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using two methods. Firstly, we relate integrals of these correlators to derivatives of the

mass deformed S4 free energy, which was computed at leading order in large N and to all
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1/λ corrections to higher derivative corrections to supergravity for scattering amplitudes

of Kaluza-Klein scalars in IIB string theory on AdS5×S5, which in the flat space limit are

known from worldsheet calculations. These two methods match at the order corresponding

to the tree level R4 interaction in string theory, which provides a precise check of AdS/CFT

beyond supergravity, and allow us to derive the holographic correlators to tree level D4R4

order. Combined with constraints from [1], our results can be used to derive CFT data to

one-loop D4R4 order. Finally, we use AdS/CFT to fix these correlators in the limit where

N is taken to be large while gYM is kept fixed. In this limit, we present a conjecture for

the small mass limit of the S4 partition function that includes all instanton corrections and

is written in terms of the same Eisenstein series that appear in the study of string theory

scattering amplitudes.
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1 Introduction and summary

The duality between the SU(N) N = 4 super-Yang-Mills (SYM) theory and type IIB

string theory on AdS5×S5 [2–4] (for a review, see [5]) states that when both N and the ’t

Hooft coupling λ = g2
YMN are large, the CFT quantities can be computed using classical

10d type IIB supergravity. Subleading contributions in 1/λ come from higher derivative

corrections to the supergravity action that are due to integrating out massive string modes,

– 1 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
9

while corrections in 1/N come from bulk loop diagrams with internal 10d supergravitons.

In this work, we study the 1/λ corrections to the four-point functions of single trace 1/2-

BPS conformal primary operators in the SYM theory. Despite the lack of knowledge

of the precise 10d bulk interaction vertices that contribute to the four-point functions

(see however [6–9] for partial results), we will use a combination of recent techniques to

determine the first three terms in the 1/λ expansion of these correlation functions. The

first term is just the (two-derivative) supergravity result. The next two terms, suppressed

by 1/λ3/2 and 1/λ5/2 respectively, are corrections that correspond to the effective R4 and

D4R4 bulk interaction vertices.

In more detail, the standard N = 4 SYM Lagrangian is written in terms of a vector

multiplet consisting of a gauge field Aµ, six scalars φI with I = 1, . . . , 6, and four Weyl

fermions λAα with A = 1, 2, 3, 4, all transforming in the adjoint representation of the SU(N)

gauge group. The theory has PSU(2, 2|4) superconformal symmetry, whose bosonic sub-

group includes the conformal group SO(4, 2) and SU(4)R R-symmetry. Under the latter,

the scalars transform as the 6, while the fermions transform as the 4 + 4̄. The 1/2-

BPS single-trace conformal primaries we study here are operators of the schematic form

Sp ∝ trφp with p = 2, 3, . . ., which are scalars of scaling dimension ∆ = p and transform

in the SU(4)R representation [0 p 0] (symmetric traceless product of p 6’s). These BPS

operators are holographically dual to scalar Kaluza-Klein modes on S5 [10]. The lowest

one, S2 ∝ trφ2, belongs to the same N = 4 superconformal multiplet as the stress-energy

tensor. The connected correlation functions 〈SpSqSrSs〉 have been studied extensively in

the supergravity limit (i.e. at leading order in 1/N and 1/λ) starting with [11], with a

general formula proposed in [12, 13] that, quite surprisingly, was shown to exhibit 10d

conformal symmetry [14]. (See, for instance, [15–22] for earlier results.) In this work we

will focus on the particular case 〈S2S2SpSp〉 beyond the supergravity limit.1

The main observation that makes our computation possible is that a set of requirements

determine the planar 〈S2S2SpSp〉 correlator order by order in the 1/λ expansion almost

completely,2 up to only a few numerical coefficients at each order. The superconformal

Ward identities imply that the correlator is determined by a single function of the conformal

cross ratios [31], whose Mellin transform [32, 33] we denote by Mp(s, t). Using crossing

symmetry and the analytic structure of tree-level Witten diagrams in Mellin space [32–35],

we can then expand Mp(s, t) as a series in 1/λ:

Mp = c−1
(
B1

1M1
p+λ−

3
2
[
B4

4M4
p+B4

1M1
p

]
+λ−2

[
B5

5M5
p+B5

4M4
p+B5

1M1
p

]
+λ−

5
2
[
B6

6,1M6,1
p +B6

6,2M6,2
p +B6

5M5
p+B6

4M4
p+B6

1M1
p

]
+O(λ−3)

)
+O(c−2) .

(1.1)

In this expression, c = (N2 − 1)/4 is the c anomaly coefficient and Mn
p are functions of

the Mellin variables s and t (whose expressions will be given in the next section) which

1Unfortunately, our methods do not currently allow an extension to 〈SpSqSrSs〉, with general p, q, r, s.

Nevertheless, knowing 〈S2S2SpSp〉 allows one to then determine 〈S2S2S2S2〉 to next order in 1/N (relative

to the one considered here) and up to the same order in 1/λ [23].
2For the stress tensor multiplet four-point function in maximally supersymmetric SCFTs, this was first

pointed out in 4d in [24] and then in 3d and 6d in [25] and [26], respectively, all following the seminal

work [27]. For other work on Mellin space holographic correlators in various dimensions see [28–30].
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for n > 1 are simply degree n − 4 polynomials. (We use an extra index i = 1, 2, . . . and

writeMn,i
p when several such functions are possible.) The coefficients Bm

n are p-dependent

numbers which we must fix through other methods. Here and in the rest of the paper we

find it convenient to expand the 〈S2S2SpSp〉 correlator in 1/c instead of 1/N without loss

of any information. The Ward identity from the conservation of the stress tensor fixes the

stress tensor OPE coefficients in the S2×S2 and Sp×Sp OPEs, which fixes the supergravity

coefficient Bm
1 (in particular Bm

1 = 0 for m > 1). Thus, to determine 〈S2S2SpSp〉 to order

1/λ5/2, we need to calculate B4
4 , B5

5 , B5
4 , B6

6,1, B6
6,2, B6

5 , and B6
4 as functions of p.

The case p = 2 is simpler, because additional crossing equations not present for p > 2

fix B6
6,2 = B6

5 = B5
5 = 0, so only four coefficients (B4

4 , B5
4 , B6

6,1, and B6
4) must be deter-

mined in this case. One can proceed with two methods. The first method, used first in this

context by Goncalves [36], involves the relation between CFT correlators and bulk scatter-

ing amplitudes in the flat space limit [32, 34]. Indeed, in this limit, the Mellin amplitude

corresponding to 〈S2S2S2S2〉 is related to the type IIB closed string four-point scatter-

ing amplitude of the massless string states (i.e. of the gravitons and their superpartners

from a space-time perspective). As an expansion in the string coupling gs, the four-point

scattering amplitude of these supergravitons takes the form [37]

A = A0f(s, t) f(s, t) ≡ −stu `
6
s

64

Γ(− `2ss
4 )Γ(− `2st

4 )Γ(− `2su
4 )

Γ(1 + `2ss
4 )Γ(1 + `2st

4 )Γ(1 + `2su
4 )

+O(g2
s) , (1.2)

where `s is the string length, the higher order terms in gs represent contributions from

worldsheets of genus one and higher, the quantity A0 is the tree-level supergravity scatter-

ing amplitude, and s and t are the usual Mandelstam invariants. We will mostly restrict

our attention to the leading term in gs written in (1.2) which corresponds to the leading

1/N result in the CFT (for fixed λ in the ’t Hooft limit). Further expanding the function

f(s, t) in `s, we have

f(s, t) =
[
1 + `6sfR4(s, t) + `10

s fD4R4(s, t) + `12
s fD6R4(s, t) + · · ·

]
+O(g2

s) , (1.3)

with

fR4(s, t) =
ζ(3)

32
stu , fD4R4(s, t) =

ζ(5)

210
stu(s2 + t2 + u2) , fD6R4(s, t) =

ζ(3)2(stu)2

211
,

(1.4)

etc. As we will explain, the first quantity in (1.4) can be used to determine B4
4 [36], the

second can be used to determine B6
6,1, and the absence of an `8s term in (1.3) sets B5

5 = 0.

The second method we use to fix the coefficients in the 1/λ expansion (1.1) relies on

results from supersymmetric localization. For observables that preserve a certain amount

of supersymmetry, supersymmetric localization is a powerful method to compute their

expectation values by reducing the path integral to finite-dimensional integrals. Pestun [38]

used it to derive a matrix model that calculates the S4 partition function Z(m,λ) of a real-

mass deformation of the N = 4 SYM theory known as the N = 2∗ theory. Starting from

Pestun’s result, we follow [39] (see also [40–43]) to evaluate the second mass derivative of
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the N = 2∗ partition function (evaluated at zero mass) at leading order in 1/N and to

all orders in 1/λ.3,4 Following the strategy originally outlined in [45] for the maximally

supersymmetric 3d ABJM [46] theory,5 we then show how to relate derivatives of Z(m,λ)

to integrated four-point functions 〈S2S2S2S2〉 and 〈S2S2PP 〉, where P is the complex

dimension 3 scalar in the stress tensor multiplet and 〈S2S2PP 〉 can be related to 〈S2S2S2S2〉
using Ward identities that we derive following [31].6 Putting these ingredients together

allows us to use localization to determine B4
4 , B5

4 , and a linear combination of B6
6,1 and

B6
4 , namely 7B6

4 + 16B6
6,1.

In sum, to derive the order 1/c (or 1/N2) four-point function 〈S2S2S2S2〉 at order

1/λ3/2 and 1/λ2, we have two distinct methods that agree with one another, which is a

nontrivial check of AdS/CFT beyond supergravity. In order to pin down the 1/λ5/2 con-

tribution to the four-point function, we need to combine the results from supersymmetric

localization and the input from the 10d scattering amplitude at order D4R4.

The methods of determining the coefficients in (1.1) can be generalized to 〈S2S2SpSp〉
for p > 2. In this case, the 10d flat space scattering amplitude determines B4

4 , B5
5 , and B6

6,i

as before, and a generalization of Pestun’s supersymmetric localization computation devel-

oped in [49] can be used to determine B4
4 , B5

4 , as well as a linear combination of B6
4 , B6

5 , and

B6
6,i. Without further input, one cannot thus fully fix all the coefficients, although one can

put constraints on their p-dependence. Luckily, in [1] it was shown that a well-motivated

ansatz for the form of the one-loop Mellin amplitudes imposes additional constraints on

the quantities B6
4 , B6

5 , and B6
6,1 that can then be combined with the supersymmetric local-

ization and consistency with the string theory flat space scattering amplitude to determine

completely the 1/λ5/2 term in 〈S2S2SpSp〉 for all p. These tree level correlators can then

be used to derive CFT data to one-loop D4R4 order [1, 50].

While in (1.3) we expanded the scattering amplitude in gs first and afterwards in `s,

one can contemplate a different expansion where we simply expand f(s, t) in `s and at each

order keep track of the full gs dependence. In such an expansion, f(s, t) takes the form

f(s, t) = 1 + `6s f̃R4(s, t) + `8s f̃1-loop(s, t) + `10
s f̃D4R4(s, t) +O(`12

s ) , (1.5)

where f̃D2nR4(s, t) are polynomials in s and t as before, but they now depend non-trivially

on gs, or more generally on the complexified string coupling τs. The other functions of

3Quite interestingly, we find that the 1/λ expansion of the second mass derivative of the S4 planar free

energy of the N = 2∗ theory exhibits some of the zeta functions that one would expect from the string

scattering amplitudes. However, not all of the expected zeta functions appear — for instance the ζ(3)2 that

appears in the string scattering amplitude at order D6R4 is absent from the S4 free energy.
4At leading order in large N and large λ, the N = 2∗ theory on S4 is dual to the supergravity background

constructed in [44].
5The main difference between 3d and 4d for this strategy is that in 3d the partition function is a function

of three masses, while in 4d it’s a function of just one mass, but also of λ that couples to the marginal

operator in the stress tensor multiplet, which does not appear in 3d. See however [47] for a proposal for

the S4 partition function of the N = 1∗ theory, which is a function of three masses and λ.
6See also [48] where the relation between all stress tensor multiplet four-point functions was described in

an abstract language. It would be interesting to derive our explicit formula relating 〈S2S2PP 〉 to 〈S2S2S2S2〉
from that approach.
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s and t appearing in (1.5), such as f̃1-loop(s, t), are non-analytic functions of s, t. The

τs dependence of the analytic terms f̃R4(s, t), f̃D4R4(s, t) and f̃D6R4(s, t) are captured by

certain SL(2,Z) invariants that involve non-holomorphic Eisenstein series [51–54], whose

expansion at small gs give a finite number of perturbative contributions and also infinite

non-perturbative contributions from D-instantons. In the N = 4 SYM theory, the `s
expansion can be mapped to a 1/N (or 1/c) expansion at fixed gYM, which we will refer to

as a ‘very strong coupling’ expansion. As we will discuss in more detail in section 5, while

in this limit we do not have good enough control over the supersymmetric localization

computation to be able to use it as input, we can nevertheless use the flat space scattering

amplitude in order to extract the first couple of terms in the Mellin representation of the

N = 4 SYM correlators. From them, we can then extract a prediction for the S4 partition

function of the N = 2∗ theory in the very strong coupling limit, which in the field theory

would require summing infinitely many instanton contributions [55–58].

The rest of this paper is organized as follows. In section 2, we review properties of the

stress tensor multiplet four-point function in the strong coupling limit, and in particular

how the Mellin amplitude corresponding to the 〈S2S2SpSp〉 correlator can be written at

leading order in 1/c in terms of a few undetermined coefficients at each order in the 1/λ

expansion. In section 3 we find the constraints on these coefficients that are imposed from

supersymmetric localization. In section 4, we combine the supersymmetric localization

constraints with the constraints coming from the flat space scattering amplitudes as well

as the conjecture of [1] to fully determine 〈S2S2SpSp〉 in the planar limit up to order 1/λ5/2,

and to fix CFT data at both tree and 1-loop level. In section 5 we discuss the 〈S2S2SpSp〉
correlator in the very strong coupling limit of the N = 4 SYM theory. We conclude with

a discussion in section 6.

2 Four-point functions at large N and strong coupling

Let us begin by discussing the large N , strong coupling expansion of the four-point function

〈S2S2SpSp〉 introduced in the Introduction. As in the Introduction, we will use the c

anomaly coefficient [59]

c =
N2 − 1

4
(2.1)

as our expansion parameter instead of N .

2.1 Setup

The operators Sp that we study are single-trace superconformal primary operators of the

N = 4 SYM theory transforming in the [0 p 0] irrep of the R-symmetry group SU(4)R. For

fixed p, they can be represented as symmetric traceless tensors with p indices SI1...Ip(~x),

each index ranging from 1 to 6. In terms of the Lagrangian description of the N = 4 SYM

theory these operators are given by7

SI1...Ip(~x) = Np

[
tr
(
φI1 · · ·φIp

)
− SO(6) traces

]
, (2.2)

7Here we use tr to denote the trace in the fundamental representation of SU(N). The SU(N) generators

T a with a = 1, 2, . . . , N2 − 1 are normalized such that tr(T aT b) = δab.

– 5 –
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where φI , I = 1, . . . , 6, are the adjoint scalar fields of the N = 4 vector multiplet. The

normalization constant Np will be given momentarily. To avoid writing out SO(6) indices,

it is convenient to introduce null polarization vectors Y I , with Y ·Y ≡ Y IYI = 0, and define

Sp(~x, Y ) ≡ SI1...Ip(~x)Y I1 . . . Y Ip . (2.3)

Because the operators Sp are 1/2-BPS conformal primaries, their two-point functions are

independent of the coupling constant gYM [60] and can therefore be computed at gYM = 0

where the φ propagator is 〈φaI (~x1)φbJ(~x2)〉 = δabδIJ
4π2|~x|2 , with a = 1, · · · , N2 − 1 being color

indices. It is convenient to choose the normalization constant Np in such a way that the

two-point function 〈SpSp〉 takes the simple form

〈Sp(~x1, Y1)Sp(~x2, Y2)〉 =
Y p

12

|~x12|2p
, Y12 ≡ Y1 · Y2 , ~x12 ≡ ~x1 − ~x2 . (2.4)

At leading order in the 1/c expansion, the choice of Np is given by

Np =
(2π)p
√
p(4c)p/4

. (2.5)

Our primary object of study will be the four-point function 〈S2S2SpSp〉. Conformal

symmetry and SU(4)R symmetry constrain it to take the form

〈S2(~x1, Y1)S2(~x2, Y2)Sp(~x3, Y3)Sp(~x4, Y4)〉 =

Y p−2
34

~x4
12~x

2p
34

[
S1
p (U, V )Y 2

12Y
2

34 + S2
p (U, V )Y 2

13Y
2

24 + S3
p (U, V )Y 2

14Y
2

23

+ S4
p (U, V )Y13Y14Y23Y24 + S5

p (U, V )Y12Y14Y23Y34 + S6
p (U, V )Y12Y13Y24Y34

]
,

(2.6)

where the Sip are functions of the conformal cross-ratios

U ≡ x2
12x

2
34

x2
13x

2
24

, V ≡ x2
14x

2
23

x2
13x

2
24

. (2.7)

The superconformal Ward identities relating the Sip to one another [31], given in ap-

pendix B, are identical for any p. Quite remarkably, they can be solved in terms of a

single unconstrained function Tp of U, V by writing Sip as [31]:

Sip(U, V ) = Θi(U, V )Tp(U, V ) + Sip,free(U, V ) ,

Θi(U, V ) ≡
(
V UV U U(U − V − 1) 1− U − V V (V − U − 1)

)
.

(2.8)

Here, Sip,free is protected and identical to the free SYM correlator. For instance, for p = 2

we can use Wick contractions with the normalization (2.5) to compute8

Si2,free(U, V ) =
(

1 U2 U2

V 2
1
c
U2

V
1
c
U
V

1
cU
)

(2.9)

8Note that the 1/c term in (2.9) and (2.10) can alternatively be fixed by considering the stress tensor

multiplet channel of the superconformal block decomposition, which contributes to the protected correlator

Si,p,free and whose coefficient is determined by Ward identities to be λ2
stress = p

2c
.
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and for p > 2, we have

Sip,free(U, V ) =
(

1 0 0 p(p−1)
2c

U2

V
p
2c
U
V

p
2cU

)
+O(1/c2) . (2.10)

From now on, we will focus on Tp(U, V ). Not only does this function determine 〈S2S2SpSp〉,
but through the superconformal Ward identities it also (along with c) uniquely determines

all other correlators related to it through supersymmetry. In the appendix B we discuss

these superconformal Ward identities in more detail.

2.2 Strong coupling expansion at large N

Since N = 4 SYM has two parameters, N and gYM, there are in fact several strong coupling

limits we could consider at large N . The one we will focus on for most of the paper is the

strong coupling ’t Hooft limit, in which we first take N →∞ (or c→∞) with λ = g2
YMN

fixed, and then take λ → ∞. The double expansion in c−1 and λ−
1
2 is dual to the Type

IIB expansion in g2
s`

8
s (counting supergraviton loops) and `2s (counting higher derivatives),

where AdS/CFT relates the string coupling gs as

gs =
g2

YM

4π
. (2.11)

All tree level terms then have coefficient c−1 but different powers of λ: for instance, the

R4 and D4R4 contributions are suppressed by λ−
3
2 and λ−

5
2 , respectively, relative to the

supergravity contribution. A different strong coupling, large N limit, in which we keep

g2
YM fixed while taking N →∞ will be discussed in section 5.

In the ’t Hooft strong coupling limit, is it simpler to study the 1/c contribution to the

function Tp(U, V ) in Mellin space. The Mellin transform Mp(s, t) of Tp(U, V ) is defined

by [12]:

Tp(U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

u−p−2
2 Γ

[
2− s

2

]
Γ
[
p− s

2

]
× Γ2

[
2 + p

2
− t

2

]
Γ2

[
2 + p

2
− u

2

]
Mp(s, t) ,

(2.12)

where u = 2p−s−t, and where the two integration contours in (2.12) include all poles of the

Gamma functions on one side or the other of the contour. (These poles are associated with

double-trace operators [61].) The reason for considering the Mellin space representation

is that, in Mellin space, tree-level Witten diagrams are either polynomial in s, t or have a

prescribed set of poles and residues that agree with the poles and residues of the conformal

blocks corresponding to the single trace operators exchanged in the Witten diagrams. At

large s, t, the growth of the tree-level Mellin amplitude is determined by the number of

derivatives in the interaction vertices, and a careful analysis shows that Mk
p should grow

at most as the (k− 4)th power of s and t. These requirements should be supplemented by

the crossing symmetry relations

Mp(s, t) =Mp(s, u) , M2(s, t) =M2(u, t) , (2.13)

– 7 –
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which follow from interchanging the first and second operators, and, for p = 2, the first

and third. All these requirements, namely the analytic structure, growth at infinity, and

crossing symmetry of Mp(s, t) imply that Mp(s, t) can be expanded as in eq. (1.1), which

we reproduce here for the reader’s convenience:

Mp = c−1
(
B1

1M1
p+λ−

3
2
[
B4

4M4
p+B4

1M1
p

]
+λ−2

[
B5

5M5
p+B5

4M4
p+B5

1M1
p

]
+λ−

5
2
[
B6

6,1M6,1
p +B6

6,2M6,2
p +B6

5M5
p+B6

4M4
p+B6

1M1
p

]
+· · ·

)
+O(c−2) ,

(2.14)

with [24]

M1
p =

1

(s− 2)(t− p)(u− p)
,

M4
p =1 , M5

p =s ,

M6,1
p =s2 + t2 + u2 , M6,2

p =s2 ,

(2.15)

and so on. Note that while for k = 1, 4, 5 there is a unique new Mellin amplitude Mk
p of

maximal degree, for k ≥ 6 there are multiple such amplitudes that are linearly independent.

Consequently, in position space the function Tp(U, V ) takes the form:

Tp(U,V ) = c−1

[
B1

1T 1
p +λ−

3
2
(
B4

4T 4
p +B4

1T 1
p

)
+λ−2

(
B5

5T 5
p +B5

4T 4
p +B5

1T 1
p

)
+λ−

5
2
(
B6

6,1T 6,1
p +B6

6,2T 6,2
p +B6

5T 5
p +B6

4T 4
p +B6

1T 1
p

)
+· · ·

]
+O(c−2) ,

(2.16)

with T kp determined through (2.12). We have

T 1
p = −1

8
UpD̄p,p+2,2,2(U, V ) ,

T 4
p = UpD̄p+2,p+2,4,4(U, V ) ,

T 5
p = 2Up

(
2D̄p+2,p+2,4,4(U, V )− D̄p+2,p+2,5,5(U, V )

)
,

T 6,1
p = 2Up

(
2(1 + U + V )D̄p+3,p+3,5,5 − (4 + 4p− p2)D̄p+2,p+2,4,4(U, V )

)
,

T 6,2
p = 4Up

(
D̄p+2,p+2,6,6(U, V )− 5D̄p+2,p+2,5,5(U, V ) + 4D̄p+2,p+2,4,4(U, V )

)
,

(2.17)

where explicit expressions for D̄r1,r2,r3,r4(U, V ) [15] can be derived from e.g. appendix C

in [45].

The leading coefficient Bn
1 (p) terms can be determined by demanding that no un-

physical twist 2 operators appear in the s-channel conformal block decomposition of

〈S2S2SpSp〉 [31], which imposes a relation between Sip,free and Tp in (2.8).9 In our nor-

malization we find

B1
1(p) =

4p

Γ(p− 1)
, Bn

1 (p) = 0 for n > 1 . (2.18)

What remains to be determined are the coefficients Bn
k for k > 1. We will do so by

imposing various constraints, starting in the next section with constraints coming from

supersymmetric localization.

9Twist 2 operators correspond to terms linear in U in the small U expansion of 〈S2S2SpSp〉. In the large

N limit the only twist 2 operators come from the stress tensor multiplet, whose contribution are captured

by the superconformal block given in [31]. After subtracting this, we find that both Sip,free and T 1
p still

separately include terms linear in U , and demanding their cancellation gives (2.18).
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3 Constraints from supersymmetric localization

In the previous section, we usedN = 4 superconformal symmetry to fix the form of the four-

point correlator 〈S2S2SpSp〉, and we have presented a 1/λ expansion of this correlator in

the strong coupling limit, with undetermined coefficients Bn
k (p) (see (2.16)). No knowledge

of the N = 4 SYM Lagrangian was needed. In this section, we connect the discussion in

the previous section with exact computations that use the Lagrangian of the 4d N = 4

SYM theory.

On general grounds, in supersymmetric QFTs, the computation of certain observables

preserving certain supercharges can be reduced to finite-dimensional matrix integrals using

supersymmetric localization. Here we will restrict our attention to the supersymmetric

localization setup in [38] (further expanded in [49]) that involves placing N = 4 SYM on a

round S4 deformed by mass m and chiral couplings τp while preserving the N = 2 subal-

gebra OSp(2|4).10 The four-point function 〈S2S2SpSp〉 with generic SO(6)R polarizations

and the operators inserted at generic positions does not preserve the supercharge used in

the localization setup,11 but, as we will explain, certain integrated correlators do, and thus

can be extracted from localization. In practice, it is convenient to introduce a generat-

ing function for these integrated correlators, which is precisely the deformed S4 partition

function Z(m, τp) which we will compute using localization. Our strategy will be to first

identify which integrated correlators can be computed from localization and relate them

to the 〈S2S2SpSp〉 correlator at separated points, and then use the localization result to

deduce constraints on the constants Bn
k (p) left undetermined from the previous section.

3.1 Supersymmetric deformations and integrated correlators

Since the localization computation only uses N = 2 SUSY, let us start by reviewing the

deformations of a general N = 4 SCFT in flat space that preserves N = 2 Poincaré

supersymmetry. Note that when viewing N = 4 SYM theory as an N = 2 SCFT, the

SU(4)R R-symmetry decomposes into SU(2)F ×SU(2)R×U(1)R where SU(2)F is the flavor

symmetry and SU(2)R × U(1)R is the N = 2 R-symmetry. Correspondingly, the N = 4

half-BPS operator S2 splits as

20′ → (1,1)±2 ⊕(3,3)0⊕ (1,1)0 ⊕ (2,2)±1 ,

S2 → {A2, Ā2} ⊕ B(αβ)
(ab) ⊕ C ⊕ {Dαa , D̄αa } ,

(3.1)

where a, b are SU(2)R doublet indices and α, β are SU(2)F doublet indices. Similarly for

general half-BPS operators Sp, we have

[0 p 0] → (1,1)±p ⊕ . . . ,

Sp → {Ap, Āp} ⊕ . . . .
(3.2)

The operators Ap, Āp are N = 2 Coulomb branch (anti)chiral primaries while B denotes

the Higgs branch chiral primary of SU(2)R spin jR = 1 that generates a current multiplet

10It would be interesting to consider other backgrounds as well.
11This is except when the SO(6)R polarizations are aligned so that 〈S2S2SpSp〉 becomes extremal. But

the extremal correlator in N = 4 SYM is rather trivial as we will see in section 3.2.
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for the SU(2)F flavor symmetry. C is the bottom component of the N = 2 stress tensor

multiplet and D are bottom components of the extra N = 2 supercurrent multiplets that

must be present due to N = 4 SUSY.

For any N = 2 SCFT, there are two types of deformations preserving N = 2 Poincaré

supersymmetry [62]. One comes from the mass deformation associated with the current

multiplet, in this case for the SU(2)F flavor symmetry, which takes the form

mαβ

∫
d4x Q̃2B(αβ)(x) + c.c. (3.3)

where mαβ is the triplet of su(2)F masses. Here and below we use Q̃ to denote collectively

the 4 antichiral supercharges of N = 2 SUSY. While U(1)R and SU(2)F are broken by

this deformation, the SU(2)R indices are contracted in a way to preserve this R-symmetry

subgroup. Without loss of generality, we can take the mass parameter to lie within the

Cartan generated by (σ2)αβ = i diag{1, 1} and thus mαβ = (σ2)αβm.12

The other type of deformations correspond to Coulomb branch chiral primaries Ap

τp

∫
d4x Q̃4Ap(x) + c.c. (3.4)

In particular for p = 2, this is the familiar exactly marginal deformation of SYM with

τ2 = τ ≡ θ
2π + 4πi

g2
YM

. For general p, this deformation again breaks U(1)R while preserving

SU(2)R. This deformation always preserves SU(2)F .

Any N = 2 QFT with SU(2)R symmetry can be put on S4 by coupling it to a back-

ground N = 2 supergravity multiplet. The background we are interested in breaks the

SU(2)R symmetry to an U(1) subgroup, which together with the SO(5) isometry and 8

supercharges, furnish the full OSp(2|4) symmetry on S4. The deformations (3.3) and (3.4)

are also modified by terms that involve the background fields to preserve SUSY on S4,

which we will spell out below. The deformed S4 partition function Z(m, τp) of the N = 4

SYM theory can then be computed using the supersymmetric localization technique. Tak-

ing appropriate derivatives with respect to m and τp, we obtain the desired integrated

correlators.

3.1.1 N = 2 flavor current multiplet and real mass deformation on S4

The N = 2 conserved current multiplet for an U(1) subgroup of the SU(2)F symmetry

has the following bosonic primary operators: a conserved current jµ, a complex scalar Σ

with scaling dimension ∆Σ = 3 and a triplet of real scalars B(ab) of scaling dimension

∆B = 2. Any conserved current multiplet (jµ,Σ,B(ab), . . .) can be coupled to a background

vector multiplet with bosonic components (Aµ,Φ, D(ab), . . .). The supersymmetric mass

deformation on S4 is obtained by setting Aµ = D(12) = 0 and Φ = m = D(11)r = D(22)r,

where r is the radius of S4. We further require m to be real in order to have a convergent

path integral. In the N = 1 notation in which the N = 4 SYM theory is a theory of

12The (symmetric) Pauli matrices with lower indices are related to the usual Pauli matrices by

(σi)αβ ≡ (σi)
γ
βεαγ with the convention ε12 = 1.
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a vector multiplet and three adjoint chiral multiplets (Zi, χi), i = 1, 2, 3, with i = 1, 2

corresponding to the N = 2 hypermultiplet,13 the resulting mass coupling takes the form

Sm =

∫
d4x
√
g

(
m

[
i

r
J +K

]
+m2L

)
, (3.5)

where

J ≡ 1

2

2∑
i=1

tr
[
(Zi)

2 + (Z̄i)
2
]
, K ≡ −1

2

2∑
i=1

tr (χiσ2χi + χ̃iσ2χ̃i) , L ≡
2∑
i=1

tr |Zi|2 .

(3.6)

In terms of the N = 2 operators, J ∝ B(11) + B(22) is a real combination of the Higgs

branch chiral operators, K ∝ Σ + Σ̄ is a real combination of the ∆ = 3 scalars in the

current multiplet, and L = C + K is a combination of the primary operator in the N = 2

stress tensor multiplet (3.1) and the Konishi operator K,

C ≡ 1

3
tr
[
|Z1|2 + |Z2|2 − 2|Z3|2

]
, K ≡ 2

3

3∑
i=1

tr |Zi|2 . (3.7)

We can further relate the operators J , K, and C to the N = 4 operators SIJ and PAB via

J = NJ [S11 + S22 − S44 − S55] ,

C = NC [S11 + S22 + S33 + S44 − 2S55 − 2S66] ,

K = NK

[
P11 + P22 + P̄ 11 + P̄ 22

]
,

(3.8)

where the dimension 2 scalar SIJ with I, J = 1, . . . 6 were discussed in the previous

section and the dimension 3 complex scalars PAB with A,B = 1, . . . , 4 are discussed

in appendix A. The normalization constants NJ and NK are independent of the gauge

coupling, so they can be computed in the free limit. Using 〈Zai (x)Z̃bj (0)〉 =
δijδ

ab

4π2|x|2 and

〈χai (x)χ̃bj(0)〉 = −σµxµδijδ
ab

2π2|x|4 , where a, b = 1, . . . , N2 − 1 for an SU(N) gauge group, we

obtain14

N2
K = 8N2

J = 36N2
C =

N2 − 1

4π4
. (3.9)

One may worry about the appearance of the (bare) Konishi operator in the mass

deformation since it a non-BPS operator and hence receives nontrivial renormalizations.

Fortunately for the strong coupling limit we are interested in, the Konishi operator is

known to develop a large anomalous dimension and effectively decouples from the operator

algebra in the 1
λ expansion [63, 64]. Consequently for our purpose, we may effectively set

L = C in (3.5).

13The SU(2)R R-symmetry acts on
( Z1

−Z̄2

)
and

( Z2

Z̄1

)
as doublets.

14Here σµ = (~σ,−i) are 4d chiral gamma matrices where ~σ denotes the usual Pauli matrices.
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3.1.2 N = 2 Coulomb branch chiral primaries on S4

In general, Coulomb branch chiral primary operators Ap in N = 2 SCFTs are complex

scalar operators of dimension ∆ = p which are the bottom components of chiral multiplets.

Under the SU(2)R × U(1)R R-symmetry, they transform with charge p under U(1)R and

they are singlets of SU(2)R. The chiral multiplet contains additional scalar operators: a

complex scalar Mp of dimension ∆ = p+ 2, and an SU(2)R triplet of complex scalars N
(ab)
p

of dimension ∆ = p + 1. These operators couple to background chiral multiplets, giving

rise to the following supersymmetric deformation on S4 [49]

Sτp = τp

∫
d4x
√
g

(
Mp(x)− ip− 2

r
(σ2)abN

(ab)
p (x) +

2(p− 2)(p− 3)

r2
Ap(x)

)
. (3.10)

As explained in [49], the above integral can be reduced to an insertion of the chiral primary

operator Ap at the North pole of S4,

Sτp = τpAp(N) (3.11)

up to Q-exact terms.15 Similarly, anti-chiral operators Āp with dimension ∆ = p and

U(1)R charge −p, can be inserted at the South pole of S4 while preserving supersymmetry:

Sτ̄p = τ̄pĀp(S) (3.12)

In the N = 4 SYM theory, one can identify the chiral primaries Ap and Āp as trZp3
and tr Z̄p3 , respectively, up to normalization. More abstractly, they correspond to specific

components of the N = 4 BPS operators Sp(Y ):

Ap ∝ Sp(Y0) , Āp ∝ Sp(Ȳ0) , (3.13)

where Y0 = (0, 0, 1, 0, 0, i) and Ȳ0 = (0, 0, 1, 0, 0,−i).

3.1.3 Integrated mixed correlators on S4

Using supersymmetric localization, one can compute the S4 partition function Z(m,λ,τp,τ̄p)

associated to the deformed action S(m, τp) = SN=4 + Sm +
∑

p(Sτp + Sτ̄p) as a function of

the ’t Hooft coupling λ as well as the mass parameter m and complex parameters (τp, τ̄p),

with the property that derivatives w.r.t. m correspond to integrated insertions of i(J/r+K)

(as well as C), and derivatives w.r.t. τp (τ̄p) correspond to insertions of Ap (Āp) at the North

(South) poles. Let us postpone the derivation of Z(m,λ, τp, τ̄p) until the next section, and

for now assume that we can compute it, or equivalently that we can compute the ratio

lp ≡
∂2
m∂τp∂τ̄p logZ

∂τp∂τ̄p logZ
= l(4)

p + l(3)
p , (3.14)

15A similar phenomenon is encountered in 3d N = 4 superconformal theories where certain integrated

correlators on S3 can be reduced, up to Q-exact terms, to integrated correlators in the 1d topological theory

studied in [65–69]. In that case, the 1d theory is defined on a great S1 within S3.
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with

l(4)
p =

∫
d4~x1 d

4~x2

√
g(~x1)

√
g(~x2)

〈
(iJ(~x1) +K(~x1)) (iJ(~x2) +K(~x2))Ap(N)Āp(S)

〉〈
Ap(N)Āp(S)

〉
(3.15)

and

l(3)
p =

2
∫
d4~x

√
g(~x)〈C(~x)Ap(N)Āp(S)〉〈
Ap(N)Āp(S)

〉 . (3.16)

The ratio (3.14) and consequently the expressions (3.15)–(3.16) are defined so that they

are independent of the normalization of Ap and Āp. (Here and from now on we set the

four-sphere radius r = 1.)

The 3-point function in (3.16) is easy to evaluate because it involves various components

of the N = 4 chiral operators S2 (see (3.8)), and such 3-point functions are independent

of gYM [60]. Thus, it can be computed in the free limit using Wick contractions, and we

have, at large c,

〈C(~x1)Ap(~x2)Āp(~x3)〉〈
Ap(~x2)Āp(~x3)

〉 = − p

6π2

~x2
23

~x2
12~x

2
13

+O(1/c) . (3.17)

To obtain the same quantity on a four-sphere of unit radius, we write the S4 metric as

ds2 = Ω−2(~x)d~x2 with Ω(~x) = 1 + ~x2

4 and make the replacement

~xij → Ω(~xi)
−1/2Ω(~xj)

−1/2~xij (3.18)

in all flat space correlators. Sending ~x2 → 0 and |~x3| → ∞ (corresponding to the North

and South poles, respectively), and using
√
g(~x) = Ω(~x)−4, we find

l(3)
p = − p

3π2

∫
d4~x

1

~x2
(

1 + ~x2

4

)2 +O(1/c) = −4p

3
+O(1/c) .

(3.19)

Using (3.8)–(3.13), the integrand of l
(4)
p can be written in terms of the 4-point functions

〈S2S2SpSp〉 in (2.6) as well as 〈PP̄SpSp〉, which we give in (A.7). We find〈
(iJ(~x1) +K(~x1)) (iJ(~x2) +K(~x2))Ap(~x3)Āp(~x4)

〉〈
Ap(~x3)Āp(~x4)

〉 = 4N2
J

[
−
S1
p

~x4
12

+ 8
R1
p −R2

p +R3
p

~x6
12

]
,

(3.20)

where the Rip are functions of (U, V ) defined in (A.7). Then, taking ~x3 = 0 and |~x4| → ∞
and again using

√
g(~x) = Ω(~x)−4, we can evaluate (3.15):

l(4)
p = 4N2

J

[
−Ĩ2[S1

p ] + 8Ĩ3[R1
p −R2

p +R3
p]

]
, (3.21)

where

Ĩ∆[G] = lim
|~x3|→0
|~x4|→∞

∫
d4~x1 d

4~x2

(
1 +

x2
1

4

)∆−4 (
1 +

x2
2

4

)∆−4

~x2∆
12

G(U, V ) . (3.22)
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The eight integrals in (3.22) can be reduced to three integrals by using the SO(4) sym-

metry of S4 (fixing the poles). Indeed, we can use SO(4) to set ~x1 = (r1, 0, 0, 0) and

~x2 = (r2 cos θ, r2 sin θ, 0, 0) and obtain

Ĩ∆[G] = Vol(S3)Vol(S2)

∫
dr1 dr2 dθr

3
1r

3
2 sin2 θ

(
1+

r2
1
4

)∆−4(
1+

r2
2
4

)∆−4

(r2
1 +r2

2−2r1r2 cosθ)∆
G
(
r2

1 +r2
2−2r1r2 cosθ

r2
1

,
r2

2

r2
1

)
.

(3.23)

To simplify this expression further, we can change variables from (r1, r2) to (r, ρ), where

r1 = 2ρ and r2 = 2rρ:

Ĩ∆[G] = 211−2∆π3

∫
drdρdθr3ρ7 sin2 θ

(
1+ρ2

)∆−4 (
1+ρ2r2

)∆−4

ρ2∆(1+r2−2r cosθ)∆
G
(
1+r2−2r cosθ,r2

)
.

(3.24)

Now ρ only appears in the prefactor and the integral over it can be done analytically. In

the cases of interest ∆ = 2 and ∆ = 3, eq. (3.24) becomes

Ĩ2[G] = 128π3

∫
dr dθ r3 sin2 θ

1− r2 + (1 + r2) log r

(r2 − 1)3

G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)2

,

Ĩ3[G] = 32π3

∫
dr dθ r3 sin2 θ

log r

r2 − 1

G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)3

.

(3.25)

Note that the functions 1−r2+(1+r2) log r
(r2−1)3 and log r

r2−1
are continuous at r = 1 despite the fact

that the denominator vanishes there.

Thus, the quantity l
(4)
p is given by (3.21) with the Ĩ given by (3.25). One can simplify

this expression further using the differential relations (B.6) between Rip and Sip given by

the 〈PPSpSp〉 Ward identity derived in appendix B. After applying integration by parts,

we find, at large c:

−Ĩ2[S1
p ] + 8Ĩ3[R1

p −R2
p +R3

p] = 16π4I[Tp]−
2π4

c
l(3)
p

(3.26)

where

I[G] ≡ 4

π

∫
dr dθ r3 sin2 θ

r2 − 1− 2r2 log r

(r2 − 1)2

G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)2

, (3.27)

and note that the 3-point function (3.16) appears here due to boundary terms in the

integration by parts.

Plugging this into (3.21), we obtain the final result

lp = l(3)
p + l(4)

p = 8cI[Tp] . (3.28)

In the next section, we will calculate the quantity lp from supersymmetric localization, and

using (3.28) we will then obtain a constraint on the 4-point function 〈S2S2SpSp〉.
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3.2 Integrated correlators from localization

As shown by Pestun [38], the S4 partition function of the N = 2∗ theory can be computed

using supersymmetric localization through a matrix model that takes the form

Z(m,λ) =

∫
dN−1a

∏
i<j

(ai − aj)2H2(ai − aj)
H(ai − aj −m)H(ai − aj +m)

 e−
8π2N
λ

∑
i a

2
i |Zinst|2 , (3.29)

where H(z) is a product of two Barnes G-functions, namely H(z) = G(1+z)G(1−z). The

quantity |Zinst|2 represents the contribution to the localized partition function coming from

instantons located at the North and South poles of S4 [55–58]. Because this quantity is

non-perturbative and exponentially small when gYM → 0 it can be ignored in the ’t Hooft

limit [39].

As already mentioned, (3.29) was generalized in [49] to also include the sources τp and

τ̄p for the N = 2 Coulomb branch operators inserted at the North and South poles of S4.

To achieve this, we consider

Z(m,λ, τ ′p, τ̄
′
p) =

∫
dN−1a

∏
i<j

(ai − aj)2H2(ai − aj)
H(ai − aj −m)H(ai − aj +m)

 e−
8π2N
λ

∑
i a

2
i

× ei
∑
p π

p/2(τ ′p−τ̄ ′p)
∑
i a
p
i |Zinst|2 ,

(3.30)

where the quantity |Zinst|2 appearing in this formula may be different from the one appear-

ing in (3.29), but it can again be ignored in the ’t Hooft limit, and where the parameters

τ ′p and τ̄ ′p are related to (but not quite the same as) the sources τp and τ̄p for chiral and

anti-chiral operators we wanted to introduce.

As explained in [49], the difference between (τ ′p, τ̄
′
p) and (τp, τ̄p) is due to operator

mixing on S4. Indeed, if we were to compute the matrix of two-point functions Apq of the

operators that couple to τ ′p and τ̄ ′p,

Apq ≡
∂2 logZ

∂τ ′p∂τ̄
′
q

∣∣∣∣
m=τ ′p=τ̄ ′p=0

, (3.31)

we would find that this matrix is not diagonal. The operator basis for which the two-

point function matrix is diagonal differs from the naive choice by mixing with operators

whose dimensions are strictly lower by multiplets of two.16 In the ’t Hooft limit, we only

need to consider mixing between single trace operators, so we should simply diagonalize A

using the Gram-Schmidt procedure: for every n, we should find an eigenvector vpn of the

matrix A (obeying Apqv
p
n = λnv

q
n) normalized such that vnn = 1 and vpn = 0 for p > n.

Then, the insertion of An(N) and Ān(S) are realized by ∂
∂τn

= vpn
∂
∂τ ′p

and ∂
∂τ̄n

= v̄pn
∂
∂τ̄ ′p

,

respectively, up to normalization. The quantity ln is defined such that it is independent of

the normalizations of An(N) and Ān(S) and is given by

ln =
Bpqv

q
nv

p
n

Apqv
p
nv

q
n
, (3.32)

16The mixing of operators on the supersymmetric round S4 background here is purely due to the metric.

Diffeomorphism invariance requires that only the curvature enters in the mixing relations.
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where we also defined the matrix B as

Bpq ≡
∂4 logZ

∂m2∂τ ′p∂τ̄
′
q

∣∣∣∣
m=τ ′p=τ̄ ′p=0

. (3.33)

Let us now use (3.30) to compute the matrices A and B and then extract ln. Because

the operator mixing is only between operators whose dimensions differ by an even number

and the dimension of Ap is p, we can focus on even p. (Extending the following analysis

to odd p is straightforward, but we won’t perform it here.) Assuming that in the large N

limit the eigenvalues become dense, we have

Z(m,λ, τp, τ̄p) =

∫
dNa e−N

2F (a) , (3.34)

where

F ≈ 1

2

∫
dx dy ρ(x)ρ(y) log

H(x− y +m)H(x− y −m)

H2(x− y) |x− y|2
+

∫
dx ρ(x)V (x) ,

V (x) ≡ 8π2

λ
x2 +

∞∑
p=2

8πp/2+1

λp
xp ,

(3.35)

we set Zinst = 1 in (3.30), we defined λp = 4πN
=τ ′p

, and we introduced the eigenvalue density

ρ(x) normalized such that ∫
dx ρ(x) = 1 . (3.36)

When N is large, the integral (3.34) can be evaluated in the saddle point approximation:

logZ ≈ −N2F , where F is evaluated on the solution to the saddle point equation∫
dyρ(y)

(
1

x−y
−K(x−y)+

1

2
K(x−y+m)+

1

2
K(x−y−m)

)
=

8π2

λ
x+

∞∑
p=2

4pπp/2+1

λp
xp−1 ,

(3.37)

where K(x) ≡ −H ′(x)/H(x).

To compute the matrix A we should first consider m = 0, in which case we recognize

that the partition function is that of a Hermitian matrix model with a polynomial potential

V (x). As is well-studied in random matrix theory (see [70] for a review), the eigenvalue

density that solves (3.37) when m = 0 is supported on a compact interval [−b, b] and takes

the form17

ρ0(x) =
Q(x)

2π

√
b2 − x2 , (3.38)

where Q(x) is a degree p− 2 polynomial determined by the requirement that

V ′(x)√
x2 − b2

−Q(x)→ 2

x2
, as x→∞ . (3.39)

Note that b is also fixed in terms of λ, λp in V (x) by the normalization condition (3.36).

17This was first worked out in [71] for the (p = 4) quartic potential. Our case amounts to a simple

generalization.
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The value of logZ is then approximated by minus eq. (3.35), which after using the

saddle point equation (3.37) can be simplified to

logZ(0, λ, τ ′p, τ̄
′
p) ≈ −N24π2

∫
dx ρ0(x)

[
x2

λ
− log x

4π2
+
∑
p

πp/2−1xp

λp

]
. (3.40)

To compute Apq defined in (3.31), we only need to keep the two terms with λp and λq in

the sum over p in the above expression. We performed this computation for many pairs of

such terms and extracted Apq. We found

Apq =
2Γ(p+1

2 )Γ( q+1
2 )

π(p+ q)Γ(p2)Γ( q2)

(
λ

4π

) p+q
2

. (3.41)

We can then perform the Gram-Schmidt procedure as described above to find the eigen-

vectors vpn (with even n and even p as above):

vp2 =
(

1 0 0 0 · · ·
)
,

vp4 =
(
− λ

4π 1 0 0 · · ·
)
,

vp6 =
(

9λ2

256π2 − 3λ
8π 1 0 · · ·

)
,

(3.42)

and so on. From inspection of these eigenvectors, we find that the general solution for vpn is

vpn = (−1)n/22−nnπ
−1
2

(
λ

4π

)n−p
2 Γ(1−p

2 )Γ(p+n2 )

Γ(p+2
2 )Γ(n−p+2

2 )
, (3.43)

which implies the following simple result18

vpnApqv
q
n = n

(
λ

16π

)n
. (3.44)

We have thus computed the denominator of (3.32). To compute the numerator, we

should first compute the matrix Bpq defined in (3.33). Because in the expansion of (3.35)

at small m2 the leading correction comes at order m2, in order to evaluate this correction

we can simply use the m = 0 eigenvalue density. Thus, from (3.35) we find that the second

derivative of logZ with respect to m2 is

∂2 logZ

∂m2
≈ N2

∫
dx dy ρ0(x)ρ0(y)K ′(x− y) , (3.45)

where K(x) = −H ′(x)/H(x) as defined before. To evaluate this integral, we make use of

the Fourier transform [39]

K ′(x) = −
∫ ∞

0
dω

2ω[cos(2ωx)− 1]

sinh2 ω
, (3.46)

and change variables from (x, y) to (ξ, η) given by ξ = x/b and η = y/b. Then,

∂2 logZ

∂m2
≈−N

2b4

2π2

∫ 1

−1
dξdηQ(bξ)Q(bη)

√
1−ξ2

√
1−η2

∫ ∞
0

ω [cos[2bω(ξ−η)]−1]

sinh2ω
. (3.47)

18This is consistent with fact that the flat space extremal correlators of Ap in N = 4 SYM have trivial

dependence on the marginal coupling τ (or λ) [72–74].
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Taking into account that b depends on τ ′p and τ̄ ′p as given by the normalization condi-

tion (3.36), we can evaluate (3.47) as a function of τ ′p and τ̄ ′p and compute the derivatives

required to evaluate Bpq. The ξ and η integrals in (3.47) can be evaluated in terms of

Bessel functions. The computations are very tedious and we were able to perform them

only for specific values of p. Quite surprisingly, after using (3.43) and (3.44) we find that

the quantity ln = vpnv
q
nBpq/(v

p
nv

q
nApq) takes the simple form (after renaming n→ p)

lp = 4p

∫ ∞
0

dω ω
J1(
√
λ
π ω)2 − Jp(

√
λ
π ω)2

sinh2 ω
. (3.48)

This is our main result that follows from supersymmetric localization. It can be combined

with (3.28) to provide a constraint on the four-point function 〈S2S2SpSp〉.
In the next section, we will be interested in the 1/

√
λ corrections of the correlator

〈S2S2SpSp〉 at leading order in 1/c, so let us expand (3.48) in 1/
√
λ. Such an expan-

sion can be performed using the Mellin-Barnes representation of the Bessel function (see

appendix D), with the final result

lp = 2(p− 1)− 4p(p2 − 1)ζ(3)

λ3/2
− 3p(p2 − 1)(3− 2p2)ζ(5)

λ5/2

− 15p(p2 − 1)(135− 124p2 + 16p4)ζ(7)

32λ7/2

− 35p(p2 − 1)(1575− 1654p2 + 320p4 − 16p6)ζ(9)

64λ9/2
+ · · · .

(3.49)

In the next section, we will use this quantity to fix some of the parameters left undetermined

in the expressions (2.14) and (2.16) from section 2.1.

4 Relating N = 4 SYM and 10d S-matrix

Let us now use various constraints to determine the coefficients Bn
k (p) in (1.1). The coeffi-

cients Bn
1 (p) were already determined in (2.18), so let us focus on the remaining ones, order

by order in the 1/λ expansion. The constraints will come from the comparison of the flat

space limit of the CFT correlators with flat space string theory scattering amplitudes, from

the supersymmetric localization result (3.49), and when p > 2 also from the implications

of a conjecture of [1] on the form of one-loop Mellin amplitudes. What we will find is that

the reduced Mellin amplitude is

Mp(s, t) =
4p

Γ(p−1)

1

c

[
1

(s−2)(t−p)(u−p)
+

(p+1)3

4
ζ(3)

1

λ3/2

+
(p+1)5

32
ζ(5)

[
s2+t2+u2+

2p(p−2)

p+5
s+

(
−2p2+

50+20p(p+2)

(p+4)(p+5)

)]
1

λ5/2

+· · ·
]

+O(c−2) . (4.1)

In the particular case p = 2, this expression simplifies to

M2(s, t) =
8

c

[
1

(s−2)(t−2)(u−2)
+

15ζ(3)

λ3/2
+

315ζ(5)

4λ5/2

(
s2+t2+u2−3

)
+· · ·

]
+O(c−2) . (4.2)
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4.1 Constraints from supersymmetric localization

We will begin with the constraints on 〈S2S2SpSp〉 coming from supersymmetric localization

results (3.28) and (3.49). The integrals (3.27) of (2.17) can be computed numerically to

high precision for many values of p to yield:

I[T 1
p ] =

Γ(p)

16p
, I[T 4

p ] = −Γ(p+ 2)

2(p)4
, I[T 5

p ] = −2p
Γ(p+ 2)

(p)5
,

I[T 6,1
p ] = (16 + 20p− 12p2 − 5p3 − p4)

Γ(p+ 2)

(p)6
,

I[T 6,2
p ] = −8p(p− 1)

Γ(p+ 2)

(p)6
,

(4.3)

and so on, where (p)n ≡ Γ(p+n)/Γ(p) is the Pochhammer symbol. Then, we can assemble

lp using (3.28) as

lp = 8

[
B1

1(p)
Γ(p)

16p
−B4

4(p)
Γ(p+2)

2(p)4

1

λ
3
2

−
[
4pB5

5(p)+(p+4)B5
4(p)

]
Γ(p+2)

2(p)5

1

λ2

+

[
2B6

6,1(p)(16+20p−12p2−5p3−p4)−16p(p−1)B6
6,2(p)−B6

5(p)4p(p+5)−B6
4(p)(p+4)(p+5)

2(p)6

]

×Γ(p+2)
1

λ
5
2

+· · ·
]
. (4.4)

Comparing with (3.49), we see that from the leading term we recover the expression for

B1
1(p) given in (2.18). From the subleading terms, we read off:

R4 : B4
4(p) = ζ(3)

(p)4

Γ(p− 1)
,

D2R4 : 4pB5
5(p) + (4 + p)B5

4(p) = 0 ,

D4R4 : 2B6
6,1(p)(16 + 20p− 12p2 − 5p3 − p4)− 16p(p− 1)B6

6,2(p)

−B6
5(p)4p(p+ 5)−B6

4(p)(p+ 4)(p+ 5) =
3(2p2 − 3)(p)6

4Γ(p− 1)
ζ(5) ,

(4.5)

etc.

4.2 Constraints from the flat space limit

For a correlator 〈O1(~x1)O2(~x2)O3(~x3)O4(~x4)〉 of scalar operators in N = 4 SYM with

the corresponding Mellin amplitude MO1O2O3O4(s, t) (see appendix C), we can use [34] to

deduce the flat space four supergraviton scattering amplitude with momenta restricted to

5 dimensions (up to an overall numerical factor) [25, 45]:

A(ηi, s, t) = Γ

(
1

2
∆Σ − 2

)[∫
S5

d5x
√
g

4∏
i=1

ΨOiηi (~n)

]

× lim
L→∞

L6

∫ κ+i∞

κ−i∞

dα

2πi
eαα2− 1

2
∆ΣMO1O2O3O4

(
L2

2α
s,
L2

2α
t

)
,

(4.6)

– 19 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
9

where ∆Σ is the sum of the conformal dimensions of the operators, and the limit is taken

at fixed `s and gs after the CFT quantities gYM and N are converted into string theory

quantities using the AdS/CFT relations

L4

`4s
= λ = g2

YMN , gs =
g2

YM

4π
. (4.7)

In (4.6), ηi are the polarizations of the supergravitons, and the factor in the square brackets

is a form factor involving the wavefunctions ΨOiηi (~n) of the modes dual to the operators Oi in

the internal unit S5. The integration contour in (4.6) must have κ > 0. It can be seen that

at order g2m
YM/N

n in a double expansion as N →∞ and gYM → 0, only terms that at large

s and t scale as satb with a+ b = 2n− 3 contribute to (4.6), and have coefficient multiplied

by gm+n
s `4ns . For instance, the leading supergravity term is proportional to 1

c = 4
N2−1

, so in

this case m = 0, n = 2, and a+ b = 1, which corresponds to a linear scattering amplitude

multiplied by g2
s`

8
s, which is the right scaling for the gravitational constant in 10d.

To apply this formula to 〈S2S2SpSp〉, we need to compute the Mellin transforms

M i
p(s, t) of the functions Sip(U, V ) in (2.6). In appendix C we define and compute M i

p(s, t)

in terms of Mp(s, t); at leading order in s, t (at each order in the 1/c and 1/λ expansion)

we find:

M i
p(s, t) ≈

1

16

(
t2u2 s2u2 s2t2 2s2tu 2st2u 2stu2

)
Mp(s, t) , (4.8)

where u ≈ −s− t in the large s, t limit. It follows that we can read off the function f(s, t)

defined in (1.3) to get

f(s, t) =
1

N
lim
L→∞

L14

∫ κ+i∞

κ−i∞

dα

2πi
eαα−4−pMp

(
L2

2α
s,
L2

2α
t

)
, (4.9)

where the normalization19

N = (4π)2B1
1(p)

32g2
s`

8
s

stu

∫
dα

2πi
eαα−1−p =

2048π2g2
s`

8
s

stu

p

Γ(p− 1)Γ(p+ 1)
(4.10)

is such that the leading term in f(s, t) in the small `s expansion is equal to 1, which we

derive by plugging the leading term Mp = 1
cB

1
1(p)M1

p + . . . in (2.14) into (4.9). (We also

used the formula for B1
1(p) given in (2.18).)

Using the full expansion (2.14) in (4.9), we obtain

f(s, t) =
stu

B1
1(p)

[
B1

1(p)

stu
+

B4
4(p)

23(p+ 1)3
`6s +

B5
5(p)s

24(p+ 1)4
`8s

+
B6

6,1(p)(s2 + t2 + u2) +B6
6,2(p)s2

25(p+ 1)5
`10
s + · · ·

]
+O(g2

s) .

(4.11)

19We have
∫

dα
2πi

eαα−1−p = 1
Γ(p+1)

.
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Comparing with the string theory amplitude (1.3), we read off

R4 : B4
4(p) = ζ(3)

(p)4

Γ(p− 1)
,

D2R4 : B5
5(p) = 0 ,

D4R4 : B6
6,1(p) = ζ(5)

(p)6

8Γ(p− 1)
, B6

6,2(p) = 0 ,

(4.12)

etc.

Note that the constraint on the coefficient B4
4(p) of the R4 amplitude agrees be-

tween (4.5) and (4.12), thus providing a precision test of AdS/CFT beyond the supergravity

approximation! Note also that (4.5) and (4.12) are sufficient to determine B5
5 = B5

4 = 0,

thus showing that there is no 1/c× 1/λ2 term in the CFT correlator.

Lastly, note that when p = 2, we have B6
5(2) = 0, and the constraints (4.5) and (4.12)

are enough to fix

B6
6,1(2) = −B

6
4(2)

3
= 630ζ(5) , B6

6,2(2) = 0 , (4.13)

so we have determined the 〈S2S2S2S2〉 correlator completely up to order 1/c× 1/λ5/2.

4.3 Locality on S5

In the flat space limit both the AdS5 and S5 curvatures tend to zero. We therefore expect

that locality of the 10d action will constrain the p-dependence of the coefficients Bn
k (p).

In the effective action of IIB string theory on AdS5 × S5, the derivatives associated to

interaction vertices (such as R4, D4R4, etc.) are distributed between the AdS5 and internal

S5 directions. In terms of the KK mode composition, the derivatives in S5 give rise to

polynomials in p, much like how derivatives in AdS5 give rise to additional powers of s and

t. From this, we conclude that

Bn
k (p) = Cnk (p)

(p)k
Γ(p− 1)

, (4.14)

where Cnk (p) is a polynomial of degree 2(n− k). The “kinematic factor” (p)k
Γ(p−1) arises from

the α integral in (4.9), and is not affected by the additional internal space derivatives that

give rise to Cnk (p).

Using (4.14) and (4.12), as well as the fact that B6
5(p) must vanish when p = 2, we see

that we must determine 7 coefficients to fully fix the λ−5/2 term of the 〈SSSpSp〉:

B6
5(p) = (p−2)(a1p+a0)

ζ(5)(p)5

Γ(p−1)
, B6

4(p) = (b4p
4+b3p

3+b2p
2+b1p+b0)

ζ(5)(p)4

Γ(p−1)
. (4.15)

Plugging these expressions into the localization result (4.5), we can completely determine

B6
4(p) in terms of B6

5(p):

b0 =
25

4
, b1 = 8a0 + 5 , b2 = 8a1 − 4a0 −

9

2

b3 = −4a1 −
5

4
, b4 = −1

4
.

(4.16)
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4.4 Constraints from [1]

In [1], two distinct arguments were used to constrain, the order 1/c × 1/λ5/2 Mellin am-

plitude. By considering the restrictions on the functional form of the one-loop Mellin

amplitude, combined with the requirements coming from the flat space limit of both the

tree-level and one-loop Mellin amplitudes, ref. [1] determined B6
5(p) and B6

4(p) up to two

unknown constants:20

B6
5(p) =

1

4
p(p−2)

ζ(5)(p)5

Γ(p−1)
, B6

4(p) =−1

4
(p4+9p3+c2p

2−20p+c1)
ζ(5)(p)4

Γ(p−1)
. (4.17)

Comparing to (4.16), we can immediately determine that

a1 = −1

4
, a0 = 1 , c1 = −25 , c2 = 10. (4.18)

We can also confirm that the expressions for b1, b3, and b4 determined in [1] are compatible

with both localization and their expression for B6
5(p).

4.5 Unprotected CFT data up to order 1/λ5/2

Now that 〈S2S2SpSp〉 has been fixed to order c−1λ−
5
2 , we can use it to extract any CFT

data to this order that we like. For instance, we find the tree level anomalous dimension

γj
∣∣
c−1 of the unique lowest twist even spin j double trace operators [S∂µ1 . . . ∂µjS] to be

γj
∣∣
c−1 = − 24

(j + 1)(j + 6)
− 1

λ
3
2

4320ζ(3)

7
δj,0 −

ζ(5)

λ
5
2

[
30600δj,0 +

201600

11
δj,2

]
+O(λ−3) ,

(4.19)

where first two terms were computed in [63, 75] and [36], respectively, and contact terms

with n-derivatives only contribute to operators up to spin n/2 − 4, as explained in [27].

For higher twists there are many degenerate double trace operators, so one would need to

compute all 〈SpSpSqSq〉 correlators to determine their anomalous dimensions [76, 77].

In [1], the double-discontinuity of the 1-loop amplitude was derived to order λ−
5
2 in

terms of the constants c1 and c2, following a similar derivation for the 1-loop SUGRA

term in [50, 76, 77]. This double discontinuity can be used to derive CFT data for spins

greater than 4 and 6 up to order λ−
5
2 and λ−

5
2 , respectively. After plugging (4.18) into the

formulae from [1], we find that the 1-loop R4 and D4R4 corrections to γj are

γj
∣∣
c−2λ−

3
2

=−103680
(j+2)4(j2+7j+16)(j2+7j+54)

(j−4)6(j+6)6
ζ(3) , for j > 4 ,

γj
∣∣
c−2λ−

5
2

=−(77j4(j+7)4+15452j3(j+7)3+1610364j2(j+7)2+48199536j(j+7)+401725440)

×1036800(j+2)4

(j−6)8(j+6)8

ζ(5)

8
, for j > 6 , (4.20)

where c1, c2 were required only to fix γj
∣∣
c−2λ−

5
2
. The 1-loop SUGRA anomalous dimension

for j > 0 can be found in [76, 77].

20In the notation of [1], our constants c1,2 are instead written as bABP
1,2 = −2c1,2, where we have added

the superscript ABP to distinguish from our bi’s.

– 22 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
9

5 Very strong coupling expansion and the Eisenstein series

So far, we have considered the N = 4 SYM theory in the strong coupling ’t Hooft limit,

where one first sends N → ∞ while keeping λ = g2
YMN fixed, and then takes λ → ∞.

Let us now comment on a different strong coupling expansion, which we will refer to as

the “very strong coupling expansion” whereby we send N → ∞ while keeping gYM fixed.

Thus, there is only one expansion parameter in this limit.

For simplicity, let us focus on the correlator 〈S2S2S2S2〉, thus setting p = 2 and

dropping the p dependence from now on. In the very strong coupling limit, the reduced

Mellin amplitude takes the form

T (U, V ) = B̃1
1(τ)T 1(U, V )

1

c
+ B̃4

4(τ)T 4(U, V )
1

c
7
4

+ T 1-loop(U, V )
1

c2
+

+
(
B̃6

6(τ)T 6(U, V ) + B̃6
4(τ)T 4(U, V )

) 1

c
9
4

+ · · · .
(5.1)

where τ = θ
2π+ 4πi

g2
YM

is the complexified gauge coupling. The functions T i(U, V ) are the same

as in eq. (2.17) (with p = 2), and as before in Witten diagram language T 1 corresponds

to the tree-level supergravity contribution while T 4+n comes from tree-level diagrams with

D2nR4 vertices. The only difference now is that the coefficients of these interaction vertices

have a non-trivial dependence on the dilaton-axion τs = χs + ig−1
s . By the same argument

that led to (2.18), we have

B̃1
1 = B1

1(2) = 8 . (5.2)

It is hard to obtain a constraint from supersymmetric localization in the very strong

coupling limit, because at finite gYM the instanton corrections to the S4 partition function

that we were previously able to ignore now contribute. On the other hand, as we will now

show, we can use the known Type IIB amplitude to fix B̃4
4 in the CFT. For small `s and

fixed gs, the function f(s, t) appearing in the type IIB S-matrix (eq. (1.2)) takes the form

f(s, t) = 1 + `6s f̃R4(s, t) + `8s f̃1-loop(s, t) + `10
s f̃D4R4(s, t) +O(`12

s ) , (5.3)

where each coefficient is now a function of the complexified string coupling τs = χs + ig−1
s .

The terms f̃R4 , f̃D4R4 , and f̃D6R4 are protected, and have been computed exactly in terms

of SL(2,Z) invariant functions [51–54]. The lower two terms can be written in terms of the

non-holomorphic Eisenstein series Er as

f̃R4(s, t) =
stu

64
g

3
2
s E3/2(τs, τ̄s) =

stu

64

[
2ζ(3)+

2π2

3
g2
s+O(e−1/gs)

]
, (5.4)

f̃D4R4(s, t) = g
5
2
s E5/2(τs, τ̄s)

stu

211
(s2+t2+u2) =

stu

210

(
ζ(5)+

2π4

135
g4
s+O(e−1/gs)

)
(s2+t2+u2) .

Here, the SL(2,Z) Eisenstein series is defined as

Er(τs, τ̄s) =
∑

(m,n) 6=(0,0)

g−rs
|m+nτs|2r

(5.5)

= 2ζ(2r)g−rs +2
√
πgr−1

s

Γ(r−1/2)

Γ(r)
ζ(2r−1)+

2πr

Γ(r)
√
gs

∑
m,n 6=0

∣∣∣m
n

∣∣∣r−1/2
Kr−1/2(2πg−1

s |mn|)e2πimnχs ,
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where the second line gives the Fourier coefficients of the first, the first two terms are

the zero modes, and K is a modified Bessel function. Note that χs only shows up in the

O(e−1/gs) terms which are associated to D-instanton contributions in IIB string theory.

Using the flat space limit formula (4.6) and the amplitudes (5.4), we can now fix the

R4 coefficient B̃4
4 in N = 4 SYM for finite gYM:

B̃4
4 = 60g3/2

s E3/2(τ, τ̄) . (5.6)

We then relate B̃4
4 and B̃1

1 = 8 in (5.2) to Z(m,λ) using (3.14) and (4.3) with p = 2 to get21

∂4 logZ

∂τ∂τ̄∂m2

∣∣∣
m=0

=
cg4

YM

16π2
− 3c

1
4

128
√

2π7/2
g4

YME3/2(τ, τ̄) +O(c0) . (5.7)

We can integrate this relation using the fact that the Eisenstein series Er satisfies the

differential equation

4g−2
s ∂τs∂τ̄sEr = r(r − 1)Er , (5.8)

and we find

∂2 logZ

∂m2

∣∣∣
m=0

=

[
8c log gYM −

√
2c

1
4

π3/2
E3/2(τ, τ̄) +O(c0)

]
+ κ1(τ) + κ2(τ̄) , (5.9)

for arbitrary holomorphic and antiholomorphic functions κ1(τ) and κ2(τ̄), which parame-

terize the expected ambiguity in ∂2 logZ
∂m2

∣∣∣
m=0

.22 Thus, the Eisenstein series in (5.9) provides

a nontrivial prediction for the O(m2, c
1
4 ) term in the mass-deformed SYM free energy, which

must come from summing up all the instantons in (3.30).23

We can also extract the R4 correction to the tree level anomalous dimension of the low-

est twist double trace operator, as we did in the λ→∞ limit in (4.19). From (5.6), we get

γj = −1

c

24

(j + 1)(j + 6)
− 1

c
7
4

135E3/2(τ1, τ2)

7
√

2π
3
2

δj,0 +O(c−2) . (5.11)

21Note that from (3.44), ∂2 logZ
∂τ∂τ̄

∣∣∣
m=0

= λ2

128π2 .
22These holomorphic and antiholomorphic ambiguities are generalizations of the Kähler ambiguities for

the S4 partition of generic 4d N = 2 SCFTs with a conformal manifold [78, 79], now in the presence of

mass deformations. The relevant supersymmetric counterterms take the following form in the N = 2 chiral

superspace [80, 81]

Scounter =

∫
d4x d4θ Eκ1(τ)W 2 , (5.10)

and its complex conjugate. Here E is the chiral superspace measure and the rest of the integrand must

have Weyl weight 2 and chiral weight −2. In writing the above counterterm, we have promoted τ to a

background chiral multiplet with both vanishing Weyl weight and chiral weight whose bottom component

is the marginal coupling, and W is the background vector multiplet of Weyl weight 1 and chiral weight −1

whose bottom component is the mass parameter. See also [82] for a discussion of ambiguities in the S4 free

energy of N = 1∗ theory.
23We emphasize that the mass deformation is crucial for such nontrivial τ dependence. In the limit of

m = 0, the S4 free energy simply captures the Kähler potential on the conformal manifold of the N = 4

SYM which is rather trivial [83].
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Note that the R4 contribution in (5.11) is the same as in (4.19) except with ζ(3) replaced

with an Eisenstein series according to (5.4), and λ written in terms of c. We conjecture

that all the large λ → ∞ results from protected terms, such as the D4R4 term in (4.19)

and the 1-loop R4 and D4R4 terms in (4.20), can be promoted to finite gYM expansion in

c−1 by the rules

λ→ g2
YM

√
4c+ 1 , ζ(3)→

g3
YM

16π
3
2

E3/2(τ, τ̄) , ζ(5)→
g5

YM

64π
5
2

E5/2(τ, τ̄) . (5.12)

6 Discussion

In this paper, we have combined various techniques (CFT Ward identities, supersymmetric

localization, matching the flat space limit of CFT correlators with string theory scatter-

ing amplitudes) to determine the four-point functions of half-BPS operators of the type

〈S2S2SpSp〉 in 4d N = 4 SYM in the strong coupling large N limit. The CFT correlators

have a natural expansion in 1/λ that maps to higher derivative corrections to type IIB

supergravity. These higher derivative couplings are rather complicated and not known in

their complete supersymmetric forms, so to determine their contributions to the N = 4

SYM correlators, we need to resort to other means than a direct computation via Witten

diagrams. Fortunately, kinematic constraints from N = 4 superconformal Ward identi-

ties and crossing symmetry greatly reduce the number of independent structures that can

appear in these correlators, with a priori undetermined coefficients. Our primary tool to

constrain these coefficients comes from the localization computation of the SYM on S4,

which is an elegant and efficient way to extract certain integrated combinations of the

correlators of our interest in the strong coupling limit.

At leading order, we found that the contribution from R4 to 〈S2S2SpSp〉 is completely

fixed by the localization result. Moreover, this contribution agrees with the IIB string

amplitude in the flat space limit and provides a nontrivial check of AdS/CFT to the first

nontrivial subleading order in 1/λ beyond supergravity. At the next subleading order of

D4R4, although the current localization results are insufficient to pin down the contribution

to the 〈S2S2SpSp〉 correlator, from consideration of bulk locality, the IIB string amplitude

on flat space, and thanks to the well-motivated ansatz in [1], we have also determined the

〈S2S2SpSp〉 correlator to this order. These correlators could then be used to extract CFT

to one-loop D4R4 order (i.e. c−2λ−
5
2 ) following [1].

We also considered a “very strong coupling” limit of the correlator 〈S2S2SpSp〉 where

we kept gYM finite while taking N to infinity. In this case, instanton contributions to the

S4 free energy of N = 4 SYM theory are no longer suppressed and their contribution

is difficult to evaluate. By comparing with the type IIB string amplitude in flat space

(known up to genus three), we deduced a proposal for the dependence of the SYM free

energy F (m, τ) on τ = τs that incorporates non-perturbative contributions. It would

be very interesting to directly compute these instanton effects from the large N matrix

model. Furthermore, the τs dependence of the proposed SYM free energy take the form

of certain non-holomorphic Eisenstein series which are SL(2,Z) invariant functions that
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satisfy Laplace-type differential equations with respect to τs (5.8).24 It would be interesting

to derive these differential constraints directly from CFT considerations. Together with

SL(2,Z) invariance of the SYM, we would then be able to prove the full τs dependence we

conjectured in (5.7) or (5.9).

The localization computation we pursued in this paper focused on the S4 free energy

F (m, τp) of theN = 4 SYM deformed by a real mass m and chiral couplings τp, in the strong

coupling expansion. We extracted the integrated correlators by taking two derivatives of

m and two of τp (τ̄p). Another constraint could come from taking four derivatives of m,

for which we would need to expand F (m, τp) to quartic order in m in the strong coupling

expansion, extending the quadratic calculation of [39]. A further constraint could come

from considering the free energy F (b) on the squashed sphere S4
b , which has also been

computed from localization in [85] and is a nontrivial function of λ. Derivatives of b

would give integrated correlators of the stress tensor multiplet, just as derivatives of m

and τp did.25 By combining all these localization constraints, one could hope to derive

the holographic correlator up to D6R4 order, which is the highest order protected by

supersymmetry, by CFT methods alone, which could then be compared with the string

theory prediction to check AdS/CFT to unprecedented precision. To go beyond this order

one would require CFT data that is not protected by supersymmetry, perhaps from the

numerical bootstrap [86, 87].26
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A Stress tensor multiplet four-point functions

In table 1, we list the scaling dimensions of all the operators in the stress tensor multiplet,

as well as their transformations under the SO(4) Euclidean Lorentz symmetry, the SU(4)R
R-symmetry, and the U(1)B bonus symmetry under which 4-point functions of half-BPS

multiplets in N = 4 SCFTs are invariant [90, 91]. In addition to the superconformal

primary S discussed in the main text, we will make use of the dimension 3 complex scalar P

(P ) in the [0 0 2] ([2 0 0]), the dimension 5
2 complex fermion χα (χα̇) in the [0 1 1] ([1 1 0]), the

24Such differential equations for the higher derivative couplings R4 and D4R4 are a consequence of IIB

supersymmetry [52, 84].
25One could also consider taking various mass and gauge coupling derivatives of the N = 1∗ partition

function on S4, for which an expression was proposed in [47].
26In 3d, first steps of this kind were taken for the maximally supersymmetric ABJM theory, where

bootstrap bounds [65, 88] have been successfully matched to both localization [89] and large N Mellin

space calculations [29, 30].
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S χ , χ P , P j F , F Ψ ,Ψ T λ , λ Φ ,Φ

∆ 2 5
2 3 3 3 7

2 4 7
2 4

Spin [j, j′] [0, 0] [1
2 , 0] , [0, 1

2 ] [0, 0] [1
2 ,

1
2 ] [1, 0] , [0, 1] [1, 1

2 ] , [1
2 , 1] [1, 1] [1

2 , 0] , [0, 1
2 ] [0, 0]

SU(4)R 20′ 20,20 10 ,10 15 6 4, 4̄ 1 4̄,4 1

U(1)B 0 1
2 ,−

1
2 1 ,−1 0 1 ,−1 1

2 ,−
1
2 0 3

2 ,−
3
2 2,−2

Table 1. Operators in the N = 4 stress energy tensor multiplet and their scaling dimensions ∆,

spins [j, j′] of the Euclidean Lorentz group SO(4) ∼= SU(2)×SU(2), irreps of the R-symmetry group

SU(4)R, and charges of the bonus symmetry group U(1)B .

dimension 3 complex two-form Fαβ (F
α̇β̇

) in the [0 1 0], and the dimension 3 R-symmetry

current jµ in the adjoint [1 0 1].

We can write P (P ) as symmetric tensors PAB(~x) (P
AB

(~x)), where upper (lower) A,B

transform in the 4 (4̄) of SU(4)R. We can contract 4 (4̄) indices with polarization spinors

XA (X
A

) that satisfy the constraint XAX
A

= 0, so that

P (~x,X) ≡ PAB(~x)X
A
X
B
, P (~x,X) ≡ PAB(~x)XAXB . (A.1)

In the index free language, we denote contraction via δA
B by · . In addition to δI

J and

δA
B, we can construct the invariant tensors CIAB and C

I
AB [44]:

C1 =

(
0 σ1

−σ1 0

)
, C2 =

(
0 −σ3

σ3 0

)
, C3 =

(
iσ2 0

0 iσ2

)
,

C4 = −i

(
0 iσ2

iσ2 0

)
, C5 = −i

(
0 I2

−I2 0

)
, C6 = −i

(
−iσ2 0

0 iσ2

)
,

(A.2)

where σi are the Pauli matrices and CIAB is the complex conjugate of CABI .

We can use these invariants to define a product ∧ that relates Y , X, and X as

X ∧X → Y I := XAC
IABXB , X ∧X → Y I := X

A
C
I
ABX

B
,

Y ∧X → X
A

:= YIC
IABXB , Y ∧X → XA := YIC

I
ABX

B
.

(A.3)

We can now use these CIAB and C
I
AB to write the fermions χα (χα̇) as tensors χαIA(~x)

(χα̇IA(~x)) with the constraints χαIAC
AB
I = 0 (χα̇IACIAB = 0). We can then contract with

polarizations to get

χα(~x,X, Y ) ≡ χαIA(~x)Y IX
A
, χα̇(~x,X, Y ) ≡ χα̇AI (~x)Y IXA , (A.4)

where the constraints χαIAC
IAB = χα̇AI C

I
AB = 0 become the requirements that X ∧ Y =

X ∧ Y = 0, which can be satisfied by expressing X = Y ∧X ′ and X = Y ∧X ′ for some

auxiliary spinor polarizations X ′ and X
′
.
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Lastly, jµ, Fαβ , and F
α̇β̇

can all be written as tensors with 6 indices as jµ[I1I2], F
αβ
I ,

and F
α̇β̇
I .27 We then contract with polarizations to define

jµ(~x,Y1,Y2)≡ jµ[I1I2](~x)Y I1
1 Y I2

2 , Fαβ(~x,Y )≡FαβI (~x)Y I , F
α̇β̇

(~x,Y )≡F α̇β̇I (~x)Y I , (A.5)

where Y1, Y2 must be explicitly antisymmetrized. We normalize our operators by defining

their two-point functions, as we did for S in (2.4). For the other operators we use we have

〈χα(x1, X1, Y1)χα̇(x2, X2, Y2)〉 =
Y12(X1 ·X2)ixµ12σ

αα̇
µ

x6
12

,

〈jµ(~x1, Y1, Y1′)j
ν(~x2, Y2, Y2′)〉 =

4[Y12Y1′2′ − Y12′Y1′2)]

x6
12

(
δµν − 2

xµ12x
ν
12

x2
12

)
,

〈Fαβ(x1, Y1)F
α̇β̇

(x2, Y2)〉 =
Y12x

µ
12x

ν
12σ

(αα̇
µ σ

β)β̇
ν

x8
12

,

〈P (~x1, X1)P (~x2, X2)〉 =
(X1 ·X2)2

x6
12

.

(A.6)

In the main text we make use of four-point functions 〈S2S2SpSp〉 and 〈PPSpSp〉. The

former was already discussed in detail in section 2.1, while the latter can constrained by

conformal symmetry and SU(4)R symmetry to take the form

〈P (~x1, X1)P (~x2, X2)Sp(~x3, Y3)Sp(~x4, Y4)〉 =
Y p−2

34

x6
12x

2p
34

[
R1,p(U, V )Y 2

34(X1 ·X2)2

+R2,p(U, V )Y34(X1 ·X2){X2, X1,Y3, Y4}+R3,p(U, V ){X2, X1, Y3, Y4}2
]
,

(A.7)

where the SU(4)R invariant {X,X ′, Y, Y ′} is defined in terms of CIAB and C
I
AB introduced

above as

{X,X ′, Y, Y ′} =
1

2
XAX

′B
YIY

′
J

(
C
I
BCC

JCA − CJBCCICA
)
, (A.8)

and we normalize P in (A.6) so that R1,p(U, V ) approach 1 as U → 0. To derive the Ward

identities in the next appendix, we also make use of the four-point functions:

〈S2(~x1, Y1)S2(~x2, Y2)χα(~x3, X3, Y3)χβ̇(~x4, X4, Y4)〉

=
ixµ34σ

αβ̇
µ

x4
12x

6
34

[
Y12(X3 ·X4)(Y12Y34A11 + Y13Y24A12 + Y14Y23A13)

+ {X4, X3, Y1, Y2}(Y12Y34A14 + Y13Y24A15 + Y14Y23A16)

]
+

iσαβ̇µ

2x6
12x

6
34

(
x2

24x
µ
31 − x

2
14x

µ
32 + x2

23x
µ
41 − x

2
13x

µ
42 − x

2
34x

µ
21 − x

2
12x

µ
43 − 2εµνρσxν42xρ13xσ12

)
[
Y12(X3 ·X4)(Y12Y34A21 + Y13Y24A22 + Y14Y23A23)

+ {X4, X3, Y1, Y2}(Y12Y34A24 + Y13Y24A25 + Y14Y23A26)

]
, (A.9)

27Since jµ transforms in the adjoint of SU(4)R, it could also be written using 4 and 4̄ indices as jµA
B ,

but we will not use this form in this work.
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and

〈S2(~x1, Y1)S2(~x2, Y2)S2(~x3, Y3)jµ(~x4, Y4, Y5)〉

=
1

x4
12x

4
34

(
xµ24

x2
24

− xµ34

x2
34

)[
(Y14Y25 − Y24Y15)Y13Y23W11

+ (Y14Y25 − Y24Y15)Y13Y12W12 + (Y14Y25 − Y24Y15)Y12Y23W13

]
+

1

x4
12x

4
34

(
xµ24

x2
24

− xµ14

x2
14

)[
(Y14Y25 − Y24Y15)Y13Y23W21

+ (Y14Y25 − Y24Y15)Y13Y12W22 + (Y14Y25 − Y24Y15)Y12Y23W23

]
.

(A.10)

and

〈S2(~x1, Y1)P (~x2, X2)χα̇(~x3, X3, Y3)χβ̇(~x4, X4, Y4)〉

=
x2

14

x6
12x

6
34x

2
24

(
(x2

32 + x2
42 − x2

34)εα̇β̇ − 4xµ23x
ν
24σ̄

α̇β̇
µν

)
[
Y13Y14(X2 ·X3)(X2 ·X4)B11 + {X3, X2, Y1, Y4}{X4, X2, Y1, Y3}B12

+ Y14(X2 ·X3){X4, X2, Y1, Y3}B13 + Y13(X2 ·X4){X3, X2, Y1, Y4}B14

]
+

1

x6
12x

6
34

(
(x2

31 + x2
41 − x2

34)εα̇β̇ − 4xµ13x
ν
14σ̄

α̇β̇
µν

)
[
Y13Y14(X2 ·X3)(X2 ·X4)B21 + {X3, X2, Y1, Y4}{X4, X2, Y1, Y3}B22

+ Y14(X2 ·X3){X4, X2, Y1, Y3}B23 + Y13(X2 ·X4){X3, X2, Y1, Y4}B24

]
,

(A.11)

and

〈S2(~x1, Y1)S2(~x2, Y2)P (~x3, X3)F
α̇β̇

(~x4, Y4)〉

=
x2

14x
µ
23x

ν
43 + x2

24x
µ
31x

ν
41 + x2

34x
µ
12x

ν
42

x6
12x

8
34

σ̄α̇β̇µν Y12{(Y1 ∧X3), X3, Y2, Y4}C11 ,
(A.12)

where as usual we have fixed their forms using SU(4)R symmetry and conformal symmetry.

The quantity σ̄α̇β̇µν ≡ 1
2ε
α̇δ̇(σ̄µδ̇γσ

γβ̇
ν − σ̄νδ̇γσ

γβ̇
µ ) is anti-self-dual, and we used the conformal

structures given in [92].28 The expressions (A.9)–(A.10) were also used in [31].

B Ward identities

We will now derive the Ward identities that relate 〈PPSpSp〉 to 〈S2S2SpSp〉. These Ward

identities are the same as those that relate 〈PPS2S2〉 to 〈S2S2S2S2〉,29 which we can com-

28Our expressions differ by some signs and factors of i since we work in Euclidean signature while [92] is

in Lorentzian signature.
29To show this relation, following [93], it is enough to consider a particular case: consider an N = 4

SCFT with operators S′2, P
′, . . . and an N = 4 free theory with a free scalar operator S1 in the [0 1 0]

of SU(4)R. Define S2 ≡ S′2, P ≡ P ′, and Sp ≡ S′2S
p−2
1 , so that 〈S2S2SpSp〉 = Y p−2

34 〈S′2S′2S′2S′2〉 and

〈PPSpSp〉 = Y p−2
34 〈P ′P ′S′2S′2〉, which proves this relations for this particular theory, and thus in general.
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pute using the component field method of [31, 45]. In particular, we will first determine the

most general form of these four-point functions that is consistent with conformal symmetry

and R-symmetry, and then impose invariance under the Poincaré SUSY transformations

generated by the supercharges Q
α̇
A, which automatically implies invariance under the con-

jugate supercharges QαA and the superconformal generators. We define the action of Qα̇A
on the stress tensor multiplet operators using δ̄α̇(X), defined as:

δ̄α̇(X)S2(~x, Y ) = χα̇(~x,X ∧ Y, Y ) ,

δ̄α̇(X)χβ(~x,X
′
, Y ) =

1

4
σα̇βµ jµ(~x,X ∧X ′, Y ) + 2σα̇βµ ∂µS(~x,X ∧X ′, Y ) ,

δ̄α̇(X)χβ̇(~x,X ′, Y ) =
1

4
εα̇β̇P (~x,X ′, X ∧ Y ) + (X ·X ′)F α̇β̇(~x, Y ) ,

δ̄α̇(X)P (~x,X
′
) =

1

4
σα̇βµ ∂µχβ(~x,X

′
, X ∧X ′) ,

etc.

(B.1)

The action of QαA can be found by taking the complex conjugate of (B.1), while the

supersymmetry variations of the other stress tensor multiplet operators that were omitted

in (B.1) will not be needed in this work.

We begin by considering the SUSY variation 0 = δ̄〈S2S2S2χ〉, following the original

computation in [31]. Using the SUSY variations (B.1), we can write this equality schemat-

ically as

0 = δ̄〈S2S2S2χ〉 = 〈χS2S2χ〉+ 〈S2χS2χ〉+ 〈S2S2χχ〉+ 〈S2S2S2j〉+ 〈S2S2S2∂S2〉 . (B.2)

We then plug in the conformally and R-symmetry invariant forms of the four-point func-

tions on the r.h.s. , as given in (2.6) and the previous appendix, which yields a large set

of differential equations relating these four-point functions. These include relations purely

between invariant structures in 〈S2S2S2S2〉:

∂US4
2 (U,V ) =

2

U
S4

2 (U,V )+

(
2

U
−∂U−∂V

)
S2

2 (U,V )+

(
2

U
+(U−1)∂U+V ∂V

)
S3

2 (U,V ) ,

∂V S4
2 (U,V ) =− 1

V
S4

2 (U,V )− 1

V
(2−U∂U+(1−U)∂V )S2

2 (U,V )−(∂U+∂V )S3
2 (U,V ) .

(B.3)

Four other relations follow by applying the crossing relations:

S3
2 (U, V ) = S2

2

(
U

V
,

1

V

)
, S6

2 (U, V ) = S4
2

(
U

V
,

1

V

)
,

S2
2 (U, V ) = U2S1

2

(
1

U
,
V

U

)
, S5

2 (U, V ) = U2S4
2

(
1

U
,
V

U

)
.

(B.4)

It is straightforward to check that the Ward identities can in general be solved by (2.8), as

mentioned in section 2.1.

We next extend the computation of [31] by computing the SUSY variation

0 = δ̄〈S2S2Pχ〉, which we write schematically as

0 = δ̄〈S2S2Pχ〉 = 〈χS2Pχ〉+ 〈S2χPχ〉+ 〈S2S2∂χχ〉+ 〈S2S2PP 〉+ 〈S2S2PF 〉 . (B.5)
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We then plug in the conformally and R-symmetry invariant forms of the four-point func-

tions on the r.h.s. , which again yields a large set of differential equations relating these

four-point functions. Since 〈SSχχ〉 was already related by a first order differential equation

to 〈SSSS〉 from (B.2), the relation between 〈S2S2∂χχ〉 and 〈S2S2PP 〉 gives a second order

differential equation relation between 〈S2S2S2S2〉 and 〈PPS2S2〉, and thus also between

〈S2S2SpSp〉 and 〈PPSpSp〉:

R1,p(U,V ) =
1

8

[
2U(U−V −3)∂US1,p(U,V )+UV (2−U+2V )∂2

V S1,p(U,V )

+U2(U−2−2V )∂2
US1,p(U,V )−(4V 2−4+U [1+U−5V ])∂V S1,p(U,V )

−U(U−2−2V )(U+V −1)∂V ∂US1,p(U,V )+8S1,p(U,V )] ,

R2,p(U,V ) =
1

4

[
(4V +2UV −2−2V 2)∂V S1,p(U,V )+UV (V −1)∂2

V S1,p(U,V )

+U(1+U−V )∂US1,p(U,V )+U(V −1)(U+V −1)∂V ∂US1,p(U,V )

+U2(V −1)∂2
US1,p(U,V )

]
,

R3,p(U,V ) =
1

8

[
U(1+U−V )∂V S1,p(U,V )+U2V ∂2

V S1,p

+U2(U+V −1)∂V ∂US1,p(U,V )+U3∂2
US1,p(U,V )

]
.

(B.6)

C Mellin amplitudes

In this appendix we shall define the Mellin transforms M i
p(s, t) of Sip(U, V ), and then

describe how they are related to Mp(U, V ). To compute the Mellin transform, we first

compute the connected correlator:

Sip,conn(U, V ) ≡ Sip(U, V )− Sip,disc(U, V ) (C.1)

where the disconnected part is given by

Si2,disc(U, V ) =
(

1 U2 U2

V 2 0 0 0
)
,

Sip,disc(U, V ) =
(

1 0 0 0 0 0
)

for p > 2 .
(C.2)

We then define M i
p(s, t) by the inverse Mellin transform

Sip,conn(U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

u−p−2
2 Γ

[
2− s

2

]
Γ
[
p− s

2

]
× Γ2

[
2 + p

2
− t

2

]
Γ2

[
2 + p

2
− u

2

]
M i
p(s, t) ,

(C.3)

where u = 2p + 4 − s − t. Note that although the form of the inverse Mellin transform

in (C.3) is identical to that definingMp(s, t) in (2.12), the variable u is defined differently.

Recall from section 2.1 that for 〈S2S2SpSp〉, the Ward identities imply (see eq. (2.8))

Sip(U, V ) = Θi(U, V )Tp(U, V ) + Sip,free(U, V ) ,

Θi(U, V ) ≡
(
V UV U U(U − V − 1) 1− U − V V (V − U − 1)

)
.

(C.4)
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To compute M i
p(s, t) we take the Mellin transforms of both sides of this equation. Upon

doing so we find that30

M i
p(s, t) = Θ̂i(U, V ) ◦Mp , (C.5)

where Θ̂i(U, V ) is defined as Θi(U, V ) with UmV n replaced by a difference operator

ÛmV n ◦Mp(s, t) =Mp(s− 2m, t− 2n)

(
4− s

2

)2

m

(
4− t

2

)2

2−m−n

(
4− u

2

)2

n

, (C.6)

with u = 2p+ 4− s− t as in (C.3). In the large s, t limit this simplifies to:

ÛmV n ◦Mp(s, t) −→
s,t→∞

1

16
s2mt4−2m−2nu2nMp(s, t) , (C.7)

so that we get (4.8) at large s and t.

D Asymptotic expansion using Mellin-Barnes representations

In this appendix we will explain how to asymptotically expand the integrals such as (3.48):

lp = 4p

∫ ∞
0

dω ω
J1

(√
λ
π ω
)2
− Jp

(√
λ
π ω
)2

sinh2(ω)
(D.1)

using a Mellin-Barnes representation of the Bessel function.31 Rather than consider lp
itself, for simplicity we will asymptotically expand a streamlined form of the integral

Ip(x) =

∫ ∞
0

dω
ωJp(xω)2

sinh2 ω
. (D.2)

The first step is to use the Mellin-Barnes representation of products of Bessel functions

(see page 436 of [94]):

Jµ(x)Jν(x) =
1

2πi

∫ c+∞i

c−∞i

Γ(−s)Γ(2s+ µ+ ν + 1)
(

1
2x
)µ+ν+2s

Γ(s+ µ+ 1)Γ(s+ ν + 1)Γ(s+ µ+ ν + 1)
, (D.3)

which holds for x > 0, and where −p + 1
2 < Re(c) < 0. Substituting (D.3) into (D.2), we

find that

Ip(x) =

∫ ∞
0

dω

∫ ∞
−i∞

ds
Γ(−s)Γ(2s+ 2p+ 1)x2p+2s

22p+2sΓ(s+ p+ 1)2Γ(s+ 2p+ 1)

ω2p+2s+1

sinh2 ω
. (D.4)

We can then perform the integral over ω explicitly∫ ∞
0

dω
ω2p+2s+1

sinh2 ω
=

1

22p+2s
Γ(2p+ 2s+ 2)ζ(2p+ 2s+ 1) , (D.5)

30Note that Si,p,free vanishes under this Mellin transform, but can be recovered from the inverse Mellin

transform of Mp,i(s, t) in (C.5) by carefully regularizing the Mellin amplitude [12].
31We are gratefully for the MathOverflow user Paul Enta for bringing this method to our attention in

https://mathoverflow.net/questions/315264/asymptotic-expansion-of-bessel-function-integral.
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valid for Re(s) > −p. Thus by taking −p < Re(c) < 0, we have

Ip(x) =
1

2πi

∫ c+i∞

c−i∞
ds

Γ(−s)Γ(2s+2p+1)Γ(2p+2s+2)ζ(2p+2s+1)

Γ(s+p+1)2Γ(s+2p+1)

(x
4

)2p+2s
. (D.6)

This integral can be evaluated asymptotically by closing the integral on the left half-circle.

The poles lie at s = −p and s = −n− p− 1
2 for n = 0, 1, 2, . . ., and yield

Ip(x) ∼ 1

2p
− 1

π
x−1 −

∞∑
n=1

2(−1)nΓ(n+ 1
2)Γ(n+ p+ 1

2)ζ(2n+ 1)

π
3
2

+2nx2n+1Γ(n)Γ(p− n+ 1
2)

=
1

2p
− 1

π
x−1 +

4p2 − 1

4π3
ζ(3)x−3 − 3(9− 40p2 + 16p4)

32π5
ζ(5)x−5 + · · · .

(D.7)
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