) clades. If these depauperate clades are
not included in analyses, we should expect a biased view of rates across time. Other effects on
scaling are possible based on how clades are defined by crown age or stem age (Stadler et al. 2014).
These issues with sampling are clearly present with paleontological data (Hopkins et al. 2018).One
expects these biases to lead to scaling to the extent that it breaks the association between the length
of the time interval and the number of observed diversification events.

4.4. Model Adequacy, Estimation Error, and the Limits to Parameter Estimation

The most promising path forward is to improve our ability to both estimate measurement er-
ror and account for it in our modeling approaches (Houle et al. 2011). Significant progress has
been made in nearly every modeling type to account for measurement error. For example, several
methods for estimating evolutionary rates from Brownian motion models use external estimates
of observational measurement error to provide unbiased estimates of rate (Felsenstein 2008, Ives
et al. 2007); other approaches account for sequencing error in rates of molecular evolution (Ho
et al. 2015, Johnson & Slatkin 2008) and unsampled lineages in rates of diversification (Höhna
2014). Although the statistical procedure can be straightforward, determining what values to use
as measurement error can be confused when biological error and statistical sampling properties
become conflated (Hansen & Bartoszek 2012). This issue is explored more fully in Section 5.
Sampling bias can be more challenging, but some approaches account for sampling when fitting
evolutionary models (FitzJohn 2010). While corrections for sampling error are still often omit-
ted from comparative analyses, we believe there is growing and widespread recognition that such
biases and errors must always be included in a comparative analysis (Silvestro et al. 2015), and in
general, we think researchers are largely aware and cautious of this sort of model inadequacy.

Even when data are measured without error and models are adequate, there are limits to pa-
rameter estimation. For a simple example, consider a set of molecular sequences for which every
site is completely saturated so as to remove all phylogenetic signal. This set of sequences, regard-
less of branch length or time interval, is consistent with any sufficiently high substitution rate
(Mossel & Vigoda 2005). The resulting flat likelihood surface estimates rate parameters subject
to the vagaries of a particular optimization algorithm and largely invariant to time, resulting in
slower rates estimated over longer time intervals. Extending this problem to model selection, we
would be remiss to not mention the dark corridors of uncertainty in model-fitting stemming from
model nonidentifiability. Nonidentifiable models are defined as two or more models that pro-
duce observationally equivalent distributions of data and result in rate parameters that cannot be
uniquely identified. For example, Louca & Pennell (2020) have challenged the entire enterprise of
estimating rates of diversification frommolecular phylogenies. They prove that for the case of any
homogeneous birth–death process, in which the process is the same for all lineages at any given
time point but can change through time, neither λ nor μ nor any combination thereof (e.g., net
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diversification rate r= λ − μ) can be uniquely defined or estimated (Louca & Pennell 2020). This
is due to the inherent nonidentifiability of birth–death processes: For any time variable process,
where λ andμ vary through time according to somemathematical functions, an infinite number of
alternative functions (called a congruence class) generate an identical expected distribution of tree
sizes and branching patterns that cannot be distinguished using maximum likelihood or any other
method using phylogenetic trees (Louca & Pennell 2020). This result suggests that interpreting
model fit should be done with caution. In particular, current methods select, somewhat arbitrarily,
particular parameter values from the congruence class. Similar congruence classes exist for contin-
uous trait models of ultrametric phylogenies [e.g., Brownian motion versus Brownian motion with
a trend (Felsenstein 1988), Ornstein-Uhlenbeck (OU) models versus accelerating change models
(Hansen &Martins 1996, Slater et al. 2012,Uyeda et al. 2015)]. It is likely that similar congruence
classes exist across all macroevolutionary models, not only diversification models. These problems
blend into Section 5, in which we discuss the consequences of such model misspecification.

5. RATE SCALING AS A CONSEQUENCE OF MODEL
MISSPECIFICATION

There are countless ways that our macroevolutionary models might be incorrect, and many of
these ways could lead to scaling patterns. Some of them are well summarized in the previous
literature on this topic (Ho et al. 2011,Marin & Hedges 2018, Penny 2005). In this review, rather
than comprehensively cover all the ways that our simple models may be wrong, we focus on four
possible categories of model misspecification.We direct our focus on shared explanations that may
explain all three rate-scaling patterns in a way that is consistent with contemporary evolutionary
theory.

5.1. Evolution Is Accelerating Toward the Present Day

Perhaps evolution is speeding up, with all rates peaking at the present day. Such a pattern could
explain why everything we observe over short timescales from our present-day point of view ap-
pears rapid, and why including longer timescales stretching back into the distant past results in
slower rates. This explanation is potentially viable for any datasets that rely on the present day for
sampling, such as analyses based on phylogenetic trees. Perhaps the most compelling argument in
support of this view relates to potentially accelerated rates of evolution, speciation, and extinction
in the Anthropocene as humans alter the world around them (Otto 2018). Additionally, some re-
searchers have suggested that evolutionary rates might accelerate as the total biodiversity of the
earth increases through time (Emerson & Kolm 2005). In our view, both of these hypotheses fail
to explain the pattern discussed here on two counts. First, there is no expectation that evolution
should speed up uniformly. One might anticipate that evolution is faster in places where diversity
is higher (Emerson & Kolm 2005) or where human impacts are strongest (Otto 2018); one would
not expect a consistent pattern in all places and stretching back over such long timescales. Second,
any explanation based on acceleration toward the present day cannot account for the presence
of similar scaling patterns for trait evolution and diversification using purely paleontological data
(Henao Diaz et al. 2019, Uyeda et al. 2011).

5.2. Evolutionary Entities Are Highly Heterogeneous

We know that evolutionary lineages are highly heterogeneous in a number of ways. All the
processes that we are concerned with in this review vary tremendously across clades, with
some lineages evolving rapidly and others more slowly. This heterogeneity is why, in molecular
evolution, the relaxed clock is often used, modeling rate variation across branches in the tree of
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life; why the shape of that tree is unbalanced, reflecting variation in speciation and extinction rates
across clades (Mooers & Heard 1997, Ng & Smith 2014); and why the tempo of trait evolution
is highly variable among even closely related clades.

It might not be immediately obvious that rate heterogeneity leads to timescaling for the re-
sulting rate estimates. Indeed, if we are able to accurately account for the heterogeneity, then rate
estimates should vary but independently of the time interval. However, in practice, heterogeneity
is a type of model misspecification by which we fit a sort of average rate across heterogeneity across
clades (Yang 2006). In such a case, older clades lead to rate estimates that adequately sample across
the heterogeneity, leading to rates that match the long-term average, but as clades get younger,
we are more and more likely to sample a part of the tree of life with unusually high rates, unpol-
luted by the tempering influence of slow lineages. There will be, by chance, slow young clades as
well, but the unusually fast young clades will dominate the pattern, leading to the classic negative
relationship between rates and time.

5.3. Evolutionary Events Are Clustered in Time

All the models we use to estimate evolutionary rates assume that events occur independently in
time. For example, for discrete-event models, such as sequence evolution or birth–death models,
the waiting time to the next event is independent of whether an event has just occurred (Harmon
2019, Yang 2006). Likewise, Brownian motion models assume that variance accumulates through
time independently of what changes have recently occurred in the population (Felsenstein 1973).
Although these assumptions allow the use of Markov models and ease mathematical analysis, they
may not be realistic or accurate for modeling evolution.

We suggest that macroevolution may commonly violate this independent events assumption
and that macroevolutionary events in particular might be clustered in time, occurring in a pulsed
pattern (Foote 2005, Landis & Schraiber 2017). For example, species might experience stasis over
relatively long time intervals and then periods of rapid change followed by further stasis (Estes &
Arnold 2007). Likewise, speciation and extinction events might be clustered in intervals, perhaps
associated with rapid environmental change or major alterations in species interactions (Foote
2005). Clustered events lead to rate scaling because some short time intervals occur during these
periods of concentrated change, leading to elevated rates (Sadler 1981).Consistent with this expla-
nation, rate-scaling plots often show tremendous scatter over short time intervals, suggesting that
evolution is often, but not always, rapid over short timescales (Figure 1). Finally, different patterns
of clustering through time could lead to different scaling patterns and could be estimated from the
shape of the rate-scaling pattern (Foote 2005). Nonhomogeneous event models (Goldberg & Foo
2020, Hawkes 2018) might be particularly useful in investigating the clustering of evolutionary
events. Indeed, models of pulsed evolution show a better fit to some empirical datasets for both
trait evolution (Landis & Schraiber 2017) and speciation and extinction rates (Foote 2005), and
the success of relaxed molecular clock models (Drummond et al. 2006) suggests pulsed rates of
molecular evolution.

5.4. Evolution Is Constrained

Constraints on evolutionary change set bounds that limit the long-term effects of rapid evolution
over short timescales (Schwenk 1994). This logic can be applied to all three rates. For molec-
ular evolution, sequences can evolve rapidly over short timescales by accumulating neutral or
nearly neutral substitutions (Ohta 1992). However, there are a limited number of such mutations
in the vicinity of the current sequence, resulting in rapid saturation of sequence space due to the
constraints of natural selection (DeSalle et al. 1987). Some of the genes most commonly used
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to estimate evolutionary rates are key metabolic components of cells, critical for function and
likely under long-term constraints for functionality. Given this constrained state space, rate scal-
ing emerges for rate parameters if the constraints are not adequately modeled or as a consequence
of our inability to estimate rate once complete saturation occurs (Elhaik et al. 2005).

The argument for rate scaling driven by constraint is perhaps most developed for trait evo-
lution. Here, a constrained model of evolution, the OU model, is commonly used for analysis
(Hansen 1997). This model is often described as Brownian motion, but with a central tendency
to make evolution go toward some optimal value (Butler & King 2004). OU models, in general,
have four parameters: a rate parameter (σ ²), the constraint parameter (α), an optimal value (�),
and a starting value z0. OU models are commonly selected as the best fitting for comparative data
compared with various alternatives (Cooper et al. 2016,Harmon et al. 2010, Pennell et al. 2015). If
we analyze data generated under a constrained OU model by assuming unconstrained Brownian
motion, we will observe rapid change over short timescales, approaching the OU rate parameter,
σ ² (Uyeda et al. 2015).We will also see slower and slower apparent rates over longer times as con-
straints begin to dampen variance among species compared with the Brownian expectation (Estes
& Arnold 2007, Uyeda et al. 2011).

Finally, constrained models are also commonly invoked for diversification. In this case, many
authors have suggested that speciation and extinction are diversity dependent, with net diversi-
fication rates slowing as species richness nears some carrying capacity (Condamine et al. 2019,
Etienne et al. 2012, Harmon & Harrison 2015, Harmon et al. 2003, McPeek 2008, Rabosky &
Hurlbert 2015). This pattern is fundamentally different from the other two constraints in that
such a process would leave a clear mark in phylogenetic data, with branching events concentrated
at the base of the tree of life. However, it remains unclear whether such a pattern is common or
rare in comparative data (Pannetier et al. 2021). One can construct scenarios in which a com-
plex pattern of diversity dependence can lead to rate scaling. For example, imagine that all life
was generated under a multi-regime diversity-dependent model, in which lineages were subject
to carrying capacities based on their close relatives so that diversification rates slow as species ac-
cumulate. Imagine also that lineages sometimes escaped those constraints and entered into new
regimes with independent carrying capacities (e.g., new adaptive zones). In that case, we would
observe high rates of diversification only when considering clades that have just moved into new
regimes—and these clades would be disproportionately young (Schluter 2000). Thus, we would
see the expected negative scaling of rates with clade age. In any case, there is some debate and
uncertainty in the literature about the amount of support for diversity dependence of speciation
and extinction.

In all cases, failure to account for, or accurately estimate, the constraints on a process can result
in rate scaling for model parameters (Figure 2). Models that account for the long-term dynamics
of these constraints might lead the way to deeper understanding of the state space of evolutionary
change and how the evolutionary process leads to convergence and saturation (Figure 2). This
evolutionary state space itself may change over time (e.g., Beaulieu et al. 2012, Butler & King
2004). Such models may also behave as the clustered models described in Section 5.3, with rapid
evolution concentrated near peak shift events; our potential explanations for rate scaling need not
be mutually exclusive.

5.5. Evolution Is Hierarchical

All three models followmacroevolutionary tradition in taking the species as the unit andmodeling
changes that accrue among species over deep time (Stanley 1979). This tradition ignores the hier-
archical nature of evolution and, in particular, can conflate change happening among populations
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Figure 2

Hierarchical constraints on divergence at multiple scales. (a) The state space for evolution is illustrated as a grid, with points
representing either phenotypic states or sequences. Neighboring points are one evolutionary step away from each other. The blue circle
represents the set of phenotypic or sequence states that are adapted to a particular environment. Evolution occurs among these
allowable states but is constrained by stabilizing selection. Evolution among these states becomes saturated, resulting in a loss of
identifiability of evolutionary rate and rate scaling. (b) Over longer timescales, the set of evolutionary states that are adaptive may
change (gray lines) in response to changing abiotic or biotic conditions. This change could represent, for example, change in the
adaptive peak (blue line). (c) These adaptive peaks may themselves encounter further constraints (dashed green circle), for example,
representing the limits of an ecological niche, an adaptive zone, or the biomechanical/physiological/biochemical limits of a particular
organismal function. If the function or niche of an organism also changes, then the dashed green circle may also change on even longer
timescales (green arrow), where they may eventually encounter still other constraints. These nested selective constraints that change on
ever-increasing macroevolutionary timescales can ensure that evolutionary rates measured over shorter timescales are always faster than
those measured over longer timescales and that model-based estimates of evolutionary rates that fail to account for these hierarchical
constraints are incapable of accounting for saturation at all levels simultaneously. (d) Instantaneous rates of the process in panel c
estimated with Brownian motion with increasingly large intervals result in ever-decreasing rate estimates.
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within species with change occurring among species (Eldredge et al. 2005; Jablonski 2000, 2007).
In each case of evolutionary rates, there is good reason to suspect that this failure of models to
cross the species boundary is a problem for estimating evolutionary rates. In all three cases, there
are also models and methods that can potentially directly address this limitation.

For molecular evolution, the core idea that we should expect substitutions to accumulate lin-
early with respect to time stems from the neutral theory of molecular evolution (Li 1997). How-
ever, this theory applies to the substitution rate and assumes that all measured differences are
substitutions. If, instead, some of the differences we observe represent variation within species—
that is, alleles that have not yet reached fixation—then we have misspecified our model (Penny
2005). Our model does not account for the dynamics among individuals within species and pop-
ulations and considers only fixed differences between species. For recent divergence, differences
that we see reflect both the substitution rate and the mutation rate, whereas over long timescales,
most differences are substitutions. This situation leads directly to a predicted pattern of rates of
molecular evolution scaling negatively with the time interval over which they are measured (Ho
et al. 2011).

Under selection, scenarios are more complex. Selection by itself does not necessarily lead to
rate scaling; in fact, under nearly neutral models of molecular evolution we can still expect substi-
tutions to accumulate linearly through time (Ohta 1992). However, issues emerge again when we
consider processes that occur among individuals within species. As most mutations are deleteri-
ous, selection filters ephemeral polymorphisms generated at present. This exacerbates the pattern
described in Section 4.4 for neutral models. In simple terms, comparisons over short timescales
include actual substitutions, neutral segregating variants, and deleterious mutations that have not
been purged from the population. Over long timescales, differences eventually reflect mostly sub-
stitutions, both neutral and nonneutral (Penny 2005). Again, failure to account for the presence of
both deleterious and neutral segregating variants within species populations—which can be con-
sidered as a model misspecification—leads to a pattern of negative rate scaling. This pattern leads
to problems analogous to measurement error but cannot be corrected simply with estimates of
instrument repeatability or sampling variance; rather, it is biological error that must be included
in any adequate process model of evolution (Felsenstein 1985, Hansen & Bartoszek 2012).

For trait evolution, a similar type of hierarchical explanation lies in Futuyma’s (1987, 2010)
ephemeral divergence model. Under this model, most evolutionary trait divergence takes place in
small populations, for example, at the periphery of a species’ range where selective optima may be
different. This divergence is mostly ephemeral, as the ultimate fate of many such populations is
extinction or re-assimilation (Eldredge et al. 2005, Futuyma 1987). According to Futuyma (2010),
then, novel traits that diverge persist only rarely, when these otherwise ephemeral changes are
locked in by speciation and the evolution of reproductive isolation or are spread among the whole
species. Under the ephemeral divergence model, we expect to see rapid, but ephemeral, trait evo-
lution over short timescales and seemingly much slower rates over long timescales (Eldredge et al.
2005).

A similar explanation for diversification comes in the form of ephemeral or incipient specia-
tion models (Etienne & Rosindell 2012, Rosenblum et al. 2012, Rosindell et al. 2010). The idea
here is that the initiation of speciation, where populations begin to become independent lineages,
occurs at a high rate but that these ephemeral forms only rarely persist as full species over longer
timescales (Dynesius & Jansson 2014, Rosenblum et al. 2012). Such a process results in faster rates
of speciation initiation over short timescales and slower rates over longer timescales (Harvey et al.
2019, Rabosky 2016).

All three of the above hierarchical explanations predict that the rate-scaling pattern will be
nonlinear, with an inflection arising from the transition from within-species to between-species
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changes. Within-species, population-level comparisons include within-species constraints, along
with standing or ephemeral variation, and between-species comparisons consider only such
changes that persist and become fixed at the species level. This is a prediction that can be directly
tested. Indeed, most empirical patterns of rate scaling in evolution appear to have the predicted
nonlinear shape with an inflection between 1 and 10 million years ago (Ho et al. 2011, Uyeda
et al. 2011). Whether rate scaling disappears asymptotically at this micro-to-macro inflection
point, or continues with a different scaling factor, is variable among the three rates examined
and the model under which they are estimated. Ultimately, however, the hierarchical explanation
relies on saturation of variation and constraint at successive levels of hierarchy, causing the data to
lose information about time—either because change has not yet accumulated or because the state
space has become saturated (Figure 2). Notably, this is also a definition of phylogenetic signal
that generalizes across the biological hierarchy (Hansen &Orzack 2005, Jablonski 2007). Because
successive levels of biological organization, from species to genera and above, may be subject to
their own constraints that may depend on factors that themselves change at rates ranging from
generations to eons, patterns of rate scaling may be expected to similarly occur at successive levels
of the biological hierarchy (Figure 2). Adequately describing such dynamics requires models that
likewise can accommodate the hierarchical nature of evolution (Kostikova et al. 2016, Reitan &
Liow 2019, Reitan et al. 2012).

6. CONSEQUENCES OF RATE SCALING

The relative importance of each of these explanations for scaling of evolutionary rates among our
three identified scaling patterns remains unclear. However, regardless of the cause, the prevalence
of rate scalingmeans that this pattern has effects onmany of our analyses and should be considered
when interpreting evolutionary rates.

Themost obvious effect that pervasive rate-scaling patterns have is that they tend to cause us to
confuse the young with the fast. For example,when comparing evolutionary rates—whether speci-
ation, extinction, trait evolution, or molecular evolution—across time periods of different length,
we tend to estimate the highest rates for the shortest interval. This can be expressed in different
ways. Rates of trait evolution tend to seem fastest in younger clades, speciation and extinction rates
tend to be estimated as higher in lineages from younger habitats, and rates of molecular evolution
seem faster when comparing shallow with deeply divergent pairs of taxa. This is not to say that the
younger or shorter comparisons will always be uniformly faster; in fact, in all known scaling rela-
tionships there is enough scatter around the regression line that we should expect variation. Still,
the scaling pattern should be considered when comparisons are made across different timescales.

A more subtle problem that also stems immediately from rate scaling is that all parameters
that scale with the same covariate tend to correlate with one another. In this context, then, we
should expect to see correlations among evolutionary rates, as all are related to time. Indeed,
extensive papers have documented putative relationships between all three possible pairs of rates:
molecular evolution and speciation rates (Lanfear et al. 2010, Pagel et al. 2006), trait evolution and
speciation rates (Cooney & Thomas 2021; Rabosky & Adams 2012; Rabosky et al. 2012, 2013),
and molecular evolution and trait evolution rates (Berv & Field 2018, Omland 1997). Although
we are not suggesting that any of these studies are incorrect, per se, we argue that future papers
in this area should strive to account for the potential effects of timescaling in such analyses.

7. CONCLUSION

There is no lack of explanations for rate scaling, which range from purely statistical to biologically
meaningful. We hope we have provided a clear guide to the ubiquity of these patterns, how such
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patterns can emerge from statistical and biological sources, and how they affect our analyses.Many
of the mechanisms we describe likely play a major role in rate scaling, yet there remains consid-
erable mystery in the relative importance of each one as ultimate explanations for these patterns.
Although estimation error certainly explains some of these patterns, substantial evidence suggests
that at least a portion of the apparent pattern likely results from the inadequacy of our models in
representing evolutionary processes. Ultimately, we think the ubiquitous nature of rate scaling in
evolution reveals much about our ignorance of how microevolutionary change accumulates from
micro- to macroevolutionary scales, or at least how to adequately model it (Houle et al. 2011).
Furthermore, we lack a mechanistic understanding of how to interpret apparent constraints on
macroevolution (Boucher et al. 2018, Houle et al. 2011). Indeed, much of our discussion and the
relevant literature on rates are intimately tied to Gould & Eldredge’s (1977) motivation in pro-
claiming that stasis is data and to the enduring paradox of stasis (Hansen & Houle 2004). Spirited
debate has ensued, and continues to this day, about the causes of this pattern, and it is unques-
tionable that this reframing revealed the great biases that evolutionary biologists often have in the
questions they ask and the methods they use. Indeed, many of the great mysteries in evolution are
not why change occurs but why it fails to occur. Traditionally, evolutionary biologists have framed
the earth’s incredible biodiversity as an outstanding mystery to be solved. Perhaps, though, we
should be surprised not by how much but rather by how little biodiversity there is, considering
the tremendous potential for evolution to generate new genes, traits, and species, even over short
timescales. Understanding the underlying mechanisms of these limits and how they evolve over
scales of time and space holds the most promise for adequately describing evolutionary processes
with meaningful parameters that characterize the tempo and mode of evolutionary change.
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