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types of covariates (e.g., test scores or income), even when other covariates are ob-
served.

This paper is about using observational data to learn policies that respect the types of
constraints outlined above. The existing literature on policy learning has mostly focused
on the setting where we want to optimize allocation of a binary treatment using data from
a randomized trial, or from a study with a known, random treatment assignment policy.
In many problems, however, one may need to leverage richer forms of observational data
to learn treatment assignment rules. For example, if we want to learn whom to prescribe
a drug to based on data from a clinical trial, we need to have methods that deal with non-
compliance and resulting endogenous treatment assignments.1 Or, if we are interested in
offering some customers discounts, then we need methods that let us study interventions
to continuous variables (e.g., price) rather than just discrete ones. The goal of this paper
is to develop methods for policy learning that do not just work in randomized trials (or
related settings), but can instead work with a rich variety of observational designs.

Formally, we study the problem where we have access to observational data and want
to use it to learn a policy that maps a subject’s characteristics Xi ∈ X to a binary deci-
sion, π : X → {0�1}. The practitioner has also specified a class Π that encodes problem-
specific constraints pertaining to budget, functional form, fairness, etc., and requires that
our learned policy π̂ satisfies these constraints, π̂ ∈ Π. Then, following Manski (2004,
2009), Hirano and Porter (2009), Stoye (2009, 2012), and Kitagawa and Tetenov (2018),
we seek guarantees on the regret R(π̂), that is, the difference between the expected util-
ity from deploying the learned policy π̂ over a target population and the best utility that
could be achieved from deploying any policy in the class Π over the population.

Our paper builds on a rich literature at the intersection of econometrics, statistics,
and computer science on learning structured treatment assignment rules, including Kita-
gawa and Tetenov (2018), Swaminathan and Joachims (2015), and Zhao, Zeng, Rush, and
Kosorok (2012). Most closely related to us, Kitagawa and Tetenov (2018) studied a spe-
cial case of our problem where treatments are binary and exogenous with known assign-
ment probabilities, and showed that an algorithm based on inverse-probability weighting
achieves regret that depends optimally on the sample size and the complexity of the policy
class Π.2

Here, we develop a new family of algorithms that achieve regret guarantees with op-
timal dependence on sample size and on Π, but under considerably more generality on
the sampling design. We consider both the classical case where we want to optimize a bi-
nary treatment, and a related setting where we want to optimize infinitesimal nudges to a
continuous treatment (e.g., a price). Moreover, our approach can leverage observational
data where the treatment assignment mechanism may either be exogenous with unknown
assignment probabilities, or endogenous, in which case we require an instrument.

Our approach starts from recent unifying results of Chernozhukov, Escanciano,
Ichimura, Newey, and Robins (2016) on semiparametrically efficient estimation. As dis-
cussed in more detail in Section 2.1, Chernozhukov et al. (2016) showed that in many

1If we believed that compliance patterns when we deploy our policy would be similar to those in the clinical
trial, then an intent-to-treat analysis may be a reasonable way to side-step endogeneity concerns. However, if
we suspect that compliance patterns may change (e.g., if patients may be more likely to adhere to a treatment
regime prescribed by their doctor than one randomly assigned in a clinical trial), then using an analysis that
disambiguates received treatment from assigned treatment is necessary.

2Kitagawa and Tetenov (2018) also considered the case where treatment assignment probabilities are un-
known; in this case, however, their method no longer achieves optimal dependence on the sample size.
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problems of interest, we can construct efficient estimates of average-treatment-effect-like
parameters θ as

θ̂ = 1
n

n∑

i=1

�̂i� (1)

where �̂i is an appropriate doubly robust score for the target estimand under the inter-
vention of interest. This approach can be used to target the average effect of a binary
treatment, the average derivative of a continuous treatment, and other related estimands.

In this paper, we find that whenever one can estimate the average utility of treating
everyone3 using an estimator of the type (1) built via the doubly robust construction of
Chernozhukov et al. (2016), we can also usefully learn whom to target with the inter-
vention via a simple procedure: Given a prespecified policy class Π (e.g., linear decision
rules or finite-depth decision trees), we propose using the treatment assignment rule π̂
that solves4

π̂ = argmax

{
1
n

n∑

i=1

(
2π(Xi)− 1

)̂
�i : π ∈Π

}
� (2)

where �̂i are the same doubly robust scores as used in (1). Our main result is that, under
regularity conditions, the resulting policies π̂ have regret R(π̂) bounded on the order of√

VC(Π)/n with high probability. Here, VC(Π) is the Vapnik–Chervonenkis dimension
of the class Π and n is the sample size. We also highlight how the constants in this bound
depend on fundamental quantities from the semiparametric efficiency literature.

Our proof combines results from semiparametrics with carefully tailored analysis tools
that build on classical ideas from empirical process theory. The reason we obtain strong
guarantees for the approach (2) is closely tied to robustness properties of the estimator
(1). In the setting where we only want to estimate a single average effect parameter, it
is well known that nondoubly robust estimators can also be semiparametrically efficient
(Hirano, Imbens, and Ridder (2003)). Here, however, we need convergence results that
are strong enough to withstand optimization over the whole class Π. The fact that doubly
robust estimators are fit for this task is closely related to their ability to achieve semipara-
metric efficiency under general conditions, even if nuisance components are estimated via
black-box machine learning methods for which we can only guarantee fast enough con-
vergence in mean-squared error (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey, and Robins (2018), van der Laan and Rose (2011)).

We spell out our general framework in Section 2. For intuition, however, it is help-
ful to first consider this approach in the simpler case where we want to study the effect
of a binary treatment Wi ∈ {0�1} on an outcome Yi ∈ R interpreted as a utility and are
willing to assume selection on observables (unconfoundedness): We have potential out-
comes {Yi(0)�Yi(1)} such that Yi = Yi(Wi) and {Yi(0)�Yi(1)} ⊥⊥ Wi|Xi (Imbens and Ru-
bin (2015)). Then the utilitarian regret of deploying a policy π ∈Π is (Manski (2009))

R(π) = max
{
E
[
Yi

(
π ′(Xi)

)]
: π ′ ∈ Π

}
−E

[
Yi

(
π(Xi)

)]
� (3)

3Throughout this paper, we assume that there is no interference, that is, assigning one unit to treatment
does not affect outcomes for others. For a discussion of treatment effect estimation under interference, see
Hudgens and Halloran (2008), Manski (2013), and references therein.

4If this optimization problem has multiple solutions, we set π̂ to an arbitrary maximizer of the objective.
Our formal results apply simultaneously to all solutions of (2).
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and we can construct our estimator (2) using the well-known augmented inverse-
propensity weighted scores of Robins, Rotnitzky, and Zhao (1994),5

�̂i = m̂(Xi�1)− m̂(Xi�0)+ Wi − ê(Xi)

ê(Xi)
(
1 − ê(Xi)

)
(
Yi − m̂(Xi�Wi)

)
�

e(x) = P[Wi = 1|Xi = x]� m(x�w)= E
[
Yi(w)|Xi = x

]
�

(4)

where ê(x) and m̂(x�w) denote nonparametric estimates of e(x) and m(x�w), respec-
tively. In this setup, our result implies that—under regularity conditions—the estimator
(2) with scores (4) has regret (3) bounded on the order of

√
VC(Π)/n.

Even in this simplest case, our result is considerably stronger than results currently
available in the literature. The main result of Kitagawa and Tetenov (2018) is that, if treat-
ment propensities e(Xi) are known, then a variant of inverse-propensity weighted policy
learning achieves regret on the order of

√
VC(Π)/n. However, in observational stud-

ies where the treatment propensities are unknown, the bounds of Kitagawa and Tetenov
(2018) depend on the rate at which we can estimate e(·), and will generally decay slower
than 1/

√
n. The only other available 1/

√
n-bounds for policy learning in observational

studies with a binary treatment that we are aware of are a result of van der Laan, Dudoit,
and van der Vaart (2006) for the case where Π consists of a finite set of policies whose
cardinality grows with n, and a result of Kallus (2018) in the special case m(·�w) is as-
sumed to belong to a reproducing kernel Hilbert space. The idea of using doubly robust
scores to learn optimal treatment assignment of a binary treatment has been previously
discussed in Dudík, Langford, and Li (2011) and Zhang, Tsiatis, Davidian, Zhang, and
Laber (2012); however, neither paper provides a regret bound for this approach.

In the more general case where the observed treatment assignments Wi may be con-
tinuous and/or we may need to use instrumental variables to identify causal effects, both
the methods and regret bounds provided here are new. By connecting the policy learn-
ing problem to the semiparametric efficiency literature, we are able to develop a general
framework that applies across a variety of settings.

1.1. Related Work

The literature on optimal treatment allocation has been rapidly expanding across sev-
eral fields. In the econometrics literature, the program of learning regret-optimal treat-
ment rules was started by Manski (2004, 2009). One line of work considers the case where
the policy class is unrestricted, and the optimal treatment assignment rule simply depends
on the sign of the conditional average treatment effect for each individual unit. In this
setting, Hirano and Porter (2009) showed that when 1/

√
n-rate estimation of the con-

ditional average treatment effect function is possible, then treatment assignment rules
obtained by thresholding an efficient estimate of the conditional average treatment ef-
fect are asymptotically minimax-optimal. Meanwhile, Stoye (2009) derived finite sample
minimax decision rules in a class of problems where both the response surfaces and the
policies π may depend arbitrarily on covariates. Further results are given in Armstrong
and Shen (2013), Bhattacharya and Dupas (2012), Chamberlain (2011), Dehejia (2005),
Kasy (2016), Stoye (2012), and Tetenov (2012).

5See Section 5.1 for a detailed discussion of how to implement our policy learner (2) based on these aug-
mented inverse-propensity weighted scores in practice.
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Building on this line of work, Kitagawa and Tetenov (2018) studied policy learning in a
nonparametric setting where the learned policy π̂ is constrained to belong to a structured
class Π and show that, in this case, we can obtain regret bounds relative to the best policy
in Π that scale with the complexity of the class Π. A key insight from Kitagawa and
Tetenov (2018) is that, when propensity scores are known and Π has finite VC dimension,
it is possible to get 1/

√
n-rate regret bounds for policy learning over a class Π even if the

conditional average treatment effect function itself cannot be estimated at a 1/
√
n-rate; in

other words, we can reliably find a nearly best-in-class policy without needing to accurately
estimate a model that describes all causal effects. As discussed above, our paper builds
on this work by considering rate-optimal regret bounds for best-in-class policy learning
in observational studies where propensity scores are unknown and treatment assignment
may be endogenous, etc.

One difference between our results and those of Kitagawa and Tetenov (2018) is that
the latter provide finite sample regret bounds, whereas our results are asymptotic in the
sample size n. The reason for this is that our bounds rely on results from the literature on
semiparametric estimation (Bickel, Klaassen, Ritov, and Wellner (1998), Chernozhukov
et al. (2016), Chen, Hong, and Tarozzi (2008), Hahn (1998), Newey (1994), Robins and
Rotnitzky (1995)), which themselves are asymptotic. Recently, Armstrong and Kolesár
(2017) showed that, in a class of average treatment effect estimation problems, finite
sample conditionally minimax linear estimators are asymptotically efficient, thus provid-
ing a connection between desirable finite sample guarantees and asymptotic optimality.
It would be interesting to examine whether similar connections are possible in the policy
learning case.

Policy learning from observational data has also been considered in parallel literatures
developed in both statistics (Luedtke and van der Laan (2016), Qian and Murphy (2011),
Zhang et al. (2012), Zhao et al. (2012)) and machine learning (Beygelzimer and Lang-
ford (2009), Dudík, Langford, and Li (2011), Kallus (2018), Swaminathan and Joachims
(2015)). Two driving themes behind these literatures are the development of performant
algorithms for solving the empirical maximization problems (and relaxations thereof) that
underlie policy learning, and the use of doubly robust objectives for improved practical
performance. Kallus (2018), Swaminathan and Joachims (2015), and Zhao et al. (2012)
also proved regret bounds for their methods; however, they do not achieve a 1/

√
n sam-

ple dependence, with the exception of Kallus (2018) in the special case of the reproducing
kernel Hilbert space setting described above. Finally, Luedtke and Chambaz (2020) pro-
posed a class of regret bounds that decay faster than 1/

√
n by exploiting nonuniform

asymptotics; see Section 4 for a further discussion.
The problem of optimal treatment allocation can also be seen as a special case of the

broader problem of optimal data-driven decision making. From this perspective, our re-
sult is related to the work of Ban and Rudin (2019) and Bertsimas and Kallus (2020),
who study data-driven rules for optimal inventory management and related problems.
Much like in our case, they advocate learning with a loss function that is directly tied
to a utility-based criterion. Finally, we note a growing literature on estimating conditional
average treatment effects, including Athey and Imbens (2016), Athey, Tibshirani, and Wa-
ger (2019), Nie and Wager (2020), and references therein. Although the goal is similar to
that of learning optimal treatment assignment rules, the specific results themselves differ;
they focus on squared-error loss rather than utilitarian regret.
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2. FROM EFFICIENT POLICY EVALUATION TO LEARNING

Our goal is to learn a policy π ∈ Π that maps a subject’s features Xi ∈X to a treatment
decision: π : X → {0�1}. In order to do so, we assume that we have independent and
identically distributed samples (Xi�Yi�Wi�Zi), where Yi ∈ R is the outcome we want to
intervene on, Wi is the observed treatment assignment, and Zi is an (optional) instrument
used for identifying causal effects. In cases where Wi is exogenous, we simply take Zi =Wi.
Throughout our analysis, we interpret Yi as the utility resulting from our intervention on
the ith sample, for example, Yi could measure the benefit accrued by a subject minus
a potentially personalized cost of treatment (in Section 5.1 we demonstrate inclusion of
linear costs in the context of an application). We then seek policies that make the expected
value of Yi large.

We define the causal effect of the intervention π(·) in terms of the potential outcomes
model (Neyman (1923), Rubin (1974)), whereby the {Yi(w)} correspond to utilities we
would have observed for the ith sample had the treatment been set to Wi = w, and Yi =
Yi(Wi). When instruments are present, we always assume that the exclusion restriction
holds so that this notation is well specified. We consider both examples with a binary
treatment Wi ∈ {0�1} and with a continuous treatment Wi ∈R.

In the case where Wi is binary, we follow the existing literature (Hirano and Porter
(2009), Kitagawa and Tetenov (2018), Manski (2004), Stoye (2009)), and study interven-
tions that directly specify the treatment level. In this case, the utility of deploying a policy
π(·) relative to treating no one is (Manski (2009))

V (π) = E
[
Yi

(
π(Xi)

)
−Yi(0)

]
� (5)

and the corresponding policy regret relative to the best possible policy in the class Π is

R(π) = max
{
V

(
π ′) : π ′ ∈ Π

}
− V (π)� (6)

As discussed in the Introduction, in this binary setting, Kitagawa and Tetenov (2018)
showed that if Wi is exogenous with known treatment propensities, then we can use
inverse-propensity weighting to derive a policy π̂ whose regret R(π̂) decays as 1/

√
n,

with

π̂IPW = argmax

{
1
n

n∑

i=1

1
({
Wi = π(Xi)

})
Yi

P
[
Wi = π(Xi)|Xi

] : π ∈ Π

}
� (7)

Here, we develop methods that can also be used in observational studies where treatment
propensities may be unknown, and where we may need to use instrumental variables to
identify V (π) from (5).

Meanwhile, when Wi is continuous, we study infinitesimal interventions on the treat-
ment level motivated by the work of Powell, Stock, and Stoker (1989). We define the
utility of such an infinitesimal intervention as

V (π) =
[
d

dν
E
[
Yi

(
Wi + νπ(Xi)

)]]

ν=0

� (8)

and then define regret in terms of V (π) as in (6). One interesting conceptual difference
that arises in this case is that now our interventions π(Xi) ∈ {0�1} and observed treatment
assignments Wi ∈R may take values in different spaces. This can arise, for example, if we
want to target customers with personalized discounts and have access to past prices Wi
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that take on a continuum of values, but are restricted to considering a class of interven-
tions that only allow us to make a binary decision π(Xi) ∈ {0�1} on whether to offer each
customer a small discount or not. The fact that we can still learn low-regret policies via
the simple strategy (2) even when these two spaces are decoupled highlights the richness
of the policy learning problem.6

With both binary and continuous treatments, the regret of a policy π can be written in
terms of a conditional average treatment effect function,

τ(x) = E
[
Yi(1)−Yi(0)|Xi = x

]
or τ(x)=

[
d

dν
E
[
Yi(Wi + ν)|Xi = x

]]

ν=0

� (9)

such that V (π) = E[π(Xi)τ(Xi)] and regret R(π) is as in (6). Our analysis pertains to
any setup with a regret function R(π) that admits such a representation. Given these pre-
liminaries, recall that our goal is to learn low regret policies, that is, to use observational
data to derive a policy π̂ ∈ Π with a guarantee that R(π̂) = OP(1/

√
n). In order to do

so, we need to make assumptions on the observational data generation distribution that
allow for identification and adequate estimation of V (π), and also control the size of Π
in a way that makes emulating the best-in-class policy a realistic objective. The follow-
ing two subsections outline these required conditions; our main result is then stated in
Section 2.3.

2.1. Identifying and Estimating Causal Effects

In order to learn a good policy π̂, we first need to be able to evaluate V (π) for any
specific policy π. Our main assumption, following Chernozhukov et al. (2016), is that we
can construct a doubly robust score for the average treatment effect θ = E[τ(Xi)]. At the
end of this section, we discuss how this approach applies to three important examples,
and refer the reader to Chernozhukov et al. (2016) for a more general discussion of when
such doubly robust scores exist.

ASSUMPTION 1: Write m(x�w) = E[Yi(w)|Xi = x] ∈ M for the counterfactual response
surface. We assume that m(x�w) induces a treatment effect function τm(x�w) with the fol-
lowing properties:

1. The functional m(·) → τm(·) is linear in m, and there exists a weighting function g(x� z)
that identifies τm(·) via

E
[
τm̃(Xi�Wi)− g(Xi�Zi)m̃(Xi�Wi)|Xi

]
= 0� (10)

for any counterfactual response surface m̃(x�w) ∈M.
2. Policy value can be defined in terms of moments of τm(Xi�Wi), such that V (π) =

E[π(Xi)τ(Xi)] with τ(x)= E[τm(Xi�Wi)|Xi = x] for all π :X → {0�1}.
In some examples, τm(x�w) does not depend on w, and we omit the w-argument of τm(·).

6Another interesting question one could ask is how best to optimize the assignment of Wi globally rather
than locally (i.e., the case where we can set the treatment level w to an arbitrary level, rather than simply
nudge the preexisting levels of Wi). This question would require different formal tools, however, as the results
developed in this paper only apply to binary decisions.
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Given this setup, Chernozhukov et al. (2016) proposed first estimating g(·) and m(·),
and then considered

θ̂ = 1
n

n∑

i=1

�̂i� �̂i = τm̂(Xi�Wi)+ ĝ(Xi�Zi)
(
Yi − m̂(Xi�Wi)

)
� (11)

They show that this estimator is
√
n-consistent and asymptotically unbiased Gaussian for

θ, provided that the nuisance estimates ĝ(·) and m̂(·) converge sufficiently fast and that
we use cross-fitting (Chernozhukov et al. (2018), Schick (1986)). This estimator is also
semiparametrically efficient under general conditions (Newey (1994)).7

Our approach to policy learning builds on these foundations. We again start by esti-
mating nuisance components and by forming doubly robust scores as in (11). However,
instead of just averaging the �̂i to estimate θ, we use these scores for policy learning by
plugging them into (2). Our main result will establish that we can get strong regret bounds
for learning policies under conditions that are similar to those used by Chernozhukov et
al. (2016) to show asymptotic normality of (11) and, more broadly, that build on assump-
tions often made in the literature on semiparametric efficiency (Bickel et al. (1998), Chen,
Hong, and Tarozzi (2008), Hahn (1998), Newey (1994), Robins and Rotnitzky (1995)).

As in the recent work of Chernozhukov et al. (2018) on double machine learning or
that of van der Laan and Rose (2011) on targeted learning, we take an agnostic view
on how the nuisance estimates ĝ(·) and m̂(·) are obtained, and simply impose high
level conditions on their rates of convergence. Given sufficient regularity, we can con-
struct estimators that satisfy the rate condition (13) via, for example, sieve-based meth-
ods (Chen (2007)) or kernel regression (Caponnetto and De Vito (2007)). Moreover, in
applications, we may want to consider several different machine learning methods for
each component, or potentially combinations thereof, and then use cross-validation to
choose which method to use. For completeness, we allow problem specific quantities to
change with the sample size n, and track this dependence with a subscript n, for example,
mn(x�w)= En[Yi(w)|Xi = x], etc.

ASSUMPTION 2: In the setting of Assumption 1, assume that second moments are con-
trolled as En[m2

n(Xi�Wi)], En[τ2
mn
(Xi�Wi)] < ∞ and En[g2

n(Xi�Zi)] < ∞ for all n =
1�2� � � �, and that we have access to uniformly consistent estimators of these nuisance com-
ponents,

sup
x�w

{∣∣m̂n(x�w)−mn(x�w)
∣∣}� sup

x�w

{∣∣τm̂n(x�w)− τmn(x�w)
∣∣} →p 0�

sup
x�z

{∣∣ĝn(x� z)− gn(x� z)
∣∣} →p 0�

(12)

whose L2 errors decay as follows, for some 0 < ζm, ζg < 1 with ζm + ζg ≥ 1 and some
a(n)→ 0, where (X�W �Z) is taken to be an independent test example drawn from the same

7Our results do not depend on efficiency of (11); rather, we only use
√
n-consistency. In cases where (11) may

not be efficient, our regret bounds still hold verbatim; the only difference being that we can no longer interpret
the terms of the form E[�2

i ] appearing in the bound as related to the semiparametric efficient variance for θ.
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distribution as the training data:8

E
[(
m̂n(X�W )−mn(X�W )

)2]
�E

[(
τm̂n(X�W )− τmn(X�W )

)2] ≤ a(n)

nζm
�

E
[(
ĝn(X�Z)− gn(X�W )

)2] ≤ a(n)

nζg
�

(13)

We end this section by verifying that Assumption 1 in fact covers several settings of in-
terest, and is closely related to several standard approaches to semiparametric inference.
In cases with selection on observables, we do not need an instrument (or can simply set
Zi = Wi), so for simplicity of notation we replace all instances of Zi with Wi.

Binary Treatment With Selection on Observables. Most existing work on policy learn-
ing, including Kitagawa and Tetenov (2018), has focused on the setup where Wi is bi-
nary and unconfounded, that is, {Yi(0)�Yi(1)} ⊥⊥ Wi|Xi. In this case, weighting by the
inverse propensity score lets us recover the average treatment effect, that is, g(x�w) =
(w − e(x))/(e(x)(1 − e(x))) with e(x) = P[Wi = 1|Xi = x] identifies the conditional av-
erage treatment effect τm(x) = m(x�1) − m(x�0) via (10). The estimation strategy (11)
yields

θ̂ = 1
n

n∑

i=1

(m̂(Xi�1)− m̂(Xi�0)+ Wi − ê(Xi)

ê(Xi)
(
1 − ê(Xi)

(
Yi − m̂(Xi�Wi)

))
� (14)

and recovers augmented inverse propensity weighting (Robins, Rotnitzky, and Zhao
(1994)).

Continuous Treatment With Selection on Observables. In the case where Wi is continu-
ous and unconfounded {Yi(w)} ⊥⊥ Wi|Xi, we can derive a representer g(·) via integration
by parts (Powell, Stock, and Stoker (1989)). Under regularity conditions, the τ-function
τm(x�w)= [d/dνm(x�w + ν)]ν=0 can be identified via (10) using

∫ ∫
d

dw

[
m(Xi�Wi)

]
w=W

dFWi|Xi
dFXi

=
∫ ∫

g(Xi�Wi)m(Xi�Wi)dFWi|Xi
dFXi

�

g(Xi�Wi)= − d

dw

[
log

(
f (w|Xi)

)]
w=Wi

�

(15)

where f (·|x) denotes the conditional density of Wi given Xi = x. The resulting doubly
robust estimator was to our knowledge first derived via the general approach of Cher-
nozhukov et al. (2016), which in turn is closely related to an approach proposed by Ai and
Chen (2007).

8A notable special case of this assumption is when ζm = ζg = 1/2; this is equivalent to the standard as-
sumption in the semiparametric estimation literature that all nuisance components (i.e., in our case, both the
outcome and weighting regressions) are o(n−1/4)-consistent in terms of L2-error. The weaker requirement
(13) reflects the fact that doubly robust treatment effect estimators can trade-off accuracy of the m-model with
accuracy of the g-model, provided the product of the error rates is controlled (Farrell (2015)).
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Binary, Endogenous Treatment With Binary Treatment and Instrument. Instead of un-
confoundedness, now suppose that Zi is a valid instrument conditionally on features Xi

in the sense of Assumption 2.1 of Abadie (2003). Suppose moreover that treatment ef-
fects are homogenous, meaning that the conditional average treatment effect matches the
conditional local average treatment effect (Imbens and Angrist (1994)),9

τm(x)=m(x�1)−m(x�0)= Cov[Yi�Zi|Xi = x]
Cov[Wi�Zi|Xi = x] � (16)

Then we can use a weighting function g(·) defined in terms of the compliance score
(Abadie (2003), Aronow and Carnegie (2013)),

g(Xi�Zi)= 1
�(Xi)

Zi − z(Xi)

z(Xi)(1 − z(Xi)
�

z(x) = P[Zi = 1|Xi = x]�
�(x) = P[Wi = 1|Zi = 1�Xi = x] − P[Wi = 1|Zi = 0�Xi = x]�

(17)

to identify this τ-function using (10). We note that our formal results all require that g(·)
be bounded, which implicitly rules out the case of weak instruments (since if � approaches
0, the g(·)-weights blow up).

2.2. Assumptions About the Policy Class

Next, in order to obtain regret bounds that decay as 1/
√
n, we need some control over

the complexity of the class Π (and again let Π potentially change with n for generality).
The Vapnik–Chervonenkis (VC) approach (Vapnik (2000)) presents us with a natural way
to do so. Recall that the VC-dimension of a class Π of binary decision rules is the largest
value of d ∈N such that there exists a set of d points x1� � � � � xd ∈X that is “shattered” by
Π in the following sense: For each 2d of the binary vectors v ∈ {0�1}d , there exists a policy
πv ∈ Π such that πv(Xi) = vi for all i = 1� � � � � d. Throughout our analysis, we control
the complexity of Πn by assuming that its VC-dimension does not grow too fast with the
sample size n. As is familiar from the literature on classification, we will find that the best
possible uniform regret bounds scale as

√
VC(Πn)/n (Vapnik (2000)).

ASSUMPTION 3: We assume that there are constants 0 <β< 1/2 and N ≥ 1 such that the
Vapnik–Chervonenkis dimension of Πn is bounded as VC(Πn)≤ nβ for all n ≥N .

In order to illustrate this assumption, we give two examples of policy classes that have a
finite VC dimension, and one that does not. In all three examples below, we assume that
the features Xi take values in X = R

p for some p ≥ 1.

Linear Rules. The VC-dimension of the class of linear decision rules is (Wainwright
(2019, p. 116)) VC(Π) = p + 1 for Π = {πv�c : πv�c(x) = 1({v · x ≥ c})� v ∈ R

p� c ∈ R}.
Thus, our approach applies to linear decision rules in dimension pn ≤ nβ for some β <
1/2.

9As discussed above, our notation has potential outcomes Yi(Wi) that only depend on treatment Wi , and do
not involve the instrument Zi . This is only meaningful when the exclusion restriction holds.
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Decision Trees. Trees represent decision rules recursively (Breiman, Friedman, Ol-
shen, and Stone (1984)). A depth-0 decision tree T0 is a trivial decision rule, T0(x) = a
for some a ∈ {0�1} and all x ∈ X . For any L ≥ 1, a depth-L decision tree TL is specified
via a splitting variable j ∈ 1� � � � �p, a threshold t ∈ R, and two depth-(L − 1) decision
trees T(L−1)�A and T(L−1)�B, such that TL(x) = T(L−1)�A(x) if xj ≤ t, and T(x) = T(L−1)�B(x)
else. See Figure 1 for an example of a decision tree. The class of depth-L decision trees
over Rp has VC dimension bounded on the order of VC(Π) = Õ(2L log(p)).10 Thus, our
results apply to trees whose depth may grow as Ln = 
κ log2(n)� for some κ < 1/2.

Monotone Rules. We have x ∈ [0�1]2 and units get treated if x2 exceeds some increas-
ing function of x1, that is, Π = {πf : πf (x) = 1({x2 ≥ f (x1)})� f is monotone increasing}.
This class has infinite VC dimension, because any set of points {xi}di=1 with xi = (αi�α

2
i )

and 0 < α1 < · · · < αd < 1 can be shattered using Π. Thus, our results do not apply to
monotone rules over [0�1]2.11

2.3. Bounding Asymptotic Regret

We are now ready to state our main result on the asymptotic regret of policy learning
using doubly robust scores. Following Chernozhukov et al. (2018, 2016), we assume that
we run our method with scores obtained via cross-fitting, which is a type of data splitting
that can be used to verify asymptotic normality given only high-level conditions on the
predictive accuracy of the methods used to estimate nuisance components. In particular,
cross-fitting allows for the use of black-box machine learning tools provided we can verify
that they are accurate in mean-squared error as in Assumption 2.

We proceed as follows: First, divide the data into K evenly-sized folds and, for each
fold k = 1� � � � �K, run an estimator of our choice on the other K − 1 data folds to esti-
mate the functions mn(x�w) and gn(x� z); denote the resulting estimates m̂(−k)

n (x�w) and
ĝ(−k)
n (x� z). Throughout, we will only assume that these nuisance estimates are accurate

in the sense of Assumption 2. Then, given these precomputed values, we choose π̂n by
maximizing a doubly robust estimate of A(π)= 2V (π)−E[τ(Xi)],

π̂n = argmax
{
Ân(π) : π ∈ Πn

}
�

Ân(π) = 1
n

n∑

i=1

(
2π(Xi)− 1

)̂
�i�

�̂i = τ
m̂
(−k(i))
n

(Xi�Wi)+ ĝ(−k(i))
n (Xi�Zi)

(
Yi − m̂(−k(i))

n (Xi�Wi)
)
�

(18)

10This bound follows Lemma 4 of Zhou, Athey, and Wager (2018), paired with the alternative characteri-
zation of the VC dimension given in Section A of the Supplemental Material (Athey and Wager (2021)). The
notation f (n) = Õ(g(n)) means that there is a function h(·) that scales polylogarithmically in its argument for
which f (n) ≤ h(g(n))g(n).

11The difficulty here is not a mere technicality: Monotone decision rules can match arbitrary decision rules
along the curve (α�α2) for α ∈ [0�1], and so it is impossible to establish any nontrivial learning rates over
monotone decision rules without making further assumptions on the distribution of the features Xi . In partic-
ular, we need assumptions that guarantee that all observations cannot concentrate around the curve (α�α2).
In this paper, we do not consider results that require specific distributional assumptions over the features Xi .
We note however the recent work by Mbakop and Tabord-Meehan (2016), who establish polynomial rates
of convergence for learning monotone rules under an assumption that the Xi have a bounded density under
Lebesgue measure on [0�1]2.
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where k(i) ∈ {1� � � � �K} denotes the fold containing the ith observation. The K-fold algo-
rithmic structure used in (18) was proposed in an early paper by Schick (1986) as a general
purpose tool for efficient estimation in semiparametric models, and has also been used by
other authors including Robins, Li, Mukherjee, Tchetgen, and van der Vaart (2017) and
Zheng and van der Laan (2011).

Finally, we assume that the weighting function gn(x� z) is bounded uniformly as below.
In the case of a binary exogenous treatment, this is equivalent to the “overlap” assumption
in the causal inference literature (Imbens and Rubin (2015)), whereby η≤ P[Wi = 1|Xi =
x] ≤ 1 − η for all values of x. In our setting, the condition below acts as a generalization
of the overlap assumption (Hirshberg and Wager (2018)).

ASSUMPTION 4: There is an η> 0 such that |gn(x� z)| ≤ η−1 for all x�z�n.

We also define the following quantities, where Sn bounds the second moment of the
scores, and S∗

n is the asymptotic variance for estimating the policy improvement A(π) of
the best policy in Πn via (11):12

Sn = E
[(
τmn(Xi�Wi)− gn(Xi�Zi)

(
Yi −mn(Xi�Wi)

))2]
�

S∗
n = inf

{
Var

[(
2π(Xi)− 1

)(
τmn(Xi�Wi)− gn(Xi�Zi)

(
Yi −mn(Xi�Wi)

))]

: π ∈Πn

}
�

(19)

We note that, unless we have an exceptionally large signal-to-noise ratio, we will have
S∗
n ≥ Sn/4 and so the rounded log-term in (20) below is just 0. A proof of Theorem 1 is

given in the following section.

THEOREM 1: Given Assumptions 1, 2, and 4, define π̂n as in (18).13 Suppose moreover
that the irreducible noise εi = Yi − m(Xi�Wi) is both uniformly sub-Gaussian conditionally
on Xi and Wi and has second moments uniformly bounded from below, Var[εi|Xi = x�Wi =
w] ≥ s2, and that the treatment effect function τmn(x�w) is uniformly bounded in x, w, and n.
Finally, suppose that Πn satisfies Assumption 3 with parameter β ≤ min{ζm� ζg}, where the ζ
are as defined in Assumption 2. Then, for any sequence ψn ≥ 0 with limn→∞ ψn

√
n = 0,

lim sup
n→∞

E
[
sup

{
Rn(π) : Ân(π) ≥ max

{
Ân(π) : π ∈ Πn

}
−ψn�π ∈ Πn

}]

/√
VC(Πn)S∗

n

(
1 +

⌊
log4

(
Sn

S∗
n

)⌋
/9

)
/n ≤ 60� (20)

where Rn(·) denotes regret for the nth data-generating distribution.

In the simplest case where the maximizer of Ân(π) over π ∈ Πn is unique and ψn = 0
(i.e., we solve the maximization problem exactly), the statement in (20) simplifies to a

12By expanding the square, we see that policies with higher values have lower variance of their scores,
and so S∗

n corresponds to the asymptotic variance for evaluating an optimal policy. Moreover, in the case
where arguments from Newey (1994) imply that the doubly robust estimator (11) is efficient, then S∗

n is the
semiparametric efficient variance for evaluating an optimal policy.

13We assume that the rates of convergence specified in Assumption 2 apply to the nuisance components
estimated for each fold k = 1� � � � �K in (18).
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bound on E[Rn(π̂n)], where π̂n is as defined in (18). However, in practice, Ân(π) may
have many maximizers. Moreover, the optimization problem (18) is not convex and so—
given a reasonable computational budget—we may only be able to solve it to within some
tolerance ψn > 0. The more comprehensive form of our result given above highlights the
fact that, in this case, our regret bound in fact applies uniformly over all approximate
solutions to (18).

3. UPPER BOUNDS

In this section, we present a series of results that culminate in a proof of Theo-
rem 1, given in Section 3.3. All other proofs are deferred to Section C of the Online
Supplemental Material (Athey and Wager (2021)). Recall that we study policy learn-
ing for a class of problems where regret can be written as in (6) using a function
Vn(π) = En[π(Xi)τn(Xi)], and we obtain π̂n by maximizing a cross-fitted doubly robust
estimate of An(π) = 2Vn(π) − En[τn(Xi)] defined in (18) over the class Πn. If we could
use Ân(π) = An(π), then (18) would directly yield the regret-minimizing policy in the
class Πn; but of course we never know An(π) in applications. Thus, the main focus of our
formal results is to study stochastic fluctuations of the empirical process Ân(π)−An(π)
for π ∈Πn, and examine how they affect the quality of policies learned via (18).

3.1. Rademacher Complexities and Oracle Regret Bounds

We start our analysis by characterizing concentration of an ideal version of the objective
in (18) based on the true influence scores �i, rather than doubly robust estimates thereof:

Ãn(π) = 1
n

n∑

i=1

(
2π(Xi)− 1

)
�i�

�i = τmn(Xi�Wi)+ gn(Xi�Zi)
(
Yi −mn(Xi�Wi)

)
�

(21)

The advantage of studying concentration of the empirical process Ãn(π) − An(π) over
the set π ∈ Πn is that it allows us, for the time being, to abstract away from the esti-
mation tools used to obtain Ân(π), and instead to focus on the complexity of empirical
maximization over the class Πn.

A convenient way to bound the supremum of this empirical process over any class Π is
by controlling its Rademacher complexity Rn(Π), defined as14

Rn(Π)= E

[
sup
π∈Π

{
1
n

n∑

i=1

ξi�i

(
2π(Xi)− 1

)
}∣∣∣{Xi��i}ni=1

]
(22)

where the ξi are independent Rademacher (i.e., sign) random variables ξi = ±1
with probability 1/2 each (Bartlett and Mendelson (2002)). For intuition as to why
Rademacher complexity is a natural complexity measure, note that Rn(Π) characterizes
the maximum (weighted) in-sample classification accuracy on randomly generated labels
ξi over classifiers π ∈Π; thus, Rn(Π) measures how much we can overfit to random coin
flips using Π.

14Note that, conditionally on {Xi��i}ni=1 and the Rademacher variables ξi, the sum
∑n

i=1 ξi�i(2π(Xi) − 1)
can only take 2n distinct values. Thus, the definition of Rn(Π) does not entail any measure theoretic problems.
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Following this proof strategy, we bound the Rademacher complexity of “slices” of our
policy class Πn, defined as

Πλ
n =

{
π ∈ Πn :Rn(π)≤ λ

}
� (23)

The reason we focus on slices of Πn is that, when we use doubly robust scores, low-regret
policies can generally be evaluated more accurately than high-regret policies, and using
this fact allows for sharper bounds. Specifically, we can check that nVar[Ãn(π)] = Sn −
A2

n(π), and so

n sup
{
Var

[
Ãn(π)

]
: π ∈Πλ

n

}
:= Sλ

n ≤ S∗
n + 4λ sup

{
An(π) : π ∈Πn

}
� (24)

where Sn and S∗
n are defined in (19). This type of slicing technique is common in the

literature, and has been used in different contexts by, for example, Bartlett, Bousquet,
and Mendelson (2005) and Giné and Koltchinskii (2006).

The following result provides such a bound in terms of the second moments of the dou-
bly robust score, specifically Sλ

n and Sn. This bound is substantially stronger than corre-
sponding bounds used in existing results on policy learning. Kitagawa and Tetenov (2018)
built their result on bounds that depend on max{�i}/

√
n, which can only be used with

scores that are uniformly bounded in order to get optimal rates. Meanwhile, bounds that
scale as

√
Sλ
n log(n)/n are developed by Cortes, Mansour, and Mohri (2010), Maurer and

Pontil (2009), and Swaminathan and Joachims (2015); however, the additional log(n) fac-
tor makes these bounds inappropriate for asymptotic analysis.

LEMMA 2: Suppose that the class Πn satisfies Assumption 3, and that the scores �i in (21)
are drawn from a sequence of uniformly sub-Gaussian distributions with variance bounded
from below:

Pn

[
|�i|> t

]
≤ Cνe

−νt2 for all t > 0� Varn[�i|Xi = x] ≥ s2� (25)

for some constants Cν� ν� s > 0 and all n = 1�2� � � � Then, for any λ,

lim sup
n→∞

E
[
Rn

(
Πλ

n

)]/
√

(
Sλ
n + 4λ2

)(
1 +

⌊
log4

(
Sn

Sλ
n

)⌋
/9

)
VC(Πn)

n
≤ 20� (26)

Then, following the well-known approach of Bartlett and Mendelson (2002), we use our
bound on Rademacher complexity to obtain a uniform concentration bound for Ãn(π).
We use a refinement of the argument of Bartlett and Mendelson (2002) based on Ta-
lagrand’s inequality to get a bound that depends on second moments of �i rather than
sup|�i|.

COROLLARY 3: Under the conditions of Lemma 2, the expected maximum error of Ãn(π)
is bounded as

lim sup
n→∞

E
[
sup

{∣∣Ãn(π)−An(π)
∣∣ : π ∈Πλ

n

}]

/√
(
Sλ
n + 4λ2

)(
1 +

⌊
log4

(
Sn

Sλ
n

)⌋
/9

)
VC(Πn)

n
≤ 40� (27)
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Furthermore, this error is concentrated around its expectation: There is a sequence cn → 0
such that, for any δ > 0,

sup
{∣∣Ãn(π)−An(π)

∣∣ : π ∈Πλ
n

}

≤ (1 + cn)

(
E
[
sup

{∣∣Ãn(π)−An(π)
∣∣ : π ∈ Πλ

n

}]
+

√
2Sλ

n log
(
δ−1

)

n

)
(28)

with probability at least 1 − δ.

In our final argument, we will apply Corollary 3 for different λ-slices, and verify that we
can in fact focus on those slices where λ is nearly 0. Before that, however, we also need
to control the discrepancy between the feasible objective Ân(π) and the oracle surrogate
Ãn(π) studied here.

3.2. Uniform Coupling With the Doubly Robust Estimator

In the previous section, we established risk bounds that would hold if we could optimize
the infeasible value function Ãn(π); we next need to extend these bounds to cover the
situation where we optimize a feasible value function. As discussed above, we focus on
the doubly robust estimator (18), obtained using cross-fitting as in Chernozhukov et al.
(2018, 2016). As preliminaries, we note that the results of Chernozhukov et al. (2016)
immediately imply that, given Assumption 2, Ân(1) is an asymptotically normal estimate
of An(1), where we use “1” as shorthand for the “always treat” policy. Furthermore, it is
easy to check that given any fixed policy π,

√
n
(
Ân(π)− Ãn(π)

)
→p 0� (29)

meaning that the discrepancy between the two value estimates decays faster than the
variance of either.

However, in our setting, the analyst gets to optimize over all policies π ∈ Πn, and so
coupling results established for a single predetermined policy π are not strong enough.
The following lemma extends the work of Chernozhukov et al. (2016) to the case where
we seek to establish a coupling of the form (29) that holds simultaneously for all π ∈Πn.

LEMMA 4: Under the conditions of Lemma 2, suppose that Assumptions 1 and 4 hold,
and that we obtain Ân(π) using cross-fitted estimates of nuisance components satisfying As-
sumption 2. Then

√
nE

[
sup

{∣∣Ân(π)− Ãn(π)
∣∣ : π ∈Πn

}]

a
((

1 −K−1
)
n
) =O

(
1 +

√
VC(Πn)

nmin{ζm�ζg}

)
� (30)

where the O(·) term hides a dependence on the overlap parameter η from Assumption 4 and
the sub-Gaussianity parameter ν specified in Lemma 2.

The above result is perhaps surprisingly strong: Provided that the dimension VC(Πn)
of Πn does not grow too fast with n, the bound (30) is the same coupling bound as we
might expect to obtain for a single policy π, and the dimension of the class Πn does not
affect the leading-order constants in the bound. In other words, in terms of the coupling
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of Ãn(π) and Ân(π), we do not lose anything by scanning over a continuum of policies
π ∈ Πn rather than just considering a single policy π.

The doubly robust form used here is not the only way to construct efficient estima-
tors for the value of a single policy π, for example, Hirano, Imbens, and Ridder (2003)
showed that inverse-propensity weighting with nonparametrically estimated propensity
scores may also be efficient—but it plays a key role in the proof of Lemma 4. In particu-
lar, under Assumption 2, the natural bound for the bias term due to misspecification of
the nuisance components in fact holds simultaneously for all π ∈Π, and this helps us pay
a smaller-than-expected price for seeking a uniform result as in (30). It is far from obvious
that other efficient methods for evaluating a single policy π, such as that of Hirano, Im-
bens, and Ridder (2003), would lead to equally strong uniform couplings over the whole
class Πn.

3.3. Proof of Theorem 1

Given that Assumptions 1, 2, 3, and 4 hold with parameters β < min{ζm� ζg}, a combi-
nation of results from Corollary 3 and Lemma 4 implies that Ân(·) concentrates around
An(·) over Πλ

n . To conclude, it now remains to apply these bounds at two different values
of λ. First, we choose λ∗ > 0 such as to satisfy 4(λ∗)2 + 4λ∗ sup{A(π) : π ∈ Πn} ≤ S∗

n, so
that the following holds via (24):

Sλ∗
n + 4

(
λ∗)2 ≤ S∗

n + 4
(
λ∗)2 + 4λ∗ sup

{
A(π) : π ∈ Πn

}
≤ 2S∗

n�

Then, by Corollary 3 and Lemma 4, we find that the limsup of the following expression is
bounded by 1 as n goes to infinity:

E
[
sup

{∣∣Ân(π)−An(π)
∣∣ : π ∈Πλ∗

n

}]/(
60

√
S∗
n

(
1 +

⌊
log4

(
Sn

S∗
n

)⌋
/9

)
VC(Πn)

n

)
�

Now, recall that if any two functions h(·) and ĥ(·) are uniformly coupled as |h(u) −
ĥ(u)| ≤ b for all u ∈U and ĥ(û)≥ sup{ĥ(u) : u ∈ U} −ψ, then

h(û)≥ ĥ(û)− b≥ ĥ(u)− b−ψ≥ h(u)− 2b−ψ

for any u ∈U . Thus, the above implies that (recall that An(π) scales with 2Rn(π))

lim sup
n→∞

E
[
sup

{
Rn(π) : Ân(π)≥ max

{
Ân(π) : π ∈Πλ∗

n

}
−ψn�π ∈ Πλ∗

n

}]

/(
ψn

2
+ 60

√
S∗
n

(
1 +

⌊
log4

(
Sn

S∗
n

)⌋
/9

)
VC(Πn)

n

)
≤ 1� (31)

and we note that ψn decays fast enough by assumption that it can be omitted from (31)
without altering the result. In other words, if we knew that our learned policy approx-
imately maximizes Ân(π) and has regret less than λ∗, then we could guarantee that its
regret decays at the desired rate.

To prove our result, it remains to show that all approximate maximizers of Ân(·) have
regret bounded by λ∗ enough for (31) to capture the leading-order behavior of regret.
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To do so, we apply a similar argument as above, but at a different value of λ. Consider
λ+ = 3 lim supn→∞ sup{Rn(π) : π ∈ Πn}, and by (28) we see that

lim
n→∞

√
nP

[
sup

{∣∣Ãn(π)−An(π)
∣∣ : π ∈ Πλ+

n

}
≥ λ∗

5

]
= 0� (32)

Furthermore, note that Πλ+
n = Πn for large enough n, and so (32) in fact also holds with

Πλ+
n replaced by Πn. Meanwhile, from (30) paired with Markov’s inequality we know that

P

[
sup

{∣∣Ân(π)− Ãn(π)
∣∣ : π ∈ Πn

}
≥ λ∗

5

]
=O

(
a
((

1 −K−1
)
n
)

√
n

)
� (33)

By combining these two bounds, we see that

lim
n→∞

√
nP

[{
π ∈ Πn : Ân(π) ≥ max

{
Ân(π) : π ∈ Πn

}
−ψn

}

∩
{
π ∈ Πn :Rn(π) ≥ λ∗} �= ∅

]
= 0� (34)

and moreover, because τmn(x�w) is uniformly bounded, we find that the contribution of
events where (34) fails to hold to (20) is vanishingly small as n gets large.

4. LOWER BOUNDS

To complement the upper bounds given in Theorem 1, we also present lower bounds
on the minimax risk for policy learning. Our goal is to show that our bounds are the best
possible regret bounds that flexibly account for the distribution of the observed data and
depend on the policy class Π through the Vapnik–Chervonenkis dimension VC(Π). For
simplicity, we here only consider the case where Wi is binary and unconfounded; lower
bounds for other cases considered in this paper can be derived via analogous arguments.

To establish our result, we consider lower bounds over sequences of problems defined
as follows. Let Xs := [0�1]s denote the s-dimensional unit cube for some positive integer
s, and let f (x) and e(x) be �s/2 + 1� times continuously differentiable functions over Xs .
Moreover, let σ2(x) and τ(x) be functions on Xs such that σ2(x) is bounded away from 0
and ∞, and |τ(x)| is bounded away from ∞. Then we define an asymptotically ambiguous
problem sequence as one where {Xi�Yi�Wi} are independently and identically distributed
drawn as

Xi ∼P�Wi|Xi ∼ Bernoulli
(
e(Xi)

)
�

Yi|Xi�Wi ∼N

(
f (Xi)+

(
Wi − e(Xi)

)τ(Xi)√
n

�σ2(Xi)

)
�

(35)

Because of the number of derivatives assumed on f (x) and e(x), it is well known that
simple series estimators satisfy Assumption 2.15 Thus, because the magnitude of the treat-

15See Nickl and Pötscher (2007) for an argument that holds for arbitrary distributions P supported on [0�1]s .
We also note that, for a complete argument, one needs to address the fact that we have not assumed the treat-
ment effect function τ(x) to be differentiable. To address this issue, note that in our data-generating process
(35) we have E[Yi|Xi = x] = f (x) regardless of n. Thus, because both e(x) and f (x) are sufficiently differen-
tiable, we can use standard results about series estimation to obtain oP(n

−1/4)-consistent estimators ê(x) and
f̂ (x) for these quantities. Next, for the purpose of our policy learner, we simply set m̂(x�0) = m̂(x�1) = f̂ (x);
and because E[τ2(Xi)/

√
n] = O(1/n), these regression adjustments in fact satisfy Assumption 2.
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ment effects shrinks in (35), S∗
n and Sn both converge to SP as defined below, and so

Theorem 1 immediately implies that, under unconfoundedness,

lim sup
n→∞

Rn(π̂n)/

√
SP VC(Π)

n
≤ 60� SP = EP

[
σ2(Xi)

e(Xi)
(
1 − e(Xi)

)
]

(36)

for any policy class Π with finite VC dimension. The following result shows that (36) is
sharp up to a universal constant (whose value is less than 200).16

THEOREM 5: Let f (x), e(x), and σ(x) be functions over Xs satisfying the conditions
discussed above, and let Π be a class of functions over Xs with finite VC dimension. Then
there exists a distribution P supported on [0�1]s (and a constant C) such that the minimax
risk for policy learning over the data generating distribution (35) (with unknown |τ(x)| ≤ C)
and the policy class Π is bounded from below as follows, where π̂n can be any measurable
function of the training sample:

lim inf
n→∞

{√
n inf

π̂n

{
sup

|τ(x)|≤C

{
E
[
Rn(π̂n)

]}}}
≥ 0�33

√
SP VC(Π)� (37)

Here, the fact that we focus on problems where the magnitude of the treatment effect
scales as 1/

√
n is important, and closely mirrors the type of asymptotics used by Hirano

and Porter (2009). If treatment effects decay faster than 1/
√
n, then learning better-than-

random policies is effectively impossible—but this does not matter, because of course all
decision rules have regret decaying as o(1/

√
n) and so Theorem 1 is loose. Conversely, if

treatment effects dominate the 1/
√
n scale, then in large samples it is all but obvious who

should be treated and who should not, and it is possible to get regret bounds that decay at
superefficient rates (Luedtke and Chambaz (2020)), again making Theorem 1 loose. But
if the treatment effects obey the Θ(1/

√
n) scaling of Hirano and Porter (2009), then the

problem of learning good policies is neither trivial nor impossible, and the value of using
doubly robust policy evaluation for policy learning becomes apparent.

Finally, we note that the bounds of Kitagawa and Tetenov (2018) for inverse-propensity
weighting are not asymptotically sharp in the above sense. Even when propensity scores
are known, Kitagawa and Tetenov (2018) assumed that |Yi| ≤ M and η ≤ e(Xi) ≤ 1 − η,
and then prove regret bounds that scale as M/η

√
VC(Π)/n instead of

√
SP VC(Π)/n

in (36). Now, the bound of Kitagawa and Tetenov (2018) is of course sometimes sharp,
for example, it is optimal if all we know is that |Yi| ≤ M and η ≤ e(Xi) ≤ 1 − η, but it is
not adaptively sharp for asymptotically ambiguous sequences of problems as in (35). In
particular, the ratio of the upper bound of Kitagawa and Tetenov (2018) and the lower
bound (37) scales as M/(η

√
SP), and there exist sequences of type (35) where this ratio

may be arbitrarily large.17

16The strategy of proving lower bounds relative to an adversarial feature distribution P is standard in the
machine learning literature; see, for example, Devroye and Lugosi (1995). If we fix the distribution P a priori,
then regret bounds for empirical risk minimization over Π based on structural summaries of Π (such as the
VC dimension) may be loose (Bartlett and Mendelson (2006)); however, it is not clear how to exploit this fact
other than by conducting ad-hoc analyses for specific choices of Π.

17Using the techniques developed in this paper, we can sharpen the bounds of Kitagawa and Tetenov (2018)
and asymptotically replace M/η by E[Y 2

i /(e(Xi)(1 − e(Xi)))]1/2. However, even this improved bound may
exceed (37) by an arbitrarily large factor.
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5. IMPLEMENTATION AND EXPERIMENTS

We now illustrate the value of doubly robust scoring techniques for policy learning us-
ing both an example from program evaluation and simulation studies. In Section 5.1, we
revisit a randomized evaluation of California’s GAIN program, while Section 5.2 presents
a simulation study with endogenous treatment assignment. We present additional simula-
tion results on nudge interventions to a continuous treatment variable in Section B of the
Online Supplemental Material.

Recall that our approach to policy involves a 3-step algorithm. We start with a set of n
independent and identically distributed training examples (Xi�Yi�Wi�Zi) and a class Π
of acceptable policies. Then we:

1. Estimate the nuisance components m(x�w) and g(x� z) defined in Section 2.1,
2. Form doubly robust scores18 �̂i = τm̂(Xi�Wi)+ ĝ(Xi�Zi)(Yi−m̂(Xi�Wi)), with cross-

fitting as discussed in Section 2.3, and
3. Select π̂ ∈ argmax{

∑n

i=1(2π(Xi)− 1)̂�i : π ∈ Π}.
The main points of freedom left to the analysts involve the choice of estimator for m(·)
and g(·) in Step 1, and the implementation of the optimization problem in Step 3. We
emphasize that the choice of estimator for m(x�w) and g(x� z) in Step 1 and the choice
of policy class Π along with the optimizer used in Step 3 can be made fully independently.

For Theorem 1 to apply, the main requirement on the method used to estimate m(x�w)
and g(x� z) in Step 1 is that its error decays fast enough in mean-squared error, as de-
tailed in Assumption 2. Here, one option is to use nonparametric estimators for which
we can precisely spell out when they satisfy Assumption 2, such as sieve-based methods
(Chen (2007)) or kernel regression (Caponnetto and De Vito (2007)); another is to use
more heuristic methods from the statistical learning literature, such as boosting, random
forests, or neural networks, in the hope that they will empirically be more accurate in
finite samples than sieve or kernel-based methods.19 One possible compromise is to run
both classical methods known to satisfy Assumption 2 asymptotically and heuristic statis-
tical learning tools, and then synthesize the output of all models via cross-validation. As
argued in van der Laan, Polley, and Hubbard (2007), this approach essentially matches
the finite-sample accuracy of the best method under consideration while preserving the
asymptotic guarantees of the classical ones.

Meanwhile, the optimization problem in Step 3 is not a convex optimization problem,
and so solving it can be computationally challenging. Several authors, including Beygelz-
imer and Langford (2009), Kitagawa and Tetenov (2018), Zhang et al. (2012) and Zhao
et al. (2012), have noted that this optimization problem is numerically equivalent to a
weighted classification problem,

π̂ = argmax
π∈Π

{
1
n

n∑

i=1

λiHi

(
2π(Xi)− 1

)
}
� λi = |̂�i|� Hi = sign(̂�i)� (38)

where we train a classifier π(·) with response Hi using sample weights λi. Given this
formalism, we can build on existing tools for weighted classification to learn π̂; see Zhou,

18Recall that τm(·) does not depend on w in the case of binary treatments, and we omit the redundant
argument in this case.

19In a recent advance, Farrell, Liang, and Misra (2020) established conditions under which deep neural
networks can be shown to provably satisfy the conditions required by Assumption 2. Thus, depending on the
statistical setting and the chosen architecture, deep neural networks could either be seen as a formally validated
alternative to sieve-type methods or as heuristic method.
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Athey, and Wager (2018) for a further discussion.20 In all our experiments, we set Π to
be a class of finite-depth decision trees (see Section 2.2 for a definition), and solve the
optimization problem in Step 3 using our companion R-package policytree (Sverdrup,
Kanodia, Zhou, Athey, and Wager (2020), R Core Team (2019)); see Zhou, Athey, and
Wager (2018) for further details and motivation behind the computational strategy taken
in this package.

5.1. The California GAIN Program

The Greater Avenues for Independence (GAIN) program, started in 1986, is a welfare-
to-work program that provides participants with a mix of educational resources and job
search assistance. Between 1988 and 1993, the Manpower Development Research Cor-
poration conducted a randomized study to evaluate the program. As described in Hotz,
Imbens, and Klerman (2006), randomly chosen registrants were eligible to receive GAIN
benefits immediately, whereas others were embargoed from the program until 1993. All
experimental subjects were followed for a 9-year post-randomization period and, as doc-
umented by Hotz, Imbens, and Klerman (2006), eligibility for GAIN had a significant
impact on mean quarterly income averaged over this 9-year period.

Our current question is whether we can find ways to prioritize treatment to some sub-
groups of GAIN registrants particularly likely to benefit from it. We consider data from
four counties, Alameda, Riverside, Los Angeles, and San Diego, resulting in n = 19�170
observations, and use p = 28 covariates, including demographics, education, and per-
quarter earnings for 10 quarters preceding treatment. As in Hotz, Imbens, and Klerman
(2006), we use average quarterly income over the 9-year post-randomization period (in
$1000s) as our outcome.

Each county participating in the GAIN evaluation conducted its own randomized con-
trolled trial, and the counties had considerable freedom in how they carried out the ran-
domization. In particular, counties had flexibility in choosing whom to enroll in the ran-
domized trial, and which fraction of participants to randomize into treatment. The data
reflects this heterogeneity in study specifications: The per-county average outcome for
controls varied from 0.64 to 1.04 thousand dollars per quarter, while the per-county frac-
tion of treated units varied from 0.50 to 0.86.

We use this dataset to design a semisynthetic observational study by pooling the data
from all four counties under consideration. Because the mean control outcome and treat-
ment fraction vary from county to county (and are in fact correlated), we expect that
an uncorrected analysis of the pooled data would suffer from confounding. In an at-
tempt to correct for the confounding that arises from pooling, we pursue a selection-
on-observables strategy, and assume that controlling for the p = 28 covariates described
above is enough to correct for the different study specifications used in different counties.

Our method starts by computing doubly robust scores for the treatment effect, and
learning policies by empirical maximization as in (2). We use the augmented inverse-
propensity weighted scores of Robins, Rotnitzky, and Zhao (1994), with nuisance com-
ponent estimates from generalized random forests (Athey, Tibshirani, and Wager (2019),

20Some popular approaches for solving problems of the form (38) include best-subset empirical risk mini-
mization (Chen and Lee (2018)) and optimal trees (Bertsimas and Dunn (2017)). Due to the computational
difficulty of solving the problem (38) exactly, it may also be of interest to consider the empirical performance of
alternative methods that solve an approximation to our weighted classification problem, for example, support
vector machines (Cortes and Vapnik (1995)) or recursive partitioning (Breiman et al. (1984)). However, we
caution that our formal results only apply to methods that solve the problem (38) exactly; see Wager (2019) for
further discussion.
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Breiman (2001)),21

π̂ = argmax

{
1
n

n∑

i=1

(
2π(Xi)− 1

)
(̂�i −C) : π ∈Π

}
� (39)

�̂i = τ̂(−i)(Xi)

+ Wi − ê(−i)(Xi)

ê(−i)(Xi)
(
1 − ê(−i)(Xi)

)
(
Yi − f̂ (−i)(Xi)−

(
Wi − ê(−i)(Xi)

)
τ̂(−i)(Xi)

)
� (40)

where f̂ (x) and ê(x) are random forest estimates of E[Yi|Xi = x] and E[Wi|Xi = x], re-
spectively, τ̂(·) is an causal forest22 estimate of the conditional average treatment effect,
and C is a parameter measuring the cost of treatment. Tuning parameters for all forests
were selected by leave-one-out cross-validation.23 Here, we set C = 0�14 to roughly match
the average treatment effect with the goal of ensuring that the optimal treatment rule is
not trivial (i.e., we can only achieve nonzero utility gains by exploiting treatment hetero-
geneity).

Before starting to optimize policies, we first run a brief sanity check on our selection-
on-observables strategy, and confirm the ability of estimators that build on this assump-
tion to accurately recover the average treatment effect we would get using a proper
randomization-based estimator that does not pool data across counties. The natural dou-
bly robust estimator of the average treatment effect in our setting is θ̂DR =

∑n

i=1 �̂i/n,
with scores �̂i as in (40). We compare it to a naive difference-in-means estimator θ̂DM =
avg{Yi :Wi = 1}−avg{Yi :Wi = 0} that does not attempt to correct for bias due to pooling,
and to an “oracle” doubly robust estimator that does not estimate propensity scores from
covariates but instead uses the true per-county treated fractions: θ̂∗

DR =
∑n

i=1 �̂
∗
i /n with

�̂∗
i = τ̂(−i)(Xi)+ Wi − ê∗

i

ê∗
i

(
1 − ê∗

i

)
(
Yi − f̂ (−i)(Xi)−

(
Wi − ê∗

i

)
τ̂(−i)(Xi)

)
�

ê∗
i =

n∑

j=1

Wj1
(
{Gj =Gi}

)/ n∑

j=1

1
(
{Gj =Gi}

)
�

(41)

21The one major deviation between how we compute scores below and the assumptions of Theorem 1 is that,
here, we use leave-one-out (or out-of-bag) estimates for τ(Xi), etc., whereas Theorem 1 assumed K-fold esti-
mation. The reason for this choice is that, as discussed in Breiman (2001), random forests are particularly well
suited for leave-one-out estimation, and allow the analyst to obtain such estimates at essentially no additional
computational cost.

22Random forests are a type of adaptive nearest neighbor estimator that use an ensemble of trees to define a
relevant neighborhood function for each query point; see Athey, Tibshirani, and Wager (2019) for a discussion.
Causal forests use the adaptive neighborhood function implied by a forest to fit a partially linear model using
the method of Robinson (1988); see Nie and Wager (2020) for formal results motivating the use of local
partially linear modeling for heterogeneous treatment effect estimation, and Section 1.3 of Athey and Wager
(2019) for a discussion of how this partially linear modeling is carried out in causal forests. We emphasize
that, for our purposes, random forests are simply used as a convenient nonparametric estimator of relevant
nuisance components, specifically f (x) and e(x) here, and could seamlessly be replaced with other methods
such as boosting or neural networks. The shape of the learned policy π̂ is determined in the optimization step
3, which only depends on the random forests through the predictions used to form doubly robust scores �̂i .

23The regression surfaces f̂ (x) and ê(x) were tuned to optimize mean-squared error. As advocated in Nie
and Wager (2020), the conditional average treatment effect function was tuned to optimize the error of a local
residual-on-residual regression.
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TABLE I

OUTCOME IS MEAN QUARTERLY INCOME (IN $1000) AVERAGED OVER 9 YEARS POST-INTERVENTION.
DIFFERENCES IN MEAN RESPONSES BETWEEN WHITE AND NONWHITE RESPONDENTS ARE BOTH

SIGNIFICANT AT THE 0�05 LEVEL USING A WELCH TWO-SAMPLE t-TEST

Nonwhite White

Fraction treated 76% 81%
Mean control outcome 0.79 0.90

where Gi ∈ {Alameda�Riverside�Los Angeles�San Diego} denotes the county-
membership of the ith sample. Because θ̂∗

DR uses the true per-county treatment frac-
tions ê∗

i and estimates nuisance components using cross-fitting, the point estimates will
be

√
n-consistent and the associated confidence intervals asymptotically valid essen-

tially without assumptions (Rothe (2018), Wager, Du, Taylor, and Tibshirani (2016)).
The resulting point estimates for the average treatment effect (±1 standard error) are:
θ̂DR = 0�141 ± 0�026 for the feasible doubly-robust estimator, θ̂∗

DR = 0�146 ± 0�028 for
the oracle doubly-robust estimator, and θ̂DM = 0�208 ± 0�028 for the naive difference in
means. Thus, it appears that pooling county information results in confounding, but that
controlling for available covariates helps.

We now move to learning a policy π̂. In doing so, however, we note that caution is
warranted because we have measured features pertaining to race, ethnicity, age, and gen-
der. On the one hand, there may be legal restrictions on the use of these features for
treatment allocation but, on the other hand, they appear to act as counfounders. For ex-
ample, as shown in Table I, white GAIN registrants were randomized to treatment at
higher rates than nonwhite registrants, and also white controls had higher outcomes than
nonwhite controls. Our approach allows us to seamlessly use such sensitive variables for
deconfounding without using them for policy allocation: We use these variables when esti-
mating the nuisance components in (40), but then omit them from the maximization step
(39) that produces the policy.

For our policy class Π, we consider decision trees of depth either 1 or 2. The learned
decision rules are shown in Figure 1. Interestingly, the depth-1 and 2 trees make the
same decisions for the roughly 3/4 of GAIN registrants who were paid 3 quarters prior to
randomization, but the depth-2 tree chooses to switch to a different rule for those who
were not paid 3 quarters prior.

In order to choose tree depth and, more broadly, to evaluate the accuracy of the policy
learning procedure, we recommend cross-validation. We randomly divide the data into K

FIGURE 1.—Example of optimal depth-1 and -2 policy trees learned by optimizing the augmented in-
verse-propensity weighting loss function.
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TABLE II

ESTIMATE OF THE UTILITY IMPROVEMENT OF VARIOUS POLICIES OVER A RANDOM ASSIGNMENT
BASELINE, ±1 STANDARD ERROR. THE PLUG-IN POLICY SIMPLY THRESHOLDS CAUSAL FOREST

PREDICTIONS AT τ̂(−i)(Xi) > C , THE INVERSE-PROPENSITY WEIGHTED TREES (IPW) ARE FOLLOWING
KITAGAWA AND TETENOV (2018), AND THE TREES SCORED VIA AUGMENTED INVERSE

PROPENSITY-WEIGHTING (AIPW) ARE INSTANCES OF THE METHOD STUDIED HERE. THE LEFT COLUMN
ESTIMATES IMPROVEMENT VIA (42), WHEREAS THE RIGHT COLUMN BRINGS IN COUNTY MEMBERSHIP

INFORMATION TO OBTAIN A RANDOMIZATION-BASED ESTIMATOR OF IMPROVEMENT (43)

Estimated Improvement

Method Fitted Propensities True Propensities

Plug-in 0�077 ± 0�026 0�063 ± 0�028
IPW depth 1 0�065 ± 0�026 0�048 ± 0�028
IPW depth 2 0�043 ± 0�026 0�029 ± 0�028
AIPW depth 1 0�068 ± 0�026 0�050 ± 0�028
AIPW depth 2 0�091 ± 0�026 0�080 ± 0�028

folds Sk, k = 1� � � � �K and, for each fold, learn a policy π̂(−k)(·) using all but the data in
Sk. Here, we use K = 10. Finally, we estimate improvement over a random baseline as

ÂCV = 1
n

K∑

k=1

∑

i∈Sk

(
2π̂(−k)(Xi)− 1

)̂
�i� (42)

Table II shows the estimated improvement of our depth-1 and -2 trees, as well as two
baselines: A variant of the inverse-propensity weighted method of Kitagawa and Tetenov
(2018) using the propensities used to construct (40), as well as a plug-in policy that does
not obey our functional form restriction, and simply treats all samples with τ̂(−i)(Xi) > C .
Our depth-2 trees achieve markedly better performance than the depth-1 trees. Interest-
ingly, the depth-2 tree is also competitive with the unconstrained plug-in estimator. Based
on this analysis, we prefer the depth-2 tree in Figure 1.

One potential concern with this analysis is that our evaluation hinges on validity of
the selection-on-observables assumption, as well as accuracy of the doubly robust scores
�̂i from (40). To assuage this concern, we also computed a version of the improvement
measure (42), but with scores �̂∗

i computed using the true per-county treatment fractions
as in (41):

Â∗
CV = 1

n

K∑

k=1

∑

i∈Sk

(
2π̂(−k)(Xi)− 1

)̂
�∗
i � (43)

As seen in the second rightmost column of Table II, our feasible evaluation discussed
above gave the correct ordering for the methods, but was somewhat optimistic in terms
of the quality of the learned policies. The formal properties of treatment rules whose
complexity is tuned via cross-validation are considered by Mbakop and Tabord-Meehan
(2016).24

24Recall that cross-validation is a means of evaluating the quality of the policy learning procedure, not the
decision that was produced by a specific realization of the procedure. If we want an accuracy assessment that
is valid conditionally on the learned rule π̂(·), one can either use a single test-train split, or use the more
sophisticated data carving approach of Fithian, Sun, and Taylor (2014).
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5.2. Simulation Study With Binary, Endogenous Treatments

In order to develop a richer quantitative understanding of the behavior of our method,
we now turn to a simulation study. Here, we consider a setting with a binary, endogenous
treatment Wi and a binary instrument Zi and assume homogeneity as in (16). In this case,
our method chooses the policy π̂ = argmax{ 1

n

∑n

i=1(2π(Xi)− 1)̂�i : π ∈ Π}, where �̂i is a
cross-fit doubly robust score with estimates of the compliance weights as in (17):

�̂i = τ̂(−i)(Xi)

+ ĝ(−i)(Xi�Zi)
(
Yi − f̂ (−i)(Xi)−

(
Wi − ê(−i)(Xi)

)
τ̂(−i)(Xi)

)
�

ĝ(−i)(Xi�Zi) = 1

�̂(−i)(Xi)

Zi − ẑ(−i)(Xi)

ẑ(−i)(Xi)
(
1 − ẑ(−i)(Xi)

) �

(44)

where �(x) = P[Wi = 1|Zi = 1�Xi = x]−P[Wi = 1|Zi = 0�Xi = x] is the conditional aver-
age effect of the instrument on the treatment, z(x) = P[Zi = 1|Xi = x], f (x) = E[Yi|Xi =
x], e(x) = P[Wi = 1|Xi = x], and τ(x) is the conditional average treatment effect as spec-
ified in (16). We estimate all nuisance components via random forest methods with the
package grf, and use an instrumental forest for τ(·), a causal forest for �(·), and a re-
gression forest for f (·), e(·) and z(·).

In this simulation experiment, we generate data independently as follows, for various
choices of n and τ(·):

X ∼N (0�I10×10)� Z|X ∼ Bernoulli
(
1/

(
1 + e−X3

))
�

ε|X�Z ∼N (0�1)� Q|X�Z�ε ∼ Bernoulli
(
1/

(
1 + e−ε−X4

))
�

W = Q∧Z� Y = (X3 +X4)+ +W τ(X)+ ε�

(45)

Note that W is in fact endogenous, because Q (and thus also W ) is more likely to be 1
when the noise term ε is large. Given this setup, we consider τ(·) functions

τ(x)=
(
(x1)+ + (x2)+ − 1

)
/2 and (46)

τ(x)= sign(x1x2)/2� (47)

In both cases, we learn π(·) over the class Π of depth-2 trees and note that best non-
parametric policy π∗(x) = 1({τ(x) > 0}) belongs to Π in case (47) but not in case (46).

In Figure 2, we display the improvement A(π)= E[(2π(Xi)− 1)τ(Xi)] of our learned
policies relative to a random assignment baseline, for different values of n. Overall, we see
that the regret of the learned policies improves with n, and approaches best-in-class regret
as n gets large. We also note an interesting difference in the behavior of the learned rules
in settings (46) and (47). In the first case, τ(·) is continuous, and regret improves smoothly
with sample size. Conversely, in the second case where τ(·) has sharp jumps, we observe
something of a phase transition between n = 2000 and n = 4000, as our trees become able
to consistently make splits that roughly match the jumps in τ(·).

6. DISCUSSION

In this paper, we proposed an approach to policy learning in the observational study
setting that builds on classical ideas for semiparametrically efficient treatment effect es-
timation. Our main result is that doubly robust estimators of average treatment effects
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FIGURE 2.—Distribution of the improvement A(π) = E[(2π(Xi) − 1)τ(Xi)] for policies learned by opti-
mizing the scores (44) over the class Π of depth-2 trees, for different values of sample size n. Each box plot
summarizes the distribution of A(π̂) over 200 simulation replications, while the solid line shows the average of
A(π̂). The lower horizontal line shows A(π) for the best policy that does not use the features Xi (i.e., either
always treat or never treat), and the upper horizontal line shows the supremum of A(π) over the class Π.

can be adapted for policy evaluation, and that the policy that maximizes the resulting
doubly robust value estimate over a prespecified class Π satisfies rate-optimal guarantees
for minimax regret. Our approach decouples estimation of nuisance components used for
the doubly robust scores from optimization of the doubly robust value function, and thus
allows practitioners flexibility in how they implement each step.

Our formal discussion focused on regret bounds for policy learning. A natural follow-
up question is to ask for confidence sets guaranteed to contain an optimal policy: For
example, if Π is the set of depth-L decision trees, can we identify a subset of Π guaranteed
to contain a value-maximizing policy in Π with high probability? Some early results in this
direction are reported by Rai (2018). Meanwhile, Armstrong and Shen (2013) considered
the related task of identifying a subset of the population we are confident will benefit from
the policy intervention.

Another natural direction to extend our results is toward dynamic decision making
problems, where the policy maker needs to make a sequence of decisions, potentially
depending on time-varying covariates. The problem of doubly robust policy evaluation
in this setting has been considered by Thomas and Brunskill (2016) and Zhang, Tsiatis,
Laber, and Davidian (2013). Nie, Brunskill, and Wager (2019) proposed a method for
learning observational stopping rules from observational data that is both computation-
ally feasible and robust to confounding. Obtaining a more comprehensive landscape of
the problem of dynamic policy learning in observational studies would be of considerable
interest.

Finally, all results presented here relied on point-identification of treatment effects,
either via a selection on observables assumption or via an instrument that satisfies condi-
tional homogeneity. Some applications, however, do not allow for such clean assumptions,
and thus call for methods for policy learning that are robust to failures of identifying as-
sumptions. Kallus and Zhou (2020) considered the problem of policy learning under an
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approximate selection-on-observables assumption in the sense of Rosenbaum (2002). It
would also be of interest to study what can be done if we only have access to a monotone
instrument, as in Manski and Pepper (2000).
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