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Competition
Design can be viewed as a sequential and iterative search process. Fundamental under-
standing and computational modeling of human sequential design decisions are essential
for developing new methods in design automation and human–AI collaboration. This
paper presents an approach for predicting designers’ future search behaviors in a sequen-
tial design process under an unknown objective function by combining sequence learning
with game theory. While the majority of existing studies focus on analyzing sequential
design decisions from the descriptive and prescriptive point of view, this study is motivated
to develop a predictive framework. We use data containing designers’ actual sequential
search decisions under competition collected from a black-box function optimization
game developed previously. We integrate the long short-term memory networks with the
Delta method to predict the next sampling point with a distribution, and combine this
model with a non-cooperative game to predict whether a designer will stop searching the
design space or not based on their belief of the opponent’s best design. In the function opti-
mization game, the proposed model accurately predicts 82% of the next design variable
values and 92% of the next function values in the test data with an upper and lower
bound, suggesting that a long short-term memory network can effectively predict the next
design decisions based on their past decisions. Further, the game-theoretic model predicts
that 60.8% of the participants stop searching for designs sooner than they actually do while
accurately predicting when the remaining 39.2% of the participants stop. These results
suggest that a majority of the designers show a strong tendency to overestimate their oppo-
nents’ performance, leading them to spend more on searching for better designs than they
would have, had they known their opponents’ actual performance.
[DOI: 10.1115/1.4048222]
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1 Introduction
Design is an iterative process with multiple stages that can

broadly be categorized into identifying a need, generating design
concepts, detailed design, and implementation as exemplified by
multiple formal processes [1,2]. During this process, designers
usually do not have a complete understanding of the design or the
evaluation space but rather acquire knowledge in a sequential
manner through multiple design evaluations. Particularly in detailed
design where the design domain is more or less bounded by the
concept selected for further development, by using either simulation
models or experiments, designers evaluate the candidates they
“sample” from the design domain to develop an understanding of
where to “search” for promising designs. This search is usually
not random if any learning occurs throughout the sampling process.
In reality, such a design process is not simply an individual

decision-making process but can be influenced by how other design-
ers make decisions, too.Design under competition is one of the most
common interactive decision-making scenarios where design deci-
sions are heavily influenced by competitors’ decisions [3]. Using
car design as an example, in order to identify the design features
that are most preferred by customers and determine the values of
design attributes (e.g., engine size, cargo space, etc.), not only do
the designers need to consider the information from their own

company, they must have information from their competitors so as
to produce competitive products in the market for profit. Because
of the existence of competitiveness, designers’ extrinsic motivation
could be biased, thereby their decisions may become irrational.
Therefore, the research question of how designers make sequential
design decisions under competition does not only have practical
implications inmany engineering applications but also attracts scien-
tific inquires. The answer to this question can directly advance the
understanding of human cognition in complex design scenarios
and inform the development of forward-looking decision support
systems for human–artificial intelligence (AI) collaboration. While
human cognition has been known to suffer from several biases
under uncertainty such as availability heuristic (i.e., using the infor-
mation that easily comes to mind) or anchoring bias (i.e., relying on
the earlier information to make future decisions) [4–6], a collabora-
tive AI system developed considering human decision-making pro-
cesses can potentially help designers (or enterprises) make rational
decisions from design to business.
The study of human decision-making process can be approached

from three perspectives, namely, descriptive, prescriptive, and pre-
dictive, depending on the research interests and the questions to be
answered. Descriptive analysis uses data aggregation and data
mining to provide insight into the past design behaviors and
answers: “What has happened and how were the design decisions
made?”. Prescriptive analysis uses modeling and optimization to
advise on possible outcomes and answers: “How should the
design decisions be made?” Finally, predictive analysis uses statis-
tical models and forecasting techniques to understand the future and
answers: “What could the future design decisions be?”.
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Prior literature has studied sequential design processes from
different perspectives. For example, in support of product develop-
ment and project management, design structure matrices [7–9]
have been used for task sequencing to identify the sequence thatmin-
imizes expected project completion time. Other studies have primar-
ily focused on the design search process based on optimization
algorithms. Multi-objective formulations have been introduced in
the literature to study the design process sequentially advancing
through smaller sets of alternatives using models of increasing fidel-
ity [10,11]. Additionally, the expected value of perfect information
(EVPI) [12], Bayesian optimization [13], generic algorithm [14],
and optimal learning [15] have been adopted in the literature to
study optimal design sequences. These studies, however, are very
different from the work presented in this paper in that these studies
investigate the optimal sequential decision process using normative
models which study how the design decisions should be made.
In the present paper, we investigate humans’ actual sequential

design decisions. Chaudhari et al. [16] recently performed study
to identify models that provide the best description of a designer’s
sequential decisions when multiple information sources are present
and the total budget is limited. So, this study tries to find the appro-
priate descriptive model for sequential design decisions. Computa-
tional models have also been used to learn and “replay” designers’
sequential decision-making using Markov chains [17–20], simu-
lated annealing [21], Gaussian process [22–24], and more recently
the deep learning-based methods [25,26]. Yet, no computational
models have been developed to date for predicting designers’
sequential decisions with the consideration of competition.
In Ref. [24], the authors have used a function optimization game

for design research and studied designers’ information acquisition
decisions under competition. That study has developed normative
models of design decisions under competition to answer questions
more related to the descriptive and prescriptive aspects of sequential
design decisions. In the present paper, we adopt the experimental
settings (detailed in Sec. 5) of Ref. [24] and propose a predictive
approach to model what future decisions individuals could make
in a sequential design process under competition given their past
decisions. The uniqueness of this approach is that it first integrates
sequence learning (using a long short-term memory (LSTM)
network) with game theory (using a non-cooperative game) in
studying engineering design under competition.
Specifically, we use prior data from human subject experiments

with the function optimization game introduced in Ref. [27] to
learn search behaviors of the participants (i.e., designers) under
one-to-one competition and to predict their future decisions based
on their past behaviors. The research question we aim to answer in
this study is: “to what extent can the game theory and sequence
learning-based models predict and explain designers’ sequential
decisions under competition?” The answer to this question can
provide insights as to how effective collaborative AI systems could
be developed to pro-actively guide human design decision-making.
The rest of the paper is organized as follows. In Sec. 2, the tech-

nical background on the non-cooperative game and the LSTM
model is provided. These two models are the core components in
the proposed predictive framework. Section 3 presents how the
research problem is formulated and the proposed research approach.
In Sec. 4, we introduce the function optimization game, and
describe the experimental settings based on such a game for the col-
lection of the sequential design data. In Sec. 5, the proposed model
which integrates LSTM and the non-cooperative game is introduced
in detail. In Secs. 6 and 7, the results from both analysis and valida-
tion are presented and discussed. Insights from the analysis are also
summarized in Sec. 7. At the end, we conclude this paper with a
further discussion on how our approach can be transferred to
other engineering design scenarios and the future work.

2 Technical Background
2.1 Non-Cooperative Games. A design competition is typi-

cally modeled as a non-cooperative game. Non-cooperative games

are often inherently zero-sum where what one wins the other loses.
Designers’ behaviors are studied at the equilibrium of such games.
Various game-theoretic models have been developed in design liter-
ature to provide insights into designers’ (or enterprises’) behaviors,
their design options, and strategies. For example, market competi-
tion has been modeled with game-theory, and the optimal price
and design decisions under competition has been studied with
long-run and short-run equilibrium solutions [3,28,29]. Further,
game-theoretic models have been used to model rationality of the
designers for collaborative, decentralized design scenarios [30].
In game theory, each player (or decision maker) is assumed to act

with rational behaviors. That means they are self-interested agents
whose goal is to maximize their own payoff. When using non-
cooperative games to model a competition, the payoff (πi) is depen-
dent on the prize of the competition (e.g., the total revenue of a certain
product if that product wins the market) and the probability of
winning that prize. The probability of winning (Pi) is a function of
the quality of the submissions from every competitor, and depends
on the competitors’ characteristics (e.g., expertise) and inputs (e.g.,
effort, time investment). Hence, a general model of a design compe-
tition based on game theory has three main parts: quality function,
winning probability function, and payoff function [27].
(1) Quality function describes the quality of a design solution (qi)

as a function of the designers’ characteristics, such as their expertise
(Ki) and the inputs, such as effort (ei). For a real-time competition
where competitors’ design decisions are known, the effort ei is
affected by the design characteristics and inputs from other design-
ers in a rational decision-making process. Designers can adjust the
amount of effort to spend on improving their design to find a design
solution better than their competitors’ for maximum pay-off. In this
paper, we assume that competitions are not in real time, i.e., there is
no real-time information exchange, and designers make decisions
based on their past experience with competitors, which is included
in Ki. Thus, in this paper, qi is assumed to be independent from the
characteristics and the inputs of other designers in the competition.

qi = qi(ei, Ki) (1)

(2) Winning probability function defines each competitor’s prob-
ability of winning as a function of the quality of all submitted design
solutions [31], and is typically modeled in an additive form,

Pi =

f (qi)∑N
j=1

f (q j)

if
∑N
j=1

f (q j) > 0

1
2

otherwise

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2)

where f (qi) is a non-negative increasing function. The empirical
results obtained from previous studies indicate that using a power
function for the winning probability and an exponential function
for the quality well captures the designers’ winning status in a two-
player competition game [27].
(3) Payoff function defines the expected value of the prize, e.g., in

a winner-takes-all game, the payoff of an individual is

E(πi) = ΠPi − Ci (3)

where Π is the amount of the prize and Ci is the cost incurred in
developing the solution. The Nash equilibrium of the game is gen-
erally used as the solution of the game. At the Nash equilibrium, a
rational player i chooses the input (ei) that is the best response to
other players’ best responses.

2.2 Sequence Learning. Several machine learning methods
have been designed to learn from independent and identically dis-
tributed data. Sequential design decisions are a particular type of
data that does not fall within that category since subsequent deci-
sions are correlated with the previous ones. Recurrent neural net-
works (RNNs) in sequence learning literature have been
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developed for such problems [32,33]. These networks use the
output of the hidden layer corresponding to the previous sequence
as an input to the next sequence to retain dependencies. Drawbacks
of the classical RNNs such as vanishing gradients where gradients
become smaller in each layer led to the emergence of a more pow-
erful variant of RNNs known as LSTM networks [34,35].
Long short-term memory networks consist of a repeated chain of

cells each of which represents the network for a time-step. Adapted
from Ref. [36], Fig. 1 depicts the overall network architecture and
the contents of a cell. These networks are capable of capturing long-
term relationships in sequential data by taking inputs from both the
output and the internal state of the previous cell. Three sigmoid
functions in Fig. 1 output values in [0, 1] and allow selecting
what information to retain during learning. Two tanh functions in
the figure scale the input and output data into [−1, 1] and
allow the gradients to sustain for long time periods. Multiple var-
iants of the LSTM networks exist. We refer readers to Ref. [35]
for a detailed discussion on the practical use of these variants.
In this paper, we use LSTM networks to predict future design

decisions under a competition based on past decisions, assuming
that past behavior can be related to future behaviors. Earlier, norma-
tive models have been used to explain designer behaviors under the
same setting [24]. While these models provide interpretable

outcomes, they make several assumptions regarding designer beha-
vior such as assuming certain bounds for future design decisions.
LSTM networks could extract complex behaviors without making
such assumptions and use this knowledge to predict future design
decisions. Also, a machine learning-based approach is more gener-
alizable to different design problems.
Classical LSTM networks output a deterministic value for a

given set of inputs, i.e., a point estimate of the expected value,
while a model with uncertainty is necessary to predict future
design decisions due to the natural variation in designer behaviors.
We combine the classical LSTM network models with an existing
method proposed for estimating prediction intervals from the liter-
ature, known as the Delta method [37], to develop a probabilistic
model that predicts the designer decisions with a distribution.
Figure 2 shows an overview of the learning process in the predic-

tive model presented in this paper. We use the sequential design
data from a crowd to train an LSTM network that predicts the
expected next designs to sample and the corresponding quality
(i.e., function value in the game) based on past history of design
decisions. Note that Fig. 2 depicts a minimization problem where
smaller values of y in the vertical axis represent better designs.
We use the LSTM network with the Delta method to estimate the
uncertainty in the prediction. Finally, in a competition, designers
form an opinion or a belief of how good the competitor’s design
could be and determine how much to spend on improving the exist-
ing design based on that belief. We combine the future prediction
and the corresponding uncertainty using game theory to estimate
the designers’ belief regarding the quality of their opponent’s
design and predict whether the designers will make the predicted
design decision. For instance, the proposed model predicts that
the designer will stop searching for new designs if the predicted
design quality is better than the designer’s belief of the opponent’s
design quality as depicted in Fig. 2. We present the details of our
mathematical approach in Sec. 5.

3 Problem Formulation and Research Approach
In this study, we are particularly interested in designers’ decision-

making behavior in the parametric design stage where a design
problem has been already defined (i.e., the objective is set and the
key design variables are known), and a designer’ task is to deter-
mine the value of a specific design variable (e.g., a dimension or
a material property). The goal of the parametric design, therefore,
is to search the design space to find a design that satisfies
the requirements and constraints in an optimal way with respect
to a given objective [38]. While there could be other views on
this design process, this optimization-based view is adopted in

Fig. 1 Overview of an LSTM network architecture (adapted from
Ref. [36])

Fig. 2 Overview of the learning and prediction process
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this study. As highlighted by Papalambros and Wilde [39], “philo-
sophically, optimization formalizes what humans (and designers)
have always done. Operationally, it can be used in design, in any
situation where analysis is used.” Based on this view, we focus
on a design process with the following characteristics [24]:

(C1) A designer’s goal is to find the best design quantified by
certain objective values.

(C2) Designers evaluate the performance of candidate designs,
either through simulations or physical experiments.

(C3) There is a cost associated with searching. The term “cost” is
used more generally. Costs can either be monetary cost or
effort (computational, personnel, etc.).

(C4) More costs incurred in exploring the design space result in
a better understanding of the design space, and therefore,
designs of equal or potentially better quality.

In this paper, we focus on a design problem solved by individuals
in a design competition that possesses all the characteristics we list
in (C1–C4). In this competition, the expected payoff is not only
determined by the quality of a designer’s own decisions but also
by the decisions of other competing designers, see Eq. (2). For a
contestant, further experimentation may yield better design
quality, and hence a higher probability of winning (C1–C3), but
also greater cost (C4). This situation is similar to the real-world
competitive markets where companies need to balance the added
value of building a new prototype and the corresponding cost in
terms of time and budget.
We present a model to predict future design decisions in such a

competition. We use the function optimization game discussed in
Sec. 4.1 that emulates such a tournament to collect data for sequen-
tial design decisions from participants. The predictive model inte-
grates probabilistic models of sequence learning with game
theory. The model predicts whether a designer will continue search-
ing for better designs, if so, what part of the design space this
designer will explore and how much improvement the designer
will achieve.

4 Experiment Description
4.1 Function Optimization Game. Sha et al. [27] developed a

function optimization game that creates a simplified scenario of
design under competition yet capturing the essence of the design
process characteristics specified in Sec. 3. So in this paper, we
adopt the data collected from this game experiment in support of
our investigation. Here, we summarize the key features of this
game briefly and refer the reader to Ref. [27] for the details.
In the optimization game, the participants are asked to optimize a

design characterized by a single variable x∈ [−100, 100], and its
performance is evaluated by an unknown function, f (x) as shown
in Fig. 3. In this specific case, the participants are asked to minimize
this unknown f (x). This resembles many real-world design prob-
lems where the functional behavior of an artifact is not completely
known. Each participant can query the value of the function for a

specified x at a cost of c tokens. Each participant plays the game
against one other player, randomly selected during each period.
At the end of each period, the participant whose design achieves
a smaller function value wins the fixed prize (Π). This game embod-
ies the sequential information acquisition decisions and enables the
study of strategic decisions. The domain independent nature of the
problem reduces the variations among designers due to the diversity
in knowledge background, thus reduces noises in the data which
will be beneficial to testing the models.

4.2 Experimental Setup. Based on this game setting, an
experiment was carried out with 44 senior undergraduate Mechan-
ical Engineering students at Purdue University by Sha et al. for an
earlier study [27]. The present paper uses the same data to illustrate
the application of the proposed model. The following points sum-
marize the key experimental settings, and further details of the
experimental data are provided in Sec. 6.1.

(1) The control factor is the cost. Each subject participated in
two treatments: low cost treatment (c= 10 tokens) and high
cost treatment (c= 20 tokens). In both treatments, the partic-
ipants start with 200 tokens. The experiments consists of
four sessions where each session has two treatments as
follows. Session 1: low treatment first and then high
treatment; Session 2: high treatment first and then low treat-
ment; Session 3: high treatment first and then low treatment;
and Session 4: low treatment first and then high treatment.

(2) The repetition is realized by 15 periods. A period refers to
one full competition cycle between two players based on a
randomly generated quadratic function. The coefficients a
and b of the function F(x)= (x− a)2+ b are randomly
drawn from a uniform distribution in each period. So, a par-
ticipant plays the game 15 times in low cost treatment and 15
times in high cost treatment with 30 different functions in
total.

(3) The matching mechanism is random. In experiments involv-
ing partners, there may be chances for tit-for-tat strategies
(learn from your partner). This could eventually affect the
analysis of competitive decisions. So, in this experiment,
two participants competing with each other are randomly
matched; and at the beginning of each period, every pair of
participants will be re-matched.

(4) The awarding mechanism is winner-takes-all. For each
period, the winning player receives the prize amount (200
tokens) minus the cost of sampling, whereas losing player
gets nothing. At the end of the experiment, the final prize
is accumulated from the prize received from each period.

With these experimental settings, a participant needs to sequen-
tially make two essential decisions multiple times in each period
of the game: (a) the decision to choose next x and (b) the decision
to whether stop or not. The information available for these decisions
are as follows: at the end of each period, the participants are
informed whether they won or not, the best point archived by the
winner, and the actual optimal value of the function in that
period. Please note that this feedback does not directly reveal the
opponent’s searching strategy in the future periods because the
function is randomly generated and the competitors are randomly
matched at the beginning of a new period. However, this allows
the players to form a belief (or a guess) about their opponents’
best designs in the subsequent periods.

5 Sequence Learning With Game Theory
Weuse the dataset obtained from the experiment described in Sec. 4

to train an LSTM network that gives a probabilistic output, and
combine it with the game theoretic model proposed in Ref. [24].
The LSTM network and the game-theoretic model serve complemen-
tary purposes.While the LSTMnetwork predicts a distribution for the
next design sample and the corresponding function value, the game

Fig. 3 The function optimization game— minimization of an
unknown function
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theoretic model calculates the belief that a designer has regarding the
performance of the competitor and determines whether a designer will
continue sampling based on the predicted performance improvement.
WhenusingLSTMnetworks and game theory,wemake the following
assumptions regarding designer behaviors:

(A1) Predictability. Past design decisions and the corresponding
outcomes are the predictors of future decisions and
outcomes.

(A2) Rational behaviors. Individuals stop sampling when the
expected improvement in their payoff given by Eq. (3) is
negative.

5.1 Prediction of Next Design Samples and Outcomes. We
use three types of historical information available to the players
to predict the future behaviors: a given number of previous
design samples, function values, and cost of sampling. Instead of
training different models for each treatment, we use cost as an
input to combine the information regarding both the number of
samples a participant has taken (i.e., the number of design itera-
tions) and treatment. Cost linearly increases with the number of
samples where the treatment determines the unit (marginal) cost
of each design sample. Integration of cost into our model is also
an advantage over the normative approach since we provide a
single unified model that describes designer behavior under differ-
ent experimental conditions.
The same LSTM network can be trained to predict the expected

value of both the next design sample μx̃0 and the next function value
μỹ0 based on past information as follows:

μx̃0 = fx(xp, yp, cp, w)

μỹ0 = fy(xp, yp, cp, w)
(4)

where xp, yp, cp are vectors containing p number of past design
samples, their corresponding function and cost values, respectively,
and w is the vector of network weights that minimizes the training
error. Also, .̃ denotes a predicted quantity. The experiment data
contain sequences of varying length since each player freely deter-
mines how many samples to take from the design space. For train-
ing, we organize the entire data set into samples of length p+ 1. For
instance if a player takes q samples from the design space in an
experiment where q> p, that experiment gives q− p samples for
training. Here, the number of steps to look back to obtain a good
prediction depends on the application. While a longer sequence of
past history could allow learning more complex behaviors, it also
reduces the number of data points to use for training.

5.2 Prediction of Uncertainty. The LSTM network provides
a deterministic output for a given set of inputs whereas in reality,
due to several human factors that are not included in the LSTM
model, future decisions from different designers vary even if their
past decisions are the same. Therefore, while the deterministic
output of the LSTM network could serve as a point estimate of
the expected value, a probabilistic output is necessary to account
for the natural variation in human behaviors. Also, the stopping cri-
teria presented in Sec. 5.3 require a model of uncertainty in the
future predictions. There are multiple approaches in the literature
to estimate the distribution of the output prediction from neural
network models as summarized in Ref. [40]. In the present study,
we use the Delta method [37] for its computational efficiency.
This method makes an assumption of normality of the overall pre-
diction error and calculates the variance of the prediction output
based on the training error and the sensitivity of the network
output with respect to the prediction weights. We provide a
summary of the final output and refer readers to the original refer-
ences for derivations [37,40].

The total variance of the prediction output can be calculated as
follows:

σ20 = σ2ϵ (1 + gT0 (J
TJ)−1g0) (5)

where σ2ϵ is the variance of the training error, g0 is the gradient of
the output of the LSTM network with respect to the prediction
weights evaluated at a test point z0 given by

gT0 =
∂f (z0, w)

∂w1
,
∂f (z0, w)

∂w2
, . . . ,

∂f (z0, w)
∂wm

[ ]
(6)

and J is the Jacobian matrix of the LSTM network with respect to
the prediction weights evaluated at the training samples z1, …zk
given by

J =

∂f (z1, w)
∂w1

∂f (z1, w)
∂w2

. . .
∂f (z1, w)
∂wm

∂f (z2, w)
∂w1

∂f (z2, w)
∂w2

. . .
∂f (z2, w)
∂wm

..

. ..
. ..

. ..
.

∂f (zk, w)
∂w1

∂f (zk, w)
∂w2

. . .
∂f (zk , w)
∂wm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

We model the final prediction output using a normal distribution
with the expected value from Eq. (4) and the variance from Eq. (5).

5.3 Stopping Criteria. We combine the LSTM-based proba-
bilistic prediction model with a game theoretic formulation pro-
posed by Panchal et al. [24] to predict a player’s belief regarding
the opponent’s best response and the decision to stop sampling or
not. Let the superscript (i) denote the information from the player
i and (−i) denotes the information from the corresponding oppo-
nent. At a given time, let ỹ(−i)∗ be the best function value the
player i believes that the opponent has achieved, and y(i)∗ is the
best function that the player i achieved up to that point. The stop-
ping criterion from Ref. [24] is given by

stop if
ϕ

ỹ(−i)∗ − μỹ(i)0
σ(i)ỹ0

( )
<

c

Π
and y(i)∗ > ỹ(−i)∗

or
y(i)∗ < ỹ(−i)∗

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(8)

where ϕ is the standard cumulative normal distribution function.
This criterion can be used to predict whether a player will continue
sampling or not for given y(−i)∗ , or it can be used to estimate a lower
and upper bound on ỹ(−i)∗ using the data at the point where a player
stopped sampling. This criterion combines the information learned
from the crowd through the LSTM network and the information
from the individual participants through their own beliefs regarding
their opponents.

6 Results
6.1 Descriptive Analysis. In this section, we present key sta-

tistics to describe the original experiment data obtained from the
function optimization game described in Sec. 4. We report
median and interquartile range (IQR) instead of mean and standard
deviation for these statistics since a few outliers in the data impact
the latter significantly. Since the experiment data consist of inputs
from 44 participants and each participant plays the function optimi-
zation game for 15 periods per each of the two cost treatments, this
results in a data set for 1320 periods in total. We omit the first five
periods in each participant (i.e., remove 440 periods) in our analysis
for offsetting participants’ learning curves.
For the remaining 880 periods, the median number of samples the

participants have taken is 7.0 for winning players and 6.0 for losing
players, and the IQR is 4.0 for both. The median of the absolute
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distance between participants’ best design sample and true optimal
design for winning and losing players are 0.48 and 2.79 with an IQR
of 1.38 and 8.96, respectively. Similarly, the median distance
between participants’ best function value and true optimum for
winning and losing players are 0.05 and 1.56 with an IQR of
0.45 and 19.65, respectively. These results are summarized in
Table 1. Note that these numbers refer to the absolute quantities
without any normalization.
The smaller variation in the performance (quantified by the dis-

tance between the design variable values/function values and the
true optimum) of the winning players as compared to that in the
losing players indicates that the players attempt to be competitive
regardless of their opponent’s score. This result suggests that the
players have developed a belief of a strong opponent regardless
of the actual ability of their opponent.

6.2 Predictive Analysis. In this section, we present the predic-
tive analysis results obtained from the mathematical models
described in Sec. 5. We provide the interpretation of these results
along with a discussion in Sec. 7.

6.2.1 LSTM Network. We use the history of previous three
design samples, function values, and the cost incurred to train an
LSTM network that predicts the next design sample and the func-
tion value. We remove the data points where participants take
less than four samples, which is the minimum number of samples
needed for the LSTM model. Using the data after the fifth period
in all treatments, we pre-process the data from 880 game periods
to organize them into chunks of four sequences where we use the
first three to predict the last. This pre-processing gives 2481 data
points to use for the LSTM model. Note that the number of
samples the participants take (reported in Table 1) directly affects
the number of data points to use for training. Had the participants
taken more samples, it would have provided a larger and richer
data set. We use six-fold cross validation and present the results
for one of the subsets in this section. All the results in this section
are evaluated on the test data.
Using a normal distribution, we can estimate a lower and upper

bound on the predicted quantity, i.e., the next design sample or
function value, with a given confidence. Figure 4 shows the predic-
tion intervals for the next design sample and function value (from
Eq. (4)) with one standard deviation (from Eq. (5)) away from the
mean. Filled dots and hollow circles represent the upper and
lower bounds, respectively, and the solid line corresponds to the
perfect prediction. The x and y axes in the figure represent normal-
ized design variable and function values. In Fig. 4(a) the design
interval of [−100, 100] is mapped to [0, 1], and in Fig. 4(b), 0 cor-
responds to the true optimum of the function that participants try to
minimize and 1 corresponds to the maximum function value
observed by two opposing participants. The prediction intervals
shown in Fig. 4(a) accurately bound 82% of the test points from
above and below, and in Fig. 4(b), the accuracy is 92%. These pre-
diction intervals can be narrowed down at the expense of losing
accuracy.
Next, we present the prediction results for the overall behavior of

the participants throughout the search process. The plot in Fig. 5(a)

shows that the difference between two consecutive function values
in the search process |Δy| gradually decreases with the number of
iterations (i.e., the samples that participant take) in the actual
data. These results mean that the participants tend to make larger
changes in their design early in the process compared to later.
The plot in Fig. 5(b) depicts the same results from the prediction
model. A similar trend is observed for the design samples but we
omit those results for brevity. Since the LSTM model needs a
past history of three samples, the prediction results start from the
fourth sample. The overlap between two plots shows that the predic-
tive model can reasonably capture the exploration and exploitation
behavior as a function of the design iteration in this experiment. As
opposed to the normative models from the literature such as simu-
lated annealing [21] or Gaussian processes [24,27], the proposed
model learns the exploration and exploitation from the input data
without “hard-wiring” these behaviors.

6.2.2 Game Theory. We also present results for the ability of
the game theoretic model in Eq. (8) to predict and explain some
of the participant behaviors under competition. First, we show the
results for the participants’ belief for their opponent’s best function
value ỹ(−i)∗ . We apply Eq. (8) that uses the predictions from the
LSTM network to the data points where the participants stop sam-
pling. Using the values for μỹ0 and σ ỹ0 from the LSTM network and
the participants best score at the time y(i)∗ from the dataset, we obtain
an upper and lower bound for ỹ(−i)∗ from the two inequalities in
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Fig. 4 Prediction intervals for the next design sample and func-
tion value with one standard error away from the mean: (a) pre-
diction of the next design sample and (b) prediction of the next
function value

Table 1 Summary of descriptive statistics from the original
dataset

Median Median IQR IQR
Statistic (Win) (Loss) (Win) (Loss)

Number of samples 7.0 6.0 4.0 4.0
Absolute distance of the best x from
the optimum

0.48 2.79 1.38 8.96

Absolute distance of the best y from
the optimum

0.05 1.56 0.45 19.65
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Eq. (8). Figure 6 compares these bounds for the participants’ belief
with the actual best score of the opponent. The error in the upper
and lower bounds increases as the opponent’s best function value
increases. Fifty-three percent of the actual opponent scores fall
within the bounds as shown in Fig. 6.
We also use the game theoretic model to predict when the partic-

ipants stop sampling given their opponent’s best score. Figure 7
shows this prediction in comparison to the actual point where the
participants stopped sampling. The comparison starts from the
fourth sample, which is the earliest point in the sampling process
our model can predict. The figure shows that the game theoretic
model generally predicts an earlier stop compared to the actual data.

7 Discussion
In this section, we interpret and discuss the results presented in

Sec. 6 and provide some key take-aways.
The prediction of the next design sample using our LSTM

network provides an accurate interval when the next design
sample yields a small function value. Figure 4(b) shows that if
the next function value is small (e.g., y0 < 0.1), the estimate for
the upper bound is mostly above and the lower bound is mostly
below the line (with an accuracy of 96%). The error in the predic-
tion interval tends to increase if the next function value is large.
This error can partially be attributed to the lack of sufficient data
points with a large y0 value. Considering that smaller function
values represent better designs in this study, learning from the
crowd data in the LSTM network is biased toward behaviors that

yield better design outcomes. Such a result is expected since the
primary goal of the participants in the design contest is to
improve their designs and the crowd data contain that behavior.
The present LSTM network also has the ability to capture some

interpretable designer behaviors in the experiment. The results in
Fig. 5 show the gradual transition from exploration to exploitation
as the participants take more samples from the design process. Since
the participants gain a better knowledge of the design space with
more samples, it is expected for participants to search for a promis-
ing region in the design space with exploration early in the process
and focus on fine-tuning their results later. Recall that each sample
incurs a cost. Therefore, it is not reasonable to make large changes
in the design after identifying a promising region to search. This
conclusion is consistent with the obtained from the analysis by
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Fig. 5 Change in the function value (i.e., the difference between
the current and next function values) with the number of samples
the participants take: (a) results from the actual data and
(b) results from the prediction model

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Actual Opponent Best Score

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
O

pp
on

en
t

B
es

t
Sc

or
e

Opponent Best Score

Perfect Prediction
Lower Bound
Upper Bound
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the Wiener process model (a normative model) previously studied
by Panchal et al. [24].
The results from the game theoretic model show a clear tendency

to assume all opponents to be well-performing designers in this
experiment. In Fig. 6 the upper and lower bounds for the partici-
pants’ belief regarding the opponent score obtained from the
game-theoretic model are generally lower than the actual score.
Since lower scores represent better designs, these bounds predict
the opponents to perform better than what they actually achieve.
The gap between the results from the model and actual data
increases as the opponent score becomes worse.
There are several reasons for the difference between the

game-theoretic prediction and the real opponent scores. First,
the game-theory assumes the players to stop sampling when the
expected improvement in their payoff is negative as discussed in
Sec. 5. The actual behaviors may violate that assumption. As a
result, if the participants keep sampling at the expense of unneces-
sary cost resulting in a prediction of lower opponent score than
reality. While the overall accuracy of these bounds is 53%, the accu-
racy increases to 69% when we use only the opponents who
achieved a relatively good score of y(−i)∗ < 0.1. Second, the predic-
tion results are compared with the actual opponent score rather than
the participants’ belief, which is not collected during the experi-
ment. Some of the inaccuracy may stem from the error in the partic-
ipants’ belief. Finally, a small amount of error coming from the
LSTM prediction (a mean squared error of 0.005 between predicted
μỹ0 and the actual y0 in the test data) also has a contribution.
The results in Fig. 7 depict the same characteristics of our

game-theoretic model from a different perspective. Using the
actual score of the opponent, this figure shows that the prediction
from our game-theoretic model is always less than or equal to the
actual number of samples that participants take, i.e., there are no
circles above the main diagonal as shown in Fig. 7. The size of
the circles represents the frequency of occurrence. The circles on
the main diagonal correspond to the cases where the prediction
matches the reality. In this figure, 39.2% of the data points fall on
the main diagonal and the remaining 60.8% of the points are
below the diagonal. Circles become smaller as the actual number
of samples participants take increase since there are relatively
fewer participants who take a large number of samples in a single
period. This figure shows that if the participants knew the actual
opponent score, they would stop earlier under the assumptions of
the game-theoretic model. The figure also supports our claim that
the participants’ belief regarding their opponent’s function value
is smaller (or better) than what their opponents actually achieved.
Note that the results we present represent a particular subset from

a six-fold cross-validation approach. Each subset provides similar
outcomes where the interpretations and conclusions are not affected
by which subset is used. For instance, the prediction accuracy in
Fig. 4(b) is 92% for the subset we present. The other subsets
yield an accuracy of 93%, 88%, 89%, 88%, and 95%. Therefore,
we avoid the presentation of the entire six-fold cross validation
results for brevity.

8 Conclusions
We presented a mathematical model to predict sequential design

decisions from human designers based on their past decision. The
model uses LSTM networks to predict expected future design deci-
sions, the Delta method to represent the prediction uncertainty, and
game-theory to model the condition to stop searching for better
designs based on the designers’ belief of their opponents’ perfor-
mance. We use data collected from a function optimization game
developed previously in the literature to illustrate the application
of the proposed method.
The results for that application indicate that a long short-term

memory network can predict the next design decisions and corre-
sponding outcomes based on their past decisions. The results
further suggest that the designers show a strong tendency to

overestimate their opponents’ performance, leading them to spend
more on searching for a better design than they would have, had
they known their opponents’ actual performance. Our result is
further supported and explained by previous empirical studies in
social cognition. For example, a study in psychology performed a
controlled experiment and observed that people were inclined to
underestimate how good their partners were but to overestimate
their opponents [41].
The application we choose is abstract enough to be domain inde-

pendent. The mathematical framework we present is generalizable
to the design problems that possess the characteristics of (C1–C4)
under the assumptions of (A1–A2).

8.1 Take-Aways. This study further advances the prior
research on understanding human sequential decision-making.
The results complement the normative models in the existing liter-
ature [24,27]. Similar conclusions regarding exploration and exploi-
tation behaviors of the participants and the participants’ belief for a
strong opponent further validates the model. Learning these behav-
iors from the input data automatically without explicitly building
them into the model is a key advantage of the proposed approach
over the normative models. This paper presents implications of
such behaviors on prediction outcomes.
The present results suggest some practical implications for the

development of AI-based decision support systems. The difference
between predicted participant behaviors from game theory (based
on the assumption of rationality) and the actual behaviors highlights
a need for influencing human beliefs regarding opponent perfor-
mance. A forward-looking decision support agent might provide a
more objective view of the opponent and guide humans to make
better informed decisions. Additionally, certain mechanisms or
intervention (e.g., fake opponents) can be developed to artificially
influence participants’ behaviors towards the direction where
system designer desires.
Further, the results from our application show that the model

generally learns behaviors that result in design improvements
from the crowd since a significant majority of data points reflect
such behaviors. In other applications, if the goal is to also learn low-
performing design behaviors, a separate model trained with such
decisions might be necessary.

8.2 Limitations and Future Work. There are multiple ways
to study design competition. The present set of results represent a
non-real-time competition as opposed to real-time competition
where there is a continuous information sharing between opponents.
It will be interesting to study how the participants’ behavior, partic-
ularly their perception of the opponents’ performance, vary when
there is a real-time information sharing. The results are also
obtained from a one-on-one competition, whereas a team-based
competition may yield different competition dynamics. Further, a
team-based competition could be studied to analyze both inter-team
and intra-team competition.
The present study uses LSTM networks to predict human design

decisions and the Delta method to estimate the uncertainty in the
network models. A comparison of alternative machine learning
approaches such as deep neural networks to predict sequential
design decisions and alternative uncertainty prediction methods
such as Bayesian approaches is left to a future study. These
methods could offer varying levels of success and computational
efficiency in different design problem contexts.The approach pre-
sented in this paper is general enough for testing these methods
without making any changes in the game-theoretic construct
when investigating 1–1 competitions.
The implications of our results for human–AI collaboration need

verification with further controlled experiments. It is interesting to
study how human factors play a role in collaboration with a rational
decision support agent. In addition, the conclusions we made based
on the abstract function optimization game also need empirical vali-
dation with more concrete design problems.
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