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Summary

Flexible estimation of heterogeneous treatment effects lies at the heart of many statistical

applications, such as personalized medicine and optimal resource allocation. In this article we

develop a general class of two-step algorithms for heterogeneous treatment effect estimation

in observational studies. First, we estimate marginal effects and treatment propensities to form

an objective function that isolates the causal component of the signal. Then, we optimize this

data-adaptive objective function. The proposed approach has several advantages over existing

methods. From a practical perspective, our method is flexible and easy to use: in both steps, any

loss-minimization method can be employed, such as penalized regression, deep neural networks,

or boosting; moreover, these methods can be fine-tuned by cross-validation. Meanwhile, in the

case of penalized kernel regression, we show that our method has a quasi-oracle property. Even

when the pilot estimates for marginal effects and treatment propensities are not particularly

accurate, we achieve the same error bounds as an oracle with prior knowledge of these two

nuisance components. We implement variants of our approach based on penalized regression,

kernel ridge regression, and boosting in a variety of simulation set-ups, and observe promising

performance relative to existing baselines.

Some key words: Boosting; Causal inference; Empirical risk minimization; Kernel regression; Penalized regression.

1. Introduction

The problem of heterogeneous treatment effect estimation in observational studies arises in a

wide variety of application areas (Athey, 2017), ranging from personalized medicine (Obermeyer

& Emanuel, 2016) to offline evaluation of bandits (Dudík et al., 2011), and is also a key com-

ponent of several proposals for learning decision rules (Hirano & Porter, 2009; Athey & Wager,

2019). There has been considerable interest in developing flexible and well-performing methods

for heterogeneous treatment effect estimation. Some notable recent advances include proposals

based on the lasso (Imai & Ratkovic, 2013), recursive partitioning (Su et al., 2009; Athey &

Imbens, 2016), Bayesian additive regression trees (Hill, 2011; Hahn et al., 2020), random forests

(Wager & Athey, 2018), boosting (Powers et al., 2018), neural networks (Shalit et al., 2017),

and combinations thereof (Künzel et al., 2019); see Dorie et al. (2019) for a recent survey and

comparisons.

©c 2020 Biometrika Trust
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300 X. Nie AND S. Wager

Although this line of work has led to many promising developments, the literature has not yet

settled on a comprehensive answer as to how machine learning methods should be adapted for

treatment effect estimation in observational studies. The process of developing causal variants of

machine learning methods is in practice a labour-intensive process, requiring the involvement of

specialized researchers. Moreover, with some exceptions, the above methods have mostly been

justified via numerical experiments and come with no formal convergence guarantees or error

bounds proving that the methods actually succeed in isolating causal effects better than a simple

nonparametric regression-based approach would.

In this article we propose a new approach to estimating heterogeneous treatment effects that

addresses both of the above concerns. Our framework allows for fully automatic specification

of heterogeneous treatment effect estimators in terms of arbitrary loss-minimization procedures.

Moreover, we show how the resulting methods can achieve error bounds comparable to those of

oracle methods that know everything about the data-generating distribution except the treatment

effects. Conceptually, our approach fits into a research programme, outlined by van der Laan &

Dudoit (2003) and later developed by Luedtke & van der Laan (2016c), Chernozhukov et al. (2018)

and other works cited therein, whereby ideas on doubly robust estimation are combined with

oracle inequalities and cross-validation to develop loss functions that can be used for principled

statistical estimation using generic machine learning tools.

2. A loss function for treatment effect estimation

We formalize the problem in terms of the potential outcomes framework (Neyman, 1923;

Rubin, 1974). The analyst has access to n independent and identically distributed examples

(Xi, Yi, Wi) (i = 1, . . . , n), where Xi ∈ X denotes per-person features, Yi ∈ R is the observed

outcome, and Wi ∈ {0, 1} is the treatment assignment. We posit the existence of potential out-

comes {Yi(0), Yi(1)}, which correspond to the outcomes that would have been observed given

the treatment assignments Wi = 0 and Wi = 1, respectively, such that Yi = Yi(Wi), and seek

to estimate the conditional average treatment effect function τ ∗(x) = E{Y (1) − Y (0) | X = x}.
In order to identify τ ∗(x), we assume unconfoundedness, i.e., that the treatment assignment is

randomized once the features Xi are controlled for (Rosenbaum & Rubin, 1983).

Assumption 1. The treatment assignment Wi is unconfounded, i.e., {Yi(0), Yi(1)} ⊥⊥ Wi | Xi.

We write the treatment propensity as e∗(x) = pr(W = 1 | X = x) and the conditional response

surfaces as µ∗
(w)

(x) = E{Y (w) | X = x} for w ∈ {0, 1}; throughout this paper we use ∗
superscripts to denote unknown population quantities. Then, under unconfoundedness,

E{εi(Wi) | Xi, Wi} = 0, εi(w) := Yi(w) − {µ∗
(0)(Xi) + wτ ∗(Xi)}.

Given this set-up, it is helpful to rewrite the conditional average treatment effect function τ ∗(x)
in terms of the conditional mean outcome m∗(x) = E(Y | X = x) = µ∗

(0)
(Xi) + e∗(Xi)τ

∗(Xi) as

follows, with the shorthand εi = εi(Wi):

Yi − m∗(Xi) = {Wi − e∗(Xi)} τ ∗(Xi) + εi. (1)

This decomposition was originally used by Robinson (1988) to estimate parametric components

in partially linear models, and has received considerable attention in recent years. Athey et al.

(2019) rely on it to grow a causal forest that is robust to confounding; Robins (2004) builds
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Quasi-oracle estimation of heterogeneous treatment effects 301

on it to develop G-estimation for sequential trials; and Chernozhukov et al. (2018) use it as a

leading example of how machine learning methods can be put to good use in estimating nuisance

components for semiparametric inference. All these results, however, concern the estimation of

parametric models for τ(·) or, in the case of Athey et al. (2019), local parametric modelling.

The goal of the present paper is to study how we can use the Robinson transformation (1) for

flexible treatment effect estimation that builds on modern machine learning approaches such as

boosting or deep learning. Our main result is that this representation can be used to construct a

loss function that captures heterogeneous treatment effects, and we can then estimate treatment

effects accurately, in terms of both empirical performance and asymptotic guarantees, by finding

regularized minimizers of this loss function.

As motivation for our approach, (1) can equivalently be expressed as (Robins, 2004)

τ ∗(·) = arg min
τ

{

E

(

[

{Yi − m∗(Xi)} − {Wi − e∗(Xi)} τ(Xi)
]2

)}

, (2)

and so an oracle that knew both of the functions m∗(x) and e∗(x) a priori could estimate the

heterogeneous treatment effect function τ ∗(·) by empirical loss minimization,

τ̃ (·) = arg min
τ

(

1

n

n
∑

i=1

[

{Yi − m∗(Xi)} − {Wi − e∗(Xi)} τ(Xi)
]2

+ �n{τ(·)}
)

, (3)

where the term �n{τ(·)} is interpreted as a regularizer on the complexity of the τ(·) function.

This regularization could be explicit, as in penalized regression, or implicit, as provided by a

carefully designed deep neural network, for instance. The difficulty, however, is that in practice

we never know the weighted main effect function m∗(x) and usually do not know the treatment

propensities e∗(x) either, and so the estimator (3) is not feasible.

With these preliminaries, we study the following class of two-step estimators using cross-fitting

(Schick, 1986; Chernozhukov et al., 2018) motivated by the above oracle procedure.

Step 1. Divide up the data into Q evenly sized folds, where Q is typically set to 5 or 10. Let

q(·) be a mapping from the sample indices i = 1, . . . , n to the Q evenly sized data folds, and fit

m̂ and ê with cross-fitting over the Q folds using methods tuned for optimal predictive accuracy.

Step 2. Estimate treatment effects via a plug-in version of (3), where the ê{−q(i)}(Xi) and

m̂{−q(i)}(Xi) denote predictions made without using the data fold that the ith training example

belongs to:

τ̂ (·) = arg min
τ

[

L̂n{τ(·)} + �n{τ(·)}
]

,

L̂n{τ(·)} = 1

n

n
∑

i=1

[

{Yi − m̂{−q(i)}(Xi)} − {Wi − ê{−q(i)}(Xi)} τ(Xi)
]2

.

(4)

In other words, the first step learns an approximation for the oracle objective, and the second

step optimizes it. We refer to this approach as the R-learner, in recognition of the work of Robinson

(1988) and to emphasize the role of residualization. We will also refer to the squared loss L̂n{τ(·)}
as the R-loss.

This paper makes the following contributions. First, we implement variants of our method

based on penalized regression, kernel ridge regression, and boosting. In each case, we find that
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302 X. Nie AND S. Wager

the R-learner exhibits promising performance relative to existing methods. Second, we prove

that in the case of penalized kernel regression, error bounds for the feasible estimator of τ̂ (·)
asymptotically match the best available bounds for the oracle method τ̃ (·). The main point here

is that, heuristically, the rate of convergence of τ̂ (·) depends only on the functional complexity

of τ ∗(·), but not on the functional complexity of m∗(·) and e∗(·). More formally, provided we

estimate m∗(·) and e∗(·) at o(n−1/4) rates in root-mean-squared error, we can achieve considerably

faster rates of convergence for τ̂ (·), and these rates depend only on the complexity of τ ∗(·). The

oracle version (2) of our loss function is a member of a class of loss functions for heterogeneous

treatment effect estimation considered in Luedtke & van der Laan (2016c), and the results in

that paper immediately imply large-sample consistency of the minimizer of this oracle loss. Our

contribution is the result on rates, specifically that the estimation error in nuisance components

does not affect the excess loss bounds for τ̂ (·).
The R-learning approach has several practical advantages over existing, more ad hoc methods.

Any good heterogeneous treatment effect estimator needs to achieve two goals: first, it should

eliminate spurious effects by controlling for correlations between e∗(X ) and m∗(X ); second, it

should accurately express τ ∗(·). Most existing machine learning approaches to treatment effect

estimation seek to provide an algorithm that accomplishes both tasks at once (see, e.g., Shalit

et al., 2017; Powers et al., 2018; Wager &Athey, 2018). In contrast, the R-learner cleanly separates

these two tasks: we eliminate spurious correlations via the structure of the loss function L̂n, and

we can induce a representation for τ̂ (·) by choosing the method by which we optimize (4).

This separation of tasks allows for considerable algorithmic flexibility: optimizing (4) is an

empirical minimization problem, and so can be efficiently solved using off-the-shelf software

such asglmnet for high-dimensional regression (Friedman et al., 2010),XGboost for boosting

(Chen & Guestrin, 2016), or TensorFlow for deep learning (Abadi et al., 2016). Furthermore,

we can tune any of these methods by cross-validating on the loss L̂n, which avoids the use of

more sophisticated model-assisted cross-validation procedures such as those developed in Athey

& Imbens (2016) and Powers et al. (2018). Relatedly, the machine learning method used to

optimize (4) only needs to find a generalizable minimizer of L̂n, rather than also control for

spurious correlations, and thus we can confidently use black-box methods without auditing their

internal state to check that they properly control for confounding; instead, we only need to verify

that the methods do in fact find good minimizers of L̂n on hold-out data.

3. Related work

Under unconfoundedness, Assumption 1, the conditional average treatment effect function can

be written as τ ∗(x) = µ∗
(1)

(x)−µ∗
(0)

(x) with µ∗
(w)

(x) = E(Y | X = x, W = w).As a consequence

of this representation, it may be tempting to first estimate µ̂(w)(x) on the treated and control

samples separately and then set τ̂ (x) = µ̂(1)(x) − µ̂(0)(x). This approach, however, is often not

robust: because µ̂(1)(x) and µ̂(0)(x) are not trained together, their difference may be unstable. As

an example, consider fitting the lasso (Tibshirani, 1996) to estimate µ̂(1)(x) and µ̂(0)(x) in the high-

dimensional linear model Yi(w) = X T
i β∗

(w)
+ εi(w) with Xi, β

∗
(w)

∈ R
d and E(εi(w) | Xi) = 0. A

naive way to do this would be to fit two separate lassos to the treated and control samples,

β̂(w) = arg min
β(w)

{

∑

{i: Wi=w}

(

Yi − X T
i β(w)

)2 + λ(w)

∥

∥β(w)

∥

∥

1

}

, (5)
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Quasi-oracle estimation of heterogeneous treatment effects 303

and then use them to deduce a treatment effect function, τ̂ (x) = xT(β̂(1) − β̂(0)). However, the

fact that β̂(0) and β̂(1) are regularized towards 0 separately may inadvertently lead to the treatment

effect estimate β̂(1) − β̂(0) being regularized away from 0, even when τ ∗(x) = 0 everywhere.

This problem is especially acute when the treated and control samples are of different sizes; see

Künzel et al. (2019) for some striking examples.

In the recent literature on heterogeneous treatment effect estimation, several ideas on how

to avoid such regularization bias have been suggested. Some authors have proposed structural

changes to various machine learning methods aimed at accurate estimation of τ(·) (Su et al.,

2009; Imai & Ratkovic, 2013; Athey & Imbens, 2016; Shalit et al., 2017; Powers et al., 2018;

Wager & Athey, 2018; Hahn et al., 2020). For example, with the lasso, Imai & Ratkovic (2013)

advocate replacing (5) with a single lasso as follows:

(b̂, δ̂) = arg min
b, δ

[ n
∑

i=1

{

Yi − X T
i b + (Wi − 0.5)X T

i δ
}2 + λb ‖b‖1 + λδ ‖δ‖1

]

, (6)

where then τ̂ (x) = xTδ̂. This approach always correctly regularizes towards a sparse δ-vector for

treatment heterogeneity. The other methods cited above involve variants and improvements of

similar ideas in the context of more sophisticated machine learning methods; see, for example,

Shalit et al. (2017, Fig. 1) for a neural network architecture designed to highlight treatment effect

heterogeneity without being affected by confounders.

Here, instead of trying to modify the algorithms underlying different machine learning tools to

improve their performance as treatment effect estimators, we focus on modifying the loss function

used to train generic machine learning methods. In doing so, we build on the research programme

developed by van der Laan & Dudoit (2003), van der Laan & Rubin (2006) and van der Laan

et al. (2007), and later fleshed out in the context of individualized treatment rules by Luedtke

& van der Laan (2016a,b,c). In their report, van der Laan & Dudoit proposed choosing the best

among a potentially growing set of generic statistical rules by cross-validating on a doubly robust

objective. In the absence of nuisance components, an ε-net version of this procedure was shown

to have good asymptotic properties (van der Laan et al., 2006). Meanwhile, Luedtke & van der

Laan (2016c) considered a class of valid objectives for learning either individualized treatment

rules or heterogeneous treatment effects, within which the oracle version (2) of our loss function

fits, and discussed properties of model averaging and cross-validation with these objectives.

Our contributions with respect to this line of work include using the R-loss for treatment effect

estimation via generic machine learning and developing strong excess loss bounds τ̂ (·) that hold

for a computationally tractable and widely used approach to nonparametric estimation, namely

penalized regression over a reproducing kernel Hilbert space.

Another related strand in the literature focuses on meta-learning approaches that are not closely

tied to any specific machine learning method. Künzel et al. (2019) proposed two approaches to

heterogeneous treatment effect estimation via generic machine learning methods. One, called

the X -learner, first estimates µ̂(w)(x) with appropriate nonparametric regression methods; then,

on the treated observations, it defines pseudo-effects Di = Yi − µ̂
(−i)
(0)

(Xi) and uses them to fit

τ̂(1)(Xi) via a nonparametric regression. A second estimator, τ̂(0)(Xi), is obtained analogously,

and the two treatment effect estimators are aggregated into

τ̂ (x) = {1 − ê(x)} τ̂(1)(x) + ê(x)τ̂(0)(x). (7)
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304 X. Nie AND S. Wager

Another method, called the U -learner, starts with the observation that

E(Ui | Xi = x) = τ(x), Ui = Yi − m∗(Xi)

Wi − e∗(Xi)
,

and then fits Ui on Xi using any off-the-shelf method.Athey & Imbens (2016) and Tian et al. (2014)

developed related methods for heterogeneous treatment effect estimation based on weighting the

outcomes or the covariates with the propensity score; for example, one can estimate τ ∗(·) by

regressing Yi{Wi − e∗(Xi)}/[e∗(Xi){1 − e∗(Xi)}] on Xi. In our experiments, we compare our

method at length to those of Künzel et al. (2019). Again, in regard to this line of work, our main

contributions are the R-learner method, which yields meaningful improvements over baselines

in a variety of settings, and our associated analysis, which provides a quasi-oracle error bound

on the conditional average treatment effect function, i.e., where the error of τ̂ may decay faster

than that of ê or m̂.

The closest result to ours is that of Zhao et al. (2018), which combines Robinson’s trans-

formation with the lasso to obtain valid post-selection inference on effect modification in the

high-dimensional linear model. To the best of our knowledge, the present work is the first to use

Robinson’s transformation to motivate a loss function that is used in a general machine learning

context.

Our formal results draw from the literature on semiparametric efficiency and construction

of orthogonal moments, including Robinson (1988) and, more broadly, Bickel et al. (1993),

Newey (1994),Robins & Rotnitzky (1995), Robins (2004), Tsiatis (2007), van der Laan & Rose

(2011), Belloni et al. (2017), Robins et al. (2017) and Chernozhukov et al. (2018), among others,

which aim at
√

n-rate estimation of a target parameter in the presence of nuisance components

that cannot be estimated at a
√

n rate. Algorithmically, our approach has a close connection to

targeted maximum likelihood estimation (Scharfstein et al., 1999; van der Laan & Rubin, 2006),

which starts by estimating nuisance components nonparametrically, and then uses these first-stage

estimates to define a likelihood function that is optimized in a second step. The use of held-out

prediction for nuisance components, also known as cross-fitting, is an increasingly popular way

of making machine learning methods usable in classical semiparametrics (Schick, 1986; van der

Laan & Rose, 2011; Wager et al., 2016; Chernozhukov et al., 2018; Athey & Wager, 2019).

The main difference between this literature and our results is that the existing results typically

focus on estimating a single, or low-dimensional, target parameter, whereas we seek to estimate

an object τ ∗(·) that may itself be quite complicated.Another research direction that also uses ideas

from semiparametrics to estimate complex objects concerns the estimation of optimal treatment

allocation rules (Dudík et al., 2011; Zhang et al., 2012; Laber & Zhao, 2015; Luedtke & van der

Laan, 2016c; Athey & Wager, 2019). This problem is closely related to, but subtly different from,

the problem of estimating τ ∗(·) under squared-error loss; see Kitagawa & Tetenov (2018).

Finally, all the results presented here assume a sampling model, where observations are drawn

at random from a population and the target estimand τ(·) is defined in terms of moments of that

population. Ding et al. (2019) considered heterogeneous treatment effect estimation in a strict

randomization inference setting, where the features and potential outcomes {Xi, Yi(0), Yi(1)}n
i=1

are taken as fixed and only the treatment Wi is random (Imbens & Rubin, 2015), and showed how

to estimate the projection of the realized treatment heterogeneity Yi(1) − Yi(0) onto the linear

span of the Xi. It would be interesting to explore whether it is possible to derive useful results

on nonparametric regularized heterogeneous treatment effect estimation under randomization

inference.
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Quasi-oracle estimation of heterogeneous treatment effects 305

4. The R-learner in action

4.1. Application to a voting study

To see how the R-learner works in practice, we consider an example motivated by Arceneaux

et al. (2006), who studied the effect of paid get-out-the-vote calls on voter turnout. A common

difficulty in comparing the accuracy of heterogeneous treatment effect estimators on real data is

that we do not have access to the ground truth. From this perspective, a major advantage of this

example is that Arceneaux et al. (2006) found no effect of get-out-the-vote calls on voter turnout,

which suggests that the underlying effect is close to nonexistent. We spike the original dataset

with a synthetic treatment effect τ ∗(·) to make the task of estimating heterogeneous treatment

effects nontrivial. In other words, both the baseline signal and the propensity scores come from

real data, but τ ∗(·) is chosen by us, so we can check whether different methods in fact succeed

in recovering it.

The design of Arceneaux et al. (2006) was randomized separately by state and competitiveness

of the election, and accounting for varying treatment propensities is necessary for obtaining

correct causal effects; a naive analysis ignoring variable treatment propensities estimates the

average effect of a single get-out-the-vote call on turnout as 4%, whereas an appropriate analysis

finds with high confidence that any treatment effect must be smaller than 1% in absolute value.

Although the randomization probabilities were known to the experimenters, here we hide them

from our algorithm and require it to learn a model ê(·) for the treatment propensities. In the

original data, not all voters assigned to be contacted could in fact answer the phone call, meaning

that all effects should be interpreted as intent-to-treat effects. We focus on d = 11 covariates,

including state, county, age, gender, etc. Both the outcome Y and the treatment W are binary.

The full sample contains 1 895 468 observations, of which 59 264 were assigned treatment. For

our analysis, we focused on a subset of 148 160 samples containing all the treated units and a

random subset of the controls; thus, two-fifths of our analysis sample was treated. We further

divided this sample into a training set of size 100 000, a test set of size 25 000, and a hold-out set

with the rest.

As discussed above, for the purpose of this evaluation we assume that the treatment effect in the

original data is 0, and we spike in a synthetic treatment effect τ ∗(Xi) = −vote00i/(2+100/agei),

where vote00i indicates whether the ith unit voted in the year 2000 and agei is that individual’s

age. Because the outcomes are binary, we add in the synthetic treatment effect by strategically

flipping some outcome labels. Denote the original unflipped outcomes by Y ∗
i . To add in a treatment

effect τ ∗(·), we first draw Bernoulli random variables Ri with probability |τ ∗(Xi)|. Then, if Ri = 0

we set Yi(0) = Yi(1) = Y ∗
i , whereas if Ri = 1 then we set {Yi(0), Yi(1)} to (0, 1) or (1, 0)

depending on whether τ ∗(Xi) > 0 or τ ∗(Xi) < 0, respectively. Finally, we set Yi = Yi(Wi). As

is typical in causal inference applications, the treatment heterogeneity here is quite subtle, with

var{τ ∗(X )} = 0.016, so a large sample size is needed in order to reject a null hypothesis of no

treatment heterogeneity.

To use the R-learner, we first estimated ê(·) and m̂(·) to form the R-loss function in (4). To do

so, we fitted models for the nuisance components via both boosting and the lasso with tuning

parameters selected by cross-validation. Then we chose the model that minimized the cross-

validated error. This criterion led to our choosing boosting for both ê(·) and m̂(·). Another option

would be to combine the predictions from the lasso and boosting models, as advocated by van der

Laan et al. (2007).

Next, we optimized the R-loss function. Again, we tried methods based on both the lasso and

boosting. This time, the lasso achieved a slightly lower training-set cross-validated R-loss than

boosting, namely 0.1816 versus 0.1818. Because treatment effects are so weak, and hence there
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Fig. 1. (a) Histogram showing the distribution of the conditional average treatment effect function τ(Xi), denoted
by CATE, on the test set. (b) Comparison of the true τ(Xi) (black circles) with estimates τ̂ (Xi) obtained from the
R-learner using the lasso (brown boxplots) and boosting (yellow boxplots) to minimize the R-loss, again on the test

set; as discussed in § 4.1, both estimates use nuisance components estimated via boosting.

is potential to overfit even in cross-validation, we also examined the R-loss on the hold-out set.

The lasso again came out ahead, and the improvement in the R-loss was stable, 0.1781 versus

0.1783. We therefore chose the lasso-based τ̂ (·) fit as our final model for τ ∗(·). Although the

improvement in the R-loss is stable, the loss itself is somewhat different between the training

and hold-out samples. This appears to be due to the term n−1
∑

i{Yi − µ∗
(Wi)

(Xi)}2 induced

by irreducible outcome noise. This term is large and noisy in absolute terms; however, it gets

cancelled out when comparing the accuracy of two models. This phenomenon plays a key role in

understanding the behaviour of model selection via cross-validation (Yang, 2007; Wager, 2020).

Given the constructed conditional average treatment effect function τ ∗(·) in our semi-

synthetic data-generative distribution, we can evaluate the oracle test set mean-squared error,

(1/ntest)
∑

{i∈test}{τ̂ (Xi) − τ ∗(Xi)}2. Here, it is clear that the lasso did substantially better than

boosting, achieving a mean-squared error of 0.47×10−3 versus 1.23×10−3. Figure 1(b) compares

τ̂ (·) estimates from minimizing the R-loss using the lasso and boosting. The lasso is somewhat

biased, but boosting is noisy, and the bias-variance trade-off favours the lasso in this case. With

a larger sample size, boosting would be expected to achieve lower mean-squared error.

We also compared our approach with both the single-lasso approach (6) and a popular nonpara-

metric approach to heterogeneous treatment effect estimation via Bayesian additive regression

trees (Hill, 2011), with the estimated propensity score added in as a feature following the recom-

mendation of Hahn et al. (2020). The single lasso yielded an oracle test-set error of 0.61 × 10−3,

whereas Bayesian additive regression trees gave an error of 4.05 × 10−3. Thus it appears that, in

this example at least, there is value in using a nonparametric method to estimate ê(·) and m̂(·), but

then using the simpler lasso for τ̂ (·). In contrast, the single-lasso approach uses linear modelling

everywhere, leading to potential model misspecification and confounding, whereas the Bayesian

additive regression trees approach uses nonparametric modelling everywhere, which can make

it difficult to obtain a stable τ(·) fit. Section 6 has a more comprehensive simulation evaluation

of the R-learner relative to several baselines, including the meta-learners of Künzel et al. (2019).
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Quasi-oracle estimation of heterogeneous treatment effects 307

4.2. Model averaging with the R-learner

In the previous subsection we looked at an example application, where we were willing to

carefully consider the estimation strategies used in each step of the R-learner. In other situations,

however, a practitioner may prefer to use off-the-shelf treatment effect estimators as the starting

point of their analysis. Here we discuss how to use the R-learning approach to build a consensus

treatment effect estimate via a variant of stacking (Wolpert, 1992; Breiman, 1996; van der Laan

et al., 2007; Luedtke & van der Laan, 2016c).

Suppose we start with k = 1, . . . , K different treatment effect estimators τ̂k and we have

access to out-of-fold estimates τ̂
(−i)
k

(Xi) on our training set. Suppose, moreover, that we have

trusted out-of-fold estimates ê(−i)(Xi) and m̂(−i)(Xi) for the propensity score and main effect,

respectively. Then, we propose building a consensus estimate τ̂ (·) by taking the best positive

linear combination of the τ̂k(·) according to the R-loss:

τ̂ (x) = ĉ +
K

∑

k=1

αk τ̂k(x), (b̂, ĉ, α̂) = arg min
b, c, α

{

n
∑

i=1

[

{

Yi − m̂(−i)(Xi)
}

− b

−
{

c +
K

∑

k=1

αk τ̂
(−i)(Xi)

}

{

Wi − ê(−i)(Xi)
}

]2

: α � 0

}

. (8)

For flexibility, we also allow the stacking step (8) to freely adjust a constant treatment effect term

c, and we add an intercept b that can be used to absorb any potential bias of m̂.

We test this approach on the following data-generation distributions. In both cases, we draw

n = 10 000 independent and identically distributed samples from a randomized study design,

Xi ∼ N (0, Id×d), Wi ∼ Ber(0.5),

Yi | Xi, Wi ∼ N

{

3

1 + exp(Xi3 − Xi2)
+ (Wi − 0.5) τ ∗(Xi), σ 2

}

(9)

for different choices of τ ∗(·) and σ and with d = 10. We consider both a smooth treatment

effect function τ ∗(Xi) = 1/{1 + exp(Xi1 − Xi2)} and a discontinuous τ ∗(Xi) = 1{(Xi1 > 0)}/
{1+exp(−Xi2)}. Given this data-generating process, we tried estimating τ(·)via Bayesian additive

regression trees (Hill, 2011; Hahn et al., 2020), causal forests (Wager & Athey, 2018; Athey et al.,

2019), and a stacked combination of the two using (8). We assume that the experimenter knows

that the data was randomized, and we used ê(x) = 0.5 anywhere a propensity score was needed.

For stacking, we estimated m̂(·) using a random forest.

The results are shown in Fig. 2. In the example with a smooth τ ∗(·), Bayesian additive regres-

sion trees slightly outperforms causal forests, while stacking does better than either on its own

until the noise level σ gets very large, in which case none of the methods performs much better

than a constant treatment effect estimator. Meanwhile, the setting with the discontinuous τ ∗(·)
appears to be particularly favourable to causal forests, at least for lower noise levels. Here,

stacking is able to automatically match the performance of the more accurate base learner.

5. A quasi-oracle error bound

As discussed in the introduction, the high-level goal of our formal analysis is to establish error

bounds for R-learning that depend only on the complexity of τ ∗(·), and match the error bounds
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Fig. 2. Root-mean-squared error, RMSE, on the data-generating design (9) with (a) a smooth τ ∗(·), and (b) a discon-
tinuous τ ∗(·), for different noise levels σ . The methods under comparison are the causal forest (red squares), Bayesian
additive regression trees (blue circles) and the R-stack (green triangles). For reference, the RMSE of the optimal

constant predictor τ ∗(Xi) is shown as a dotted line. All results are aggregated over 50 replications.

that would be achieved if we knew m∗(·) and e∗(·) a priori. To do so, we focus on a variant of

the R-learner based on penalized kernel regression. Regularized kernel learning covers a broad

class of methods that have been thoroughly studied in the statistical learning literature (see, e.g.,

Cucker & Smale, 2002; Bartlett & Mendelson, 2006; Caponnetto & De Vito, 2007; Steinwart

& Christmann, 2008; Mendelson & Neeman, 2010), and thus provides an ideal case study for

examining the asymptotic behaviour of the R-learner.

We study ‖ · ‖H-penalized kernel regression, where H is a reproducing kernel Hilbert space

with a continuous positive-semidefinite kernel function K. Let P be a nonnegative measure

over the compact metric space X ⊂ R
d , and let K be a kernel with respect to P . Let

TK : L2(P) → L2(P) be defined as TK(f )(·) = E{K(· , X )f (X )}. By Mercer’s theorem (Cucker

& Smale, 2002), there is an orthonormal basis of eigenfunctions (ψj)
∞
j=1 of TK with corresponding

eigenvalues (σj)
∞
j=1 such that K(x, y) =

∑∞
j=1 σjψj(x)ψj(y). Consider the function φ : X → l2

defined by φ(x) = {σ 1/2
j ψj(x)}∞j=1. Following Mendelson & Neeman (2010), we define the repro-

ducing kernel Hilbert space H to be the image of l2. For every t ∈ l2, define the corresponding

element in H by ft(x) = 〈φ(x), t〉 with the induced inner product 〈fs, ft〉H = 〈t, s〉.

Assumption 2. Without loss of generality, K(x, x) � 1 for all x ∈ X . For 0 < p < 1, the

eigenvalues σj satisfy G = supj�1 j1/pσj for some constant G < ∞, and the orthonormal eigen-

functions ψj(·) with
∥

∥ψj

∥

∥

L2(P)
= 1 are uniformly bounded, i.e., supj

∥

∥ψj

∥

∥

∞ � A < ∞. Finally,

the outcomes Yi are almost surely bounded, i.e., |Yi| � M .

Assumption 3. The true conditional average treatment effect function τ ∗(x) = E{Yi(1)

−Yi(0) | Xi = x} satisfies ‖Tα
K
{τ ∗(·)}‖H < ∞ for some 0 < α < 1/2.

To interpret the assumption above, we do not assume that τ ∗(·) has a finite H-norm; rather,

we only assume that we can make it have a finite H-norm after a sufficient amount of smoothing.

More concretely, with α = 0, Tα
K

would be the identity operator, and so this assumption would
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Quasi-oracle estimation of heterogeneous treatment effects 309

be equivalent to the strongest possible assumption that ‖τ ∗(·)‖H < ∞ itself. Then, as α grows,

the assumption gets progressively weaker, and at α = 1/2 it would reduce to simply requiring

that τ ∗(·) belong to the space L2(P) of square-integrable functions.

We study oracle penalized regressions τ̃ (·) that minimize the objective

τ̃ (·) = arg min

(

1

n

n
∑

i=1

[

{

Yi − m∗(Xi)
}

−
{

Wi − e∗(Xi)
}

τ(Xi)
]2

+ �n(‖τ‖H) : ‖τ‖∞ � 2M

)

, (10)

as well as feasible analogues obtained by cross-fitting (Schick, 1986; Chernozhukov et al., 2018),

τ̂ (·) = arg min
τ∈H

(

1

n

n
∑

i=1

[

{

Yi − m̂(−q(i))(Xi)
}

−
{

Wi − ê(−q(i))(Xi)
}

τ(Xi)
]2

+ �n(‖τ‖H) : ‖τ‖∞ � 2M

)

. (11)

Adding the upper bound ‖τ‖∞ � 2M , or in fact any finite upper bound on τ , enables us to rule

out some pathological behaviours.

We seek to characterize the accuracy of our estimator τ̂ (·) by bounding its regret R(τ̂ ),

R(τ ) = L(τ ) − L(τ ∗), L(τ ) = E

(

[

{

Yi − m∗(Xi)
}

− τ(Xi)
{

Wi − e∗(Xi)
}

]2
)

.

Recall that, by the expansion (1), we have E{Yi − m∗(Xi) | Xi, Wi} = τ ∗(Xi){Wi − e∗(Xi)},
implying that

L(τ ) = E
[

var{Yi − m∗(Xi) | Xi, Wi}
]

+ E
[

{τ(Xi) − τ ∗(Xi)}2
{

Wi − e∗(Xi)
}2 ]

and R(τ ) = E[{τ(Xi) − τ ∗(Xi)}2{Wi − e∗(Xi)}2]. Thus, if we have overlap, i.e., if there is an

η > 0 such that η < e∗(x) < 1 − η for all x ∈ X , then

(1 − η)−2R(τ ) < E
[

{τ(Xi) − τ ∗(Xi)}2
]

< η−2R(τ ), (12)

meaning that regret bounds translate into squared-error loss bounds for τ(·) and vice versa. We

note that when the overlap parameter η gets close to 0, the coupling (12) becomes fairly loose.

The sharpest regret bounds for the oracle learner (10) under Assumptions 2 and 3 are due to

Mendelson & Neeman (2010), see also Steinwart et al. (2009) and scale as

R(τ̃ ) = ÕP

{

n
− 1−2α

p+(1−2α)
}

, (13)

where the ÕP notation hides logarithmic factors. In the case of α = 0, where τ ∗ is within the

reproducing kernel Hilbert space used for penalization, we recover the more familiar n−1/(1+p)

rate established by Caponnetto & De Vito (2007). Again, our goal is to establish excess loss

bounds for our feasible estimator τ̂ that match the bound (13) available to the oracle that knows

m∗(·) and e∗(·) a priori.
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310 X. Nie AND S. Wager

In order to do so, we first need to briefly review the proof techniques underlying (13). The

argument of Mendelson & Neeman (2010) relies on a quasi-isomorphic coordinate projection

lemma of Bartlett (2008). To state this result, write

Hc = {τ : ‖τ‖H � c, ‖τ‖∞ � 2M } (14)

for the radius-c ball of H capped by 2M , let τ ∗
c = arg min {L(τ ) : τ ∈ Hc} denote the best approx-

imation to τ ∗ within Hc, and define the c-regret R(τ ; c) = L(τ ) − L(τ ∗
c ) over τ ∈ Hc. We also

define the estimated and oracle c-regret functions R̂n and R̃n in terms of the estimated and oracle

losses L̂n and L̃n:

R̂n(τ ; c) = L̂n(τ ) − L̂n(τ
∗
c ), R̃n(τ ; c) = L̃n(τ ) − L̃n(τ

∗
c ),

L̃n(τ ) = 1

n

n
∑

i=1

[

Yi − m∗(Xi) − τ(Xi)
{

Wi − e∗(Xi)
}

]2
,

L̂n(τ ) = 1

n

n
∑

i=1

[

Yi − m̂(−q(i))(Xi) − τ(Xi)
{

Wi − ê(−q(i))(Xi)
}

]2
.

The function R̂n(τ ; c) is not observable as it depends on τ ∗
c ; however, this does not hinder us from

establishing high-probability bounds for it. The lemma below is adapted from Bartlett (2008).

Lemma 1. Let Ľn(τ ) be any loss function, and let Řn(τ ; c) = Ľn(τ ) − Ľn(τ
∗
c ) be the associated

regret. Let ρn(c) be a continuous positive function that is increasing in c. Suppose that for every

1 � c � C and some k > 1, the following inequality holds:

1

k
Řn(τ ; c) − ρn(c) � R(τ ; c) � kŘn(τ ; c) + ρn(c), τ ∈ Hc. (15)

Then, writing κ1 = 2k + 1/k and κ2 = 2k2 + 3, any solution to the empirical minimization

problem with regularizer �n(c) � ρn(c),

τ̌ ∈ arg min
τ∈HC

{Ľ(τ ) + κ1�n(‖τ‖H)},

also satisfies the following risk bound:

L
(

τ̌
)

� inf
τ∈HC

{

L(τ ) + κ2�n(‖τ‖H)
}

.

In other words, the above lemma reduces the problem of deriving regret bounds to establish-

ing quasi-isomorphisms as in (15), and any with-high-probability quasi-isomorphism guarantee

yields a with-high-probability regret bound. In particular, we can use this approach to prove

the regret bound (13) for the oracle learner as follows. First we need a with-high-probability

quasi-isomorphism of the form

1

k
R̃n(τ ; c) − ρn(c) � R(τ ; c) � kR̃n(τ ; c) + ρn(c). (16)

Mendelson & Neeman (2010) provide such a bound for ρn(c) that scales as

ρn(c) ∼ {1 + log(n) + log log(c + e)}
{

(c + 1)p log(n)√
n

}2/(1+p)

. (17)
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Quasi-oracle estimation of heterogeneous treatment effects 311

Lemma 1 then immediately implies that penalized regression overHC with the oracle loss function

L̃(·) and regularizer κ1ρn(c) satisfies the following bound with high probability:

R(τ̃ ) = L(τ̃ ) − L
(

τ ∗)
� inf

τ∈HC

{L(τ ) + κ2ρn(‖τ‖H)} − L
(

τ ∗) .

Furthermore, following Mendelson & Neeman (2010, Corollary 2.7), for any 1 � c � C we also

have

inf
τ∈HC

{L(τ ) + κ2ρn(‖τ‖H)} � L
(

τ ∗) +
{

L
(

τ ∗
c

)

− L
(

τ ∗) }

+ κ2ρn(c). (18)

Mendelson & Neeman (2010) considered the case where C = ∞; here, we only take C large

enough for our argument; see the proof for details. Finally, with the scaling of ρn(c) in (17) and

the approximation error bound

L
(

τ ∗
c

)

− L
(

τ ∗)
� c(2α−1)/α

∥

∥Tα
K
{τ ∗(·)}

∥

∥

1/α

H
(19)

established by Smale & Zhou (2003) in the setting of Assumption 3, we obtain a practical regret

bound by choosing c = cn to optimize the right-hand side of (18). The specific rate in (13) comes

from setting cn = nα/{p+(1−2α)}.
The outcome is that if we can match the strength of the quasi-isomorphism bounds (16) with

our feasible loss function, i.e., obtain an analogous bound in terms of R̂n as opposed to R̃n, then

we can also match the rate of any regret bounds proved using the above argument. The proof

of the following result relies on several concentration results, including Talagrand’s inequality

and generic chaining (Talagrand, 2006), and makes heavy use of cross-fitting-style arguments

(Schick, 1986; van der Laan & Rose, 2011; Chernozhukov et al., 2018).

Lemma 2. Under the conditions of Lemma 1, suppose that the propensity estimate ê(x) is

uniformly consistent, ξn := supx∈X

∣

∣ê(x) − e∗(x)
∣

∣ → 0 in probability, and the L2 errors converge

at the rate

E
[

{m̂(X ) − m∗(X )}2
]

, E
[

{ê(X ) − e∗(X )}2
]

= O(a2
n)

for some sequence an such that an = O(n−κ) with κ > 1/4. Suppose, moreover, that we have

overlap, i.e., η < e∗(x) < 1 − η for some η > 0, and that Assumptions 2 and 3 hold. Then

∣

∣R̂n(τ ; c) − R̃n(τ ; c)
∣

∣ � 0.125 R(τ ; c) + o{ρn(c)} (20)

with probability at least 1 − ε, for all τ ∈ Hc and 1 � c � cn log(n) with cn = nα/(p+1−2α) for

large enough n.

This result implies that we can turn any quasi-isomorphism (16) for the oracle learner with

error ρn(c) into a quasi-isomoprhism bound for R̂(τ ) with error inflated by the right-hand side

of (20). Thus, given any regret bound for the oracle learner constructed using Lemma 1, we can

also get an analogous regret bound for the feasible learner provided we regularize just a little bit

more. The following result makes this formal.

Theorem 1. Given the conditions of Lemma 2 and that 2α < 1−p, suppose that we obtain τ̂ (·)
via a penalized kernel regression variant of the R-learner (11), with a properly chosen penalty
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312 X. Nie AND S. Wager

of the form �n(
∥

∥τ̂
∥

∥

H
) specified in the proof. Then τ̂ (·) satisfies the same regret bound (13) as

τ̃ (·), i.e., R
(

τ̂
)

= ÕP

[

n−(1−2α)/{p+(1−2α)}].

In other words, we have found that with penalized kernel regression, the R-learner can match the

best available performance guarantees available for the oracle learner (10) that knows everything

about the data-generating distribution except the true treatment effect function, and both the

feasible learner and the oracle learner satisfy

R(τ̂ ), R(τ̃ ) = ÕP(r2
n), rn = n−(1−2α)/[2{p+(1−2α)}]. (21)

As we approach the semiparametric case, i.e., as α, p → 0, we recover the well-known result from

the semiparametric inference literature that, to get n−1/2-consistent inference for a single target

parameter, we need fourth-root-consistent nuisance parameter estimates; see Chernozhukov et al.

(2018) for a review and references.After a first draft of the present paper was disseminated, several

authors established further quasi-oracle-type results for the R-learner and related methods; see,

in particular, Foster & Syrgkanis (2019) and Kennedy (2020).

We emphasize that our quasi-oracle result depends on a local robustness property of the

R-loss function and does not hold for general meta-learners; for example, it does not hold

for the X -learner of Künzel et al. (2019). To see this, we argue by contradiction. We show

that it is possible to make o(n−1/4) changes to the nuisance components µ̂(w)(x) used by the

X -learner which induce changes in the X -learner’s τ̂ (·) estimates that dominate the error scale in

(21). Thus, there must be some choices of o(n−1/4)-consistent µ̂(w)(x) with which the X -learner

will not converge at the rate (21). The contradiction arises as follows. Pick ξ > 0 such that

0.25 + ξ < (1 − 2α)/[2{p + (1 − 2α)}], and modify the nuisance components used to form the

X -learner in (7) such that µ̂(0)(x) ← µ̂(0)(x) − c/n0.25+ξ and µ̂(1)(x) ← µ̂(1)(x) + c/n0.25+ξ .

Recall that the X -learner fits τ̂(1)(·) by minimizing n−1
1

∑

Wi=1{Yi − µ̂
(−i)
(0)

(Xi) − τ(1)(Xi)}2 and

fits τ̂(0)(·) by solving an analogous problem on the controlled units. Combining the τ̂(w) esti-

mates from these two loss functions, we observe that the final estimate of the treatment effect is

also shifted by τ̂ (x) ← τ̂ (x) + c/n0.25+ξ . The perturbations c/n0.25+ξ are vanishingly small on

the n−1/4 scale, and so would not affect conditions analogous to those of Theorem 1; yet they

have a big enough effect on τ̂ (x) to break any convergence results on the scale of (21). Künzel

et al. (2019) did obtain some quasi-oracle-type results; however, they focused only on the case

where the number of control units |{Wi = 0}| grows much faster than the number of treated units

|{Wi = 1}|. They showed that in this case the X -learner performs as well as an oracle that already

knew the mean response function for the controls, µ∗
(0)

(x) = E(Yi(0) | Xi = x). Intriguingly, in

this special case, we have m∗(x) ≈ µ∗
(0)

(x) and e∗(x) ≈ 0, and so the R-learner in (11) is roughly

equivalent to the X -learner procedure (7). Thus, at least qualitatively, we can interpret the result

of Künzel et al. (2019) as a special case of our result in the case where the number of controls

dominates the number of treated units, or vice versa.

6. Simulation experiments

6.1. Baseline methods and simulation set-ups

Our approach to heterogeneous treatment effect estimation via learning objectives can be

implemented using any method that is framed as a loss-minimization problem, such as boost-

ing and decision trees. In this section, we focus on simulation experiments using the R-learner,

a direct implementation of (4) based on the lasso, kernel ridge regression and boosting. We
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Quasi-oracle estimation of heterogeneous treatment effects 313

follow the terminology of Künzel et al. (2019) and use the following methods for hetero-

geneous treatment effect estimation as baselines. The S-learner fits a single model for

f (x, w) = E(Y | X = x, W = w) and then estimates τ̂ (x) = f̂ (x, 1) − f̂ (x, 0); the T -learner fits

the functions µ∗
(w)

(x) = E(Y | X = x, W = w) separately for w ∈ {0, 1} and then estimates

τ̂ (x) = µ̂(1)(x) − µ̂(0)(x); the X -learner and U -learner are as described in § 3. In addition, for

the boosting-based experiments, we consider the causal boosting algorithm proposed by Powers

et al. (2018), denoted by CB in § 6.4.

Finally, for the lasso-based experiments, we consider an additional variant of our method, the

RS-learner, which in spirit combines the R- and S-learners by including an additional term in

the loss function, and then separately penalizes the main and treatment effect terms as in Imai &

Ratkovic (2013). Specifically, we use τ̂ (x) = xTδ̂, where b̂ and δ̂ minimize

1

n

n
∑

i=1

[

Yi − m̂(−i)(Xi) − X T
i b − {Wi − ê(−i)(Xi)}X T

i δ
]2

+ λ(‖b‖1 + ‖δ‖1).

Heuristically, one hopes that the RS-learner would be more robust, as it has an additional term

to eliminate confounders.

In all simulations, we generate data as follows. For different choices of the X -distribution Pd

indexed by dimension d, noise level σ , propensity function e∗(·), baseline main effect b∗(·) and

treatment effect function τ ∗(·), we generate

Xi ∼ Pd , Wi | Xi ∼ Ber{e∗(Xi)}, εi | Xi ∼ N (0, 1),

Yi = b∗(Xi) + (Wi − 0.5)τ ∗(Xi) + σεi.

We consider the following specific simulation designs. Set-up A has difficult nuisance

components and an easy treatment effect function. We use the scaled Friedman (1991)

function for the baseline main effect b∗(Xi) = sin(πXi1Xi2) + 2(Xi3 − 0.5)2 + Xi4 + 0.5Xi5,

along with Xi ∼ Un(0, 1)d , e∗(Xi) = trim0.1{sin(πXi1Xi2)} and τ ∗(Xi) = (Xi1 + Xi2)/2,

where trimη(x) = max{η, min(x, 1 − η)}. Set-up B employs a randomized trial. Here,

e∗(x) = 1/2 for all x ∈ R
d , so it is possible to be accurate without explicitly con-

trolling for confounding. We take Xi ∼ N (0, Id×d), τ ∗(Xi) = Xi1 + log{1 + exp(Xi2)} and

b∗(Xi) = max{Xi1 + Xi2, Xi3, 0} + max{Xi4 + Xi5, 0}. Set-up C has an easy propensity score

and a difficult baseline. In this set-up there is strong confounding, but the propensity score is

much easier to estimate than the baseline: Xi ∼ N (0, Id×d), e∗(Xi) = 1/{1 + exp(Xi2 + Xi3)},
b∗(Xi) = 2 log{1 + exp(Xi1 + Xi2 + Xi3)}, and the treatment effect is constant, τ ∗(Xi) = 1.

Set-up D has unrelated treatment and control arms, with data generated as Xi ∼ N (0, Id×d),

e∗(Xi) = 1/{1+exp(−Xi1)+exp(−Xi2)}, τ ∗(Xi) = max{Xi1 + Xi2 + Xi3, 0}−max{Xi4 + Xi5, 0}
and b∗(Xi) = [max{Xi1 + Xi2 + Xi3, 0} + max{Xi4 + Xi5, 0}]/2. Here, µ∗

(0)
(X ) and µ∗

(1)
(X ) are

uncorrelated, and so there is no benefit to learning them jointly.

6.2. Lasso-based experiments

In this section, we compare S-, T -, X -, U -, and our R- and RS-learners implemented via the

lasso on simulated designs. For the S-learner we follow Imai & Ratkovic (2013) in using (6),

while for the T -learner we use (5). For the X -, R- and RS-learners, we use L1-penalized logistic

regression to estimate the propensity ê and use the lasso for all other regression estimates.

For all estimators, we run the lasso on the pairwise interactions of a natural spline basis

expansion with seven degrees of freedom on Xi. We generate n data points as the training set
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Fig. 3. Performance of lasso-based S-, T -, X -, U -, RS- and R-learners, relative to a lasso-based oracle learner (3), in
simulation set-ups A–D described in § 6: set-up A has complicated nuisance components, but a simple τ(·) function;
set-up B is a randomized trial; set-up C has a simple propensity function, but a complicated main effect function; and set-
up D has unrelated treatment and control response surfaces. Plotted are results for all combinations of n ∈ {500, 1000},
d ∈ {6, 12} and σ ∈ {0.5, 1, 2, 3}, and each point in the plots represents the average performance of one learner for
one of these 16 parameter specifications. All mean-squared error values are aggregated over 500 runs and reported on

an independent test set, and are plotted on the logarithmic scale.

and generate a separate test set also with n data points; the reported mean-squared error is on

the test set. The penalty parameter is chosen by 10-fold cross-validation. For the R- and RS-

learners, we use 10-fold cross-fitting on ê and m̂ in (4). All methods are implemented with

glmnet (Friedman et al., 2010). The U -learner suffers from high variance and instability due

to dividing by the propensity estimates. Therefore, we set a cut-off for the propensity estimate at

level 0.05. We have also found empirically that the U -learner gives much lower estimation error

if we choose to use the largest regularization parameter that achieves one standard error away

from the minimum in the cross-validation step. Therefore the U -learner uses lambda.1se as

its cross-validation parameter; the other learners use lambda.min in glmnet.

In Fig. 3, we compare the performance of the six methods under consideration with an oracle

that runs the lasso on (3), for different values of the sample size n, dimension d and noise level σ .

As is clear from these results, the simulation settings differ vastly in difficulty, both in terms of

the accuracy of the oracle and in terms of the ability of feasible methods to approach the oracle.

The raw numbers plotted in Fig. 3 are available in the Supplementary Material.

In set-ups A and C, where there is complicated confounding that needs to be overcome before

we can estimate a simple treatment effect function τ ∗(·), the R- and RS-learners stand out. All the
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Quasi-oracle estimation of heterogeneous treatment effects 315

methods do reasonably well in the randomized trial, namely set-up B, where it was not necessary to

adjust for confounding, with the X -, S- and R-learners performing best. Finally, having completely

disjoint functions for the treated and control arms is unusual in practice; nevertheless, we consider

this possibility in set-up D, where there is no reason to model µ∗
(0)

(x) and µ∗
(1)

(x) jointly, and

find that the T -learner, which in fact models them separately, performs well.

Overall, the R- and RS-learners consistently achieve good performance and, in most simulation

settings, essentially match the performance of the oracle (3) in terms of mean-squared error. The

U -learner suffers from high loss due to its instability.

6.3. Kernel ridge regression-based experiments

We move on to comparing S-, T -, X -, U - and R-learners implemented via kernel ridge regres-

sion with a Gaussian kernel. We use a variant of the KRLS package (Ferwerda et al., 2017; R

Development Core Team, 2021), available athttps://github.com/lukesonnet/KRLS,

that allows weighted regression. For fitting the objective in each subroutine in all methods, we

run a five-fold cross-validation to search through the width of the Gaussian kernel and the ridge

regularization parameter both from a grid of 10k with k ∈ {−3, −2.5, −2, . . . , 2, 2.5, 3}. We

experiment on the same set-ups and parameter variations, including variations on the sample size

n, dimension d and noise level σ , as in § 6.2. The results are depicted in Fig. 4, and the raw values

are given in the Supplementary Material. From Fig. 4 we again observe that the R-learner does

particularly well in set-ups A and C, where the treatment effect functions are relatively simple

and the treatment propensity is not constant.

6.4. Gradient boosting-based experiments

Finally, we compare S-, T -, X -, U - and R-learners implemented via gradient boosting, as well

as the causal boosting algorithm, denoted by CB. We use the R package causalLearning
(R Development Core Team, 2021) for CB, while all the other methods are implemented

using XGboost (Chen & Guestrin, 2016). To fit the objective in each subroutine in all

methods, we draw a random set of 10 combinations of hyperparameters from the fol-

lowing grid: subsample= [0.5, 0.75, 1], colsample_bytree = [0.6, 0.8, 1], eta=
[5e-3, 1e-2, 1.5e-2, 2.5e-2, 5e-2, 8e-2, 1e-1, 2e-1], max_depth = [3, . . . , 20], gamma=
Uniform(0, 0.2), min_child_weight= [1, . . . , 20], max_delta_step= [1, . . . , 10].
Then we cross-validate on the number of boosted trees for each combination with an early stop-

ping of 10 iterations. We experiment on the same set-ups and parameter variations, including

variations on the sample size n, dimension d and noise level σ , as in § 6.2. The results are

depicted in Fig. 5, and the raw values are given in the Supplementary Material.

In Fig. 5, the R-learner again stands out in set-ups A and C. All methods perform reasonably

well in the randomized control setting of set-up B. In set-up D, the T -learner performs best since

the treated and control arms are generated from unrelated functions.

In both sets of experiments, for simplicity of illustration we have used the lasso, kernel ridge

regression and boosting to learn m̂(·) and ê(·). In practice, we recommend cross-validating on

a variety of black-box learners, such as the lasso, random forests and neural networks, that

are tuned for prediction accuracy to learn these two pilot quantities. All simulation results

above can be replicated using the publicly available rlearner package for R, available at

https://github.com/xnie/rlearner.

7. Discussion and extensions

A natural generalization of our framework arises when, in some applications, one needs to deal

with multiple treatment options. For example, in medicine, we may want to compare a control
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Fig. 4. Performance of S-, T -, X -, U -, RS- and R-learners, relative to an oracle learner (3), all based on kernel ridge
regression with a Gaussian kernel, in simulation set-ups A–D described in § 6. Plotted are results for all combinations
of n ∈ {500, 1000}, d ∈ {6, 12} and σ ∈ {0.5, 1, 2, 3}, and each point in the plots represents the average perfor-
mance of one learner for one of these 16 parameter specifications. All mean-squared error values are aggregated over

200 runs and reported on an independent test set, and are plotted on the logarithmic scale.

condition with multiple different experimental treatments. If there are k different treatments

along with a control arm, we can encode W ∈ {0, 1}k , and a multivariate version of Robinson’s

transformation suggests the estimator

τ̂ (·) = arg min
τ

(

1

n

n
∑

i=1

[

{

Yi − m̂(−i)(Xi)
}

−
〈

Wi − ê(−i)(Xi), τ(Xi)
〉

]2
+ �n{τ(·)}

)

,

where the angle brackets indicate an inner product, e(x) = E(W | X = x) ∈ R
k is a vector,

and τl(x) measures the conditional average treatment effect of the lth treatment arm at Xi = x,

for l = 1, . . . , k . When implementing variants of this approach in practice, different choices of

�n{τ(·)} may be needed to reflect relationships between the treatment effects of different arms,

such as whether there is a natural ordering of treatment arms or if there are some arms that are

believed a priori to have similar effects.

It would also be interesting to consider extensions of the R-learner to cases where the treatment

assignment Wi is not unconfounded, and one needs to rely on an instrument to identify causal

effects. Chernozhukov et al. (2018) discusses how Robinson’s approach to the partially linear

model generalizes naturally to this case, and Athey et al. (2019) have adapted their causal forest
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Fig. 5. Performance of boosting-based S-, T -, X -, U - and R-learners as well as causal boosting, CB, relative to a
boosting-based oracle learner (3), in simulation set-ups A–D described in § 6. Plotted are results for all combinations
of n ∈ {500, 1000}, d ∈ {6, 12} and σ ∈ {0.5, 1, 2, 3}, and each point on the plots represents the average performance
of one learner for one of these 16 parameter specifications. All mean-squared error numbers are aggregated over

200 runs and reported on an independent test set, and are plotted on the logarithmic scale.

to work with instruments. The underlying estimating equations, however, cannot be interpreted

as loss functions as easily as (3), especially in the case where instruments may be weak, and so

we leave this extension of the R-learner to future work.
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