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ABSTRACT

Dental caries remains the most prevalent chronic disease in both children and adults. Optical coherence tomography
(OCT) is a noninvasive optical imaging modality extensively utilized to image oral samples to diagnose carious lesions,
but detecting early stage dental caries with high-level accuracy remains challenging. Deep learning models have been
employed to classify OCT images for various healthcare applications. In this paper, human tooth specimens were imaged
ex vivo using OCT imaging systems, and a three-class grading system based on deep learning model for detection and
classification of carious lesions was developed. Human extracted premolar and molar teeth were collected and
categorized into three classes, Grade 0: healthy (non-carious teeth), Grade 1: early-stage caries (caries extending into
enamel), and Grade 2: late-stage caries (caries extending into dentin). For OCT imaging, a spectral-domain OCT system
and a swept-source OCT system were utilized. Advanced image processing and augmentation techniques were
performed to prepare the image data and generate additional examples of each class prior to the deep learning process.
For deep learning, ten deep convolutional neural networks (CNN) architectures were investigated to determine the
optimal numbers of convolutional and fully connected layers for the classification tasks. The diagnostic accuracy,
sensitivity, specificity, positive predictive value, and negative predictive value were calculated for detection and
diagnostic performances of the CNN models. This study is a step forward in the development of automated deep
learning/OCT imaging system for early dental caries diagnosis.
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1. INTRODUCTION

Detection of carious lesions at the initial stages of demineralization, can result in the implementation of non-surgical
preventive approaches to reverse the demineralization process. Therefore, a reliable diagnostic imaging modality that
can effectively identify and quantify the extent of caries in early stages with high sensitivity and specificity and minimal
invasiveness, is essential 2. The conventional approach for diagnosing dental caries is clinical examination
supplemented by radiographs. However, studies based on the clinical and radiographic examination methods often show
low sensitivity and high specificity. Moreover, by the time a lesion is visualized in clinical or radiographic examination,
it is believed to have advanced to the extent that non-invasive preventive measures may no longer lead to
remineralization of the lesion 2?. Optical coherence tomography (OCT) is a noninvasive imaging modality based on low-
coherence interferometry that utilizes non-ionizing near-infrared laser to provide micrometer-resolution images (1-10
um), approximately 100 times higher than conventional ultrasound imaging systems #!2. In deep learning '*!°,
convolutional neural network (CNN) is the most commonly applied to analyzing biomedical and medical imaging data.
Recent studies have demonstrated the CNN application for complex medical image analysis 72!,
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In our previous publication, we presented a novel approach combining OCT imaging modality and deep learning
CNN model for the detection of occlusal carious lesions (binary classification: non-carious or carious teeth). To the best
of our knowledge, that study was the first one reporting deep learning-based classification of ex vivo OCT images of
human carious and non-carious lesions for detection of dental caries 222,

In this study, a three-class grading system of OCT images based on deep learning model for detection and
classification of carious lesions was developed. Human extracted premolar and molar teeth were collected and
categorized into three classes, Grade 0: healthy (non-carious teeth), Grade 1: early-stage caries (caries extending into
enamel), and Grade 2: late-stage caries (caries extending into dentin). For OCT imaging, a spectral-domain OCT system
and a swept-source OCT system were utilized. Advanced image processing and augmentation techniques were
performed to prepare the OCT image data and generate additional examples of each class prior to the deep learning
process. For deep learning, ten deep convolutional neural networks architectures were investigated to determine the
optimal numbers of convolutional and fully connected layers for the classification tasks.

2. METHODS
2.1 Overall automated grading system

Figure 1 demonstrates the overall automated grading system based on OCT/deep learning for early dental caries
diagnosis. Human tooth specimens were imaged ex vivo using OCT imaging systems, and a three-class grading system
based on deep learning model for detection and classification of carious lesions was developed.
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Figure 1 OCT/deep learning-based grading system for early dental caries diagnosis.



2.2 Human tooth specimens

Institutional review board (IRB) approvals were obtained from SUNY Stony Brook University and California State
University, Chico to collect a total of 81 human extracted premolar and molar teeth and categorized into three classes,
Grade 0: healthy (non-carious teeth), Grade 1: early-stage caries (caries extending into enamel), and Grade 2: late-stage
caries (caries extending into dentin). The teeth were disinfected and stored in distilled water.

2.3 Ex vivo OCT imaging and data acquisition

For OCT imaging, two different systems were utilized; spectral-domain OCT system from the TELESTO-series
(Thorlabs Inc., Newton, NJ, USA) operating at 1300 nm center wavelength with A-scan rate of 5.5-76 kHz, imaging
depth of 3.5 mm, and axial resolution of 5.5 pm, and swept-source OCT system from the VEGA-series (Thorlabs Inc.,
Newton, NJ, USA) operating at 1300 nm center wavelength with A-scan rate of 200 kHz, imaging depth of 8 mm, and
axial resolution of 16 um. The surfaces of the teeth were kept hydrated for optimal light penetration and refraction. To
acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. OCT images
with the least heterogeneous presentation were imported and saved in TIFF format. Figure 2 shows examples for OCT
images of three classes and photos of the corresponding specimens.
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Figure 2 (al-c1) Tooth specimens; (a2-c2) corresponding OCT images.

2.4 Image processing and Augmentation

Image processing techniques were performed to obtain a database with consistent image format and one fixed size. Deep
neural networks require a large amount of training data to effectively learn, where collection of such training data is
often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the training set with label
preserving transformations. We have applied image augmentation by perturbing an image using transformations that
leave the underlying class unchanged (e.g. cropping and flipping) in order to generate additional examples of the class.
Image augmentation can be applied at training time, at test time, or both. The augmented samples can either be taken as-
is or combined to form a single feature, e.g. using sum/max-pooling or stacking. In our processing, the rotational angles
were in the range of 0°-345° with 15° increase, and the images were flipped horizontally. Then, the images were cropped
to the size of 90x90. In Fig. 3, samples of OCT image augmentation are illustrated.
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Figure 3 OCT image data augmentation.

2.5 Deep learning models

The deep learning employs computational models which are composed of a series of transforming and processing layers
to learn representations of data with multiple levels of abstraction. Ten CNN architectures were investigated to
determine the optimal numbers of convolutional and fully connected layers for OCT image classification tasks. The deep
learning models were implemented using TensorFlow opensource library. The training set was split into mini-batches,
with 10 images per batch. Given a batch of training patches, the CNN uses convolution and pooling layers to extract
features and then classify each patch based on the probabilities from the softmax classification layer. After that, the CNN
calculates the error between the classification result and the reference label, and then utilizes the backpropagation
process to tune all the layer weights to minimize this error using Nadam optimizer with 0.001 learning rate 2*. The above
process will be repeated several epochs, until the whole CNN model becomes convergent. In this research, 75% of the
imaging data was utilized for training and 25% for testing.

3. RESULTS

To investigate the CNN structures, we performed two studies. In the first study, the CNN models had two fully
connected (FC) layers and three convolutional layers with five combinations obtained by changing the number of filters
in the last convolutional layer of the feature extraction part of the CNN model, as demonstrated in Fig. 4 and Table 1.
The first convolutional layer (Conv1) has 32 filters of size 3x3 with Rectified Liner Unite (ReLU) layer followed by a
max-pooling layer of size 2x2. The second convolutional layer (Conv2) with 256 filters of size 3x3 with ReLU layer
followed by a max-pooling layer of size 2x2. In the third convolutional layer (Conv3), we investigated different numbers
of filters (N in Fig. 4) of size 3x3 with ReLU layer and followed by a max-pooling layer of size 2x2. After feature
extraction, the final feature map was flattened to a 1D vector, connected to the first Fully Connected (FC) layer with 128
neurons and ReLU activation function followed by drop out layer. The first FC layer's outputs are connected to the
second FC layer with 128 neurons and ReLU activation function followed by drop out layer. The classification layer has
three neurons with a softmax activation function that predicts the input image grade (0: healthy, 1: enamel, 2: dentin).
All neurons weights in the network were randomly initialized from a Gaussian distribution with a 0 mean and a standard
deviation of 0.01.
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Figure 4 The CNN architecture for the first study.
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For quantitative analysis of the experimental results, several performance metrics were considered, including diagnostic
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). To do this, we
also used the variables true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

Based on the results summarized in Table 1, the best CNN architecture in the first study had 3 convolutional layers with
32,256, 128 filters and 2 fully connected layers with 128 neurons in each layer.

Table 1 Classification results of ex vivo OCT images using 5 CNN models

Training

convl conv2 conv3d FCl FC2 FC3 OL Catagories Accurac

32 256 -
32 256 32
32 256 64

32 256 128

32 256 256

% Non Carious
128 128 - &  Enamel
A Dentin
% Non Carious| 82.10% 75.09%
128 128 - £  Enamel | 8337% 7827%  86.73%
& Dentin | 84.26%
% Non Carious| 92.90%  84.57%
128 128 - &  Enamel | 94.07%  92.63%
& Dentin | 94.34%
% Non Carious| 92.85%  85.45%
128 128 - E  Enamel | 94.29%
A Dentin
% Non Carious| 81.34%  64.96%  91.00%
128 128 - £  Enamel | 83.82%  60.33%
& Dentin | 76.28% 69.80%

PPV

Testing

NPV Accuracy Sensitivity Specificity PPV~ NPV

93.54%  88.31% 89.92%
88.75%  84.14% 93.23%
87.32%

92.48%
81.86%

89.36%  82.32%
89.35%  90.26%
93.90%  85.91%
81.06%  93.03%
85.80%| 82.52%  77.04%
84.09%| 84.06%  37.08%

73.96% 67.93% 94.71%
86.13%  78.61% 85.01%
85.11% 83.94%

91.49%

91.01%
92.00%
93.11%

81.38%
89.90%

94.77%
90.09%
90.54%
80.98%

49.35%

91.89%

81.50%
79.13%

90.88%
92.41%

80.27%
82.72%
75.91%

81.86%
94.59%
91.88%
64.45%
58.16%

93.64% 89.76%
93.38%  89.99% 93.33%
92.34%  78.84%
92.80% 89.95%
90.98%  87.39%
87.65%
89.65%  78.70% 80.97%

78.15%
69.59%  48.77%

In the second study, the CNN models had three fully connected (FC) layers and three convolutional layers with five
combinations obtained by changing the number of filters in the last convolutional layer of the feature extraction part of
the CNN model, as demonstrated in Fig. 5 and Table 2. The first convolutional layer (Conv1) has 32 filters of size 3x3
with Rectified Liner Unite (ReLU) layer followed by a max-pooling layer of size 2x2. The second convolutional layer
(Conv2) with 256 filters of size 3x3 with ReLU layer followed by a max-pooling layer of size 2x2. In the third
convolutional layer (Conv3) similar to the first study, we investigated different numbers of filters (N in Fig. 5) of size
3x3 with ReLU layer and followed by a max-pooling layer of size 2x2. After feature extraction, the final feature map
was flattened to a 1D vector, connected to the first Fully Connected (FC) layer with 128 neurons and ReLU activation
function followed by drop out layer. The first FC layer's outputs are connected to the second FC layer with 128 neurons



and ReLU activation function followed by drop out layer. The classification layer has three neurons with a softmax
activation function that predicts the input image grade (0: healthy, 1: enamel, 2: dentin).
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Figure 5 The CNN architecture for the second study.

Again, for quantitative analysis of the experimental results, the same performance metrics were considered, namely
diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). To do
this, we used the variables true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

Based on the results summarized in Table 2, the best CNN architecture in the second study had 3 convolutional layers

with 32, 256, 64 filters and 3 fully connected layers with 128 neurons.

Table 2 Classification results of ex vivo OCT images using ten CNN models

Training Testing
convl conv2 convd FC1 FC2 FC3 OL Catagories PPV NPV  Accuracy Sensitivity Specificity PPV~ NPV
Non Carious| 93.95%  89.84% 93.59% 94.14%| 87.89%  81.80% 91.50% 85.09% 89.45%
Enamel 92.85% 90.36% 86.88% 86.42%  90.94% 83.42% 78.39% 93.30%
Dentin 92.24%  72.36% 92.15% 92.26%
Non Carious| 92.51%  89.77%  94.12% 90.00% 93.98%| 91.02% 87.95%  92.84% 87.92% 92.85%
Enamel 92.26%  91.38% 92.84% 89.40% 94.22%| 90.69% 89.73% 91.33% 87.25% 93.08%

32 256 - 128 128 128

32 256 32 128 128 128

Dentin 89.65% 92.82% 86.71%
Non Carious| 93.60% 91.55% 87.14% 89.69% 84.66%
32 256 64 128 128 128 Enamel 04.42% 03.18% 04.83% 01.82%

Dentin
Non Carious| 91.94% 92.03% 88.28% 94.18%| 90.43%  88.39%  01.65% 86.25% 93.01%
Enamel | 92.70% 91.15%| 90.94% $2.95% |JOGIBIZAN 93.54% $9.53%
Dentin 94.75%  84.68% 04.06% 94.85% _ 93.83%  $2.09%
Non Carious| 91.04%  87.09%  9284% 87.87% 9291%| 89.31%  8562%  9150% 85.66% 91.48%

Enamel 92.56%  83.78% 90.18%| 90.73%  80.89%
90.83% 75.59%

32 256 128 128 128 128

32 256 256 128 128 128

Softmax Softmax Softmax Softmax Softmax

Dentin 93.12% 02.00% 78.46% 01.84%

Figure 6 shows training and testing confusion matrices for the CNN model having three convolutional layers with 32,
256, 64 filters and three fully connected layers which provided the best results in the second study.



Training Confusion Matrix Testing Confusion Matrix

7000
Non Carigus 20000 MNon Carious
B000
_ 15000 _ 5000
z z
E Enamel E Enamel 4000
=} 3
E 10000 = 3000
2000
_ 5000 _
Dentin Dentin 1000
Non Carious Enamel Dentin Non Carious Enamel Dentin
Predict Label Predict Label

Figure 6 Training and testing confusion matrices for CNN model with three convolutional and three fully connected layers.

4. CONCLUSIONS

In this paper, human tooth specimens were imaged ex vivo using OCT imaging systems. A deep learning-based grading
system for detection and classification of carious lesions was developed using CNN models. To investigate the CNN
structures and determine the optimal numbers of convolutional and fully connected layers for OCT image classification
tasks, we performed two studies. In the first study, the CNN models had two fully connected (FC) layers and three
convolutional layers with five combinations obtained by changing the number of filters in the last convolutional layer of
the feature extraction part of the CNN model. In the second study, the CNN models had three fully connected (FC)
layers and three convolutional layers with five combinations. In each study, the diagnostic accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for detection and
diagnostic performances of the CNN models. This study is a step forward in the development of automated deep
learning/OCT imaging system for early dental caries diagnosis, and could be extremely valuable in clinical studies and
applications.
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