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ABSTRACT 
Design thinking is essential to the success of a design 

process as it helps achieve the design goal by guiding design 
decision-making. Therefore, fundamentally understanding 
design thinking is vital for improving design methods, tools and 
theories. However, interpreting design thinking is challenging 
because it is a cognitive process that is hidden and intangible. In 
this paper, we represent design thinking as an intermediate layer 
between human designers’ thought processes and their design 
behaviors. To do so, this paper first identifies five design 
behaviors based on the current design theories. These behaviors 
include design action preference, one-step sequential behavior, 
contextual behavior, long-term sequential behavior, and 
reflective thinking behavior. Next, we develop computational 
methods to characterize each of the design behaviors. 
Particularly, we use design action distribution, first-order 
Markov chain, Doc2Vec, bi-directional LSTM autoencoder, and 
time gap distribution to characterize the five design behaviors. 
The characterization of the design behaviors through embedding 
techniques is essentially a latent representation of the design 
thinking, and we refer to it as design embeddings. After obtaining 
the embedding, an X-mean clustering algorithm is adopted to 
each of the embeddings to cluster designers.  The approach is 
applied to data collected from a high school solar system design 
challenge.  The clustering results show that designers follow 
several design patterns according to the corresponding behavior, 
which corroborates the effectiveness of using design embedding 
for design behavior clustering. The extraction of design 
embedding based on the proposed approach can be useful in 
other design research, such as inferring design decisions, 
predicting design performance, and identifying design actions 
identification. 

Keywords: Design thinking, design embedding, design 
cognition, deep learning. 
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1. INTRODUCTION
Design thinking guides how designers apply the design

principles to generate, evaluate, and represent concepts to meet 
stated goals [1,2]. In the context of engineering design, design 
thinking refers primarily to the exploration (i.e., divergent 
thinking) and exploitation (i.e., convergent thinking) iterations 
in search of design solutions [3]. More generally speaking, 
design thinking is designers’ cognitive activities during a design 
process. Their decision-making strategies in the design process 
are guided by their design thinking, and their corresponding 
actions are reflected through the design task. Therefore, design 
thinking works as a bridge that connects designers’ knowledge 
space and design space [4], as shown in Figure 1. A deeper 
understanding of design thinking is vital for advancing design 
theories, methods, and tools. 

However, understanding and interpreting design thinking 
are challenging because it is intangible and occurs in the human 
brain [5]. During a design task, different designers may adopt 
different design strategies. Thus, the design behaviors that reflect 
their design thinking are different too [2]. This is particularly true 
in complex systems design, where the problem often involves 
various design variables and constraints. For example, in one of 
our previous studies, several design patterns were identified in 
the same solar system design task by studying designers’ one-
step sequential decision-making behaviors [6]. In order to 
fundamentally understand design thinking, various empirical 
studies have been conducted based on different methodologies, 
such as protocol methods, controlled experiments, psychological 
tests, and neuroscientific measurement, such as functional 
magnetic resonance imaging (fMRI) [2]. While existing studies 
have leveraged the advancement in machine learning and data 
mining techniques in discovering behavioral patterns in design 
from which we draw insights and inferences about their design 
thinking [2], little research was done on understanding the latent 
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representations of design thinking. We define the representation 
of design thinking as an intermediate layer between human 
designer’s mental processes (i.e., the thought process) and their 
behaviors (i.e., actions). Our hypothesis is that the design 
thinking representation is potentially an essential and effective 
pathway to the empirical studies of designers’ thinking.  

Now suppose design thinking is an abstraction and mapping 
of design behaviors at a high-dimensional space, then the 
understanding of design thinking must not be acquired from a 
single behavioral type. If multiple-dimensional design behaviors 
and the corresponding patterns are identifiable, then a series of 
questions are, would the representation of design thinking 
extracted from different design behaviors be different? How does 
the representation of design thinking obtained from each 
dimension of the design behavior look like? What are the ways, 
particularly computational methods, to extract such 
representations?  

As the first attempt to answer these questions, on the one 
hand, we identify five different design behaviors, including one-
step sequential behavior, long-term sequential behavior, 
contextual behavior, reflective thinking, and design action 
preference, based on current research on design theories. Each of 
these design behaviors is elaborated in Section 2. On the other 
hand, we explore the possibility of using embedding techniques 
from machine learning to transform high-dimensional design 
action data into low-dimensional embeddings, referred to as 
design embeddings, for the latent representation of design 
thinking. In machine learning literature, an embedding is a low-
dimensional vector representation of high-dimensional data [7]. 
Embedding maps discrete, categorical variables to a vector of 
continuous numbers. Figure 1 illustrates the connections among 
design thinking, design embeddings, and design behaviors. 

In this study, our assumption is that design thinking is 
reflected by design behaviors in multiple dimensions. Therefore, 
by abstracting and extracting the latent representation of design 
behavioral data in a transformed dimension via embedding 
techniques, design thinking can be better characterized. 
Particularly, we develop an approach that applies different 
embedding techniques to learn design thinking representations 
from designers’ action data.  The scope of this study is focused 
on computer-aided design (CAD) for the ease of data collection. 

However, the approach is applicable in any design context as 
long as the design action data can be collected. This approach is 
demonstrated using the data collected from a high-school student 
CAD challenge where participants are asked to solarize their 
school with the required energy yield and payback period (see 
Section 4.2 for detail). 

The remaining of the paper is as follows. In Section 2, we 
present the literature review on design thinking studies and 
summarize the common representations of design thinking in 
various data types. In Section 3, we present the overall research 
approach and discuss the technical background regarding the 
different embedding techniques adopted in this study. In Section 
4, a case study on the solar system design challenge is presented. 
Also, we discuss the experiment details and data collection 
method in this section. The results are presented and discussed 
in Section 5. Finally, in Section 6, we end this paper by drawing 
conclusions and insights as well as a summary of limitations 
which opens up the opportunities for our future work on the topic 
of design thinking representation.  
 
2. LITERATURE REVIEW 

 
2.1 Representation of design thinking  

Extensive studies have been conducted to study design 
thinking. These studies adopted various ways to represent design 
thinking, such as by using cognitive study (e.g., protocol study, 
controlled experiment), physiological measurement (e.g., eye 
tracking, heart rate, electrocardiography(ECG)), neurological 
signals (e.g., electroencephalogram (EEG), functional magnetic 
resonance imaging (fMRI)) [8].  In protocol and controlled study, 
design data are encoded by ontological design model (i.e., 
function-behavior-design (FBS) design process model), which 
are collected from protocol study or controlled experiment [9]. 
These design data are typically designers’ performed actions [10] 
and are further encoded to a deeper understanding of design 
thinking [11]. The encoded design data is analyzed by different 
computational methods in order to represent design thinking. For 
example, the first-order Markov chain model representing one-
step sequential decision-making behavior is utilized to study 
design patterns [6,12]; the hidden Markov model is used to 
identify hidden design states [10]; and the long short-term 
memory (LSTM) unit model is used to predict future design 
process stages [13]. In some studies, sketch data are collected 
besides the verbal and design action data [14]. Sketching is 
further encoded using different sketch coding methods (e.g., C-
sketch method [15]) to represent design thinking. 

Design thinking is also studied using various physiological 
measures such as eye-tracking, ECG, and facial recognition. In 
the eye-tracking method, eye-tracking devices and software 
capture designers’ eye movement and provide gaze points and 
heat maps of areas of interest [16]. Both the heat maps and gaze 
points, thereby, represent designers’ thinking. This method 
mainly analyzes how much attention designers put on the area of 
a specific design object, and the data have been used to study 
design creativity [17] and how designers analyze the 
functionality of a design object [18]. Using ECG, heart rate 
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variability (HRV) signals can be recorded and connected to 
mental stress [19]. HRV is measured during the different design 
segments, and the corresponding mental stress is measured. 
Different designers show different patterns of stress according to 
their design thinking. 

Data collected from neurological studies try to connect 
design thinking and brain activity. The two most popular 
methods for neurological studies are EEG and fMRI. While EEG 
measures neural activity via the identification of electrical 
current, fMRI measures brain activity by the brain's blood flow 
using a magnetic field [8]. From the EEG data, the power 
spectral density of brain waves is also measured, and the 
correlation between design activity and brain waves is analyzed 
[20]. Data from fMRI are images of the brain at cross-sections 
that provide visual reasoning, such as brain activation patterns 
during design ideation [21]. Recent studies conducted by 
neurocognition scientists indicated that when designers engaged 
in divergent thinking, different cognitive domains were activated 
with the tasks that require analysis during the engineering 
concept generation [22]. Design neurocognition researchers also 
have successfully encapsulated the cognitive functioning behind 
engineering design [23]. This empirical research confirmed that 
design thinking is not merely an abstract construct. However, the 
external design behavior regulated by different cognitive 
processes involved during the search of design solutions requires 
further investigation through the study of design actions [24].  

 
2.2 Behaviors in the design process  

The design process involved various behaviors, among 
which sequential behavior is considered an integral part [25] and 
a natural feature of design competency [26]. Many types of 
research have been conducted to study designers’ sequential 
behavior using the Markov chain model. Typically, the first-
order Markov chain model is utilized to study designer transition 
behavior or one-step sequential behavior. This behavioral study 
is used to identify design patterns [8,27] and study designers’ 
sequential learning process [28]. The Second-order and higher-
order Markov chain model represents short-term sequential 
behavior. For example, to compare the design process between 
two design domains: architects and software designers, a second-
order Markov chain has been implemented [29]. The higher-
order Markov model is adopted in an agent-based modeling 
framework to study the effect of memory on sequential behaviors 
[30]. The hidden Markov model (HMM) is also used to 
understand designers’ sequential design strategy. For example, 
HMM is used to extract design strategies to create a computer 
agent that can solve truss design problems [31].  Deep learning-
based models are also utilized which are capable of capturing 
both long-term and short-term sequential behaviors. For 
example, in our previous study [6], by using the LSTM model, it 
is verified from the prediction that designers use both long-term 
and short-term memory effectively in a design process.  

In addition to different sequential behaviors, studies have 
also been conducted on other types of behaviors, such as 
reflective thinking. Reflective design thinking is a conscious 
mental activity that examines designers’ design actions, 

decisions, and inner selves throughout a design process [32]. 
Though the study of reflective thinking is a growing trend, very 
few studies have been conducted on design reflection [33]. 
Goldstein et al. [33] use designers’ electronic notepad and pre-
test and post-test to study designer reflective thinking and found 
that moderately reflective students understood design activities 
better than those with high or low reflectivity. Even though many 
studies on design behaviors have been conducted, most of them 
focus on a particular design behavior at a time. However, design 
thinking is not merely a particular design behavior; rather, it is 
an abstraction of design behaviors from multiple dimensions. 
Therefore, to a deeper understanding of design thinking, a study 
on different design behaviors is needed. 
 
3. TECHNICAL BACKGROUND AND RESEARCH 

APPROACH 
In this section, we first briefly introduce the research 

approach adopted in this study. Next, we present the technical 
background for different embedding techniques. 
 
3.1 Theoretical background 

One of the major contributions of this study is the 
identification of five design behaviors for studying design 
thinking representation. Therefore, before describing the overall 
research approach, we would like to present the rationale of how 
the five behaviors are identified. These behaviors include one-
step sequential behavior, contextual behavior, long-term 
sequential behavior, reflective thinking behavior, and action 
preference. 

The one-step sequential behavior, contextual behavior, and 
long-term sequential behavior are selected based on the mental 
iteration model [34]. Design is a goal-directed problem-solving 
process and can be modeled as an iterative and sequential 
decision-making process. Jin and Chuslip [34] proposed a 
cognitive model to describe the mental iteration during design.  
According to that model, in every design process, several 
cognitive activities occur, such as generate, compose, evaluate, 
etc. Also, different iteration loops are embedded in the design 
process. These loops collectively generate a global loop. Besides 
the global loop, each cognitive activity defines a local loop. In 
complex systems design problems, these loops frequently occur 
as designers go back and forth iteratively between different 
stages to search the design space and take different design 
actions to accomplish required design tasks. Therefore, in this 
study, we propose to use one-step sequential behavior and 
contextual behavior (short-term behaviors) to capture the local-
loop behavioral patterns and use long-term sequential behaviors 
to capture the global-loop iterative patterns.  

Next, we consider reflective thinking. The core of reflective 
thinking is metacognition and self-monitoring, which help 
designers to reflect experience and knowledge in their actions as 
well as provide feedback to improve the design process [35]. In 
a design process, designers may take various modes of reflective 
thinking. For example, some designers use a bigger picture (take 
a longer time to think) while others use a micro-scoping view 
(take a shorter time to think). Reflective thinking behavior 
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enables designers to scrutinize their thinking, behavior, design 
process, thus produce higher quality designs [36,37]. Therefore, 
understanding and computationally modeling designer reflective 
thinking are important.  

Lastly, we study designers’ action preferences based on how 
frequently a designer uses different types of design actions (i.e., 
the distribution of design actions) during a design process. In 
total, five different design behaviors are adopted from three 
dimensions – mental iteration, reflective thinking, and design 
action preferences. We envision that modeling the design 
behaviors from multiple dimensions can help better understand 
design thinking. 

 
3.2 Research approach 

The overall approach (see Figure 2) starts with collecting the 
raw design action data from different sources, such as CAD 
loggers, design documents, etc. This raw design action data 
contains design actions, design-related artifacts, and the values 
of various design parameters. After collecting the design action 
data, to computationally model these five design behaviors, we 
adopted five different techniques. We use design action 
distribution to study design action preferences, the Markov chain 
model to study the one-step sequential behavior, the Doc2Vec to 
model contextual behavior, the bi-directional LSTM 
autoencoder to study the long-term sequential behavior, and the 
time-gap distribution to analyze reflective thinking. To explain 
the overall process, suppose a designer’s sequence of design 
actions [𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑁𝑁] which has a timestamp associated 
with it [𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, … , 𝑡𝑡𝑁𝑁]. 

Before analyzing the design action preference and the one-
step sequential behavior, we apply an ontological design process 
model (e.g., the FBS model), which consists of several design 
stages to characterize the design process. By applying the design 
process model, we will obtain a sequence of design process 
stages [𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, … , 𝑝𝑝𝑁𝑁]. With this operation, we can reduce the 
dimensionality of the design action data. This treatment is similar 
to an embedding (latent space representation), which can help 
interpret designers’ thought processes. To elicit designers’ action 
preferences, we count the total number of each design process 

stage that certain actions fall into and plot the resulting 
distribution for every designer. To understand designers’ one-
step sequential behavior, we apply the first-order Markov chain 
to every designer’s design process stage sequence and compute 
the transition probability matrix. This transition probability 
matrix can be vectorized, which quantifies the features of the 
one-step sequential behavior. For example, given a design 
process model defining 𝑁𝑁 design process stages, we can get an 
𝑁𝑁 × 1 vector from action preference, and an 𝑁𝑁 × 𝑁𝑁 transition 
probability matrix from the Markov chain model for one 
designer. The transition probability matrix can be converted into 
an 𝑁𝑁2  × 1 vector. For 𝑛𝑛 designers, two matrices in the 
dimension of 𝑁𝑁 × 𝑛𝑛 and 𝑁𝑁2  × 𝑛𝑛 can be formed, representing 
the aggregated action preference and the one-step sequential 
behavior, respectively.  

To understand designers’ contextual behavior and long-term 
sequential behaviors, we apply the Doc2Vec [38] and the bi-
directional LSTM auto-encoder [39] on the design action 
sequence, respectively. Both Doc2Vec and bi-directional LSTM 
attempt to predict the next design action from the input sequence. 
Doc2Vec supports this process by training paragraph vectors 
as auxiliary information. We will get an embedding matrix from 
each of these methods. As the embedding matrix is already a 
representation of the relationship among design actions, the data 
transformation from design action to design process stage using 
an ontological design process model is not needed in these two 
methods. It is mention-worthy that the size of the embedding 
matrix is user-defined. For example, with the embedding size of 
𝑀𝑀, and for 𝑛𝑛 designers’ sequences, an 𝑀𝑀 × 𝑛𝑛 dimensional matrix 
from each of the methods can be obtained. 

 To understand the designers’ reflective thinking, we utilize 
the time-gap distribution analysis. Particularly, we consider the 
time gap between each design action performed by a designer. 
For example, for an action sequence, the time gaps are [0, {𝑡𝑡2 −
𝑡𝑡1}, {𝑡𝑡3 − 𝑡𝑡2} … … . . {𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1}]. The distribution of this time 
gap essentially carries the reflective behavior. From each of the 
designers’ time gap distributions, we can get several features, 
such as the distribution type and its parameters. For a particular 
designer, we use these features to create a vector, 𝑃𝑃 =

 
FIGURE 2: THE RESEARCH APPROACH FOR STUDYING DESIGN THINKING BASED ON FIVE DESIGN BEHAVIORS 
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[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑛𝑛], where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 indicates the 
distribution type (a categorical variable) and 𝐷𝐷1 ,𝐷𝐷2, … ,𝐷𝐷𝑛𝑛 are 
the distribution parameters. It is noted that the parameter number 
can be varied based on the type of the distribution. Assuming 
there are 𝐿𝐿 parameters, for 𝑛𝑛 designers, we obtain an 𝐿𝐿 × 𝑛𝑛 
matrix. This matrix will be the feature representation of 
designers’ reflective design thinking behaviors.  

Based on these five models, we can obtain five behavioral 
matrices (i.e., the design embeddings) representing the five 
corresponding design thinking behaviors. Then, we implement a 
clustering method, i.e., X-mean cluster [40], on each behavioral 
matrix to group the designers who have similar design behavioral 
patterns in different behavioral dimensions. Figure 2 depicts a 
schematic diagram of the research approaches. 

3.3 Doc2Vec 
Doc2Vec uses a neural network approach to create a fixed-

length vector representation of variable length sequences, such 
as sentences, paragraphs. In this study, since a design action 
sequence is a sequence of text data, it can be treated as a 
“sentence.” Doc2Vec is based on Word2Vec, where it attempts 
to predict an element in a sequence from its surrounding or 
context element [38]. Given a sequence 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, … ,𝑤𝑤𝑇𝑇 , to 
predict the context element 𝑤𝑤𝑡𝑡 , the objective of the Word2vec is 
to maximize the average log probability.  
1
𝑇𝑇
∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−𝑘𝑘, … ,𝑤𝑤𝑡𝑡+𝑘𝑘𝑇𝑇−𝑘𝑘
𝑡𝑡=𝑘𝑘 ) (1) 

The prediction task is typically done by a neural network 
architecture with a multiclass classifier such as softmax [41]. 
This process can be expressed as follows: 

𝑝𝑝(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−𝑘𝑘 , … ,𝑤𝑤𝑡𝑡+𝑘𝑘) =  𝑒𝑒
𝑦𝑦𝑤𝑤𝑡𝑡

∑ 𝑒𝑒𝑦𝑦𝑖𝑖𝑖𝑖
  (2) 

𝒚𝒚 = 𝒃𝒃 + 𝑼𝑼𝑼𝑼(𝑤𝑤𝑡𝑡−𝑘𝑘, … … ,𝑤𝑤𝑡𝑡+𝑘𝑘;𝑾𝑾) (3)        

, where Equation (2) outputs the predicated  probability using the 
softmax function. 𝑦𝑦𝑖𝑖  is the log probability for each output 
element 𝑖𝑖. Equation (3) represents the equation of feed-forward 
neural network where 𝑼𝑼,𝒃𝒃 are the parameters of neural 
networks. 𝒉𝒉 is constructed by a concatenation of vectors 
extracted from W.  

In Doc2Vec, every sequence is associated with a unique 
vector, which is represented by a matrix D (for all sequences, it 

creates a matrix). Every element of the sequence is also mapped 
to a unique vector which is represented as W in Figure 3. The 
matrix D and W are concatenated and used in Equation (3) in 
place of 𝒉𝒉.  

3.4 Bi-directional LSTM auto-encoder 
The aim of using an auto-encoder (AE) is to learn a 

compressed, distributed representation of a data set. It is a neural 
network model that captures the most salient features of the input 
data [42]. The basic AE consists of only one hidden layer, and 
the target value is set equal to the input value. The training of the 
AE is done in two phases: encoding and decoding. In the 
encoding phase, input data are mapped into the hidden layer, and 
in the decoding process, the input data are reconstructed from the 
hidden layer representation. Given an input dataset 𝑿𝑿 =
 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑, … ,𝒙𝒙𝒏𝒏, the two phases can be expressed as follows: 
 
𝒉𝒉(𝒙𝒙) = 𝑓𝑓(𝑾𝑾𝟏𝟏𝑿𝑿 + 𝒃𝒃𝟏𝟏)                                                       (4) 
𝑿𝑿� = 𝑔𝑔(𝑾𝑾𝟐𝟐𝒉𝒉(𝒙𝒙) + 𝒃𝒃𝟐𝟐)                                                       (5) 
 
, where, 𝒉𝒉(𝒙𝒙) represents the hidden representations of the input 
vector 𝑿𝑿, and 𝑿𝑿�  is the decoder vector of the output layer. 𝑓𝑓 is the 
encoding function, while 𝑔𝑔 is the decoding function. 𝑾𝑾𝟏𝟏 and 𝑾𝑾𝟐𝟐 
are the weight matrix of the encoder and decoder, respectively. 
𝒃𝒃𝟏𝟏 and 𝒃𝒃𝟐𝟐 are the bias vector in each phase, respectively. A 
schematic diagram of the auto-encoder is shown in figure 4 (b).  
LSTM is an upgraded variation of the recurrent neural network 
(RNN ) [43], which is basically a recursive neural network used 
for sequential data. LSTM uses a gating mechanism that solves 
several flaws of the RNN (i.e., vanishing gradient problem, long-
term dependency, etc.). A detail of the LSTM network is 
described in our previous work [13]. In this study, we leverage 
bidirectional LSTM in the auto-encoder architecture. Compared 
to the basic LSTM model, bidirectional LSTM consists of two 
groups of hidden layers. One layer for input sequence in the 
forward direction and the other layer for input sequence in the 
backward direction (see figure 4(a)). These two hidden layers do 
not interact with each other, and their output is concatenated to 
the final output layer. The mathematical equations for the 

 
FIGURE 3: Doc2Vec   
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bidirectional LSTM are the same as a basic LSTM, except that 
there are two hidden states at 𝑡𝑡𝑡𝑡ℎ time steps: 𝒉𝒉��⃗  (forward process) 
and 𝒉⃖𝒉�� (backward process). These two hidden states are 
concatenated for the final output 

In the AE architecture, bi-directional LSTM is replaced with 
the feed-forward neural network. A schematic diagram of the bi-
directional LSTM autoencoder is shown in Figure 5.  
 
4. CLUSTERING DESIGN BEHAVIORS IN SOLAR 

ENERGY SYSTEM DESIGN - A CASE STUDY  
This section provides an introduction to the design problem 

used in the case study and the data collection method. 

4.1 Design procedure 
The study was implemented in a suburban high school in the 

north-eastern US. The participants are 113 students from seven 
9th grade classes of a course on the science of energy. These 
students barely had design experience before the project. During 
the six-day project, students worked on a design challenge with 
an open-source CAD software called Energy3D [44] 
individually and sought help from teachers if needed. 
Specifically, the project started with a day of Energy3D tutorial 
and followed by three days of conceptual learning, in which 
students interacted with simulations to understand five solar 
concepts and how these concepts affect solar-energy acceptance. 
Then students try to solve an authentic design challenge for two 
days to apply knowledge to practice and develop design skills.  

4.2 Design problem 
The five solar concepts are the Sun’s path, the projection 

effect, the effect of the air mass, the effect of weather, and solar 
radiation pathways. These concepts are tightly related to the 
design challenge and were selected by domain experts. 
Individual simulations and exercises were provided to students 
to learn each concept. The design task was customized to the 
students with their school as the context. The challenge was 
named Solarize Your School and set as asking for bids to power 
their school with green energy. Mainly, a 3D model of their 
school was provided. Students could install solar panels on the 
school building roof to generate no less than 400,000 kWh of 
electricity per year while the payback period was less than ten 
years. We provide three different solar panel models from which 
designers can choose any one of them for the design. This design 
challenge required students to balance several factors such as 
panel costs, solar panel orientation, tile angle, and avoiding 
shadows while aiming for the goal. Figure 6 shows an example 
of the Solarize Your School design.  

4.3 Data collection and data processing 
Energy3D collects the continuous flow of design logs, 

including design actions, time steps, design parameters, and 
simulation results. An example of a line of design action log is 
shown below.  

Although initially, we collect 113 designers’ data, after 
analysing their design, we realize that several students did not 
follow the design requirements (e.g., failed to choose one of the 
provided solar panels). For a fair comparison, we only consider 
the designs that met the design constraints, and this leads to 39 
valid designs.  

In this study, we only collect the design action data, such as 
the “change Tilt Angle for All Racks” in the above example. By 
extracting the design action from every row of the log file, a 
design action sequence can be generated. It’s worth noting that 
we ignore the camera-related action such as “zoom in,” “zoom 
out,” and “camera” because it does not affect the design 
performance per se. After removing the irrelevant design actions, 

{"Timestamp": "2019-10-22 08:34:26", "Project": "Stoughton 
High School", "File": "stoughton-high-school-ma.ng3", 
"Change Tilt Angle for All Racks": {"New Value": -1.0}} 

 
FIGURE 5: BI-DIRECTIONAL LSTM AUTO-ENCODER 

 
FIGURE 6: AN EXAMPLE OF THE SOLARIZE YOUR 

SCHOOL DESIGN 
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60 unique design actions are identified. Then, for action behavior 
and one-step sequential behavior, we develop a coding scheme 
based on the FBS model to transcribe the design action data into 
a sequence of design processes. The coding scheme shown in 
Table 1 is used to categorize each design actions into one of the 
seven design process stages, including Formulation (F), Analysis 
(A), Synthesis (S), Evaluation (E), Reformulation 1 (R1), 
Reformulation 2 (R2) and Reformulation 3 (R3). The detail of 
the transformation process is described in our prior work [12].   

 
5. RESULT AND DISCUSSION 

5.1 Result  
In this section, we present the result obtained from different 

design behaviors, particularly action preference, one-step 
sequential behavior, contextual behavior, long-term sequential 
behavior, and reflective thinking. The behaviors are represented 
as embedding and clustered using the X-mean clustering method. 
To compare the final design performance from the designers in 
each cluster, we developed a metric to quantify a student’s final 
design quality (DQ). This metric is as follows: 

𝐷𝐷𝐷𝐷 =  
𝑃𝑃𝑅𝑅 × 𝐵𝐵 × 𝐸𝐸0
𝑃𝑃𝑜𝑜 × 𝐶𝐶 × 𝐸𝐸𝑅𝑅

 

where,  
𝑃𝑃𝑅𝑅 = required payback period 
𝐵𝐵 = budget 
𝐸𝐸0 = Obtained energy output 
𝑃𝑃0 = Obtained payback period 

𝐶𝐶 = Cost 
𝐸𝐸𝑅𝑅 = required energy output  

 
A student’s action preference is represented by the 

distribution of the design process stages that the student was in 
during the entire design process. By following the coding 
scheme in Table 1, we get a 7 × 1 vector for each designer; and 
for 39 designers, we get a 7 × 39 action behavior matrix. Figure 
7 shows one designer’s action preference distribution. By 
applying X-mean clustering on the action behavior matrix, three 
clusters are found. Cluster 3 includes ten designers who achieve 
the highest mean DQ of 1.325 with a standard deviation of 0.40, 
while Cluster 1 achieves the lowest DQ with 1.208 (standard 
deviation 0.408). Cluster 2 contains 13 designers with a mean 
DQ of 1.25 (standard deviation 0.64). Analysis of variance 
(ANOVA) indicates the difference between the cluster's DQ is 
not significant (p-value is 0.708).  

We quantify the one-step sequential behavior using the first-
order Markov chain model. Particularly, the transition 
probability matrix obtained from the first-order Markov model 
is characterized as the one-step sequential behavior. Like the 
previous method, before applying the model, the FBS design 
process model transforms the design actions into the sequence 

TABLE 1: THE CODING SCHEME BASED ON THE 
FBS DESIGN PROCESS MODEL 

Design process Design action 
Formulation Add any component 

Analysis Analysis of annual net energy 
Synthesis Edit any component 

Evaluation Cost analysis 
Reformulation 1 Remove structure 
Reformulation 2 Remove solar device 
Reformulation 3 Remove other components 

 

TABLE 2: CLUSTER OF ONE-STEP SEQUENTIAL 
BEHAVIOR  

Cluster 1 Cluster 2 

0 P1L10 P1L12 

1 P1L14 P1L13 

2 P1L17 P1L20 

3 P1L18 P1L3 

4 P2L10 P1L5 

5 P2L12 P2L11 

6 P2L13 P2L2 

7 P2L14 P4L1 

8 P2L16 P4L10 

9 P2L17 P4L25 

10 P2L7 P4L28 

11 P3L3 P4L32 

12 P4L11 P4L5 

13 P4L26 P6L12 

14 P4L27 P6L17 

15 P4L9 P6L18 

16 P6L1 P6L3 

17 P6L14 
 

18 P6L15 
 

19 P6L19 
 

20 P6L4 
 

21 P6L6 
 

Mean of design 
quality 

1.26 1.25 

STD of design 
performance 

0.278 0.648 

 

 
FIGURE 7: ACTION PREFERENCES OF DESIGNER P4L25 
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design process stages. We obtain a 7×7 transition probability 
matrix for seven design process stages and then flatten the matrix 
to get a 49 × 1 vector. After obtaining 39 designers’ transition 
probability matrices, they are converted to a 39 × 49 matrix that 
captures the one-step design behavior, from which the X-mean 
clustering is applied. By clustering one-step sequential behavior, 
we identify two clusters. In this method, the DQ obtained from 
both clusters is similar. Cluster 1 contains 22 designers with a 
mean DQ of 1.26 (standard deviation 0.278), while Cluster 2 
achieves a mean DQ of 1.25 with a standard deviation of 0.648. 
The t-test indicates no significant differences between the DQs 
of the two clusters (p-value 0.27). Table 2 shows the results of 
one-step sequential behavior clustering. Here, the designers are 
indicated with the class number and the laptop number. For 
example, “P1L10” means that the designer is from Class 1 and 
used laptop number 10. 

 Using Doc2Vec, we obtain design embedding that 
represents the designers’ contextual behavior or short-term 
behavior. Several hyper` parameters need to be tuned and 
selected for the Doc2Vec model. For example, in this study, we 
choose the embedding size for Doc2Vec as 100. Additionally, 
we choose the context window size as 5.  With these settings, for 
39 designers, we obtain a 39 × 100 embedding matrix. We apply 
the X-mean clustering method on the obtained embedding matrix 

and get two clusters. The first cluster contains 30 designers with 
a mean DQ of 1.22 and a standard deviation of 0.483. The second 
cluster contains nine students with a mean DQ of 1.34 and a 
standard deviation of 0.432. However, the t-test again indicates 
the difference between the DQs of the two clusters is not 
statistically significant (p-value 0.27).  

We obtain design embedding for the long-term sequential 
behavior by utilizing the bi-directional LSTM autoencoder. In 
this architecture, in both the encoder and decoder parts, we use a 
bi-directional LSTM layer with a size of 128. Therefore, the 
embedding size from the LSTM autoencoder is 256, and with all 
the designers, we obtain a 39 × 256 matrix. By clustering the 
embedding matrix, we get three clusters. Table 3 shows the 
clustering results of the long-term sequential behavior. Cluster 1 
contains 24 students with a mean DQ of 1.20 (standard deviation 
0.356), while Cluster 3 has only three designers with a mean DQ 
of 1.35 (standard deviation 0.588). Cluster 2 contains 12 
designers with a mean DQ of 1.34 (standard deviation 0.637).  
According to the ANOVA test, the difference among the clusters 
is not significant (p-value 0.7). 
         Finally, to obtain the embedding from reflective thinking, 
we get the parameters of the designers’ time gap distribution. We 
only consider the time gap between 0s to 300s. The time gap 
between two actions taken exceeding 300s indicates the student 
likely stopped the design process. So, we omit the time gaps of 
more than 300s. In order to understand what distribution fits 
these time gap distributions, we use Kolmogorov–Smirnov test 
[45], where different distributions, including Normal, 
Exponential, Gamma, Generalized extreme value (GEV) 
distribution, and Weibull distribution, are compared against. The 
test indicates that GEV distribution has the best fit for majority 
of the designers’ time gaps. Figure 8 shows designer P1L10’s 
empirical time gap distribution and the fitted GEV distribution. 
From the distribution, we identify three parameters, including 
shape, location, and scale. With these three parameters from 39 
designers, we obtain a 3 × 39  embedding matrix. This matrix 
represents the designers’ reflective thinking. After applying the 
X-mean clustering method, we obtain four clusters. Figure 9 
shows the four clustering results. The results of the clustering, 

TABLE 3: CLUSTER OF LONG-TERM SEQUENTIAL 
BEHAVIOR  

Cluster 1 Cluster 2 Cluster 3 
0 P1L10 P1L12 P1L3 
1 P1L13 P2L14 P6L1 
2 P1L14 P2L16 P6L18 
3 P1L17 P2L2 

 

4 P1L18 P2L7 
 

5 P1L20 P3L3 
 

6 P1L5 P4L28 
 

7 P2L10 P4L32 
 

8 P2L11 P4L9 
 

9 P2L12 P6L12 
 

10 P2L13 P6L6 
 

11 P2L17 
  

12 P4L1 
  

13 P4L10 
  

14 P4L11 
  

15 P4L25 
  

16 P4L26 
  

17 P4L27 
  

18 P4L5 
  

19 P6L14 
  

20 P6L15 
  

21 P6L17 
  

22 P6L19 
  

23 P6L3 
  

24 P6L4 
  

Mean of 
design quality 

1.20 1.34 1.35 

STD of design 
performance 

0.356 0.637 0.588 

 

 
FIGURE 8: TIME GAP DISTRIBUTION OF DESIGNER P1L10 
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shown in Table 5, indicate that Cluster 1 contains nine designers 
with a mean DQ of 1.199 and a standard deviation of 0.32. 
Cluster 2 contains 22 designers with a mean DQ of 1.31 and a 
standard deviation of 0.55, while Cluster 3 contains seven 
designers with a mean DQ of 1.14 and a standard deviation of 
0.39. Cluster 4 has only one designer with a DQ of 1.10.  The 
Anova test indicates that the difference in the DQs among the 
clusters is not significant (p-value is 0.83). 

5.2 Discussion 
This study aims to understand design thinking behaviors 

from different behavioral dimensions by characterizing them 
through design embedding. After obtaining the embedding, we 
apply the X-mean clustering method to each of the embedding 
matrices to cluster designers. The clustering results indicate that 
the designers are clustered not according to their final design 
quality but instead based on their behavioral patterns. Different 
design patterns in a design process can lead to similar quality of 
the final design. For example, in the clustering based on 
designers’ action behavior embedding, the designers of Cluster 
3 use a high number of Synthesis on average compared to the 
designers in other clusters. Cluster 3 uses on average 500 
Synthesis, while Cluster 1 and Cluster 2 use on average 150 and 
233 Synthesis, respectively. This indicates that designers of 
Cluster 3 are involved in editing design components more 
frequently than the other designers during the design process. 
Additionally, we observe a higher number of usage of 
Formulation among the designers in Cluster 3 than those in the 
other clusters. The average number of the Formulation used by 
Cluster 3 is 62, while the average frequencies in Cluster 1 and 
Cluster 2 are 35 and 40, respectively. Figure 10 shows the design 
process stage preference of Cluster 3. 

For the clustering based on designers’ reflective thinking 
behavior, designers in each cluster also follow specific design 
thinking patterns. For example, the designers of Cluster 1 often 
wonder 1s-3s in between every two actions. This behavior may 

indicate that the designers in this cluster prefer trial-and-error, 
thus quickly clicking different design action buttons in the CAD 
software to explore the design space. In Cluster 2 and Cluster 3, 
designers follow a similar distribution of time gaps. However, 
unlike Cluster 1, designers of Clusters 2 and 3 has a relatively 
lower number of 1-3s time gaps. Rather in these clusters, 4-10s 
time gaps are prominent. This indicates that the designers in 
these clusters tend to ponder a little bit before taking the next 
design action. There is only one designer in Cluster 4. In different 
from the other students, this student has a uniform distribution of 
the time gaps during the entire design process.   

The clustering of the design embedding obtained from the 
one-step sequential behavior indicates that designers follow 
several design patterns. For example, we observed that designers 
in two clusters use Synthesis→Synthesis and 
Formulation→Synthesis very frequently. Synthesis→Synthesis 
action pair indicates that designers sequentially edit the 
parameters of design components. For example, after changing 
the solar panel's tilt angle, designers continue changing the 
azimuth of it. Formulation→Synthesis action pair indicates that 
after adding a component, a designer starts to edit its parameters. 
For example, after adding a solar panel, a designer starts 
changing the solar panels' base height. There are some design 
patterns that are distinct from each cluster. For example, the 
designers in Cluster 2 use Evaluation→ Analysis design patterns 
a lot during their design processes, while this pattern is used very 
rarely among the designers in Cluster 1. This pattern indicates 
that after doing cost evaluation (compare the current cost with 
the given budget), the designer then analyzes the system’s energy 
output. Figure 11 shows a heat map of the transition probability 
of the design patterns found by the designers of Cluster 2. The 
bright square indicates a high transition probability of the 
corresponding design patterns, where the dark square indicates 
no or very low transition probability.  

6. CONCLUSION 
In this study, we develop an approach to represent design 

thinking by characterizing design behaviors from multiple 

 
FIGURE 9: CLUSTER OBTAINED FROM EFLECTIVE 

THINKING BEHAVIOR 

 
FIGURE 10: PREFERENCE OF DESIGN PROCESS 

STAGES OF CLUSTER 3 
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dimensions. We identified five different design behaviors, 
including design action preference, one-step sequential behavior, 
contextual behavior, long-term sequential behavior, and 
reflective design thinking. The design behaviors are 
characterized by different machine learning and statistical 
methods, and the design thinking is represented through a latent 
representation referred to as design embedding. We use the 
distribution of design actions to characterize designers’ action 
preferences. The First-order Markov model is utilized for 
characterizing designers’ one-step sequential behavior. To model 
designers’ short-term sequential behaviors, the Doc2Vec 
sequence learning technique is adopted, while a bi-directional 
LSTM autoencoder is used to characterize the long-term 
sequential behavior. Finally, we use time gap distribution to 
represent reflective design thinking. After identifying the design 
embedding from each design behavior, the X-mean method is 
applied to cluster each embedding to identify similar behavioral 
patterns. The result indicates that the behavioral patterns 
characterized in different dimensions do not necessarily 
categorize designers in the same cluster. Also, while designers 
are clustered based on their design behavioral patterns, different 
design patterns could lead to similar design quality. 

The major contribution of this paper is the identification of 
latent representation (i.e., design embedding) of design thinking 
through design behaviors from multiple dimensions. The 
implementation of design embedding can be useful in design 
research in different ways. For example, design embedding can 
be used to identify designers with similar behavioral patterns and 
discover beneficial design strategies. Furthermore, as a design 
process is typically a combination of different design behaviors, 
different forms of design embeddings can be integrated to 
develop predictive models that could yield better accuracy for 
design performance forecasting. This is one of the future studies 
we plan to work on. Particularly, we plan to develop a machine 
learning model based on the identified design embeddings and 
their correlations with the final design quality. 
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