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ABSTRACT 

 
Dental caries are common chronic infectious oral diseases affecting most teenagers and adults worldwide. Optical 

coherence tomography (OCT) has been studied extensively for the detection of early carious lesions. Deep learning 

techniques are a rapidly emerging new area of biomedical research and have yielded impressive results in diagnosis and 

prediction in the field of oral radiology. Deep learning models particularly deep convolutional neural networks (CNN) 

can be employed along with OCT imaging system to more accurately identify early dental caries. In this work, after 

OCT data acquisition, data augmentation was performed to obtain a large amount of training data in order to effectively 

learn, where collection of such training data is often expensive and laborious. For the backpropagation process, seven 

optimization methods, namely Adadelta, AdaGrad, Adam, AdaMax, Nadam, RMSProp, and Stochastic Gradient Descent 

(SGD) were utilized to improve the accuracy of a CNN classifier for diagnosing dental caries. In this study, 75% of the 

data were utilized for training and 25% for testing. The diagnostic accuracy, sensitivity, specificity, positive predictive 

value, negative predictive value, and receiver operating characteristic (ROC) curve were calculated for detection and 

diagnostic performance of the deep CNN algorithm. This study highlighted the performance of various optimization 

methods for deep CNN models with OCT images to detect dental caries.  

 

Keywords: optimization methods, image processing, machine learning, deep learning, convolutional neural networks, 

optical coherence tomography, dental caries detection.  

 

 

1. INTRODUCTION 

 
Early Detection of carious lesions can result in the implementation of non-surgical preventive approaches to reverse 

the demineralization process 1-3. The conventional approach for diagnosing dental caries is clinical examination that 

supplemented by radiographs. However, studies based on the clinical and radiographic examination methods often show 

low sensitivity and high specificity. In the last few years, researches were studying a new approach to detect carious in 

early stage, because it is believed that by the time that a lesion is visualized in clinical or radiological examination, it will 

be advanced 3,4.  Optical coherence tomography (OCT) is a noninvasive imaging modality based on low-coherence 

interferometry that uses non-ionizing near-infrared laser to provide micrometer-resolution images. Previous studies using 

OCT have demonstrated the ability to evaluate characteristics of carious lesions, micro-fractures, pulpal inflammation, 

properties of dental materials, early dysplastic changes in oral malignancies, early inflammatory changes in the 

periodontal tissues, and PDL changes due to orthodontic tooth movement 5-15.  Deep learning is a rapidly emerging new 

area of biomedical research and have yielded impressive results in diagnosis and prediction in the fields of radiology and 

pathology. The deep learning employs computational models which are composed of a series of transforming and 

processing layers to learn representations of data with multiple levels of abstraction 16-18. In deep learning, convolutional 

neural networks (CNN) 19 is the most commonly method applied to analyze medical imaging data and classify radiology 

images. Recent studies have demonstrated the CNN application for complex medical image analysis, such as automated 
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breast ultrasound lesions detection, classification of normal and pathologic OCT images, segmentation of nine retinal 

layer boundaries, cerebral microbleeds detection, and brain tumor segmentation 20-24. 

In our previous publication 25-30, we presented OCT imaging for tissue characterization, as well as a novel approach 

combining OCT imaging modality and deep learning CNN model for the detection of occlusal carious lesions. In data 

acquisition and ex vivo OCT imaging, extracted human permanent teeth were collected and imaged. To the best of our 

knowledge, that study was the first one reporting deep learning-based classification of ex vivo OCT images of human 

carious and non-carious lesions for early detection of dental caries.  

In this study, for the backpropagation process, seven optimization methods, namely Adadelta, AdaGrad, Adam, 

AdaMax, Nadam, RMSProp, and Stochastic Gradient Descent (SGD) were utilized to improve the accuracy of a CNN 

classifier for diagnosing dental caries. 75% of the imaging data were utilized for training and 25% for testing. The 

diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating 

characteristic (ROC) curve were calculated for detection and diagnostic performance of the deep CNN algorithm. This 

study highlighted the performance of various optimization methods for deep CNN models with OCT images to detect 

dental caries. The Adam, AdaMax, and Nadam optimizers provided the highest accuracy of (95.45%-97.12%), and 

(86.86%-88.73%) for training and testing, respectively. 

 

 

2. METHODS 

 

2.1 Experimental setup and image acquisition 

The OCT imaging system that was used in this study was a spectral-domain OCT from the TELESTO-series 

(Thorlabs Inc., Newton, NJ, USA) as demonstrated in Fig. 1. 

 

 

Figure 1 Data acquisition and OCT imaging system. 

The OCT imaging system is operating at optical wavelengths ranging between 1300 nm and 1325 nm with an average 

power of 18 mW, a scan rate of 5.5-76 kHz, image depth of 3.5 mm in air, an OCT-LK4 objective, and axial resolution 

of 5.5 µm in air and 3.9 µm at n=1.4 25. For ex vivo OCT imaging, a total of 51 extracted human permanent teeth were 

collected and categorized into two groups: Non-carious teeth (NC), caries extending into enamel and dentin (C) as 

shown in Fig. 2.  782 cross-sections OCT images were obtained from the NC group, and 1357 images from the C group. 

The images were then subjected to machine learning using a CNN classifier. 
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Figure 2 OCT images acquired from oral specimens. 

 

2.2 Preprocessing and Image Augmentation 

To acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. OCT 

images with the least heterogeneous presentation were imported and saved in TIFF format. During preprocessing, the 

images were normalized to the size of 90 x 90 x 3 pixels and saved in the same format prior to training the CNN model. 

Deep artificial neural networks require a large amount of training data in order to effectively learn, where collection of 

such training data is often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the 

training set with label preserving transformations 19. We have applied image augmentation by perturbing an image using 

transformations that leave the underlying class unchanged (e.g. cropping and flipping) in order to generate additional 

examples of the class. Augmentation can be applied at training time, at testing time, or both. The augmented samples can 

either be taken as-is or combined to form a single feature, e.g. using sum/max-pooling or stacking. 

 

2.3 Architecture of the Deep Convolutional Neural Network 

 Figure 3 demonstrates the CNN architecture that was developed in our previous publication 25 and was implemented in 

TensorFlow to compare the various optimization methods. Our CNN model contains two convolutional layers and three 

fully connected layers (FC). The first convolution layer contains 32 filters of size 3 x 3 followed by an activation layer of 

the rectified linear operator (ReLU), and a max pooling layer of size 2 x 2 and a local normalization layer. The output of 

the first convolution layer would be the input to the second convolution layer which has 256 filters of size 3 x 3 followed 

by ReLU and max pooling layer. The flatten applied to all feature’s maps from the second convolution layers in one-

dimensional vector. The first fully connected layer will have 128 neurons that will receive the one-dimensional vector 

from the second convolution layer, followed by a ReLU layer and dropout layer. The second FC has 128 neurons that 

receive the output from the first FC layer, followed by ReLU and dropout layer. The output layer with SoftMax function 

has 2 neurons that determine the output class (2 labels: non-carious and carious).  

Non-carious tooth Carious tooth



 

Figure 3 The CNN architecture for carious lesions detection. 

 

2.4 Optimization Methods 

 For the backpropagation process, seven optimization methods were utilized which explained in the next subsections. 

Adadelta Optimizer: 

The Adadelta optimizer is a stochastic gradient descent (SGD) method base on per-dimension learning rate that doesn’t 

required to have a manual selected global learning rate or continually decay learning rate through training 31. The 

accumulation requires two steps, first is the accumulate of gradient descent square: 

𝐸[𝑔2]𝑡 =  𝜌𝐸[𝑔2]𝑡−1 + (1 − 𝜌)𝑔𝑡
2                   (1) 

where ρ is the decay rate, and the initial accumulation variables is zero. The second step is to accumulate the updates: 

 

𝐸[∆𝑥2]𝑡 ∶=  𝜌𝐸[∆𝑥2]𝑡−1 + (1 − 𝜌)∆𝑥𝑡
2            (2) 

 

where ∆𝑥𝑡
2 is the square of compute update and it is calculated: 

∆𝑥𝑡 =  −
𝑅𝑀𝑆[∆𝑥]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡                               (3) 

AdaGrad Optimizer: 

AdaGrad optimizer is a parameter specific learning rate optimizer 32. It updates FC weights per: 

𝜃𝑡 ∶= 𝜃𝑡−1 − 𝑙𝑟 ∗
𝑔

√𝑎𝑐𝑐𝑢𝑚𝑔𝑡+𝜖
                       (4) 

where lr is the learning rate, g is the gradient, accum is the accumulator that calculated using 

𝑎𝑐𝑐𝑢𝑚𝑔𝑡 ∶= 𝑎𝑐𝑐𝑢𝑚𝑡−1 + 𝑔2. 

Adam Optimizer: 

Adam optimizer is a combination of AdaGrad and RMSProp methods that is based on adaptive estimates of lower order 

moments 33. The Adam optimizer update the FC layer’s weights using: 

𝜃𝑡 ←  𝜃𝑡−1 − 
𝛼𝑡.𝑚𝑡

√𝑣𝑡+ 𝜖̂
                          (5) 
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where 𝑚𝑡 is the biased first moment estimate, 𝑣𝑡 is the biased second raw moment estimate, 𝛼𝑡 is the learning rate that 

calculated per: 

𝛼𝑡 ←  𝛼.
√1−𝛽2

𝑡

1−𝛽1
𝑡                                   (6) 

where 𝛽1, 𝛽2 are the exponential decay rates for the moment estimate. From Eq. (5), the biased first raw moment updated 

per: 

𝑚𝑡 ←  𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡                (7) 

where 𝑔𝑡 is the gradient with respect to stochastic objective at time 𝑡. From Eq. (5), the biased second raw moment 

updated per: 

𝑣𝑡 ←  𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2                 (8) 

AdaMax Optimizer: 

AdaMax optimizer a variant of Adam based on the infinity order norm that makes the optimizer more stable 33. It 

calculated the FC weight using: 

𝜃𝑡 ←  𝜃𝑡−1 − 

𝛼

1−𝛽1
𝑡 .𝑚𝑡

𝜇𝑡
                              (9) 

where 𝛼 is the step size, with 𝛽1
𝑡 , 𝛽1 is the exponential decay rates for the moment estimate denote to the power of 𝑡. 

The term 
𝛼

1−𝛽1
𝑡 is the learning rate with the bias-correction term of the first moment. 𝑚𝑡 is the biased first raw moment 

updated per Eq. (7). 𝜇𝑡 is the exponentially weighted infinity norm per 𝜇𝑡 ← max (𝛽2. 𝜇𝑡−1, |𝑔𝑡|). 

Nadam Optimizer: 

Nadam optimizer is similar to Adam optimizer, the difference is that the Nadam optimizer use Nesterov momentum 34. 

The Nadam optimizer update the FC layer’s weights per: 

𝜃𝑡  ←  𝜃𝑡−1 −  ƞ
𝑚̅𝑡

√𝑛̂𝑡+𝜖
                          (10) 

where the 𝑚̅𝑡 is the gradient update for current time step using 𝑚̅𝑡  ← (1 − 𝜇𝑡)𝑔̂𝑡 +  𝜇𝑡+1𝑚̂𝑡 , ƞ is the learning rate, 𝑛̂𝑡 is 

the second moment vector estimator that calculated per 𝑛̂𝑡 ←  
𝑛𝑡

1−𝑣𝑡  

RMSProp Optimizer: 

RMSProp optimizer divide the learning rate for a weight by the average magnitudes of recent gradients for that weight 
35. It keeps a moving a mean average of the squared gradient for each weight by dividing the gradient by square root of 

mean square (MS). The mean square equation: 

𝑀𝑆(𝑤, 𝑡) = 0.9𝑀𝑆(𝑤, 𝑡 − 1) + 0.1 (
𝜕𝐸

𝜕𝑤
(𝑡))

2

         (11) 

Stochastic Gradient Descent (SGD) Optimizer: 

SGD with momentum optimizer with Nestrov’s accelerated Gradient update weight per: 

𝜃𝑡+1 =  𝜃𝑡 + 𝑣𝑡+1                                (12) 



where 𝑣𝑡 is the velocity vector that will be calculated by 𝑣𝑡+1 =  𝜇𝑣𝑡 − 𝜀∇𝑓(𝜃𝑡 + 𝜇𝑣𝑡), 𝜀 is the learning rate, 𝜇 is the 

momentum coefficient, and ∇𝑓(𝜃𝑡 + 𝜇𝑣𝑡) is the gradient. 

 

 

3. RESULTS  

 

3.1 Training and testing the CNN classifier 

Briefly, the training set is split into mini-batches, with 10 images per batch. Given a batch of training patches, the 

CNN uses two convolution and two pooling layers to extract features and then classify each patch based on the 

probabilities from the SoftMax classification layer. After that, the CNN calculates the error between the classification 

result and the reference label, and then utilizes the backpropagation process 36 to tune all the layer weights to minimize 

this error using seven optimizers that we have utilized in this study. The above process will be repeated several epochs, 

until the whole CNN model becomes convergent for each optimizer. In this study, 75% of the imaging data were utilized 

for training and 25% for testing. Note that, all neurons in layers used a Rectified Linear Unit 37 with the weights initially 

being initialized from a Gaussian distribution with a 0 mean and a standard deviation of 0.01. Overlapping pooling was 

deployed which increased CNN performance by reducing over-fitting 19.  

 

3.2 Deep Learning Classification 

The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and receiver 

operating characteristic (ROC) curve were calculated for detection and diagnostic performance of the deep CNN model 

with OCT images. Table 1, and table 2 compare the results of using seven optimizers for training and testing 

respectively. Figure 4 shows the Receiver Operating Characteristic (ROC) curves for comparison between seven 

optimizers (a) training and (b) testing. The Adam, AdaMax, and Nadam optimizers provided the highest accuracy of 

(95.45%-97.12%), and (86.86%-88.73%) for training and testing, respectively. 

 

 

Table 1 Training Results. 

Optimizer Accuracy Sensitivity Specificity PPV NPV 

AdaDelta % 66.19 16.63 94.64 64.00 66.42 

AdaGrad % 82.92 67.46 91.81 82.53 92.10 

Adam % 96.75 93.85 98.42 97.14 96.53 

AdaMax % 95.45 89.55 98.84 97.79 94.28 

Nadam % 97.12 95.07 98.29 96.96 97.20 

RMSProp % 82.07 67.58 90.39 80.14 82.93 

SGD % 74.92 51.03 88.63 72.02 75.93 

 

 

 



Table 2 Testing Results. 

Optimizer Accuracy Sensitivity Specificity PPV NPV 

AdaDelta % 66.54 17.21 95.02 66.67 66.53 

AdaGrad % 81.60 65.06 91.15 80.84 81.88 

Adam % 86.86 75.79 93.26 86.66 86.96 

AdaMax % 88.73 75.78 96.21 92.03 87.31 

Nadam % 88.70 81.25 93.01 87.03 89.57 

RMSProp % 79.87 63.17 89.51 77.67 80.80 

SGD % 75.03 51.42 88.67 72.82 75.97 

 

 

Figure 4 ROC Curves for training and testing using seven optimizers. 

 

 

4. CONCLUSIONS 

 

Deep learning is a rapidly emerging new area of biomedical research. The deep learning employs computational models 

which are composed of a series of transforming and processing layers to learn representations of data with multiple 

levels of abstraction. The deep learning techniques can be used to supplement optical coherence tomography (OCT) to 

more accurately identify diseased and damaged tissue. In this work, the CNN model was used to classify OCT images 

into non-carious and carious classes using seven optimization methods. In data acquisition and ex vivo OCT imaging, the 

samples were imaged using spectral-domain OCT imaging system operating at 1300 nm center wavelength with a scan 

rate of 5.5-76 kHz, and axial resolution of 5.5 µm in air. For deep learning, OCT images of extracted human carious and 

non-carious teeth were input to a CNN classifier to determine variations in tissue densities reflecting the 

demineralization process. The CNN model employs two convolutional and pooling layers to extract features and then 

classify each patch based on the probabilities from the SoftMax classification layer. The CNN calculates the error 

between the classification result and the reference label, and then utilizes the backpropagation process to tune all the 

layer weights to minimize this error using optimization algorithms. Seven optimization methods in TensorFlow with a 

learning rate of 0.001 were investigated and compared. In this study, 75% of the data were utilized for training and 25% 

for testing. The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and 

receiver operating characteristic (ROC) curve were calculated for detection and diagnostic performance of the deep CNN 

(a) (b) 



algorithm. The Adam, AdaMax, and Nadam optimizers provided the highest accuracy of (95.45%-97.12%), and 

(86.86%-88.73%) for training and testing, respectively. 
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