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ABSTRACT 

 
Dental caries remains the most prevalent chronic disease in both children and adults. Optical coherence tomography 

(OCT) is a noninvasive optical imaging modality extensively utilized to image oral samples to diagnose carious lesions, 

but detecting early stage dental caries with high-level accuracy remains challenging. Deep learning models have been 

employed to classify OCT images for various healthcare applications. In this paper, human tooth specimens were imaged 

ex vivo using OCT imaging systems, and a three-class grading system based on deep learning model for detection and 

classification of carious lesions was developed. Human extracted premolar and molar teeth were collected and 

categorized into three classes, Grade 0: healthy (non-carious teeth), Grade 1: early-stage caries (caries extending into 

enamel), and Grade 2: late-stage caries (caries extending into dentin). For OCT imaging, a spectral-domain OCT system 

and a swept-source OCT system were utilized. Advanced image processing and augmentation techniques were 

performed to prepare the image data and generate additional examples of each class prior to the deep learning process. 

For deep learning, ten deep convolutional neural networks (CNN) architectures were investigated to determine the 

optimal numbers of convolutional and fully connected layers for the classification tasks. The diagnostic accuracy, 

sensitivity, specificity, positive predictive value, and negative predictive value were calculated for detection and 

diagnostic performances of the CNN models. This study is a step forward in the development of automated deep 

learning/OCT imaging system for early dental caries diagnosis. 
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1. INTRODUCTION 

 
Detection of carious lesions at the initial stages of demineralization, can result in the implementation of non-surgical 

preventive approaches to reverse the demineralization process. Therefore, a reliable diagnostic imaging modality that 

can effectively identify and quantify the extent of caries in early stages with high sensitivity and specificity and minimal 

invasiveness, is essential 1,2. The conventional approach for diagnosing dental caries is clinical examination 

supplemented by radiographs. However, studies based on the clinical and radiographic examination methods often show 

low sensitivity and high specificity. Moreover, by the time a lesion is visualized in clinical or radiographic examination, 

it is believed to have advanced to the extent that non-invasive preventive measures may no longer lead to 

remineralization of the lesion 2,3. Optical coherence tomography (OCT) is a noninvasive imaging modality based on low-

coherence interferometry that utilizes non-ionizing near-infrared laser to provide micrometer-resolution images (1–10 

µm), approximately 100 times higher than conventional ultrasound imaging systems 4-12. In deep learning 13-16, a 

convolutional neural network (CNN) is the most commonly applied to analyzing biomedical and medical imaging data. 

Recent studies have demonstrated the CNN application for complex medical image analysis 17-21.  
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In our previous publication, we presented a novel approach combining OCT imaging modality and deep learning 

CNN model for the detection of occlusal carious lesions (binary classification: non-carious or carious teeth). To the best 

of our knowledge, that study was the first one reporting deep learning-based classification of ex vivo OCT images of 

human carious and non-carious lesions for detection of dental caries 22-24.  

In this study, a three-class grading system of OCT images based on deep learning model for detection and 

classification of carious lesions was developed. Human extracted premolar and molar teeth were collected and 

categorized into three classes, Grade 0: healthy (non-carious teeth), Grade 1: early-stage caries (caries extending into 

enamel), and Grade 2: late-stage caries (caries extending into dentin). For OCT imaging, a spectral-domain OCT system 

and a swept-source OCT system were utilized. Advanced image processing and augmentation techniques were 

performed to prepare the OCT image data and generate additional examples of each class prior to the deep learning 

process. For deep learning, ten deep convolutional neural networks architectures were investigated to determine the 

optimal numbers of convolutional and fully connected layers for the classification tasks.  

 

 

2. METHODS 

 
2.1 Overall automated grading system 

Figure 1 demonstrates the overall automated grading system based on OCT/deep learning for early dental caries 

diagnosis. Human tooth specimens were imaged ex vivo using OCT imaging systems, and a three-class grading system 

based on deep learning model for detection and classification of carious lesions was developed. 

 

 

 
 

Figure 1 OCT/deep learning-based grading system for early dental caries diagnosis. 

 

 

Grade 0: Healthy (Non-Caries)
Grade 1: Early-Stage Caries (Enamel)
Grade 2: Late-Stage Caries (Dentin)

Tooth Specimen

OCT Imaging System

Deep Learning Model

Max Pooling

2 x 2
Max Pooling

2 x 2

Input Image Feature Extraction Classification

OCT Image Convolution

32 x 3x 3

+

ReLU

Convolution

256 x 3x 3

+

ReLU

H1

H2

H3

H128

H4

H5

G1

G2

G3

G128

G4

G5

FC

Z1

Z2

Z3

Z128

Z4

Z5

FC

Y1

Y2

Enamel

Non-Carious

Softmax

Y0

Dentin
Convolution

64 x 3x 3

+

ReLU

Max Pooling

2 x 2

X1

X2

X3

XN

X4

X5

FC

Non-carious (NC) Enamel (E) Dentin (D)

OCT Image Data

Image Processing and 
Data Augmentation



2.2 Human tooth specimens 

Institutional review board (IRB) approvals were obtained from SUNY Stony Brook University and California State 

University, Chico to collect a total of 81 human extracted premolar and molar teeth and categorized into three classes, 

Grade 0: healthy (non-carious teeth), Grade 1: early-stage caries (caries extending into enamel), and Grade 2: late-stage 

caries (caries extending into dentin). The teeth were disinfected and stored in distilled water.  

 

2.3 Ex vivo OCT imaging and data acquisition 

For OCT imaging, two different systems were utilized; spectral-domain OCT system from the TELESTO-series 

(Thorlabs Inc., Newton, NJ, USA) operating at 1300 nm center wavelength with A-scan rate of 5.5-76 kHz, imaging 

depth of 3.5 mm, and axial resolution of 5.5 µm, and swept-source OCT system from the VEGA-series (Thorlabs Inc., 

Newton, NJ, USA) operating at 1300 nm center wavelength with A-scan rate of 200 kHz, imaging depth of 8 mm, and 

axial resolution of 16 µm. The surfaces of the teeth were kept hydrated for optimal light penetration and refraction. To 

acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. OCT images 

with the least heterogeneous presentation were imported and saved in TIFF format. Figure 2 shows examples for OCT 

images of three classes and photos of the corresponding specimens. 

 

 
Figure 2 (a1-c1) Tooth specimens; (a2-c2) corresponding OCT images. 

 

 

2.4 Image processing and Augmentation 

Image processing techniques were performed to obtain a database with consistent image format and one fixed size. Deep 

neural networks require a large amount of training data to effectively learn, where collection of such training data is 

often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the training set with label 

preserving transformations. We have applied image augmentation by perturbing an image using transformations that 

leave the underlying class unchanged (e.g. cropping and flipping) in order to generate additional examples of the class. 

Image augmentation can be applied at training time, at test time, or both. The augmented samples can either be taken as-

is or combined to form a single feature, e.g. using sum/max-pooling or stacking. In our processing, the rotational angles 

were in the range of 0°-345° with 15° increase, and the images were flipped horizontally. Then, the images were cropped 

to the size of 90×90. In Fig. 3, samples of OCT image augmentation are illustrated. 
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Figure 3 OCT image data augmentation. 
 

 

2.5 Deep learning models 

The deep learning employs computational models which are composed of a series of transforming and processing layers 

to learn representations of data with multiple levels of abstraction. Ten CNN architectures were investigated to 

determine the optimal numbers of convolutional and fully connected layers for OCT image classification tasks. The deep 

learning models were implemented using TensorFlow opensource library. The training set was split into mini-batches, 

with 10 images per batch. Given a batch of training patches, the CNN uses convolution and pooling layers to extract 

features and then classify each patch based on the probabilities from the softmax classification layer. After that, the CNN 

calculates the error between the classification result and the reference label, and then utilizes the backpropagation 

process to tune all the layer weights to minimize this error using Nadam optimizer with 0.001 learning rate 24. The above 

process will be repeated several epochs, until the whole CNN model becomes convergent. In this research, 75% of the 

imaging data was utilized for training and 25% for testing. 

 

 

3. RESULTS 

 
To investigate the CNN structures, we performed two studies. In the first study, the CNN models had two fully 

connected (FC) layers and three convolutional layers with five combinations obtained by changing the number of filters 

in the last convolutional layer of the feature extraction part of the CNN model, as demonstrated in Fig. 4 and Table 1. 

The first convolutional layer (Conv1) has 32 filters of size 3x3 with Rectified Liner Unite (ReLU) layer followed by a 

max-pooling layer of size 2x2. The second convolutional layer (Conv2) with 256 filters of size 3x3 with ReLU layer 

followed by a max-pooling layer of size 2x2. In the third convolutional layer (Conv3), we investigated different numbers 

of filters (N in Fig. 4) of size 3x3 with ReLU layer and followed by a max-pooling layer of size 2x2. After feature 

extraction, the final feature map was flattened to a 1D vector, connected to the first Fully Connected (FC) layer with 128 

neurons and ReLU activation function followed by drop out layer. The first FC layer's outputs are connected to the 

second FC layer with 128 neurons and ReLU activation function followed by drop out layer. The classification layer has 

three neurons with a softmax activation function that predicts the input image grade (0: healthy, 1: enamel, 2: dentin). 

All neurons weights in the network were randomly initialized from a Gaussian distribution with a 0 mean and a standard 

deviation of 0.01. 
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Figure 4 The CNN architecture for the first study. 

 

 

For quantitative analysis of the experimental results, several performance metrics were considered, including diagnostic 

accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). To do this, we 

also used the variables true positive (TP), true negative (TN), false positive (FP), and false negative (FN).  

Based on the results summarized in Table 1, the best CNN architecture in the first study had 3 convolutional layers with 

32, 256, 128 filters and 2 fully connected layers with 128 neurons in each layer. 

 

 
Table 1 Classification results of ex vivo OCT images using 5 CNN models 

 
 

 
In the second study, the CNN models had three fully connected (FC) layers and three convolutional layers with five 

combinations obtained by changing the number of filters in the last convolutional layer of the feature extraction part of 

the CNN model, as demonstrated in Fig. 5 and Table 2. The first convolutional layer (Conv1) has 32 filters of size 3x3 

with Rectified Liner Unite (ReLU) layer followed by a max-pooling layer of size 2x2. The second convolutional layer 

(Conv2) with 256 filters of size 3x3 with ReLU layer followed by a max-pooling layer of size 2x2. In the third 

convolutional layer (Conv3) similar to the first study, we investigated different numbers of filters (N in Fig. 5) of size 

3x3 with ReLU layer and followed by a max-pooling layer of size 2x2. After feature extraction, the final feature map 

was flattened to a 1D vector, connected to the first Fully Connected (FC) layer with 128 neurons and ReLU activation 

function followed by drop out layer. The first FC layer's outputs are connected to the second FC layer with 128 neurons 

conv1 conv2 conv3 FC1 FC2 FC3 OL Catagories Accuracy Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV

Non Carious 95.90% 92.31% 98.02% 96.50% 95.58% 89.36% 82.32% 93.54% 88.31% 89.92%

Enamel 96.02% 96.38% 95.79% 93.79% 97.57% 89.35% 90.26% 88.75% 84.14% 93.23%

Dentin 97.77% 96.28% 98.22% 94.20% 98.87% 93.90% 85.91% 96.28% 87.32% 95.82%

Non Carious 82.10% 94.00% 75.09% 68.99% 95.50% 81.06% 93.03% 73.96% 67.93% 94.71%

Enamel 83.37% 78.27% 86.73% 79.58% 85.80% 82.52% 77.04% 86.13% 78.61% 85.01%

Dentin 84.26% 38.32% 98.08% 85.75% 84.09% 84.06% 37.08% 98.07% 85.11% 83.94%

Non Carious 92.90% 84.57% 97.81% 95.80% 91.49% 91.01% 81.38% 96.72% 93.64% 89.76%

Enamel 94.07% 92.63% 95.03% 92.48% 95.12% 92.00% 89.90% 93.38% 89.99% 93.33%

Dentin 94.34% 97.03% 93.53% 81.86% 99.05% 93.11% 95.69% 92.34% 78.84% 98.63%

Non Carious 92.85% 85.45% 97.22% 94.77% 91.89% 90.88% 81.86% 96.23% 92.80% 89.95%

Enamel 94.29% 96.23% 93.01% 90.09% 97.39% 92.41% 94.59% 90.98% 87.39% 96.22%

Dentin 96.39% 94.23% 97.04% 90.54% 98.24% 95.16% 91.88% 96.14% 87.65% 97.54%

Non Carious 81.34% 64.96% 91.00% 80.98% 81.50% 80.27% 64.45% 89.65% 78.70% 80.97%

Enamel 83.82% 60.33% 99.33% 98.35% 79.13% 82.72% 58.16% 98.96% 97.36% 78.15%

Dentin 76.28% 97.82% 69.80% 49.35% 99.07% 75.91% 97.11% 69.59% 48.77% 98.78%

Non Carious 93.95% 89.84% 96.37% 93.59% 94.14% 87.89% 81.80% 91.50% 85.09% 89.45%

Enamel 92.85% 96.61% 90.36% 86.88% 97.58% 86.42% 90.94% 83.42% 78.39% 93.30%

Dentin 95.55% 83.95% 99.04% 96.32% 95.35% 92.24% 72.36% 98.16% 92.15% 92.26%

Non Carious 92.51% 89.77% 94.12% 90.00% 93.98% 91.02% 87.95% 92.84% 87.92% 92.85%

Enamel 92.26% 91.38% 92.84% 89.40% 94.22% 90.69% 89.73% 91.33% 87.25% 93.08%

Dentin 96.00% 89.65% 97.91% 92.82% 96.92% 95.04% 86.71% 97.52% 91.24% 96.10%

Non Carious 93.60% 97.07% 91.55% 87.14% 98.15% 92.02% 95.95% 89.69% 84.66% 97.39%

Enamel 94.42% 89.15% 97.91% 96.57% 93.18% 92.91% 86.94% 96.86% 94.83% 91.82%

Dentin 97.54% 92.16% 99.16% 97.07% 97.68% 96.58% 88.94% 98.85% 95.85% 96.77%

Non Carious 91.94% 90.27% 92.93% 88.28% 94.18% 90.43% 88.39% 91.65% 86.25% 93.01%

Enamel 92.70% 85.70% 97.32% 95.49% 91.15% 90.94% 82.98% 96.21% 93.54% 89.53%

Dentin 95.16% 96.54% 94.75% 84.68% 98.91% 94.06% 94.85% 93.83% 82.09% 98.39%

Non Carious 91.04% 87.99% 92.84% 87.87% 92.91% 89.31% 85.62% 91.50% 85.66% 91.48%

Enamel 92.56% 83.78% 98.35% 97.11% 90.18% 90.73% 80.89% 97.24% 95.10% 88.50%

Dentin 93.12% 96.82% 92.00% 78.46% 98.97% 91.84% 95.23% 90.83% 75.59% 98.46%
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and ReLU activation function followed by drop out layer. The classification layer has three neurons with a softmax 

activation function that predicts the input image grade (0: healthy, 1: enamel, 2: dentin). 
 

 
Figure 5 The CNN architecture for the second study. 

 

 
Again, for quantitative analysis of the experimental results, the same performance metrics were considered, namely 

diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). To do 

this, we used the variables true positive (TP), true negative (TN), false positive (FP), and false negative (FN).  

Based on the results summarized in Table 2, the best CNN architecture in the second study had 3 convolutional layers 

with 32, 256, 64 filters and 3 fully connected layers with 128 neurons. 

 
Table 2 Classification results of ex vivo OCT images using ten CNN models 

 
 

 

Figure 6 shows training and testing confusion matrices for the CNN model having three convolutional layers with 32, 

256, 64 filters and three fully connected layers which provided the best results in the second study.  
 



 
Figure 6 Training and testing confusion matrices for CNN model with three convolutional and three fully connected layers. 

 

 

4. CONCLUSIONS 

 
In this paper, human tooth specimens were imaged ex vivo using OCT imaging systems. A deep learning-based grading 

system for detection and classification of carious lesions was developed using CNN models. To investigate the CNN 

structures and determine the optimal numbers of convolutional and fully connected layers for OCT image classification 

tasks, we performed two studies. In the first study, the CNN models had two fully connected (FC) layers and three 

convolutional layers with five combinations obtained by changing the number of filters in the last convolutional layer of 

the feature extraction part of the CNN model. In the second study, the CNN models had three fully connected (FC) 

layers and three convolutional layers with five combinations. In each study, the diagnostic accuracy, sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for detection and 

diagnostic performances of the CNN models. This study is a step forward in the development of automated deep 

learning/OCT imaging system for early dental caries diagnosis, and could be extremely valuable in clinical studies and 

applications. 
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