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ABSTRACT

Dental caries are common chronic infectious oral diseases affecting most teenagers and adults worldwide. Optical
coherence tomography (OCT) has been studied extensively for the detection of early carious lesions. Deep learning
techniques are a rapidly emerging new area of biomedical research and have yielded impressive results in diagnosis and
prediction in the field of oral radiology. Deep learning models particularly deep convolutional neural networks (CNN)
can be employed along with OCT imaging system to more accurately identify early dental caries. In this work, after
OCT data acquisition, data augmentation was performed to obtain a large amount of training data in order to effectively
learn, where collection of such training data is often expensive and laborious. For the backpropagation process, seven
optimization methods, namely Adadelta, AdaGrad, Adam, AdaMax, Nadam, RMSProp, and Stochastic Gradient Descent
(SGD) were utilized to improve the accuracy of a CNN classifier for diagnosing dental caries. In this study, 75% of the
data were utilized for training and 25% for testing. The diagnostic accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and receiver operating characteristic (ROC) curve were calculated for detection and
diagnostic performance of the deep CNN algorithm. This study highlighted the performance of various optimization
methods for deep CNN models with OCT images to detect dental caries.

Keywords: optimization methods, image processing, machine learning, deep learning, convolutional neural networks,
optical coherence tomography, dental caries detection.

1. INTRODUCTION

Early Detection of carious lesions can result in the implementation of non-surgical preventive approaches to reverse
the demineralization process !*. The conventional approach for diagnosing dental caries is clinical examination that
supplemented by radiographs. However, studies based on the clinical and radiographic examination methods often show
low sensitivity and high specificity. In the last few years, researches were studying a new approach to detect carious in
early stage, because it is believed that by the time that a lesion is visualized in clinical or radiological examination, it will
be advanced **. Optical coherence tomography (OCT) is a noninvasive imaging modality based on low-coherence
interferometry that uses non-ionizing near-infrared laser to provide micrometer-resolution images. Previous studies using
OCT have demonstrated the ability to evaluate characteristics of carious lesions, micro-fractures, pulpal inflammation,
properties of dental materials, early dysplastic changes in oral malignancies, early inflammatory changes in the
periodontal tissues, and PDL changes due to orthodontic tooth movement 315, Deep learning is a rapidly emerging new
area of biomedical research and have yielded impressive results in diagnosis and prediction in the fields of radiology and
pathology. The deep learning employs computational models which are composed of a series of transforming and
processing layers to learn representations of data with multiple levels of abstraction '*'®. In deep learning, convolutional
neural networks (CNN) !° is the most commonly method applied to analyze medical imaging data and classify radiology
images. Recent studies have demonstrated the CNN application for complex medical image analysis, such as automated
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breast ultrasound lesions detection, classification of normal and pathologic OCT images, segmentation of nine retinal
layer boundaries, cerebral microbleeds detection, and brain tumor segmentation 20-24,

In our previous publication 2°-3

, we presented OCT imaging for tissue characterization, as well as a novel approach
combining OCT imaging modality and deep learning CNN model for the detection of occlusal carious lesions. In data
acquisition and ex vivo OCT imaging, extracted human permanent teeth were collected and imaged. To the best of our
knowledge, that study was the first one reporting deep learning-based classification of ex vivo OCT images of human

carious and non-carious lesions for early detection of dental caries.

In this study, for the backpropagation process, seven optimization methods, namely Adadelta, AdaGrad, Adam,
AdaMax, Nadam, RMSProp, and Stochastic Gradient Descent (SGD) were utilized to improve the accuracy of a CNN
classifier for diagnosing dental caries. 75% of the imaging data were utilized for training and 25% for testing. The
diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating
characteristic (ROC) curve were calculated for detection and diagnostic performance of the deep CNN algorithm. This
study highlighted the performance of various optimization methods for deep CNN models with OCT images to detect
dental caries. The Adam, AdaMax, and Nadam optimizers provided the highest accuracy of (95.45%-97.12%), and
(86.86%-88.73%) for training and testing, respectively.

2. METHODS

2.1 Experimental setup and image acquisition

The OCT imaging system that was used in this study was a spectral-domain OCT from the TELESTO-series
(Thorlabs Inc., Newton, NJ, USA) as demonstrated in Fig. 1.
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Figure 1 Data acquisition and OCT imaging system.

The OCT imaging system is operating at optical wavelengths ranging between 1300 nm and 1325 nm with an average
power of 18 mW, a scan rate of 5.5-76 kHz, image depth of 3.5 mm in air, an OCT-LK4 objective, and axial resolution
of 5.5 pm in air and 3.9 um at n=1.4 ?°. For ex vivo OCT imaging, a total of 51 extracted human permanent teeth were
collected and categorized into two groups: Non-carious teeth (NC), caries extending into enamel and dentin (C) as
shown in Fig. 2. 782 cross-sections OCT images were obtained from the NC group, and 1357 images from the C group.
The images were then subjected to machine learning using a CNN classifier.
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Figure 2 OCT images acquired from oral specimens.

2.2 Preprocessing and Image Augmentation

To acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. OCT
images with the least heterogeneous presentation were imported and saved in TIFF format. During preprocessing, the
images were normalized to the size of 90 x 90 x 3 pixels and saved in the same format prior to training the CNN model.
Deep artificial neural networks require a large amount of training data in order to effectively learn, where collection of
such training data is often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the
training set with label preserving transformations '°. We have applied image augmentation by perturbing an image using
transformations that leave the underlying class unchanged (e.g. cropping and flipping) in order to generate additional
examples of the class. Augmentation can be applied at training time, at testing time, or both. The augmented samples can
either be taken as-is or combined to form a single feature, e.g. using sum/max-pooling or stacking.

2.3 Architecture of the Deep Convolutional Neural Network

Figure 3 demonstrates the CNN architecture that was developed in our previous publication 2° and was implemented in
TensorFlow to compare the various optimization methods. Our CNN model contains two convolutional layers and three
fully connected layers (FC). The first convolution layer contains 32 filters of size 3 x 3 followed by an activation layer of
the rectified linear operator (ReLU), and a max pooling layer of size 2 x 2 and a local normalization layer. The output of
the first convolution layer would be the input to the second convolution layer which has 256 filters of size 3 x 3 followed
by ReLU and max pooling layer. The flatten applied to all feature’s maps from the second convolution layers in one-
dimensional vector. The first fully connected layer will have 128 neurons that will receive the one-dimensional vector
from the second convolution layer, followed by a ReLU layer and dropout layer. The second FC has 128 neurons that
receive the output from the first FC layer, followed by ReLLU and dropout layer. The output layer with SoftMax function
has 2 neurons that determine the output class (2 labels: non-carious and carious).



OCT Image

Input Image Feature Extraction Classification

Figure 3 The CNN architecture for carious lesions detection.

2.4 Optimization Methods
For the backpropagation process, seven optimization methods were utilized which explained in the next subsections.
Adadelta Optimizer:

The Adadelta optimizer is a stochastic gradient descent (SGD) method base on per-dimension learning rate that doesn’t
required to have a manual selected global learning rate or continually decay learning rate through training 3!. The
accumulation requires two steps, first is the accumulate of gradient descent square:

E[g*]: = pE[g*]i-1 + (1 — p)g? (1)

where p is the decay rate, and the initial accumulation variables is zero. The second step is to accumulate the updates:

E[Ax?], := pE[Ax?]e—y + (1 — p)Ax? ()
where Ax? is the square of compute update and it is calculated:
__ RMS[Ax];—y
Axt - RMS[g]t gt (3)

AdaGrad Optimizer:

AdaGrad optimizer is a parameter specific learning rate optimizer *2. It updates FC weights per:
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where Ir is the learning rate, g is the gradient, accum is the accumulator that calculated using
accumg, := accum,_, + g°.

Adam Optimizer:

Adam optimizer is a combination of AdaGrad and RMSProp methods that is based on adaptive estimates of lower order
moments 3. The Adam optimizer update the FC layer’s weights using:
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where m; is the biased first moment estimate, v, is the biased second raw moment estimate, ; is the learning rate that
calculated per:
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(6)

where f5;, B, are the exponential decay rates for the moment estimate. From Eq. (5), the biased first raw moment updated
per:

me « Br.meq + (1= B1).g¢ @)

where g, is the gradient with respect to stochastic objective at time t. From Eq. (5), the biased second raw moment
updated per:

v & Boveg + (1= By). g¢ (®)

AdaMax Optimizer:

AdaMax optimizer a variant of Adam based on the infinity order norm that makes the optimizer more stable 3. It
calculated the FC weight using:
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where a is the step size, with B¢ , B, is the exponential decay rates for the moment estimate denote to the power of t.
The term 1Lﬁt is the learning rate with the bias-correction term of the first moment. m, is the biased first raw moment
~P1

updated per Eq. (7). u; is the exponentially weighted infinity norm per y; < max (B;. 4i—1, 19:]).

Nadam Optimizer:

Nadam optimizer is similar to Adam optimizer, the difference is that the Nadam optimizer use Nesterov momentum 3*.
The Nadam optimizer update the FC layer’s weights per:

0y « 0rq — n% (10)

where the m, is the gradient update for current time step using m; < (1 — y:)gs + Us417: » 1) is the learning rate, 7, is

the second moment vector estimator that calculated per 71, « -~

RMSProp Optimizer:

RMSProp optimizer divide the learning rate for a weight by the average magnitudes of recent gradients for that weight
35, It keeps a moving a mean average of the squared gradient for each weight by dividing the gradient by square root of
mean square (MS). The mean square equation:

MS(w,t) = 0.9MS(w, t — 1) + 0.1 (g—fv (t))2 (11)

Stochastic Gradient Descent (SGD) Optimizer:

SGD with momentum optimizer with Nestrov’s accelerated Gradient update weight per:

Ors1 = 0r + Vg (12)



where v, is the velocity vector that will be calculated by v, = uv; — eVf (0, + uv,), € is the learning rate, y is the
momentum coefficient, and Vf (6, + pv,) is the gradient.

3. RESULTS

3.1 Training and testing the CNN classifier

Briefly, the training set is split into mini-batches, with 10 images per batch. Given a batch of training patches, the
CNN uses two convolution and two pooling layers to extract features and then classify each patch based on the
probabilities from the SoftMax classification layer. After that, the CNN calculates the error between the classification
result and the reference label, and then utilizes the backpropagation process ¢ to tune all the layer weights to minimize
this error using seven optimizers that we have utilized in this study. The above process will be repeated several epochs,
until the whole CNN model becomes convergent for each optimizer. In this study, 75% of the imaging data were utilized
for training and 25% for testing. Note that, all neurons in layers used a Rectified Linear Unit 37 with the weights initially
being initialized from a Gaussian distribution with a 0 mean and a standard deviation of 0.01. Overlapping pooling was
deployed which increased CNN performance by reducing over-fitting °.

3.2 Deep Learning Classification

The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and receiver
operating characteristic (ROC) curve were calculated for detection and diagnostic performance of the deep CNN model
with OCT images. Table 1, and table 2 compare the results of using seven optimizers for training and testing
respectively. Figure 4 shows the Receiver Operating Characteristic (ROC) curves for comparison between seven
optimizers (a) training and (b) testing. The Adam, AdaMax, and Nadam optimizers provided the highest accuracy of
(95.45%-97.12%), and (86.86%-88.73%) for training and testing, respectively.

Table 1 Training Results.

Optimizer Accuracy Sensitivity Specificity PPV NPV
AdaDelta % 66.19 16.63 94.64 64.00 66.42
AdaGrad % 82.92 67.46 91.81 82.53 92.10

Adam % 96.75 93.85 98.42 97.14 96.53
AdaMax % 95.45 89.55 98.84 97.79 94.28

Nadam % 97.12 95.07 98.29 96.96 97.20
RMSProp % 82.07 67.58 90.39 80.14 82.93

SGD % 74.92 51.03 88.63 72.02 75.93




Table 2 Testing Results.

Optimizer Accuracy Sensitivity Specificity PPV NPV
AdaDelta % 66.54 17.21 95.02 66.67 66.53
AdaGrad % 81.60 65.06 91.15 80.84 81.88
Adam % 86.86 75.79 93.26 86.66 86.96
AdaMax % 88.73 75.78 96.21 92.03 87.31
Nadam % 88.70 81.25 93.01 87.03 89.57
RMSProp % 79.87 63.17 89.51 77.67 80.80
SGD % 75.03 51.42 88.67 72.82 75.97
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Figure 4 ROC Curves for training and testing using seven optimizers.

4. CONCLUSIONS

Deep learning is a rapidly emerging new area of biomedical research. The deep learning employs computational models
which are composed of a series of transforming and processing layers to learn representations of data with multiple
levels of abstraction. The deep learning techniques can be used to supplement optical coherence tomography (OCT) to
more accurately identify diseased and damaged tissue. In this work, the CNN model was used to classify OCT images
into non-carious and carious classes using seven optimization methods. In data acquisition and ex vivo OCT imaging, the
samples were imaged using spectral-domain OCT imaging system operating at 1300 nm center wavelength with a scan
rate of 5.5-76 kHz, and axial resolution of 5.5 um in air. For deep learning, OCT images of extracted human carious and
non-carious teeth were input to a CNN classifier to determine variations in tissue densities reflecting the
demineralization process. The CNN model employs two convolutional and pooling layers to extract features and then
classify each patch based on the probabilities from the SoftMax classification layer. The CNN calculates the error
between the classification result and the reference label, and then utilizes the backpropagation process to tune all the
layer weights to minimize this error using optimization algorithms. Seven optimization methods in TensorFlow with a
learning rate of 0.001 were investigated and compared. In this study, 75% of the data were utilized for training and 25%
for testing. The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and
receiver operating characteristic (ROC) curve were calculated for detection and diagnostic performance of the deep CNN



algorithm. The Adam, AdaMax, and Nadam optimizers provided the highest accuracy of (95.45%-97.12%), and
(86.86%-88.73%) for training and testing, respectively.
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