Proceedings of the ASME 2021

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference
IDETC/CIE2021

August 17-2, 2021, Virtual Conference

IDETC2021-72406

DESIGN EMBEDDING: REPRESENTATION LEARNING OF DESIGN THINKING TO
CLUSTER DESIGN BEHAVIORS

Molla Hafizur Rahman Charles Xie Zhenghui Sha'
Department of Mechanical Engineering Institute for Future Department of Mechanical Engineering
University of Arkansas Intelligence University of Arkansas
Fayetteville, AR Natick, MA 01760, USA Fayetteville, AR

ABSTRACT

Design thinking is essential to the success of a design
process as it helps achieve the design goal by guiding design
decision-making. Therefore, fundamentally understanding
design thinking is vital for improving design methods, tools and
theories. However, interpreting design thinking is challenging
because it is a cognitive process that is hidden and intangible. In
this paper, we represent design thinking as an intermediate layer
between human designers’ thought processes and their design
behaviors. To do so, this paper first identifies five design
behaviors based on the current design theories. These behaviors
include design action preference, one-step sequential behavior,
contextual behavior, long-term sequential behavior, and
reflective thinking behavior. Next, we develop computational
methods to characterize each of the design behaviors.
Particularly, we use design action distribution, first-order
Markov chain, Doc2Vec, bi-directional LSTM autoencoder, and
time gap distribution to characterize the five design behaviors.
The characterization of the design behaviors through embedding
techniques is essentially a latent representation of the design
thinking, and we refer to it as design embeddings. After obtaining
the embedding, an X-mean clustering algorithm is adopted to
each of the embeddings to cluster designers. The approach is
applied to data collected from a high school solar system design
challenge. The clustering results show that designers follow
several design patterns according to the corresponding behavior,
which corroborates the effectiveness of using design embedding
for design behavior clustering. The extraction of design
embedding based on the proposed approach can be useful in
other design research, such as inferring design decisions,
predicting design performance, and identifying design actions
identification.

Keywords: Design thinking, design embedding, design
cognition, deep learning.
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1. INTRODUCTION

Design thinking guides how designers apply the design
principles to generate, evaluate, and represent concepts to meet
stated goals [1,2]. In the context of engineering design, design
thinking refers primarily to the exploration (i.e., divergent
thinking) and exploitation (i.e., convergent thinking) iterations
in search of design solutions [3]. More generally speaking,
design thinking is designers’ cognitive activities during a design
process. Their decision-making strategies in the design process
are guided by their design thinking, and their corresponding
actions are reflected through the design task. Therefore, design
thinking works as a bridge that connects designers’ knowledge
space and design space [4], as shown in Figure 1. A deeper
understanding of design thinking is vital for advancing design
theories, methods, and tools.

However, understanding and interpreting design thinking
are challenging because it is intangible and occurs in the human
brain [5]. During a design task, different designers may adopt
different design strategies. Thus, the design behaviors that reflect
their design thinking are different too [2]. This is particularly true
in complex systems design, where the problem often involves
various design variables and constraints. For example, in one of
our previous studies, several design patterns were identified in
the same solar system design task by studying designers’ one-
step sequential decision-making behaviors [6]. In order to
fundamentally understand design thinking, various empirical
studies have been conducted based on different methodologies,
such as protocol methods, controlled experiments, psychological
tests, and neuroscientific measurement, such as functional
magnetic resonance imaging (fMRI) [2]. While existing studies
have leveraged the advancement in machine learning and data
mining techniques in discovering behavioral patterns in design
from which we draw insights and inferences about their design
thinking [2], little research was done on understanding the latent
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FIGURE 1: THE CONNECTION BETWEEN DESIGN
THINKING AND DESIGN EMBEDDING

representations of design thinking. We define the representation
of design thinking as an intermediate layer between human
designer’s mental processes (i.e., the thought process) and their
behaviors (i.e., actions). Our hypothesis is that the design
thinking representation is potentially an essential and effective
pathway to the empirical studies of designers’ thinking.

Now suppose design thinking is an abstraction and mapping
of design behaviors at a high-dimensional space, then the
understanding of design thinking must not be acquired from a
single behavioral type. If multiple-dimensional design behaviors
and the corresponding patterns are identifiable, then a series of
questions are, would the representation of design thinking
extracted from different design behaviors be different? How does
the representation of design thinking obtained from each
dimension of the design behavior look like? What are the ways,
particularly  computational methods, to extract such
representations?

As the first attempt to answer these questions, on the one
hand, we identify five different design behaviors, including one-
step sequential behavior, long-term sequential behavior,
contextual behavior, reflective thinking, and design action
preference, based on current research on design theories. Each of
these design behaviors is elaborated in Section 2. On the other
hand, we explore the possibility of using embedding techniques
from machine learning to transform high-dimensional design
action data into low-dimensional embeddings, referred to as
design embeddings, for the latent representation of design
thinking. In machine learning literature, an embedding is a low-
dimensional vector representation of high-dimensional data [7].
Embedding maps discrete, categorical variables to a vector of
continuous numbers. Figure 1 illustrates the connections among
design thinking, design embeddings, and design behaviors.

In this study, our assumption is that design thinking is
reflected by design behaviors in multiple dimensions. Therefore,
by abstracting and extracting the latent representation of design
behavioral data in a transformed dimension via embedding
techniques, design thinking can be better characterized.
Particularly, we develop an approach that applies different
embedding techniques to learn design thinking representations
from designers’ action data. The scope of this study is focused
on computer-aided design (CAD) for the ease of data collection.

However, the approach is applicable in any design context as
long as the design action data can be collected. This approach is
demonstrated using the data collected from a high-school student
CAD challenge where participants are asked to solarize their
school with the required energy yield and payback period (see
Section 4.2 for detail).

The remaining of the paper is as follows. In Section 2, we
present the literature review on design thinking studies and
summarize the common representations of design thinking in
various data types. In Section 3, we present the overall research
approach and discuss the technical background regarding the
different embedding techniques adopted in this study. In Section
4, a case study on the solar system design challenge is presented.
Also, we discuss the experiment details and data collection
method in this section. The results are presented and discussed
in Section 5. Finally, in Section 6, we end this paper by drawing
conclusions and insights as well as a summary of limitations
which opens up the opportunities for our future work on the topic
of design thinking representation.

2. LITERATURE REVIEW

2.1 Representation of design thinking

Extensive studies have been conducted to study design
thinking. These studies adopted various ways to represent design
thinking, such as by using cognitive study (e.g., protocol study,
controlled experiment), physiological measurement (e.g., eye
tracking, heart rate, electrocardiography(ECG)), neurological
signals (e.g., electroencephalogram (EEG), functional magnetic
resonance imaging (fMRI)) [8]. In protocol and controlled study,
design data are encoded by ontological design model (i.c.,
function-behavior-design (FBS) design process model), which
are collected from protocol study or controlled experiment [9].
These design data are typically designers’ performed actions [10]
and are further encoded to a deeper understanding of design
thinking [11]. The encoded design data is analyzed by different
computational methods in order to represent design thinking. For
example, the first-order Markov chain model representing one-
step sequential decision-making behavior is utilized to study
design patterns [6,12]; the hidden Markov model is used to
identify hidden design states [10]; and the long short-term
memory (LSTM) unit model is used to predict future design
process stages [13]. In some studies, sketch data are collected
besides the verbal and design action data [14]. Sketching is
further encoded using different sketch coding methods (e.g., C-
sketch method [15]) to represent design thinking.

Design thinking is also studied using various physiological
measures such as eye-tracking, ECG, and facial recognition. In
the eye-tracking method, eye-tracking devices and software
capture designers’ eye movement and provide gaze points and
heat maps of areas of interest [16]. Both the heat maps and gaze
points, thereby, represent designers’ thinking. This method
mainly analyzes how much attention designers put on the area of
a specific design object, and the data have been used to study
design creativity [17] and how designers analyze the
functionality of a design object [18]. Using ECG, heart rate
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variability (HRV) signals can be recorded and connected to
mental stress [19]. HRV is measured during the different design
segments, and the corresponding mental stress is measured.
Different designers show different patterns of stress according to
their design thinking.

Data collected from neurological studies try to connect
design thinking and brain activity. The two most popular
methods for neurological studies are EEG and fMRI. While EEG
measures neural activity via the identification of electrical
current, fMRI measures brain activity by the brain's blood flow
using a magnetic field [8]. From the EEG data, the power
spectral density of brain waves is also measured, and the
correlation between design activity and brain waves is analyzed
[20]. Data from fMRI are images of the brain at cross-sections
that provide visual reasoning, such as brain activation patterns
during design ideation [21]. Recent studies conducted by
neurocognition scientists indicated that when designers engaged
in divergent thinking, different cognitive domains were activated
with the tasks that require analysis during the engineering
concept generation [22]. Design neurocognition researchers also
have successfully encapsulated the cognitive functioning behind
engineering design [23]. This empirical research confirmed that
design thinking is not merely an abstract construct. However, the
external design behavior regulated by different cognitive
processes involved during the search of design solutions requires
further investigation through the study of design actions [24].

2.2 Behaviors in the design process

The design process involved various behaviors, among
which sequential behavior is considered an integral part [25] and
a natural feature of design competency [26]. Many types of
research have been conducted to study designers’ sequential
behavior using the Markov chain model. Typically, the first-
order Markov chain model is utilized to study designer transition
behavior or one-step sequential behavior. This behavioral study
is used to identify design patterns [8,27] and study designers’
sequential learning process [28]. The Second-order and higher-
order Markov chain model represents short-term sequential
behavior. For example, to compare the design process between
two design domains: architects and software designers, a second-
order Markov chain has been implemented [29]. The higher-
order Markov model is adopted in an agent-based modeling
framework to study the effect of memory on sequential behaviors
[30]. The hidden Markov model (HMM) is also used to
understand designers’ sequential design strategy. For example,
HMM is used to extract design strategies to create a computer
agent that can solve truss design problems [31]. Deep learning-
based models are also utilized which are capable of capturing
both long-term and short-term sequential behaviors. For
example, in our previous study [6], by using the LSTM model, it
is verified from the prediction that designers use both long-term
and short-term memory effectively in a design process.

In addition to different sequential behaviors, studies have
also been conducted on other types of behaviors, such as
reflective thinking. Reflective design thinking is a conscious
mental activity that examines designers’ design actions,

decisions, and inner selves throughout a design process [32].
Though the study of reflective thinking is a growing trend, very
few studies have been conducted on design reflection [33].
Goldstein et al. [33] use designers’ electronic notepad and pre-
test and post-test to study designer reflective thinking and found
that moderately reflective students understood design activities
better than those with high or low reflectivity. Even though many
studies on design behaviors have been conducted, most of them
focus on a particular design behavior at a time. However, design
thinking is not merely a particular design behavior; rather, it is
an abstraction of design behaviors from multiple dimensions.
Therefore, to a deeper understanding of design thinking, a study
on different design behaviors is needed.

3. TECHNICAL BACKGROUND AND RESEARCH
APPROACH
In this section, we first briefly introduce the research
approach adopted in this study. Next, we present the technical
background for different embedding techniques.

3.1 Theoretical background

One of the major contributions of this study is the
identification of five design behaviors for studying design
thinking representation. Therefore, before describing the overall
research approach, we would like to present the rationale of how
the five behaviors are identified. These behaviors include one-
step sequential behavior, contextual behavior, long-term
sequential behavior, reflective thinking behavior, and action
preference.

The one-step sequential behavior, contextual behavior, and
long-term sequential behavior are selected based on the mental
iteration model [34]. Design is a goal-directed problem-solving
process and can be modeled as an iterative and sequential
decision-making process. Jin and Chuslip [34] proposed a
cognitive model to describe the mental iteration during design.
According to that model, in every design process, several
cognitive activities occur, such as generate, compose, evaluate,
etc. Also, different iteration loops are embedded in the design
process. These loops collectively generate a global loop. Besides
the global loop, each cognitive activity defines a local loop. In
complex systems design problems, these loops frequently occur
as designers go back and forth iteratively between different
stages to search the design space and take different design
actions to accomplish required design tasks. Therefore, in this
study, we propose to use one-step sequential behavior and
contextual behavior (short-term behaviors) to capture the local-
loop behavioral patterns and use long-term sequential behaviors
to capture the global-loop iterative patterns.

Next, we consider reflective thinking. The core of reflective
thinking is metacognition and self-monitoring, which help
designers to reflect experience and knowledge in their actions as
well as provide feedback to improve the design process [35]. In
a design process, designers may take various modes of reflective
thinking. For example, some designers use a bigger picture (take
a longer time to think) while others use a micro-scoping view
(take a shorter time to think). Reflective thinking behavior
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enables designers to scrutinize their thinking, behavior, design
process, thus produce higher quality designs [36,37]. Therefore,
understanding and computationally modeling designer reflective
thinking are important.

Lastly, we study designers’ action preferences based on how
frequently a designer uses different types of design actions (i.e.,
the distribution of design actions) during a design process. In
total, five different design behaviors are adopted from three
dimensions — mental iteration, reflective thinking, and design
action preferences. We envision that modeling the design
behaviors from multiple dimensions can help better understand
design thinking.

3.2 Research approach

The overall approach (see Figure 2) starts with collecting the
raw design action data from different sources, such as CAD
loggers, design documents, etc. This raw design action data
contains design actions, design-related artifacts, and the values
of various design parameters. After collecting the design action
data, to computationally model these five design behaviors, we
adopted five different techniques. We use design action
distribution to study design action preferences, the Markov chain
model to study the one-step sequential behavior, the Doc2Vec to
model contextual behavior, the bi-directional LSTM
autoencoder to study the long-term sequential behavior, and the
time-gap distribution to analyze reflective thinking. To explain
the overall process, suppose a designer’s sequence of design
actions [a4, a,, as, ...,ay] which has a timestamp associated
with it [ty, t5, t3, ..., ty].

Before analyzing the design action preference and the one-
step sequential behavior, we apply an ontological design process
model (e.g., the FBS model), which consists of several design
stages to characterize the design process. By applying the design
process model, we will obtain a sequence of design process
stages [p1, P2, D3, -, Pn |- With this operation, we can reduce the
dimensionality of the design action data. This treatment is similar
to an embedding (latent space representation), which can help
interpret designers’ thought processes. To elicit designers’ action
preferences, we count the total number of each design process

stage that certain actions fall into and plot the resulting
distribution for every designer. To understand designers’ one-
step sequential behavior, we apply the first-order Markov chain
to every designer’s design process stage sequence and compute
the transition probability matrix. This transition probability
matrix can be vectorized, which quantifies the features of the
one-step sequential behavior. For example, given a design
process model defining N design process stages, we can get an
N X 1 vector from action preference, and an N X N transition
probability matrix from the Markov chain model for one
designer. The transition probability matrix can be converted into
an N2 x 1 vector. For n designers, two matrices in the
dimension of N x n and N?> X n can be formed, representing
the aggregated action preference and the one-step sequential
behavior, respectively.

To understand designers’ contextual behavior and long-term
sequential behaviors, we apply the Doc2Vec [38] and the bi-
directional LSTM auto-encoder [39] on the design action
sequence, respectively. Both Doc2Vec and bi-directional LSTM
attempt to predict the next design action from the input sequence.
Doc2Vec supports this process by training paragraph vectors
as auxiliary information. We will get an embedding matrix from
each of these methods. As the embedding matrix is already a
representation of the relationship among design actions, the data
transformation from design action to design process stage using
an ontological design process model is not needed in these two
methods. It is mention-worthy that the size of the embedding
matrix is user-defined. For example, with the embedding size of
M, and for n designers’ sequences, an M X n dimensional matrix
from each of the methods can be obtained.

To understand the designers’ reflective thinking, we utilize
the time-gap distribution analysis. Particularly, we consider the
time gap between each design action performed by a designer.
For example, for an action sequence, the time gaps are [0, {t, —
t1}, {ts — t3} e o {tn — ty_1}]. The distribution of this time
gap essentially carries the reflective behavior. From each of the
designers’ time gap distributions, we can get several features,
such as the distribution type and its parameters. For a particular
designer, we use these features to create a vector, P =
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FIGURE 2: THE RESEARCH APPROACH FOR STUDYING DESIGN THINKING BASED ON FIVE DESIGN BEHAVIORS
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[Dist name, Dy, D, ..., D, ], where Dist name indicates the
distribution type (a categorical variable) and D,, D,, ..., D,, are
the distribution parameters. It is noted that the parameter number
can be varied based on the type of the distribution. Assuming
there are L parameters, for n designers, we obtain an L X n
matrix. This matrix will be the feature representation of
designers’ reflective design thinking behaviors.

Based on these five models, we can obtain five behavioral
matrices (i.e., the design embeddings) representing the five
corresponding design thinking behaviors. Then, we implement a
clustering method, i.e., X-mean cluster [40], on each behavioral
matrix to group the designers who have similar design behavioral
patterns in different behavioral dimensions. Figure 2 depicts a
schematic diagram of the research approaches.

3.3 Doc2Vec

Doc2Vec uses a neural network approach to create a fixed-
length vector representation of variable length sequences, such
as sentences, paragraphs. In this study, since a design action
sequence is a sequence of text data, it can be treated as a
“sentence.” Doc2Vec is based on Word2Vec, where it attempts
to predict an element in a sequence from its surrounding or
context element [38]. Given a sequence wy, W,, Wy, ..., Wr, tO
predict the context element w,, the objective of the Word2vec is
to maximize the average log probability.

Wetk) e

The prediction task is typically done by a neural network
architecture with a multiclass classifier such as softmax [41].
This process can be expressed as follows:

1 -
~ Xtk log pwelwe_g ...,

eYwe
PWe Wi, oy Wegr) = Tievi (2)
y = b + Uh(Wt—k' ...... yWeiks W) (3)

, where Equation (2) outputs the predicated probability using the
softmax function. y; is the log probability for each output
element i. Equation (3) represents the equation of feed-forward
neural network where U,b are the parameters of neural
networks. h is constructed by a concatenation of vectors
extracted from W.

In Doc2Vec, every sequence is associated with a unique
vector, which is represented by a matrix D (for all sequences, it
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FIGURE 3: Doc2Vec

creates a matrix). Every element of the sequence is also mapped
to a unique vector which is represented as W in Figure 3. The
matrix D and W are concatenated and used in Equation (3) in
place of h.

3.4 Bi-directional LSTM auto-encoder

The aim of using an auto-encoder (AE) is to learn a
compressed, distributed representation of a data set. It is a neural
network model that captures the most salient features of the input
data [42]. The basic AE consists of only one hidden layer, and
the target value is set equal to the input value. The training of the
AE is done in two phases: encoding and decoding. In the
encoding phase, input data are mapped into the hidden layer, and
in the decoding process, the input data are reconstructed from the
hidden layer representation. Given an input dataset X =

X1, X2, X3, ..., X, the two phases can be expressed as follows:
h(x) = f(W.X + by) 4)
X = g(W3zh(x) + by) (5)

, where, h(x) represents the hidden representations of the input
vector X, and X is the decoder vector of the output layer. f is the
encoding function, while g is the decoding function. W, and W,
are the weight matrix of the encoder and decoder, respectively.
b, and b, are the bias vector in each phase, respectively. A
schematic diagram of the auto-encoder is shown in figure 4 (b).
LSTM is an upgraded variation of the recurrent neural network
(RNN ) [43], which is basically a recursive neural network used
for sequential data. LSTM uses a gating mechanism that solves
several flaws of the RNN (i.e., vanishing gradient problem, long-
term dependency, etc.). A detail of the LSTM network is
described in our previous work [13]. In this study, we leverage
bidirectional LSTM in the auto-encoder architecture. Compared
to the basic LSTM model, bidirectional LSTM consists of two
groups of hidden layers. One layer for input sequence in the
forward direction and the other layer for input sequence in the
backward direction (see figure 4(a)). These two hidden layers do
not interact with each other, and their output is concatenated to
the final output layer. The mathematical equations for the
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bidirectional LSTM are the same as a basic LSTM, except that
there are two hidden states at t** time steps: h (forward process)

and h (backward process). These two hidden states are
concatenated for the final output

In the AE architecture, bi-directional LSTM is replaced with
the feed-forward neural network. A schematic diagram of the bi-
directional LSTM autoencoder is shown in Figure 5.

4. CLUSTERING DESIGN BEHAVIORS IN SOLAR
ENERGY SYSTEM DESIGN - A CASE STUDY
This section provides an introduction to the design problem
used in the case study and the data collection method.

4.1 Design procedure

The study was implemented in a suburban high school in the
north-eastern US. The participants are 113 students from seven
9% grade classes of a course on the science of energy. These
students barely had design experience before the project. During
the six-day project, students worked on a design challenge with
an open-source CAD software called Energy3D [44]
individually and sought help from teachers if needed.
Specifically, the project started with a day of Energy3D tutorial
and followed by three days of conceptual learning, in which
students interacted with simulations to understand five solar
concepts and how these concepts affect solar-energy acceptance.
Then students try to solve an authentic design challenge for two
days to apply knowledge to practice and develop design skills.

FIGURE 6: AN EXAMPLE OF THE SOLARIZE YOUR
SCHOOL DESIGN

4.2 Design problem

The five solar concepts are the Sun’s path, the projection
effect, the effect of the air mass, the effect of weather, and solar
radiation pathways. These concepts are tightly related to the
design challenge and were selected by domain experts.
Individual simulations and exercises were provided to students
to learn each concept. The design task was customized to the
students with their school as the context. The challenge was
named Solarize Your School and set as asking for bids to power
their school with green energy. Mainly, a 3D model of their
school was provided. Students could install solar panels on the
school building roof to generate no less than 400,000 kWh of
electricity per year while the payback period was less than ten
years. We provide three different solar panel models from which
designers can choose any one of them for the design. This design
challenge required students to balance several factors such as
panel costs, solar panel orientation, tile angle, and avoiding
shadows while aiming for the goal. Figure 6 shows an example
of the Solarize Your School design.

4.3 Data collection and data processing

Energy3D collects the continuous flow of design logs,
including design actions, time steps, design parameters, and
simulation results. An example of a line of design action log is
shown below.

{"Timestamp": "2019-10-22 08:34:26", "Project": "Stoughton
High School", "File": "stoughton-high-school-ma.ng3"
"Change Tilt Angle for All Racks": {"New Value": -1.0}}

Although initially, we collect 113 designers’ data, after
analysing their design, we realize that several students did not
follow the design requirements (e.g., failed to choose one of the
provided solar panels). For a fair comparison, we only consider
the designs that met the design constraints, and this leads to 39
valid designs.

In this study, we only collect the design action data, such as
the “change Tilt Angle for All Racks” in the above example. By
extracting the design action from every row of the log file, a
design action sequence can be generated. It’s worth noting that

2 ¢,

we ignore the camera-related action such as “zoom in,” “zoom
2

out,” and “camera” because it does not affect the design
performance per se. After removing the irrelevant design actions,
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TABLE 1: THE CODING SCHEME BASED ON THE
FBS DESIGN PROCESS MODEL
Design process Design action

Formulation Add any component
Analysis Analysis of annual net energy
Synthesis Edit any component

Evaluation Cost analysis

Remove structure
Remove solar device
Remove other components

Reformulation 1
Reformulation 2
Reformulation 3

60 unique design actions are identified. Then, for action behavior
and one-step sequential behavior, we develop a coding scheme
based on the FBS model to transcribe the design action data into
a sequence of design processes. The coding scheme shown in
Table 1 is used to categorize each design actions into one of the
seven design process stages, including Formulation (F), Analysis
(A), Synthesis (S), Evaluation (E), Reformulation 1 (RI),
Reformulation 2 (R2) and Reformulation 3 (R3). The detail of
the transformation process is described in our prior work [12].

5. RESULT AND DISCUSSION
5.1 Result

In this section, we present the result obtained from different
design behaviors, particularly action preference, one-step
sequential behavior, contextual behavior, long-term sequential
behavior, and reflective thinking. The behaviors are represented
as embedding and clustered using the X-mean clustering method.
To compare the final design performance from the designers in
each cluster, we developed a metric to quantify a student’s final
design quality (DQ). This metric is as follows:

P X B X E,
DQ = ———
P, xC X Eg
where,
Py = required payback period
B =budget

E, = Obtained energy output
P, = Obtained payback period
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FIGURE 7: ACTION PREFERENCES OF DESIGNER P4L25

C = Cost
Er = required energy output

A student’s action preference is represented by the
distribution of the design process stages that the student was in
during the entire design process. By following the coding
scheme in Table 1, we get a 7 X 1 vector for each designer; and
for 39 designers, we get a 7 X 39 action behavior matrix. Figure
7 shows one designer’s action preference distribution. By
applying X-mean clustering on the action behavior matrix, three
clusters are found. Cluster 3 includes ten designers who achieve
the highest mean DQ of 1.325 with a standard deviation of 0.40,
while Cluster 1 achieves the lowest DQ with 1.208 (standard
deviation 0.408). Cluster 2 contains 13 designers with a mean
DQ of 1.25 (standard deviation 0.64). Analysis of variance
(ANOVA) indicates the difference between the cluster's DQ is
not significant (p-value is 0.708).

We quantify the one-step sequential behavior using the first-
order Markov chain model. Particularly, the transition
probability matrix obtained from the first-order Markov model
is characterized as the one-step sequential behavior. Like the
previous method, before applying the model, the FBS design
process model transforms the design actions into the sequence

TABLE 2: CLUSTER OF ONE-STEP SEQUENTIAL

BEHAVIOR
Cluster 1 Cluster 2

0 P1L10 PIL12
1 PIL14 PIL13
2 PIL17 P1L20
3 PIL18 PIL3
4 P2110 PILS
5 P2L12 P2L11
6 P2L13 P2L2
7 P2L14 P4LI
8 P2L16 P4L10
9 P2L17 P41.25
10 P2L7 P41.28
11 P3L3 P4132
12 P4L11 P4LS
13 P41.26 P6L12
14 P41.27 P6L17
15 P4L9 P6L18
16 P6L1 P6L3
17 P6L14
18 P6L15
19 P6L19
20 P6L4
21 P6L6

Mean of design 1.26 1.25

quality
STD of design 0.278 0.648
performance
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design process stages. We obtain a 7x7 transition probability
matrix for seven design process stages and then flatten the matrix
to get a 49 X 1 vector. After obtaining 39 designers’ transition
probability matrices, they are converted to a 39 X 49 matrix that
captures the one-step design behavior, from which the X-mean
clustering is applied. By clustering one-step sequential behavior,
we identify two clusters. In this method, the DQ obtained from
both clusters is similar. Cluster 1 contains 22 designers with a
mean DQ of 1.26 (standard deviation 0.278), while Cluster 2
achieves a mean DQ of 1.25 with a standard deviation of 0.648.
The t-test indicates no significant differences between the DQs
of the two clusters (p-value 0.27). Table 2 shows the results of
one-step sequential behavior clustering. Here, the designers are
indicated with the class number and the laptop number. For
example, “P1L10” means that the designer is from Class 1 and
used laptop number 10.

Using Doc2Vec, we obtain design embedding that
represents the designers’ contextual behavior or short-term
behavior. Several hyper' parameters need to be tuned and
selected for the Doc2Vec model. For example, in this study, we
choose the embedding size for Doc2Vec as 100. Additionally,
we choose the context window size as 5. With these settings, for
39 designers, we obtain a 39 X 100 embedding matrix. We apply
the X-mean clustering method on the obtained embedding matrix

TABLE 3: CLUSTER OF LONG-TERM SEQUENTIAL

BEHAVIOR
Cluster 1 Cluster 2 Cluster 3
0 PIL10 PIL12 PI1L3
1 PIL13 P2L14 P6L1
2 PIL14 P2L16 P6L18
3 PIL17 P2L2
4 PILI18 P2L7
5 P1L20 P3L3
6 PIL5 P41.28
7 P2L10 P4L32
8 P2L11 P4L9
9 P2L12 P6L12
10 P2L13 P6L6
11 P2L17
12 P4L1
13 P4L10
14 P4L11
15 P4L25
16 P4L26
17 P4L27
18 P4L5
19 P6L14
20 P6L15
21 P6L17
22 P6L19
23 P6L3
24 P6LA4
Mean of 1.20 1.34 1.35
design quality
STD of design 0.356 0.637 0.588
performance

and get two clusters. The first cluster contains 30 designers with
amean DQ of 1.22 and a standard deviation of 0.483. The second
cluster contains nine students with a mean DQ of 1.34 and a
standard deviation of 0.432. However, the t-test again indicates
the difference between the DQs of the two clusters is not
statistically significant (p-value 0.27).

We obtain design embedding for the long-term sequential
behavior by utilizing the bi-directional LSTM autoencoder. In
this architecture, in both the encoder and decoder parts, we use a
bi-directional LSTM layer with a size of 128. Therefore, the
embedding size from the LSTM autoencoder is 256, and with all
the designers, we obtain a 39 X 256 matrix. By clustering the
embedding matrix, we get three clusters. Table 3 shows the
clustering results of the long-term sequential behavior. Cluster 1
contains 24 students with a mean DQ of 1.20 (standard deviation
0.356), while Cluster 3 has only three designers with a mean DQ
of 1.35 (standard deviation 0.588). Cluster 2 contains 12
designers with a mean DQ of 1.34 (standard deviation 0.637).
According to the ANOVA test, the difference among the clusters
is not significant (p-value 0.7).

Finally, to obtain the embedding from reflective thinking,
we get the parameters of the designers’ time gap distribution. We
only consider the time gap between Os to 300s. The time gap
between two actions taken exceeding 300s indicates the student
likely stopped the design process. So, we omit the time gaps of
more than 300s. In order to understand what distribution fits
these time gap distributions, we use Kolmogorov—Smirnov test
[45], where different distributions, including Normal,
Exponential, Gamma, Generalized extreme value (GEV)
distribution, and Weibull distribution, are compared against. The
test indicates that GEV distribution has the best fit for majority
of the designers’ time gaps. Figure 8 shows designer P1L10’s
empirical time gap distribution and the fitted GEV distribution.
From the distribution, we identify three parameters, including
shape, location, and scale. With these three parameters from 39
designers, we obtain a 3 X 39 embedding matrix. This matrix
represents the designers’ reflective thinking. After applying the
X-mean clustering method, we obtain four clusters. Figure 9
shows the four clustering results. The results of the clustering,

-+ fitted GEV

al } [T NI JI i JL‘ il LI L 1 II r
0 50 100 150 200 250
Timegap

FIGURE 8: TIME GAP DISTRIBUTION OF DESIGNER P1L10
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FIGURE 9: CLUSTER OBTAINED FROM EFLECTIVE
THINKING BEHAVIOR

shown in Table 5, indicate that Cluster 1 contains nine designers
with a mean DQ of 1.199 and a standard deviation of 0.32.
Cluster 2 contains 22 designers with a mean DQ of 1.31 and a
standard deviation of 0.55, while Cluster 3 contains seven
designers with a mean DQ of 1.14 and a standard deviation of
0.39. Cluster 4 has only one designer with a DQ of 1.10. The
Anova test indicates that the difference in the DQs among the
clusters is not significant (p-value is 0.83).

5.2 Discussion

This study aims to understand design thinking behaviors
from different behavioral dimensions by characterizing them
through design embedding. After obtaining the embedding, we
apply the X-mean clustering method to each of the embedding
matrices to cluster designers. The clustering results indicate that
the designers are clustered not according to their final design
quality but instead based on their behavioral patterns. Different
design patterns in a design process can lead to similar quality of
the final design. For example, in the clustering based on
designers’ action behavior embedding, the designers of Cluster
3 use a high number of Synthesis on average compared to the
designers in other clusters. Cluster 3 uses on average 500
Synthesis, while Cluster 1 and Cluster 2 use on average 150 and
233 Synthesis, respectively. This indicates that designers of
Cluster 3 are involved in editing design components more
frequently than the other designers during the design process.
Additionally, we observe a higher number of usage of
Formulation among the designers in Cluster 3 than those in the
other clusters. The average number of the Formulation used by
Cluster 3 is 62, while the average frequencies in Cluster 1 and
Cluster 2 are 35 and 40, respectively. Figure 10 shows the design
process stage preference of Cluster 3.

For the clustering based on designers’ reflective thinking
behavior, designers in each cluster also follow specific design
thinking patterns. For example, the designers of Cluster 1 often
wonder 1s-3s in between every two actions. This behavior may

. Analysis
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mmm Formulation
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= Synthesis
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2 g 3 8 2 3
g = 8 3 g8 3

Frequency of design process stage
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Designers

FIGURE 10: PREFERENCE OF DESIGN PROCESS
STAGES OF CLUSTER 3

indicate that the designers in this cluster prefer trial-and-error,
thus quickly clicking different design action buttons in the CAD
software to explore the design space. In Cluster 2 and Cluster 3,
designers follow a similar distribution of time gaps. However,
unlike Cluster 1, designers of Clusters 2 and 3 has a relatively
lower number of 1-3s time gaps. Rather in these clusters, 4-10s
time gaps are prominent. This indicates that the designers in
these clusters tend to ponder a little bit before taking the next
design action. There is only one designer in Cluster 4. In different
from the other students, this student has a uniform distribution of
the time gaps during the entire design process.

The clustering of the design embedding obtained from the
one-step sequential behavior indicates that designers follow
several design patterns. For example, we observed that designers
in two clusters use Synthesis—Synthesis and
Formulation—Synthesis very frequently. Synthesis—Synthesis
action pair indicates that designers sequentially edit the
parameters of design components. For example, after changing
the solar panel's tilt angle, designers continue changing the
azimuth of it. Formulation—Synthesis action pair indicates that
after adding a component, a designer starts to edit its parameters.
For example, after adding a solar panel, a designer starts
changing the solar panels' base height. There are some design
patterns that are distinct from each cluster. For example, the
designers in Cluster 2 use Evaluation— Analysis design patterns
a lot during their design processes, while this pattern is used very
rarely among the designers in Cluster 1. This pattern indicates
that after doing cost evaluation (compare the current cost with
the given budget), the designer then analyzes the system’s energy
output. Figure 11 shows a heat map of the transition probability
of the design patterns found by the designers of Cluster 2. The
bright square indicates a high transition probability of the
corresponding design patterns, where the dark square indicates
no or very low transition probability.

6. CONCLUSION

In this study, we develop an approach to represent design
thinking by characterizing design behaviors from multiple

9 © 2021 by ASME
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FIGURE 11: HEAT MAP OF THE TRANSITION PROBABILITY OF THE DESIGN PATTERNS OF CLUSTER 2

dimensions. We identified five different design behaviors,
including design action preference, one-step sequential behavior,
contextual behavior, long-term sequential behavior, and
reflective design thinking. The design behaviors are
characterized by different machine learning and statistical
methods, and the design thinking is represented through a latent
representation referred to as design embedding. We use the
distribution of design actions to characterize designers’ action
preferences. The First-order Markov model is utilized for
characterizing designers’ one-step sequential behavior. To model
designers’ short-term sequential behaviors, the Doc2Vec
sequence learning technique is adopted, while a bi-directional
LSTM autoencoder is used to characterize the long-term
sequential behavior. Finally, we use time gap distribution to
represent reflective design thinking. After identifying the design
embedding from each design behavior, the X-mean method is
applied to cluster each embedding to identify similar behavioral
patterns. The result indicates that the behavioral patterns
characterized in different dimensions do not necessarily
categorize designers in the same cluster. Also, while designers
are clustered based on their design behavioral patterns, different
design patterns could lead to similar design quality.

The major contribution of this paper is the identification of
latent representation (i.e., design embedding) of design thinking
through design behaviors from multiple dimensions. The
implementation of design embedding can be useful in design
research in different ways. For example, design embedding can
be used to identify designers with similar behavioral patterns and
discover beneficial design strategies. Furthermore, as a design
process is typically a combination of different design behaviors,
different forms of design embeddings can be integrated to
develop predictive models that could yield better accuracy for
design performance forecasting. This is one of the future studies
we plan to work on. Particularly, we plan to develop a machine
learning model based on the identified design embeddings and
their correlations with the final design quality.
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