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ABSTRACT

Many applied decision-making problems have a dynamic component: The policymaker needs not only to
choose whom to treat, but also when to start which treatment. For example, a medical doctor may choose
between postponing treatment (watchful waiting) and prescribing one of several available treatments
during the many visits from a patient. We develop an “advantage doubly robust” estimator for learning
such dynamic treatment rules using observational data under the assumption of sequential ignorability.
We provewelfare regret bounds that generalize results for doubly robust learning in the single-step setting,
and showpromising empirical performance in several different contexts. Our approach is practical for policy
optimization, and does not need any structural (e.g., Markovian) assumptions. Supplementary materials for
this article are available online.
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1. Introduction

The promise of personalized data-driven decision-making has
led to a surge in interest in methods that leverage observational
data to help inform how and to whom interventions should
be applied (Manski 2004; Zhang et al. 2012; Zhao et al. 2012;
Dudík et al. 2014; Swaminathan and Joachims 2015; Elmach-
toub and Grigas 2017; Kallus and Zhou 2018; Kitagawa and
Tetenov 2018; Athey and Wager 2020; Bertsimas and Kallus
2020). Any solution to this policy learning problem needs to
deal with numerous difficulties, including how to incorporate
robustness to potential selection bias as well as fairness con-
straints articulated by stakeholders, and there have been several
notable advances that address these difficulties over the past few
years.

One limitation of this line of work, however, is that the
results cited above all focus on a static setting where a decision-
maker only sees each subject once and immediately decides
how to treat the subject. In contrast, many problems of applied
interest involve a dynamic component whereby the decision-
makermakes a series of decisions based on time-varying covari-
ates. In medicine, if a patient has a disease for which all
known cures are invasive and have serious side effects, their
doctor may choose to monitor disease progression for some
time before prescribing one of these invasive treatments. As
another example, a health inspector needs to not only choose
which restaurants to inspect, but also when to carry out these
inspections.

In this article, we study the problem of learning dynamic
when-to-treat policies, where a decision-maker is only allowed
to act once, but gets to choose both which action to take
and when to perform the action.1 This setting covers several
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1We note that the policies of interest in this article also include when-to-stop policies. By flipping the treatment indicator, it is without loss of generality that

we only consider when-to-treat policies.

application areas that have recently been discussed in the lit-
erature, including when to start antiretroviral therapy for HIV-
positive patients to prevent AIDS while mitigating side effects
(When To Start Consortium 2009), when to recommend moth-
ers to stop breastfeeding to maximize infants’ health (Moodie,
Platt, and Kramer 2009), and when to to turn off ventila-
tors for intensive care patients to maximize health outcomes
(Prasad et al. 2017).

The available literature has developed several methods for
evaluating and learning dynamic treatment rules from prior
data, with notable contributions from statistics and epidemi-
ology communities including from Murphy (2003), Robins
(2004),Murphy (2005), Luckett et al. (2020), Tsiatis et al. (2019),
Zhang et al. (2013, 2018), Van der Laan andRose (2018, chap. 4),
and the batch reinforcement learning community such as Jiang
and Li (2016) and Thomas and Brunskill (2016). As discussed
further below, these papers develop general approaches that
can be used with arbitrary dynamic treatment rules. Here, in
contrast, we seek to exploit special structure of thewhen-to-treat
problem to develop tailored learning methods with desirable
statistical and computational properties.

In developing our approach, we build on recent results
on doubly robust (DR) static policy learning (Zhou, Athey,
and Wager 2018; Athey and Wager 2020), and show how
they can be adapted to our dynamic setting without mak-
ing any structural (e.g., Markovian) assumptions and with-
out compromising computational performance. Throughout
this article, we assume sequential ignorability, meaning that
any confounders that affect making a treatment choice at
time t have already been measured by time t. Sequential
ignorability is a widely used generalization of the classical
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ignorability assumption of Rosenbaum and Rubin (1983) to
the dynamic setting (Robins 1986, 2004; Hernán, Brumback,
and Robins 2001; Murphy 2003). We develop methods that
can leverage generic machine learning estimators of various
nuisance components (e.g., the propensity of starting treat-
ment in any given state and time) for learning policies with
strong utilitarian regret bounds that hold in a nonparametric
setting.

Our problem setting is closely related to batch reinforcement
learning (Sutton and Barto 2018). The types of guarantees we
derive, however, are more closely related to results from the
static policy learning literature, in that we use tools from semi-
parametric statistics to derive sharp regret bounds given only
nonparametric assumptions. To our knowledge, the reinforce-
ment learning literature has not pursued nor obtained the type
of results we achieve here for off-policy policy learning in a
nonparametric setting.

We also note work on optimal stopping motivated by the
problem of when to buy or sell an asset. This setting, however,
is different from ours in that most of the literature on optimal
stopping either works with a known probabilistic model (Van
Moerbeke 1976; Jacka 1991), or assumes that we can observe
the price evolution of the asset whether or not we purchase it
(Goel, Dann, and Brunskill 2017). In contrast, we work in a
nonparametric setting, and adopt a potential outcomes model
in which we only get to observe outcomes corresponding to the
sequence of actions we choose to take (Robins 1986; Imbens and
Rubin 2015). We will review the related literature in more detail
in Section 2.4 after first presenting our method below.

2. Policy Learning Under Sequential Ignorability

2.1. Setup and Notation

We work in the following statistical setting. We observe a set of
i = 1, . . . , n independent and identically distributed trajectories
generated from some distribution P that describe the evolution
of subjects over T time steps. For each subject i, we observe a
vector of states S(i) ∈ ST and actions A(i) ∈ AT , as well as a
final outcome Y(i) ∈ R.2 For each t = 1, . . . ,T, S

(i)
t denotes the

state of the subject at time t and A
(i)
t denotes the action taken.

We write the set of possible actions as A = {0, 1, . . . ,K}, and
let At = 0 denote no action (i.e., no treatment assignment)
at time t. We define the filtration F1 ⊆ F2 ⊆ · · · ⊆ FT+1,
where Ft = σ (S1:t , A1:t−1) contains information available at
time t for t = 1, . . . ,T, and FT+1 = σ (S1:T , A1:T , Y) also has
information on the final outcome. For notational convenience,
we denote S

(i)
t1:t2 := {S(i)

t1 , . . . , S
(i)
t2 }, and we similarly define A

(i)
t1:t2 ,

and write the relevant generalization of the propensity score as
et,a(s1:t) = P

[
At = a

∣∣ S1:t = s1:t , A1:(t−1) = 0
]
.

We formulate causal effects in terms of potential outcomes
(Neyman 1923; Rubin 1974; Robins 1986). For any set of actions

a ∈ AT , we posit potential outcomesY(i)(a1:T) and S
(i)
t (a1:(t−1))

corresponding to the outcome and state values we would have
obtained for subject i had we assigned treatment sequence a.

2We note that it is without loss of generality that we assume the outcome

Y(i) is only observed at the end of a trajectory, since intermediate out-
comes/rewards can be incorporated as part of the state representation.

To identify causal effects, we make the standard assumptions of
sequential ignorability, consistency and overlap (Robins 1986,
2004; Hernán, Brumback, and Robins 2001; Murphy 2003).

Assumption 1 (Consistency of potential outcomes). Our obser-
vations are consistent with potential outcomes, in the sense that

Y(i) = Y(i)(A
(i)
1:T) and S

(i)
t = S

(i)
t (A

(i)
1:(t−1)).

Assumption 2 (Sequential ignorability). Actions
cannot respond to future information, that is,
{Y(A1:(t−1), at:T), St′(A1:(t−1), at:(t′−1))}Tt′=t+1⊥⊥At

∣∣Ft for
all t = 1, . . . ,T.

Assumption 3 (Overlap). There are constants 0 < η, η0 < 1
such that, for all t = 1, . . . ,T and s1:t ∈ S t , the following hold:
et,a(s1:t) > η/T for all a ∈ A \ {0} and et,0(s1:t) > 1 − η0/T.

A policy π is a function that, for each time t = 1, . . . ,T,
maps time-t observables to an action: πt : S t × At−1 → A

such that πt isFt-measurable; then π := {πt}Tt=1. Recall that we
focus on when-to-treat type rules, meaning that the decision-
maker only gets to act once by starting a nonzero treatment
regime at the time of their choice. For example, if K = 3 and
T = 5, then the decision-maker may choose for instance to
start treatment option #2 at time t = 4, resulting in a trajectory
A = (0, 0, 0, 2, 2).

When applying π on-policy, the behavior of π is fully char-
acterized by the time at which π chooses to act, denoted by
τπ = inf {t : πt(·, ·) �= 0}, and the treatment chosen, denoted by
Wπ = πτπ (·, ·). When π chooses to never initiate treatment, we
use the convention that τπ = T + 1 andWπ = 0. Note that τπ

and Wπ are both Fτπ -measurable.3 For completeness, we also
need to specify how π behaves off-policy, that is, how π would
prescribe treatment along a trajectory whose past action or
treatment sequence may disagree with π ; and, in this article, we
do so by assuming that π is regular in the sense of Definition 1.

Definition 1 (Regular policy). A regular when-to-treat policy π

is determined by an Ft-measurable stopping time τπ and an
associated Fτπ -measurable decision variable Wπ ∈ {1, . . . ,K}
as follows: For each time t = 1, . . . , T, if At−1 �= 0 then
πt(S1:t , A1:(t−1)) = At−1, else if t ≥ τπ then πt(S1:t , A1:(t−1)) =
Wπ , else πt(S1:t , A1:(t−1)) = 0.

The main substance of Definition 1 is that we assume that
if π suggests to start treatment k at a given moment, it persists
in this choice k even if we fail to start treatment immediately.
One notable limitation of this regularity condition is in the
setting where some patients may die or otherwise be unable
to receive treatment.4 We discuss extensions of our approach
beyond regular policies in Section 4.

Following Murphy (2005), we let ft(St
∣∣ S1:(t−1),A1:(t−1)) be

the conditional density for state transitions at time t. We can

3SeealsoAtheyand Imbens (2018) for a closely relateddiscussionofpotential
outcomes in the context of staggered adoption.

4For example, consider a casewhereπ sayswe shouldhave started treatment
onday5butwedidnot in fact start treatment then, that is,A5 = 0, and then
thepatient dies onday6.Here, realistically,π should recognize that starting
treatment is now impossible and prescribe π6(S1:6,A1:5) = 0; however,
doing so would be inconsistent with Definition 1.
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write the distribution function for trajectories (s1:T , a1:T) as

f (s, a) = f (s1)P
[
A1

∣∣ s1
] T∏

t=2

ft
(
st
∣∣ s1:(t−1), a1:(t−1)

)

P
[
At = at

∣∣ s1:t , a1:(t−1)

]
, (1)

and denote the expectation with respect to this distribution as
E. Moreover, by Assumption 2, the distribution of a trajectory
under policy π is

f (s, a; π) = f (s1)1a1=π1(s1)

T∏

t=2

ft
(
st
∣∣ s1:(t−1), a1:(t−1)

)

1at=πt(s1:t ,a1:(t−1)), (2)

and we use Eπ to denote the expectation with respect to it.
Define

Vπ := Eπ [Y] = E [Y (π1(S1),π2 (S1, S2(π1(S1)),π1(S1)) , . . .)] (3)

to be the value of the policy π , that is, the expected outcome
Y with actions At chosen according to π such that At =
πt(S1:t , A1:(t−1)) for all t = 1, . . . ,T. We further define the
conditional value function

μπ ,t(s1:t , a1:t−1)

= Eπ

[
Y
∣∣ S1:t = s1:t ,A1:t−1 = a1:t−1

]

= E

[
Y(a1:t−1,πt(S1:t ,A1:t−1),πt+1(. . .), . . .)

∣∣S1:t

= s1:t ,A1:t−1 = a1:t−1

]
, (4)

and the Q-function

Qπ ,t(s1:t , a1:t)

= Eπ

[
Y
∣∣ S1:t = s1:t ,A1:t = a1:t

]

= E

[
Y(a1:t ,πt+1(S1:t , St+1(A1:t),A1:t), . . .)

∣∣

S1:t = s1:t ,A1:t = a1:t

]
. (5)

For any class �, we write the optimal value function as V∗ =
supπ∈� Vπ , and define the regret of a policy π ∈ � as R(π) =
V∗ − Vπ (Manski 2004). Given this setting, our goal is to learn
the best policy from a predefined policy class � to minimize
regret. Our main result is a method for learning a policy π̂ ∈ �

along with a bound on its regret R(π̂).

2.2. ExistingMethods

In the static setting, a popular approach to policy learning starts
by first providing an estimator V̂π for the value Vπ of each
feasible policy π ∈ �, and then sets π̂ = argmax{V̂π : π ∈ �}
(e.g., Manski 2004; Zhao et al. 2012; Swaminathan and Joachims
2015; Kitagawa and Tetenov 2018; Athey andWager 2020). At a
high level our goal is to pursue the same strategy, but now in a
dynamic setting. The challenge is then to find a robust estimator
V̂π that behaves well when optimized over a policy class � of
interest—both statistically and computationally.

Perhaps the most straightforward approach to estimating
Vπ starts from inverse propensity weighting as used in the
context of marginal structural modeling (Precup 2000; Robins,
Hernán, and Brumback 2000). Given sequential ignorability, we

can write inverse propensity weights γ
(i)
t (π) for any policy π

recursively as follows, resulting in a value estimate

V̂IPW
π = 1

n

n∑

i=1

γ
(i)
T (π)Y(i),

γ
(i)
t (π) =

γ
(i)
t−11

({
A

(i)
t = π(S

(i)
1:t ,A

(i)
1:t−1)

})

P

[
A

(i)
t = π(S

(i)
1:t ,A

(i)
1:t−1)

∣∣ S(i)
1:t ,A

(i)
1:t−1

] , (6)

or the normalized alternative V̂WIPW
π =∑n

i=1 γ
(i)
T (π)Y(i)

/ ∑n
i=1 γ

(i)
T (π). The functional form of

V̂IPW
π makes it feasible to optimize this value estimate over

a prespecified policy class π ∈ � (e.g., via a grid-search or
mixed integer programming). By Assumptions 1–3, IPW is
consistent if the treatment probabilities are known a priori,
and by uniform concentration arguments following Kitagawa
and Tetenov (2018), the regret of the policy π̂ learned by

maximizing V̂IPW
π over π ∈ � decays as 1/

√
n if � is not too

large (e.g., if� is a VC-class). Zhao et al. (2015) provided regret
bounds for nonparametric IPW-type estimators in a dynamic
setting.

While inverse propensity weighting is a simple and trans-
parent approach to estimating Vπ , it has several limitations. In
observational studies treatment probabilities need to be esti-
mated from data, and it is known that the variant of (6) with
estimated weights γ̂

(i)
t (π) can perform poorly with even mild

estimation error (see, e.g., Y. Liu et al. 2018). Furthermore, for
any policy π considered, the IPW value estimator only uses
trajectories that match the policy π exactly, which can make
policy learning sample-inefficient. Finally, the IPW estimator is
known to be unstable when treatment propensities are small,
and this difficulty is exacerbated in the multi-period setting
as the probability of observing any specific trajectory decays,
which can cause challenges during policy learning (Doroudi,
Thomas, and Brunskill 2017). In the static (i.e., single time
step) policy learning setting, related considerations led several
authors to recommend against inverse propensity weighted pol-
icy learning and to develop new methods that were found to
have stronger properties both in theory and in practice (Zhang
et al. 2012;Dudík et al. 2014; Zhou et al. 2017; Kallus 2018;Athey
and Wager 2020).

Another approach to estimating Vπ is using a DR estimator
as follows (Zhang et al. 2013; Jiang and Li 2016; Thomas and
Brunskill 2016)

V̂DR
π = 1

n

n∑

i=1

(
γ̂

(i)
T (π)Y(i) −

T∑

t=1

(
γ̂

(i)
t (π) − γ̂

(i)
t−1(π)

)

μ̂π

(
S
(i)
1:t ,A

(i)
1:t−1

))
, (7)

where μ̂π (·) is an estimator of μπ (·), the expected value fol-
lowing policy π conditionally on the history up to time t as
defined in the previous subsection. This estimator generalizes
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the well known augmented inverse propensity weighted esti-
mator of Robins, Rotnitzky, and Zhao (1994) beyond the static
case. The DR estimator (7) is consistent if either the propensity
weights {γ̂t(·)}Tt=1 or the conditional value estimates μ̂π (·) are
consistent. For a further discussion of DR estimation under
sequential ignorability, see Van der Laan and Rose (2018, chap.
4), Tsiatis et al. (2019), and references therein.

From an optimization point of view, a limitation of (7) is
that evaluating a given policy π requires nuisance components
estimates μ̂π (·) that are specific to the policy under considera-
tion. This makes policy learning by optimizing V̂DR

π challenging
for several reasons. Computationally, maximizing V̂DR

π for all
π in a nontrivial set � would require solving a multitude of
nonparametric dynamic programming problems.5 Statistically,
standard regret bounds for policy learning for single time step
problems rely crucially on the fact that V̂π is continuous in π

in an appropriate sense, meaning that two policies are taken to
have similar values if they make similar recommendations in
almost all cases (see, e.g., Athey and Wager 2020). But, if μ̂π (·)
is learned separately for each π , we have no reason to believe
that two similar policies would necessarily have similar value
function estimates—unless one were to use specially designed
μ̂π (·) estimators.6

An alternate popular approach is to perform policy learning
by estimating policy values using Q-learning and then finding
the action or treatment decision that maximizes the resulting
value estimate. Suchmethods can suffer frommodel misspecifi-
cation, and from error amplification due to the recursive struc-
ture of the algorithm. Our contribution focuses on alternate
more robust methods, and we discuss Q-learning approaches in
the related work section.

2.3. Advantage DR Policy Learning

The goal of this article is to develop a new method for pol-
icy learning that addresses the shortcomings of both inverse
propensity weighting and the doubly robust method discussed
above in the case of when-to-treat policies.7 Ourmain proposal,
the advantage doubly robust (ADR) estimator, uses an outcome
regression like the DR estimator (7) to stabilize and robustify
its value estimates. However, unlike the estimator (7) which
needs to use different outcome regressions μ̂π (·) to evaluate
each different policy π , ADR only has “universal” nuisance
components that do not depend on the policy being estimated,
leveraging the when-to-treat (or when-to-stop) structure of the
domain. Throughout this article, we will find that this univer-
sality property enables us to both effectively optimize our value

5See Zhang et al. (2015) for an example of using decision lists for policy
optimization with a doubly robust estimator.

6One heuristic solution to this difficulty, proposed by Zhang et al. (2013), is to
first derive a policy estimate π̂∗ via, for example, IPW or fitted-Q learning,
and then to use value estimates μ̂π̂∗ (·) to evaluate all policies π ∈ �

using (7). The advantage of this proposal is that learning by maximizing

V̂DRπ becomes more tractable, since one does not need to refit nuisance
components to evaluate different policies.

7We emphasize that the IPW andDR estimators discussed above can be used
with general dynamic policies; in contrast, ourmethod can only be used for
learningwhen-to-treat policies. Our proposedmethoddoes not present an
alternative to IPW or DR in the general case.

estimates to learn policies and to prove robust utilitarian regret
bounds.

The motivation for our approach starts from an “advantage
decomposition” presented below. First, define

μnow,k(s1:t , t) := E
[
Y
∣∣ S1:t = s1:t ,A1:t−1 = 0,At = k

]
,

μnext,k(s1:t , t) := E

[
μnow,k (S1:t+1, t + 1)

∣∣ S1:t = s1:t ,

A1:t = 0

]
,

(8)

which measure the conditional value of a policy that starts
treatment k either now or in the next time period, given that
we have not yet started any treatment. Note that, for any when-
to-treat policy π as considered in this article, the expectations
in (8) do not depend on π because the conditioning specifies
all actions from time t = 1 to T. Given policies π , π ′ ∈ �,
define �(π ,π ′) = Vπ − Vπ ′ to be the difference in value of
the two policies. Denote the never-treating policy by 0. Then,
a result from Kakade (2003, chap. 5) and Murphy (2005) yields
the following.

Lemma 1. Under Assumptions 1 and 2 let π be a regular when-
to-treat policy in the sense of Definition 1. Then

�(π , 0) = E0

[
T∑

t=τπ

μnow,Wπ (S1:t , t) − μnext,Wπ (S1:t , t)

]
, (9)

whereE0 samples trajectories under a never-treating policy and,
following Definition 1, τπ is the time at which π starts treating
andWπ is the treatment chosen at that time.

Proof. Given our setup, Lemma 1 ofMurphy (2005) implies that

�(π , 0) = −E0

[
T∑

t=1

Qπ ,t(S1:t ,A1:t) − μπ ,t(S1:t ,A1:t−1)

]

= −E0

[ T∑

t=1

1t≥τπ

(
Qπ ,t(S1:t , 01:t)

− μπ ,t(S1:t , 01:(t−1))

)]
.

(10)

Because π is a regular when-to-stop policy, whenever t ≥ τπ ,
the policyπ prescribes starting treatmentWπ immediately if no
other treatment has been started yet, that is,

1t≥τπ μπ ,t(S1:t , 01:(t−1))
(a)= 1t≥τπE

[
Y(01:(t−1),Wπ ,Wπ , . . .)

∣∣

S1:t ,A1:t−1 = 01:(t−1)

]

(b)= 1t≥τπE

[
Y(01:(t−1),Wπ ,Wπ , . . .)

∣∣

S1:t ,A1:t−1 = 01:(t−1),At = Wπ

]

(c)= 1t≥τπE

[
Y
∣∣ S1:t ,A1:t−1

= 01:(t−1),At = Wπ

]

= 1t≥τπ μnow,Wπ (S1:t , t),
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where (a), (b), and (c) are by Definition 1, Assumption 2, and
Assumption 1, respectively. Furthermore, given our definition
of regular policies, we know that if t ≥ τπ and At = 0, then
π will deterministically prescribe treatment Wπ at time t + 1
regardless of the state St+1, and so

1t≥τπ Qπ ,t(S1:t , 01:t)

= 1t≥τπ

∫
Eπ

[
Y
∣∣ S1:t+1, A1:t = 01:t

]

dFt+1

(
St+1

∣∣ S1:t , A1:t = 01:t
)

(d)= 1t≥τπ

∫
E
[
Y(01:t ,Wπ ,Wπ , . . .)

∣∣ S1:t+1, A1:t = 01:t
]

dFt+1

(
St+1

∣∣ S1:t , A1:t = 01:t
)

(e)= 1t≥τπ

∫
E

[
Y(01:t ,Wπ ,Wπ , . . .)

∣∣ S1:t+1,

A1:t = 01:t ,At+1 = Wπ

]

× dFt+1

(
St+1

∣∣ S1:t , A1:t = 01:t
)

(f )= 1t≥τπ

∫
E
[
Y
∣∣ S1:t+1, A1:t = 01:t ,At+1 = Wπ

]

dFt+1

(
St+1

∣∣ S1:t , A1:t = 01:t
)
,

(11)

where (d), (e), and (f) are by Definition 1, Assumption 2 and
Assumption 1, respectively. The conclusion (9) emerges by plug-
ging these facts into (10).

In Lemma 1, the expectation is taken with respect to the
never-treating policy 0. To make this result usable in prac-
tice, the following lemma translates it in terms of expec-
tations taken with respect to the sampling measure. Recall
that the propensity of starting treatment a assuming a never-
treating history up to time t is denoted by et,a(s1:t) =
P
[
At = a

∣∣ S1:t = s1:t ,A1:t−1 = 0
]
. The proof of Lemma2, given

in Appendix A in the supplementary materials, follows directly
from a change of measure.

Lemma 2. In the setting of Lemma 1,

�(π , 0) = E

[ T∑

t=1

1t≥τπ

1A1:t−1=0∏t−1
t′=1 et′,0(S1:t′)

(
μnow,Wπ (S1:t , t) − μnext,Wπ (S1:t , t)

) ]
. (12)

This representation (12) is at the core of our approach, as it
decomposes the relative value of any given policy π in compar-
ison to that of the never-treating policy 0 into a sum of local
advantages. For any t, the local advantage

δlocal,k(s1:t , t) := μnow,k(s1:t , t) − μnext,k(s1:t , t) (13)

is the relative advantage of starting treatment k at t versus at t+1
given the state history s1:t . The upshot is that the specification of
these local advantages does not depend on which policy we are
evaluating, so if we get a handle on quantities δlocal,k(s1:t , t) for
all s and t, we can use (12) to evaluate any policy π .

Note that the quantity defined in (13) can be seen as a specific
treatment effect, namely the effect of starting treatment k at

Algorithm 1: Advantage doubly robust (ADR) estimator

1 Estimate the outcome models μnow,k(·), μnext,k(·), as well
as treatment propensities et,a(s1:t) with cross-fitting using
any supervised learning method tuned for prediction
accuracy.

2 Given these nuisance component estimates, we construct
value estimates

�̂(π , 0) = 1

n

n∑

i=1

T∑

t=1

1
t≥τ

(i)
π

1
A

(i)
1:t−1=0

∏t−1
t′=1 ê

−q(i)
t′,0 (S

(i)
1:t′)


̂t,Wπ (S
(i)
1:t)

(14)
for each policy π ∈ �, where the relevant DR score is


̂t,k(S
(i)
1:t) = μ̂

−q(i)
now,k(S

(i)
1:t , t) − μ̂

−q(i)
next,k(S

(i)
1:t , t)

+ 1
A

(i)
t =k

Y(i) − μ̂
−q(i)
now,k(S

(i)
1:t , t)

ê
−q(i)
t,k (S

(i)
1:t)

− 1
A

(i)
t =0

1
A

(i)
t+1=k

Y(i) − μ̂
−q(i)
next,k(S

(i)
1:t , t)

ê
−q(i)
t,0 (S

(i)
1:t)ê

−q(i)
t+1,k(S

(i)
1:t+1)

.

(15)

3 Learn the optimal policy by setting

π̂ = argmaxπ∈��̂(π , 0).

time t versus t + 1 among all trajectories that were in state
s1:t at time t and started treatment k in either time t or t + 1.
Given this observation, we propose turning (12) into a feasible
estimator by replacing all instances of the unknown regression
surfaces δlocal,k(s1:t , t) with DR scores analogous to those used
for augmented inverse propensity weighting in the static case
(Robins and Rotnitzky 1995).

More specifically, we propose the following 3-step pol-
icy learning algorithm, outlined as Algorithm 1. We call our
approach the ADR estimator, because it replaces local advan-
tages (13) with appropriate DR scores (15) when estimating
�(π , 0). In the first estimation step in Algorithm 1, we employ
cross-fitting where we divide the data intoQ folds, and only use
theQ− 1 folds that a sample trajectory does not belong to learn
the estimates of its nuisance components; we use superscript
−q(i) on a predictor to denote using trajectories of all folds
excluding the fold that the ith trajectory belongs to in training a
predictor.8

The main strength of this procedure relative to existing DR
approaches discussed above (Zhang et al. 2013; Jiang and Li
2016; Thomas and Brunskill 2016) is that ADR can evaluate any

stopping policy using universal scores 
̂t,k(·) that do not depend
on π . This allows us to ensure smoothness criteria we use to
provide regret bounds for policy optimization. It also provides
computational benefits for using the ADR estimator for policy
optimization: the specific policy π we are evaluating only enters
into (14) by specifying which DR scores we should sum over.

8The idea of cross-fitting has gained growing popularity recently to reduce
the effect of own-observation bias and to enable results on semiparametric
rates of convergence using generic nuisance component estimates (Schick
1986; Chernozhukov et al. 2018; Athey and Wager 2020).
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In particular, the number of nuisance components we need to
learn in the first step of the ADR procedure scales linearly with
the horizon T, but not with the complexity of the policy class�.

By constructing DR scores 
̂t,k(·), the ADR estimator ben-
efits from certain robustness properties; however, it is not DR
in the usual sense, for example, we do not robustly correct for
the change of measure used to get from the representation in
Lemma 1 to the one in Lemma 2. We discuss the asymptotic
behavior of our method in Section 3.

In our experiments, we learn all the nuisance components
in the first step with nonparametric regression methods (e.g.,
boosting, lasso, a deep net, etc.), and then optimize for the best
in-class policy by performing a grid search over the parameters
that define the policies in a policy class of interest.

Remark 3. For the purpose of estimating μnext,k(s1:t , t), it is
helpful to re-express it in terms of conditional expectations.
First, under Assumption 3, we can continue from (11) and
rewrite μnext,k(s1:t , t) via inverse-propensity weighting as

μnext,k(s1:t , t) = E

[
1At+1=k

et+1,k(S1:t+1)
Y
∣∣ S1:t , A1:t = 01:t

]
. (16)

Then, using Bayes’ rule, we can verify that

μnext,k(s1:t , t) =
E
[
Y/et+1,k(S1:t+1)

∣∣ S1:t = s1:t ,A1:t = 0, At+1 = k
]

E
[
1/et+1,k(S1:t+1)

∣∣ S1:t = s1:t ,A1:t = 0, At+1 = k
] .

(17)

This last expression implies that we can consistently estimate
μnext,k(·, t) via weighted nonparametric regression of Y on S1:t
on the set of observations with A1:t = 0 and At+1 = k, with
weights e−1

t+1,k(S1:t+1). In practice, this may yield more stable
estimates of μnext,k(s1:t , t) than an unweighted nonparametric
regression with response 1At+1=k/et+1,k(S1:t+1)Y .

2.4. RelatedWork

The problem of learning optimal dynamic sequential decision
rules is also called learning optimal dynamic regimes (Murphy
2003; Robins 2004), adaptive strategies (Lavori and Dawson
2000), or batch off-policy policy learning in the reinforce-
ment learning (RL) literature (Sutton and Barto 2018). As this
is a large literature spanning several fields, a comprehensive
overview of the literature on dynamic decision rules is beyond
the scope of this article; instead, we refer the reader to recent
review papers (Vansteelandt and Joffe 2014; Kosorok and Laber
2019; Clifton and Laber 2020; Levine et al. 2020), as well as
textbooks by Chakraborty and Moodie (2013) and Tsiatis et al.
(2019).

Our approach buildsmost directly onmethods for structured
policy learning in the static setting (Manski 2004; Zhao et al.
2012; Swaminathan and Joachims 2015; Kitagawa and Tetenov
2018;Athey andWager 2020). From this perspective, thework of
Zhao et al. (2015), who extend the outcome-weighted learning
approach of Zhao et al. (2012) to the dynamic setting, is close
to us in its statistical setting. Inverse-propensity type methods,
including outcome-weighted learning and importance sam-
pling, are transparent and simple to implement; however, they
have sometimes been observed exhibit problematically high
variance, especially in dynamic settings (see, e.g., Doroudi,

Thomas, and Brunskill 2017). Here, we seek to improve on sim-
ple inverse-propensity weighting type methods, and to develop
dynamic policy learning methods that can leverage outcome
models for improved power. In doing so, we note that here
are by now well established methods for DR dynamic policy
evaluation under sequential ignorability (Zhang et al. 2013;
Jiang and Li 2016; Thomas and Brunskill 2016), but unlike in the
static setting it is not immediately clear how best to adapt these
methods to a learning setting (see Athey and Wager 2020 for a
general discussion of how to move from static policy evaluation
to learning).

One different but very influential line of work on dynamic
decision rules uses Q-learning (Robins 1986; Watkins and
Dayan 1992; Ernst, Geurts, and Wehenkel 2005; Murphy 2005)
which, at a high level, seeks to solve a noisy dynamic program-
ming problem to learn an optimal policy (see Clifton and Laber
2020; Levine et al. 2020 for recent reviews). The biggest algorith-
mic difference between our setting and Q-learning is that, here,
we seek to find the best policy within a constrained class, while
the dynamic programming formulation ofQ-learning is tailored
to learning the best Q function in a constrained class, and then
extracting a policy by taking the decision that maximizes the
learned function. Policy search and our ADR estimator can be
advantageous when there are predefined structural constraints
on the policy class (e.g., for ease of interpretability, budget con-
straints, etc.). In the reinforcement learning community, actor-
critic methods are popular which combine both a constrained
policy class and a constrained Q function, but there has been
limited theoretical analysis of their properties yet. It is also pos-
sible to use Q-learning for policy evaluation, and then to learn
policies by taking an argmax of the value estimate over a policy
class. For example, Zhang et al. (2018) utilized this strategy
to learn decision rules that can be expressed as a sequence of
simple “if-then” rules; see also Le, Voloshin, and Yue (2019).
This approach, however, may be computationally demanding,
as it involves separately estimating policy values via Q-learning
for each candidate policy; in contrast, our approach can share
computation across policy evaluations.

There is a long history of theoretical work on batch offlineQ-
learning in the reinforcement learning community (e.g., Munos
2003; Munos and Szepesvári 2008; Farahmand et al. 2016)
focused on bounding the error of the returned policy during
batch learning relative to the optimal policy. However, almost
all such prior work assumes the domain is Markov, and requires
that the optimal value function is realizable by the regressor
function used to model the value function (realizability) and
that the regressor function class is closed under the Bellman
backup operator used during dynamic programming (com-
pleteness); see recent work by Chen and Jiang (2019) and Le,
Voloshin, and Yue (2019).9 Closer to our policy search work is
recent theoretical work on batch policy search methods; how-
ever, such work has focused on settings with Markov structure.
Liu et al. (2019) provided convergence guarantees for batch

9Such results also require a bound on the concentratability coefficient
(Munos 2003), which measures the ratio of the state action distribution
of a policy to the state-action distribution under the behavior policy, for
any behavior policy Chen and Jiang (e.g., 2019); Le, Voloshin, and Yue (e.g.,
2019); Munos and Szepesvári (e.g., 2008)—this can be viewed as a similar
analogue to the overlap assumption as in Assumption 3.
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policy gradient, and Kallus and Uehara (2020) provides regret
bounds in the restricted setting where the policy value is a
concave function of the policy parameters. When the Markov,
realizability or completeness assumptions fail, past theoretical
results tend to provide no bounds or an additional constant
regret. Our work is motivated by healthcare and settings where
such assumptionsmay fail, andwewish to competewith the best
available solution in a given policy class.

Throughout this article, we assume that the time horizon T
over which we can act remains bounded. In the reinforcement
learning literature, this is typically referred to as a “finite hori-
zon” setting, and there is also a large literature on the “infi-
nite horizon” setting where T is not bounded (see, e.g., Antos,
Szepesvári, and Munos 2008a, 2008b; Munos and Szepesvári
2008; Q. Liu et al. 2018; Uehara and Jiang 2019; Luckett et al.
2020). These cases are considerably different from ours and are
beyond the scope of this work.

Finally, in the optimal stopping literature (e.g., VanMoerbeke
1976; Jacka 1991; Mordecki 2002; Goel, Dann, and Brunskill
2017), the treatment choices are binary, and the goal is to
optimize for a policy for when to start or stop a treatment. Most
work on optimal stopping assumes generator is available for the
system dynamics, or the full potential outcomes are available in
the training data. In contrast, in our setup, we assume that we
can only observe rewards corresponding to actions taken in the
training data. Rust (1987) considered the descriptive problem of
fitting an optimal stopping model to the behavior of a rational
agent; this is different from the problem of learning a decision
rule that can be used to guide future decisions in this article.

3. Asymptotics

In this section, we study large-sample behavior of the ADR
estimator proposed in Section 2.3 for policy learning in when-
to-treat settings over a class of policies �. It is now standard in
the literature in static policy learning for policies over a single
decision to bound regret over the learned policy (e.g., Manski
2004; Swaminathan and Joachims 2015; Kitagawa and Tetenov
2018; Athey andWager 2020). However, to our knowledge there
are no directly comparable results for the sequential decision
process setting.

Following the literature on static policy learning, our main
goal is to prove a bound on the utilitarian regret R of the learned
policy π̂ , where

R
(
π̂
)

= sup {V(π) : π ∈ �} − V
(
π̂
)
. (18)

To do so, we follow the high-level proof strategy taken by Athey
andWager (2020) for studying staticDRpolicy learning.Wefirst
consider the behavior of an “oracle” learner who runs our pro-
cedure but with perfect estimates of the nuisance components
μnow,k(·), μnext,k(·), and et,k(·), then we couple the behavior of
our feasible estimator that uses estimated nuisance components
with this oracle.

Following this outline, recall that our approach starts by esti-
mating the policy value difference �(π , 0) between deploying
policy π and the never treating policy 0. The oracle variant of

our estimator �̂(π , 0) is then

�̃(π , 0) = 1

n

n∑

i=1

T∑

t=1

1t≥τπ

1
A

(i)
1:t−1=0

∏t−1
t′=1 et′,0(S1:t′)


̃t,Wπ (S
(i)
1:t), (19)

where


̃t,k(S
(i)
1:t) = μnow,k(S

(i)
1:t , t) − μnext,k(S

(i)
1:t , t)

+ 1
A

(i)
t =k

Y(i) − μnow,k(S
(i)
1:t , t)

et,k(S
(i)
1:t)

− 1
A

(i)
t =0

1
A

(i)
t+1=k

Y(i) − μnext,k(S
(i)
1:t , t)

et,0(S
(i)
1:t)et+1,k(S

(i)
1:t+1)

.

(20)

We name (19) the oracle estimator since we assume μnow,k,
μnext,k, et,k for t = 1, . . . ,T and k = 1, . . . ,K take ground-truth
values in (20).

Because the nuisance components in (19) are known a priori,
we can use a standard central limit theorem argument to verify
the following.

Lemma 4. Suppose that Assumptions 1–3 hold and that |Y| ≤
M almost surely for some constantM, for a fixed policy π ∈ �,

√
n(�̃(π , 0) − �(π , 0)) ⇒ N (0,�π ),

where �π = var

[
T∑

t=1

1
t≥τ

(i)
π

1
A

(i)
1:t−1=0

∏t−1
t′=1 et′,0(S

(i)
1:t′)


̃t,Wπ (S
(i)
1:t)

]
.

(21)

Next, we show that the rate of convergence suggested by (21)
is in fact uniform over the whole class � under appropriate
bounded entropy conditions, thus enabling a regret bound for
the oracle learner that optimizes (19). To do so, we introduce
some more notation. Let H = {S1:T ,A1:T} be the entire history
of a trajectory. Any policy π that is regular in the sense of
Definition 1 can then be re-expressed as a mapping fromH to a
length KT + 1 vector of all zeros except for an indicator 1 at one
position in the probability simplex, such that10

π(H) =
{

vK(τπ−1)+Wπ
if τπ ≤ T,

vKT+1 else,
(22)

where vm ∈ {0, 1}KT+1 is the indicator vector with the mth
position 1, and all others 0. Given this form, we note that we
can re-express (20) as

�̃(π ,π ′) = 1

n

n∑

i=1

〈π(H(i)) − π ′(H(i)), �̃(i)〉, where

�̃
(i)
K(t−1)+k =

T∑

t′=t

1
A

(i)

1:(t′−1)
=0

∏t′−1
t′′=1 et′′,0(S

(i)
1:t′′)


̃t,k(S
(i)
1:t′)

(23)

for all 1 ≤ t ≤ T and 1 ≤ k ≤ K, and �̃
(i)
KT+1 = 0.

Given these preliminaries, let the Hamming distance
between any two policies π ,π ′ be

dh(π ,π
′) = 1

n

n∑

i=1

1π(H(i)) �=π ′(H(i)).

10All regular policies can be expressed in the form (22); however, we empha-
size that the converse is not true: The form (22) does not ensure that π is
Ft measurable.
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Define the ε-Hamming covering number of � as

Ndh (ε,�) = sup
{
Ndh

(
ε,�,

{
H(1), . . . ,H(n)

}) ∣∣H(1), . . . ,H(n)
}
,

where Ndh

(
ε,�,

{
H(1), . . . ,H(n)

})
is the smallest number of

policies π (1),π (2), . . . ,∈ � such that ∀π ∈ �, ∃π (i) such that
dh(π ,π

(i)) ≤ ε. In our formal results, we control the complexity
of the policy class � in terms of its Hamming entropy.

Assumption 4. There exist constants C,D ≥ 0 and 0 < ω < 0.5
such that, for all 0 < ε < 1, Ndh(ε,�) ≤ C exp(D( 1

ε
)ω).

Whenever Assumption 4 holds, we can use the argument
from Lemma 2 of Zhou, Athey, and Wager (2018) to show the
rate of convergence in (21) holds uniformly over the whole class
� for the oracle estimator �̃(π ,π ′). The bounds below depend
on the complexity of the class � via

κ(�) =
∫ 1

0

√
logNdh(ε

2,�)dε, (24)

which is always finite under Assumption 4.

Example 2 (The class of linear thresholding policies). In the case
of linear thresholding policies with binary actions |A| = 2, that
is, {π ∈ � : τπ = min(t : θ�S1:t > 0)} where θ ∈ R

d, we note
that by Haussler (1995), the covering number of a policy class
for single-step decision-making is bounded byNL1(Pn)(ε,�t) ≤
cVC(�t) exp

VC(�t)(1/ε)VC(�t) whereVC(�t) is the VCdimen-
sion of �t , the linear thresholding policy class at time t, and c
is some numerical constant. Thus, with a different constant c,
NL1(Pn)(ε,�t) ≤ cded(1/ε)d. By taking a Cartesian product of
the covering at each timestep and with a union bound on the
error incurred at each timestep, we achieve a strict upperbound
on Ndh(ε,�) < cdTedT(T/ε)dT for a (again different) constant

c, and so κ(�) <
√
cdT log(T).

Lemma 5. Under Assumptions 1–4 and assuming |Y| ≤ M for
some constant M almost surely, for any δ, c > 0, there exists
0 < ε0(δ, c) < ∞ and universal constants 0 < c1, c2 < ∞ such
that for all ε < ε0(δ, c), if we collect at least n(ε, δ) samples, with

n(ε, δ) = 1

ε2

(
c +

√
V∗

(
c1κ(�) + c2 +

√
2 log

(
1

δ

)))2

,

(25)

where V∗ = supπ ,π ′∈� E

[
〈π(H(i)) − π ′(H(i)), �̃(i)〉2

]
, then,

with probability at least 1 − 2δ,

sup
π ,π ′∈�

∣∣∣�̃(π ,π ′) − �(π ,π ′)
∣∣∣ ≤ ε, (26)

and, moreover, letting π̃ = argmax{�̃(π , 0) : π ∈ �} be the
policy learned by optimizing the oracle objective (19), we have
with probability at least 1 − 2δ, R(π̃) ≤ ε.

Our goal is to get a comparable regret bound using the
feasible estimator from (14) in Algorithm 1 that uses estimated
nuisance components by coupling the feasible value estimates
with the oracle ones. We establish our coupling result in terms
of rates of convergence on the nuisance components, as follows.

Assumption 5. We work with a sequence of problems and esti-

mators such that μ̂
−q(i)
now,k, μ̂

−q(i)
next,k, ê

−q(i)
t,k , satisfy for some universal

constants Cμ, Ce, κμ, κe,

sup
k,t

E

[(
μ̂

−q(i)
now,k(S1:t , t) − μnow,k(S1:t , t)

)2]
≤ Cμn

−2κμ , (27)

sup
k,t

E

[(
μ̂

−q(i)
next,k(S1:t , t) − μnext,k(S1:t , t)

)2]
≤ Cμn

−2κμ , (28)

sup
k,t

E

⎡
⎣
⎛
⎝ 1

ê
−q(i)
t,k (S1:t)

− 1

et,k(S1:t)

⎞
⎠

2⎤
⎦ ≤ Cen

−2κe , (29)

and furthermore ê
−q(i)
t,k (S1:t) is uniformly consistent,

sup
t, k, s∈ST

∣∣∣ê−q(i)
t,k (s1:t) − et,k(s1:t)

∣∣∣→p 0. (30)

Moreover, motivated by the observation that treatment
effects are weak relative to the available sample size in
many problems of interest, we allow for problem sequences
where treatment effects can shrink with sample size n. In
regimes where treatment effects stay constant when the sam-
ple size grows, super-efficiency phenomena are unavoidable;
see Luedtke and Chambaz (2017) for a formal statement with
static decision rules. To consider other such settings, first recall
the definition of δlocal,k defined in (13). We further define
δ+
local,k(S1:t+1, t) = μnow,k(s1:t+1, t + 1) − μnext,k(s1:t , t).

11

Assumption 6. For some universal constants Cδ , κδ , Cγ , κγ ,

sup
t,k

E
[
δlocal,k(S1:t , t)

2
]

≤ Cδn
−2κδ , (31)

sup
t,k

E

[
δ+
local,k(S1:t+1, t)

2
]

≤ Cγ n
−2κγ . (32)

Lemma 6. Suppose that Assumptions 1–6 hold and assume
|Y| ≤ M for some constant M almost surely. Then, for any
δ > 0, there exists 0 < ε0(δ, η, T) < ∞ such that for all
ε < ε0(δ, η, T), with probability at least 1 − 3δ,

sup
π ,π ′

∣∣∣�̂(π ,π ′) − �̃(π ,π ′)
∣∣∣ ≤ ε,

provided we collect at least n0(ε, δ) samples, where

n0(ε, δ) =
(
C(δ)KT2ε−1

)1/min{1/2+κe , 1/2+κμ , κe+κμ , κe+κδ , κe+κγ } ,

where C(δ) only depends on the constants used in Assump-
tions 3, 5, and 6.

Combining the above with Lemma 5, we immediately have
the following finite-sample bound for the regret on the feasible
estimator.

11In deterministic systems, this difference is always identically zero, but in
stochastic settings the two quantities will generally be different. Intrigu-
ingly, related quantities (the expected temporal-difference error, and the
variance of the value of next state) have been observed to play important
roles in online reinforcement learning regret bounds (see, e.g., Zanette and
Brunskill 2019) as well.
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Theorem 7. Let π̂ = argmax{�̂(π , 0) : π ∈ �} be the
policy learned by optimizing the feasible objective (14). Suppose
Assumptions 1–6 and assume |Y| ≤ M for some constant
M almost surely. Then, for any δ > 0, there exist 0 <

ε0(δ, η, T) < ∞ such that the following statement holds for
all ε < ε0(δ, η, T): If we collect at least n(ε, δ) samples, with

n(ε, δ) = max

{
1

ε2

(
c +

√
V∗

(
c1κ(�) + c2 +

√
2 log

(
1

δ

)))2

,

n0(ε, δ)

}
,

(33)

V∗ = supπ ,π ′∈� E

[
〈π(H(i)) − π ′(H(i)), �̃(i)〉2

]
, andn0(ε, δ) as

defined in Lemma 6, then with probability at least 1 − 5δ

sup
π ,π ′∈�

∣∣∣�̂(π ,π ′) − �(π ,π ′)
∣∣∣ ≤ 2ε,

and in particular R(π̂) ≤ 2ε.

We obtain the following corollary if we assume specific learn-
ing rates on the nuisance components and the signal strength.

Corollary 8. Assume κμ > 0, κe > 0, κe + κμ > 1
2 , κe + κγ >

1
2 , κe + κδ > 1

2 . Suppose Assumptions 1–6 hold and assume
|Y| ≤ M for some constantM almost surely. Then, for any δ >

0, there exist 0 < ε0(δ, η, T) < ∞ such that the following holds
for all ε < ε0(δ, η, T): If we collect at least n(ε, δ) samples, with

n(ε, δ) = 1

ε2

(
c +

√
V∗

(
c1κ(�) + c2 +

√
2 log

(
1

δ

)))2

,

(34)

and V∗ = supπ ,π ′∈� E

[
〈π(H(i)) − π ′(H(i)), �̃(i)〉2

]
, then with

probability at least 1 − 5δ

sup
π ,π ′∈�

∣∣∣�̂(π ,π ′) − �(π ,π ′)
∣∣∣ ≤ 2ε,

and in particular R(π̂) ≤ 2ε.

Our result above can be interpreted in several different
regimes. First, we note that we can reach the optimal sample
complexity n ∼ ε−2 if either (a) the treatment propensities
et,k are known and we can consistently estimate μnow,k and
μnext,k; or (b) the signal size of the advantages is null (i.e.,
μnow,k(S1:t , t)−μnext,k(S1:t , t) = 0) or is weak (in the sense that
κδ > 0 and et,0 can be learned at a rate such that κδ + κe > 1/2,
etc.), and similarly the stochastic fluctuations are weak (in the
sense that κγ > 0 and et,0 can be learned at a rate such that
κγ + κe > 1/2, etc.), and we can consistently estimate μnow,k,
μnext,k and et,k such that κe + κμ > 1/2.

Conversely, if the treatment effects are of a fixed size (i.e.,
κδ = 0), and we do not know the treatment propensities et,k a
priori, then we pay a price for not being robust to the change of
measure from Lemma 1 to Lemma 2, and we no longer achieve
the optimal rate. The terms that hurt us are due to error terms
that decay as n−(κe+κδ) which arises from the interaction of how
we use inverse propensity weighting for the treatment starting
probabilities and the signal size of the advantages, and ones

that decays as n−(κe+κγ ) which are similarly due to stochastic
fluctuations in the value of starting treatment. If advantages are
small, this will not matter for smaller target error rates ε, but
requires a bigger sample size when we aim for very small ε.

4. ADRWith a Terminal State

So far, we have focused our analysis on when-to-stop problems
in settings characterized by overlap (Assumption 3), that is,
where the sampling policy can start treatment in any state with
a nonzero policy, and have assumed that we want to learn a
regular policy in the sense of Definition 1, that is, one that
never stops prescribing treatment once it has started to do so.
In many applications of interest, however, a patient may enter
a terminal state in which treatment becomes impossible—for
example, a patient may leave the study or die. The existence of
such a terminal state contradicts the assumptions made above:
There is no overlap in the terminal state (because treatment can
never start there), and a policy that respects the terminal state
may not be regular (because the policy must stop prescribing
treatment once the patient enters the terminal state).

The goal of this section is to briefly discuss methodological
extensions toADR that are required in the presence of a terminal
state. Algorithm 2 provides pseudocode for our ADR policy
optimization approach with terminal states.

To do so, we start by adapting Definition 1 and Assumption 3
to this setting.

Definition 3 (Terminal state). A state � ∈ S is terminal if,
whenever St = � , then also St′ = � for all t′ > t. Furthermore,
we assume that once a patient enters a terminal state, we can
assess their final outcome, that is, there exists a set of known
functions12 Ht such that Y = Ht(S1:t) whenever St+1 = �.

Definition 1b (Regular policy with terminal state). A regular
when-to-treat policy π that respects the terminal state � is
determined by an Ft-measurable stopping time τπ and an
associated Fτπ -measurable decision variable Wπ ∈ {1, . . . ,K}
as follows13: For each time t = 1, . . . , T, if St = �

then πt(S1:t , A1:(t−1)) = 0. Otherwise, if At−1 �= 0
then πt(S1:t , A1:(t−1)) = At−1, else if t ≥ τπ then
πt(S1:t , A1:(t−1)) = Wπ . If none of the above conditions apply,
then πt(S1:t , A1:(t−1)) = 0.

Assumption 3b (Overlap with terminal state). There are con-
stants η, η0 > 0 as well as a terminal state � such that, for
all t = 1, . . . ,T and s1:t ∈ S t , the following hold. If st = �,
then et,a(s1:t) = 0 for all a ∈ A \ {0} and et,0(s1:t) = 1; else,
et,a(s1:t) > η/T for all a ∈ A \ {0} and et,0(s1:t) > 1 − η0/T.

12For example, if Y is survival time, then one can use Ht(S1:t) =
sup

{
t′ : St′ �= �, t′ ≤ t

}
.

13Note that the policies specified here are still when-to-start policies, that
is, if they have actually started treatment then they never stop (even if
the patient enters a terminal state). One could also choose to make π

stop treatment once the patient enters a terminal state. However, from a
statistical perspective, this makes no difference: All that matters is that the
standard of care is a deterministic function of state once treatment has
started.
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In the presence of a terminal state, the main modification
we need to make to ADR is that the conditional expectation
μnext,k(s1:t , t) as defined in (8) no longermatches theQ-function
that arises in (10) in the proof of Lemma 1, and so we need
to adapt our statement of this result. The proof of the follow-
ing lemma is included in Appendix A in the supplementary
materials.

Lemma 9. Under Assumptions 1 and 2, let � be the terminal
state, and let π be a regular when-to-treat policy that respects�

in the sense of Definition 1b. Then

�(π , 0) = E0

[
T∑

t=τπ

1St �=�

(
μnow,Wπ (S1:t , t) − μ�

next,Wπ
(S1:t , t)

)
]
, (35)

where E0 samples trajectories under a never-treating policy, τπ

is the time at which π starts treating and Wπ is the treatment
chosen at that time, and

μ�
next,k(S1:t , t)

= P
[
St+1 �= �

∣∣ S1:t , A1:t = 0
]
E

[
μnow,k (S1:t+1, t + 1)

∣∣ S1:t ,

A1:t = 0, St+1 �= �

]

+ P
[
St+1 = �

∣∣ S1:t , A1:t = 0
]
Ht(S1:t).

(36)

Next, the following result is a direct consequence of
Lemma 9; its proof is a direct analogue to that of Lemma 2 and
thus omitted.

Lemma10. In the setting of Lemma 9 and underAssumptions 1,
2, and 3b,

�(π , 0) = E

[ T∑

t=τπ

1St �=�

1A1:t−1=0∏t−1
t′=1 et′,0(S1:t′)

(
μnow,Wπ (S1:t , t)

(37)

− μ�
next,Wπ

(S1:t , t)

)]
. (38)

We detail a candidate estimator based on this result as Algo-
rithm 2. For notational convenience, we denote terminating
probabilities by ρ(S1:t) = P

[
St+1 = �

∣∣ S1:t , A1:t = 0
]
, and

write U(S1:t , �) = E

[
1At+1=k

et+1,k(S1:t+1)
Y
∣∣ S1:t , A1:t = 0, St+1 �= �

]
.

We note that the proposed ADR estimator extended to terminal
states is robust toward errors in estimating the regression out-
come functions μnow,k and U(·,�)) but we do not correct for
the estimation bias in estimating the terminating probabilities
ρ(·). We leave it to future work to develop robust methods that
are also robust against terminating probability estimates.

Finally, in analogy to (16), it is convenient to re-express
μnext,k(S1:t .t)

� via inverse-propensity weighting for purpose of

Algorithm 2: Advantage doubly robust estimator with ter-
minal state

1 Estimate the outcome models μnow,k(·), U(·,�),
terminating propensities ρ(·) as well as treatment
propensities et,a(s1:t) with cross-fitting using any
supervised learning method tuned for prediction accuracy.

2 Given these nuisance component estimates, we construct
value estimates

�̂(π , 0) = 1

n

n∑

i=1

T∑

t=1

1St �=�1t≥τ
(i)
π

1
A

(i)
1:t−1=0

∏t−1
t′=1 ê

−q(i)
t′ ,0 (S

(i)
1:t′ )


̂�
t,Wπ

(S
(i)
1:t)

(40)

3 for each policy π ∈ �, where the relevant DR score is


̂�
t,k(S

(i)
1:t) = μ̂

−q(i)
now,k(S

(i)
1:t , t) − μ̂�

next,k(S
(i)
1:t , t)

−q(i)

+ 1
A

(i)
t =k

Y(i) − μ̂
−q(i)
now,k(S

(i)
1:t , t)

ê
−q(i)
t,k (S

(i)
1:t)

− 1
A

(i)
t =0

1
A

(i)
t+1=k

Y(i) − Û−q(i)(S
(i)
1:t ,�)

ê
−q(i)
t,0 (S

(i)
1:t)ê

−q(i)
t+1,k(S

(i)
1:t+1)

,

(41)

and μ̂�
next,k(S

(i)
1:t , t)

−q(i) =
(1 − ρ̂−q(i)(S

(i)
1:t))Û

−q(i)(S
(i)
1:t ,�) + ρ̂−q(i)(S

(i)
1:t)Ht(S

(i)
1:t)

4 Learn the optimal policy by setting

π̂ = argmaxπ∈��̂(π , 0).

estimating it,

μ�
next,k(S1:t , t)

= P
[
St+1 �= �

∣∣ S1:t , A1:t = 0
]
E

[
1At+1=k

et+1,k(S1:t+1)
Y
∣∣ S1:t ,

A1:t = 0, St+1 �= �

]

+ P
[
St+1 = �

∣∣ S1:t , A1:t = 0
]
Ht(S1:t).

(39)

Furthermore, a weighted regression expression analogous to
(17) also holds.

5. Experiments

To assess the practical performance of our proposedmethod, we
consider two different simulation studies. In the first simulation,
we consider the optimal stopping case in which the treatment
decision is binary and the treatment assignment propensities are
not known a priori. In the second simulation, we want to learn
when to start which treatment. There are multiple treatment
options and patients can be censored due to death, and the
data are generated from a randomized control trial with known
treatment assignment propensities. This second study helps to
capture settings motivated by clinical trials.

In both settings, we consider linear thresholding policy rules
for simplicity and due to their interpretability. In our imple-
mentation, we use the normalized variant of the IPW estimator
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V̂WIPW
π as presented in Section 2.2. For the first setup that

does not involve survival censoring, we use a correspondingly

normalized ADR estimator �̂W in Step 2 of Algorithm 1:

�̂W(π , 0) =
T∑

t=1

∑n
i=1

1
A
(i)
1:t−1=0

∏t−1
t′=1

ê
−q(i)

t′ ,0 (S
(i)

1:t′ )
1
t≥τ

(i)
π(

μ̂
−q(i)
now,Wπ

(S
(i)
1:t , t) − μ̂

−q(i)
next,Wπ

(S
(i)
1:t , t)

)

∑n
i=1

1
A
(i)
1:t−1=0

∏t−1
t′=1

ê
−q(i)

t′ ,0 (S
(i)

1:t′ )

+
T∑

t=1

∑n
i=1

1
A
(i)
1:t−1=0

1
A
(i)
t =Wπ

∏t−1
t′=1

ê
−q(i)

t′ ,0 (S
(i)

1:t′ )ê
−q(i)
t,Wπ

(S
(i)
1:t)
1
t≥τ

(i)
π(

Y(i) − μ̂
−q(i)
now,Wπ

(S
(i)
1:t , t)

)

∑n
i=1

1
A
(i)
1:t−1=0

1
A
(i)
t =Wπ

∏t−1
t′=1

ê
−q(i)

t′ ,0 (S1:t′ )ê
−q(i)
t,Wπ

(S
(i)
1:t)
1
t≥τ

(i)
π

+
∑n

i=1

1
A
(i)
1:t−1=0

∏t−1
t′=1

ê
−q(i)

t′ ,0 (S1:t′ )
(1 − 1

t≥τ
(i)
π

)

−
T∑

t=1

∑n
i=1

1
A
(i)
1:t=0

1
A
(i)
t+1=Wπ

∏t
t′=1

ê
−q(i)

t′ ,0 (S1:t′ )ê
−q(i)
t+1,Wπ

(S
(i)
1:t+1)

1
t≥τ

(i)
π(

Y(i) − μ̂
−q(i)
next,Wπ

(S
(i)
1:t , t)

)

1
A
(i)
1:t=0

1
A
(i)
t+1=Wπ

∏t
t′=1

ê
−q(i)

t′ ,0 (S1:t′ )ê
−q(i)
t+1,Wπ

(S
(i)
1:t+1)

1
t≥τ

(i)
π

+
1
A
(i)
1:t−1=0

∏t−1
t′=1

ê
−q(i)

t′ ,0 (S1:t′ )
(1 − 1

t≥τ
(i)
π

)

.

For simplicity, we will refer to them as the IPW (baseline) and
ADR (our estimator), respectively, in this section. We have a
similar weighted form for the ADR estimator with terminal
states that we use in experiments in the second simulation study.
We include that in Appendix B in the supplementary materials.

In addition to IPW, we also consider fitted-Q iteration as a
baselinemethod for policy learning. The variant of fitted-Q iter-
ation we implement follows the batch Q-learning algorithm as
described in Murphy (2005) for solving the optimal Q function
at each timestep: At each t = T,T − 1, . . . , 1, we solve14

Q̂∗
t (·, ·) = argminQt

1

n

n∑

i=1

(
max
at+1

Q̂∗
t+1(S

(i)
1:(t+1), {A

(i)
1:t , at+1})

− Qt(S
(i)
1:t ,A

(i)
1:t)

)2
, (42)

where we let Q̂∗
T+1 = Y(i). We note that fitted-Q iteration

is an iterative backward-regression based algorithm targeted at
learning the optimal unrestricted policy, whereas our goal is to
learn the best in-class policy given a user-defined policy class.
However, while fitted-Q aims to perform a different task than
us, it is still of interest to compare the regret achieved by both
methods. We use the shorthand Q-Opt to refer to this method.

14For this purpose, we estimate propensities and conditional response sur-
faces using regression forests as implemented in grf (Athey, Tibshirani,
andWager 2019). For tractability, we do not consider historywhen learning
these regression; rather, weonly use current state as covariates in each time
step.

Another variant of the fitted-Q method evaluates a given policy
π instead of learning the best policy (see, e.g., Le, Voloshin, and
Yue 2019). Instead of taking the max operator above, at+1 is
chosen according to the policy π . We call the latter fitted-Q for
evaluation and use Q-Eval as a shorthand accordingly.

5.1. Binary Treatment Choices in anObservational Study

Our first simulation is motivated by a setting where we track a
health metric and get a reward if the health metric is above a
threshold at T = 10. The treatment provides a positive nudge
to the health metric at a cost. We start with treatment on, and
need to choose when to stop to minimize cost while trying to
keep the health metric stay above the threshold. The data are
generated via the following hidden Markov process, where Xt is
unobserved:

X1 ∼ N (0, σ 2),

Xt+1

∣∣Xt ,At ∼ 1Xt≥−0.5N

(
Xt + 1

1 + e0.3Xt
At ,

σ 2

2T

)

+ 1Xt<−0.5Xt , St
∣∣Xt ∼ N (Xt , ν

2),

Y = β1ST+1>0 − 1

T

T∑

t=1

At ,

with the stopping action At

∣∣Xt ∼ Bernoulli(1 − 1/(1 +
e−(Xt−1.5) − e−(t−3))). We note that Y is the final outcome we
would like to maximize. We also do not assume Markovian
structure and only get to observe St , which is a noisy version
of the underlying state Xt .

In our implementation, both the propensity and outcome
regressions only use the current state and action information as
opposed to the full history even though the underlying dynamic
is not Markovian.15 We parameterize the policy class of interest
by [θ1, θ2, θ3] and define each policy to be a linear thresholding
rule θ1St ≥ θ2t + θ3 such that whenever this holds, we stop the
treatment. We then perform a grid search over a range of values
for the policy parameters, with the grid specified in Appendix B
in the supplementary materials.

For each of the parameter combinations, we run ADR and
baseline IPW to estimate the value of the corresponding policy.
The average mean-squared error (MSE) of each of the policy
values across all policies in the policy class is then computed
against an oracle evaluation by using a Monte Carlo rollout of
the policy using the underlying transition dynamics averaged
across 20,000 times. We vary β , σ , and the observation noise
ν and compute the regret and the mean-squared error of pol-
icy value estimates (averaged across all policies in the policy
class).

ADR shows a clear advantage in both regret and learning
the correct value of policies across varying values of σ ,β , and
ν. We present the tables of raw results for in Tables 2 and
1 in Appendix B in the supplementary materials. We present
one representative illustration in Figure 1, where we have used

15In other words, neither out propensity models nor conditional response
models are well specified because we do not use covariates that capture
lagged states. Thus, this setting can be seen as a test case for the value of
the robust scoring method in ADR.
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Table 1. Detailed numerical results in the binary-action setup with β = 1; details see caption of Table 2.

n ν β σ ADR IPW Q-Opt Oracle MSE:ADR MSE:IPW

250 0 1 1 7.65e-01 7.21e-01 8.21e-01 8.03e-01 1.56e-02 3.32e-01
250 0 1 3 8.16e-01 7.11e-01 8.17e-01 8.46e-01 3.20e-02 2.43e-01
250 0.5 1 1 7.48e-01 7.25e-01 7.38e-01 7.79e-01 1.07e-01 3.28e-01
250 0.5 1 3 8.18e-01 7.15e-01 8.11e-01 8.49e-01 6.97e-02 2.55e-01
500 0 1 1 7.86e-01 7.50e-01 8.36e-01 8.03e-01 4.70e-03 3.16e-01
500 0 1 3 8.39e-01 7.46e-01 8.26e-01 8.46e-01 1.27e-02 2.05e-01
500 0.5 1 1 7.56e-01 7.28e-01 7.47e-01 7.79e-01 7.20e-02 3.21e-01
500 0.5 1 3 8.37e-01 7.52e-01 8.17e-01 8.49e-01 1.98e-02 2.31e-01
1000 0 1 1 7.88e-01 7.74e-01 8.46e-01 8.03e-01 3.09e-03 2.87e-01
1000 0 1 3 8.42e-01 7.81e-01 8.31e-01 8.46e-01 9.20e-03 2.12e-01
1000 0.5 1 1 7.63e-01 7.41e-01 7.49e-01 7.79e-01 6.16e-02 2.82e-01
1000 0.5 1 3 8.42e-01 7.81e-01 8.16e-01 8.49e-01 2.87e-02 2.03e-01
5000 0 1 1 7.97e-01 7.94e-01 8.54e-01 8.03e-01 1.62e-03 2.05e-01
5000 0 1 3 8.46e-01 8.32e-01 8.39e-01 8.46e-01 4.92e-03 1.42e-01
5000 0.5 1 1 7.68e-01 7.60e-01 7.53e-01 7.79e-01 2.46e-02 1.58e-01
5000 0.5 1 3 8.49e-01 8.19e-01 8.22e-01 8.49e-01 1.37e-02 1.39e-01

10,000 0 1 1 8.00e-01 7.98e-01 8.54e-01 8.03e-01 9.82e-04 1.69e-01
10,000 0 1 3 8.46e-01 8.40e-01 8.42e-01 8.46e-01 4.53e-03 1.52e-01
10,000 0.5 1 1 7.69e-01 7.64e-01 7.52e-01 7.79e-01 1.45e-02 9.67e-02
10,000 0.5 1 3 8.49e-01 8.33e-01 8.23e-01 8.49e-01 1.10e-02 1.53e-01
20,000 0 1 1 8.00e-01 8.01e-01 8.54e-01 8.03e-01 3.54e-04 9.76e-02
20,000 0 1 3 8.46e-01 8.42e-01 8.42e-01 8.46e-01 3.23e-03 1.26e-01
20,000 0.5 1 1 7.69e-01 7.67e-01 7.54e-01 7.79e-01 7.74e-03 5.15e-02
20,000 0.5 1 3 8.49e-01 8.42e-01 8.21e-01 8.49e-01 1.01e-02 1.42e-01
30,000 0 1 1 8.00e-01 8.00e-01 8.54e-01 8.03e-01 3.22e-04 9.42e-02
30,000 0 1 3 8.46e-01 8.43e-01 8.41e-01 8.46e-01 2.85e-03 1.19e-01
30,000 0.5 1 1 7.70e-01 7.68e-01 7.54e-01 7.79e-01 7.99e-03 5.27e-02
30,000 0.5 1 3 8.49e-01 8.44e-01 8.22e-01 8.49e-01 9.88e-03 1.11e-01

Table 2. Detailed numerical results in the binary-action setup with β = 0.5.

n ν β σ ADR IPW Q-Opt Oracle MSE:ADR MSE:IPW

250 0 0.5 1 8.39e-01 8.38e-01 8.53e-01 8.78e-01 1.70e-02 8.63e-02
250 0 0.5 3 9.11e-01 8.25e-01 8.79e-01 9.25e-01 2.42e-02 6.63e-02
250 0.5 0.5 1 8.32e-01 8.33e-01 8.02e-01 8.76e-01 3.51e-02 8.27e-02
250 0.5 0.5 3 9.18e-01 8.61e-01 8.78e-01 9.27e-01 2.51e-02 6.85e-02
500 0 0.5 1 8.73e-01 8.49e-01 8.71e-01 8.78e-01 5.50e-03 8.11e-02
500 0 0.5 3 9.23e-01 8.66e-01 8.79e-01 9.25e-01 5.76e-03 6.60e-02
500 0.5 0.5 1 8.69e-01 8.62e-01 8.11e-01 8.76e-01 3.23e-02 7.54e-02
500 0.5 0.5 3 9.23e-01 8.77e-01 8.84e-01 9.27e-01 1.44e-02 6.07e-02
1000 0 0.5 1 8.78e-01 8.71e-01 8.74e-01 8.78e-01 4.50e-03 8.06e-02
1000 0 0.5 3 9.25e-01 8.75e-01 8.87e-01 9.25e-01 6.67e-03 5.76e-02
1000 0.5 0.5 1 8.73e-01 8.70e-01 8.16e-01 8.76e-01 2.25e-02 7.19e-02
1000 0.5 0.5 3 9.27e-01 8.88e-01 8.84e-01 9.27e-01 8.94e-03 5.64e-02
5000 0 0.5 1 8.81e-01 8.79e-01 8.79e-01 8.78e-01 1.29e-03 5.56e-02
5000 0 0.5 3 9.25e-01 9.11e-01 8.98e-01 9.25e-01 3.20e-03 4.40e-02
5000 0.5 0.5 1 8.78e-01 8.75e-01 8.30e-01 8.76e-01 8.48e-03 5.35e-02
5000 0.5 0.5 3 9.27e-01 9.13e-01 8.91e-01 9.27e-01 6.35e-03 3.63e-02

10,000 0 0.5 1 8.81e-01 8.80e-01 8.80e-01 8.78e-01 8.70e-04 4.33e-02
10,000 0 0.5 3 9.25e-01 9.20e-01 8.99e-01 9.25e-01 2.26e-03 4.26e-02
10,000 0.5 0.5 1 8.78e-01 8.76e-01 8.33e-01 8.76e-01 4.72e-03 3.07e-02
10,000 0.5 0.5 3 9.27e-01 9.19e-01 8.93e-01 9.27e-01 5.77e-03 3.27e-02
20,000 0 0.5 1 8.81e-01 8.81e-01 8.80e-01 8.78e-01 5.51e-04 3.09e-02
20,000 0 0.5 3 9.25e-01 9.21e-01 9.01e-01 9.25e-01 1.56e-03 3.37e-02
20,000 0.5 0.5 1 8.78e-01 8.77e-01 8.36e-01 8.76e-01 2.96e-03 1.56e-02
20,000 0.5 0.5 3 9.27e-01 9.21e-01 8.95e-01 9.27e-01 4.57e-03 3.48e-02
30,000 0 0.5 1 8.81e-01 8.81e-01 8.80e-01 8.78e-01 2.63e-04 1.87e-02
30,000 0 0.5 3 9.25e-01 9.24e-01 9.02e-01 9.25e-01 1.46e-03 2.83e-02
30,000 0.5 0.5 1 8.78e-01 8.77e-01 8.36e-01 8.76e-01 2.20e-03 1.18e-02
30,000 0.5 0.5 3 9.27e-01 9.25e-01 8.93e-01 9.27e-01 3.75e-03 2.98e-02

NOTE: In the fifth to the eighth columns,we show the value of the best learnedpolicy usingADR,weighted IPW, andQ-Opt against the value of the oracle (oracle) best policy
in the prespecified policy class, with all value estimates evaluated using a Monte Carlo rollout with 20,000 repeats. In the right two columns, we show themean-squared
error of the value estimates averaged across all policies in the policy class. Results are averaged across 50 runs and rounded to two decimal places. Numbers listed are
accurate up to the second displaying digit due to sampling errors.

σ = 1, β = 1, and ν = 0.5. We compare the performance of
ADR against IPW and Q-Opt with varying numbers of offline
trajectories. IPW and ADR first evaluate the values of the poli-
cies in the policy class, and so we plot the MSE of their policy
estimates averaged across all policies in the policy class in the

right plot; it is not applicable forQ-Opt which seeks to learn the
optimal policy directly.

To gain further insight into the poor performance of the
Q-learning baseline, Figure 2 decision rules learned by both
ADR and Q-Opt in a single simulation realization. Specifically,
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Figure 1. We compare the performance of ADR in comparison to IPW and Q-Opt using σ = 1, β = 1, and ν = 0.5 in the binary treatment setup. We plot the regret (left
figure) relative to the best in-class policy and the average mean-squared error (right figure) of the value estimates for policies in the same policy class across all policies
(both in log-scale). The shaded regions are standard error bars. In the mean-squared error (MSE) plot, the MSE for each policy is computed against an oracle evaluation
using Monte Carlo rollouts using the underlying transition dynamics averaged across 20,000 runs. Both the regret and MSE results are averaged across 50 runs. The x-axis
shows the number of offline trajectories we generate in the observational data.

Figure 2. A single realization of the best policy learned in the binary action setup case as described in Section 5.1, in the setting of ν = 0.5,β = 5, σ = 1. ADR and the
oracle choose the best in-class policy from the predefined linear policy class, whereas Q-Opt learns the value function via blackbox regression methods and learns a policy
that is not so easy to interpret. At each time step, we plot the value of the state St from trajectories that have not stopped treating yet.

at each time step, we show the value of the state St for any
trajectory that has not stopped treatment yet according to the
learned policy; the color coding specifies the policy decision
for each trajectory at the given time step.16 As expected, ADR
learns a linear decision rule, that is, it stops treatment whenever
it crosses the solid black line that parametrizes the policy (for
reference, we also plot the optimal linear decision rule as a
dash-dotted line). In contrast, Q-Opt tries to learn the optimal

16There are fewer trajectories plotted as we move along the time axis,
because once a trajectory has stopped treatment, it would always stop
treatment and there will be no longer decisions made.

(unconstrained) policy, but appears to be quite noisy given the
sample sizes considered here.17

17As discussed in Section 2.4, one other possible baseline—not considered
here—is touseQ-learning forpolicy search, that is, touseQ-Eval to evaluate
each policy, and take an argmax over the value estimate for learning. This
would in general enable consistent learning over a structured policy class;
however, this approach is fairly demanding computationally, as it involves
separately estimating policy value for each policy via dynamic program-
ming. One might also ask whether we could make Q-Opt stable and/or
interpretable by using linear regression in the recursive step (42). Doing
so, however, would void any nonparametric consistency guaranteed forQ-
Opt, and in particular would not recover best-in-class linear policies. The
problem is that Q-Opt conflates modeling and policy optimization, rather
than separating out these two steps like ADR; in contrast, we first model
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Figure 3. We compare the performance of ADR in comparison to IPW and Q-Opt in the multiple treatment setup. The plot shows results for σ = 1. We plot the regret (left
figure) relative to the best in-class policy and the average mean-squared error (right figure) of the value estimates for policies in the same policy class across all policies
(both in log-scale). The shaded regions In the mean-squared error (MSE) plot, the MSE for each policy is computed against an oracle evaluation using Monte Carlo rollouts
under the underlying transition dynamics averaged across 20,000 runs. Both the regret andMSE results are averaged across 50 runs. The x-axis shows the number of offline
trajectories we generate in the observational data.

Table 3. Detailed numerical results in the multiple-action setup.

n σ ADR IPW Q-Opt Oracle MSE:ADR MSE:IPW

250 0 1.65e-01 1.40e-01 5.88e-02 2.65e-01 1.79e-01 1.35e+00
250 0.5 1.24e-01 9.13e-02 5.85e-02 2.67e-01 1.83e-01 1.26e+00
250 1 1.17e-01 8.94e-02 8.67e-02 2.54e-01 1.97e-01 1.38e+00
500 0 1.88e-01 1.14e-01 1.08e-01 2.65e-01 8.74e-02 6.39e-01
500 0.5 1.72e-01 1.13e-01 1.00e-01 2.67e-01 8.30e-02 6.55e-01
500 1 1.48e-01 9.30e-02 1.04e-01 2.54e-01 9.00e-02 6.12e-01
1000 0 1.98e-01 1.52e-01 1.38e-01 2.65e-01 3.55e-02 2.78e-01
1000 0.5 1.99e-01 1.40e-01 1.15e-01 2.67e-01 4.28e-02 3.28e-01
1000 1 1.83e-01 1.54e-01 1.38e-01 2.54e-01 4.26e-02 3.65e-01
5000 0 2.35e-01 1.94e-01 2.23e-01 2.65e-01 7.04e-03 5.99e-02
5000 0.5 2.21e-01 2.09e-01 2.02e-01 2.67e-01 7.47e-03 6.36e-02
5000 1 2.26e-01 1.75e-01 1.97e-01 2.54e-01 8.21e-03 6.43e-02

10,000 0 2.49e-01 2.19e-01 2.43e-01 2.65e-01 3.36e-03 3.04e-02
10,000 0.5 2.36e-01 2.06e-01 2.22e-01 2.67e-01 3.95e-03 3.27e-02
10,000 1 2.27e-01 1.88e-01 2.15e-01 2.54e-01 4.68e-03 3.14e-02
20,000 0 2.47e-01 2.20e-01 2.62e-01 2.65e-01 1.75e-03 1.51e-02
20,000 0.5 2.45e-01 2.08e-01 2.39e-01 2.67e-01 2.02e-03 1.47e-02
20,000 1 2.35e-01 2.22e-01 2.35e-01 2.54e-01 2.92e-03 1.46e-02

NOTE: In the third to the sixth columns, we show the value of the best learned policy usingADR, IPW, andQ-Opt against the value of the oracle best policy in the prespecified
policy class, with all value estimates evaluated using a Monte Carlo rollout with 20,000 repeats. In the right two columns, we show the mean-squared error of the value
estimates averaged across all policies in the policy class. Results are averaged across 50 runs and rounded to two decimal places. Numbers listed are accurate up to the
second displaying digit due to sampling errors.

5.2. Multiple Treatment Choices

In the second setup, we consider multiple treatment choices.
Our design here is motivated by a healthcare setting where,
once a doctor starts treatment, they can choose between a more
effective but more invasive treatment with strong side effects,
or a less effective but less invasive treatment. More specifically,
imagine a cancer patient’s state at time t is modeled by Xt , Yt ,
and Z, where Xt is the general health state, Yt is the state of a
tumor, and Z is not time-dependent but models the category of
the patients for which lifespan differs. In particular, if Z = 0,
a patient always dies immediately; if Z = 1, a patient always
survives until the end of a trial; ifZ = 2, the patient’s lifespan has

μnow and μnext using appropriately flexible method and then choose
policy π̂ in a separate optimization step where we can enforce structure.

a strong dependency onYt , whichwe detail below. There are two
treatment choices, one noninvasive (At = 1) and one invasive
(At = 2). The noninvasive option lessens the severity of the
tumor, and the invasive option completely removes the tumor,
but exacerbates a patient’s general health conditions. The final
outcome is denoted by R, which is the lifetime of a patient, and
we seek a policy π that maximizes Eπ [R]. We consider horizon
T = 10. The data is generated via the following hidden Markov
process, where Xt and Yt are unobserved:

X1 ∼ Exp(1)

Y1 ∼ 0.5Exp(3)

Z ∼ Multinomial(0.3, 0.3, 0.4)

L1 = 1

Z = 1 : Lt+1 = 0,
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Figure 4. Comparison of ADR, IPW, AIPW, and Q-Eval for estimating the value improvement of the best in-class policy over the never stop policy. The left panel is in the
setting of Figure 1 for the binary-treatment setup while the right panel is in the setting of Figure 3 for the multiple-treatment setup. The top two figures compare the
average value estimates of the optimal policy, with the black solid line denotes the true value improvement of the optimal policy via Monte Carlo simulations over 20,000
trials. The bottom two figures are themean squared errors (MSE) of the value estimates on learning the optimal policy. The results here are averaged across 50 independent
runs, and the shaded regions denote sampling error.

Z = 2 : Lt+1 = 1

Z = 3 : Lt+1 = 0 if

Lt = 0; (43)

otherwise,

Lt+1 ∼ Bernoulli(1Yt≤5 exp(−0.02Yt)

+ 15<Yt≤14 exp(−0.06Yt))

At = 0 : Xt+1 = |Xt + σt|
Yt+1 = |Yt + 0.5Xt + σt|
At = 1 : Xt+1 = |Xt + σt| (44)

Yt+1 = |0.5Yt + σt|
At = 2 : Xt+1 = Xt +

∣∣max(X2
t , 1.5Xt) + σt − Xt

∣∣
Yt+1 = 0

X′
t = max (0,min (Xmax,Xt + ν)) ,

Y ′
t = max (0,min (Ymax,Yt + ν))

R = min{t : Lt = 0} − 1,

Xmax = 10, Ymax = 16,

σt ∼ N (0, 0.25), ν ∼ N (0, σ 2), (45)

where Lt is an indicator for whether the patient is alive at time t.
In this setting, the treatment assignmentmechanism is based

on sequential randomization in the data such that there are
roughly equal number of trajectories that start treating at each
time with either treatment option. Note that the states we
observe is X′

t and Y ′
t , which is the original states added with

noise, making our setup non-Markovian. We consider the fol-
lowing linear thresholding class: θ1X

′
t + θ2Y

′
t + θ3t ≥ θ4 is the

region in which we start treatment. If in addition, θ5X
′
t +θ6Y

′
t +

θ7t ≥ θ8, we use the invasive treatment and otherwise, use the
noninvasive treatment. We search over the eight parameters in
the policy class with a grid search, with details in Appendix B in
the supplementary materials.
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We compare running the ADR policy optimization proce-
dure (as shown in Section 2.3) against IPW and Q-Opt. Like
the binary-action setup, we again estimate the oracle value of all
policies in the policy class with Monte Carlo rollouts averaged
across 20,000 times.

In Figure 3, we see that for both the best value learned
and the average mean-squared error, ADR outperforms IPW.
We also include the complete set of results with varying noise
parameter σ in Table 3 in Appendix B in the supplementary
materials. Interestingly, we see that in very large samples Q-
Opt becomes competitive with ADR. One possible explanation
for this is that ADR is only allowed to use linear thresholding
policies whereas Q-Opt learns over arbitrary policies—and, in
large samples, the increased expressivity of Q-Opt may become
helpful.

5.3. Policy Learning Versus Policy Evaluation

Throughout this article, we have focused on ADR as a method
for policy learning, and have emphasized that ADR is well suited
to policy learning by empirical maximization because it can
evaluate any policy in the policy class � using a single set of
universal scores as in (14). In contrast, standard DR methods
like AIPW (7) require different nuisance components to evalu-
ate different policies, thusmaking them less readily applicable to
learning. That being said, it may still be of interest to compare
ADRwith AIPW for the task of evaluating a single policy, and to
see whether the form of ADR—optimized for policy learning—
sacrifices accuracy when used for evaluation.

To this end, we revisit the two simulation settings discussed
above. However, instead of trying to learn the best policy, we
simply seek to evaluate how much the optimal policy improves
over a never-treating policy. For ADR and IPW, we use the
same value estimates as weremaximized for policy learning. For
AIPW,we use aweighted formof (7) as in Thomas andBrunskill
(2016), with value functions estimated by Q-Eval, that is, by a
backward iteration procedure analogous to (42) that is tailored
to evaluating a specific policy as opposed to finding the best
policy. Finally, we also considerQ-Eval on its own, by averaging
across the learned Q values in the initial state across the initial
state distribution and the action distribution that follows the
policy of interest.

Overall, as seen in Figure 4, the robust methods—ADR and
AIPW—substantially outperform both IPW and Q-Eval here,
while AIPW is slightly more accurate than ADR. It thus appears
that if the only task of interest is to evaluate a prespecified policy
then AIPW is a good method to start with. However, when
there’s also a need to choose the best among many possible
policies, ADR enables us to evaluate different policies via shared
outcomemodels and somay present a valuable option for learn-
ing via empirical maximization.

Supplementary Materials

The supplementary materials include all proofs and simulation details.

Acknowledgments

We are grateful for enlightening conversations with Susan Athey, Miguel
Hernan, Michael Kosorok, Percy Liang, Susan Murphy, Jamie Robins,

Andrea Rotnitzky, and Zhengyuan Zhou, as well as for helpful comments
and feedback from the associate editor and seminar participants at several
universities and workshops.

Funding

XN acknowledges the partial support from the Stanford Data Science
Scholars program. EB acknowledges the partial support of a NSF Career
Award and a Siemens grant. SW acknowledges the partial support of
a Stanford Institute for Human-Centered Artificial Intelligence grant, a
Facebook Faculty Award, and National Science Foundation grant DMS-
1916163.

References

Antos, A., Szepesvári, C., and Munos, R. (2008a), “Fitted Q-Iteration in
Continuous Action-Space MDPs,” in Advances in Neural Information
Processing Systems, pp. 9–16. [398]

(2008b), “Learning Near-Optimal Policies With Bellman-Residual
Minimization Based Fitted Policy Iteration and a Single Sample Path,”
Machine Learning, 71, 89–129. [398]

Athey, S., and Imbens, G. (2018), “Design-Based Analysis in Difference-in-
Differences Settings With Staggered Adoption,” arXiv no. 1808.05293.
[393]

Athey, S., Tibshirani, J., and Wager, S. (2019), “Generalized Random
Forests,” The Annals of Statistics, 47, 1148–1178. [402]

Athey, S., andWager, S. (2020), “Policy LearningWithObservational Data,”
Econometrica (forthcoming). [392,394,395,396,397,398]

Bertsimas, D., and Kallus, N. (2020), “From Predictive to Prescriptive
Analytics,”Management Science, 66, 1025–1044. [392]

Chakraborty, B., and Moodie, E. (2013), Statistical Methods for Dynamic
Treatment Regimes, New York: Springer. [397]

Chen, J., and Jiang, N. (2019), “Information-Theoretic Considerations in
Batch Reinforcement Learning,” in Proceedings of International Confer-
ence on Machine Learning. [397]

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C.,
Newey, W., and Robins, J. (2018), “Double/Debiased Machine Learning
for Treatment and Structural Parameters,” The Econometrics Journal, 21,
C1–C68. [396]

Clifton, J., and Laber, E. (2020), “Q-Learning: Theory and Applications,”
Annual Review of Statistics and Its Application, 7, 279–301. [397]

Doroudi, S., Thomas, P. S., and Brunskill, E. (2017), “Importance Sampling
for Fair Policy Selection,” in Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI). [394,397]

Dudík,M., Erhan, D., Langford, J., and Li, L. (2014), “Doubly Robust Policy
Evaluation andOptimization,” Statistical Science, 29, 485–511. [392,394]

Elmachtoub, A. N., and Grigas, P. (2017), “Smart ‘Predict, Then Optimize’,”
arXiv no. 1710.08005. [392]

Ernst, D., Geurts, P., and Wehenkel, L. (2005), “Tree-Based Batch Mode
Reinforcement Learning,” Journal of Machine Learning Research, 6, 503–
556. [397]

Farahmand, A.-M., Ghavamzadeh, M., Szepesvári, C., and Mannor, S.
(2016), “Regularized Policy Iteration With Nonparametric Function
Spaces,” Journal of Machine Learning Research, 17, 4809–4874. [397]

Goel, K., Dann, C., and Brunskill, E. (2017), “Sample Efficient Policy Search
for Optimal Stopping Domains,” in Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pp. 1711–1717. [393,398]

Haussler, D. (1995), “Sphere Packing Numbers for Subsets of the Boolean
n-Cube With Bounded Vapnik-Chervonenkis Dimension,” Journal of
Combinatorial Theory, Series A, 69, 217–232. [399]

Hernán, M. A., Brumback, B., and Robins, J. M. (2001), “Marginal Struc-
tural Models to Estimate the Joint Causal Effect of Nonrandomized
Treatments,” Journal of the American Statistical Association, 96, 440–448.
[393]

Imbens, G.W., and Rubin, D. B. (2015),Causal Inference in Statistics, Social,
and Biomedical Sciences, New York: Cambridge University Press. [393]

Jacka, S. D. (1991), “Optimal Stopping and the American Put,”Mathemati-
cal Finance, 1, 1–14. [393,398]



408 X. NIE, E. BRUNSKILL, AND S. WAGER

Jiang, N., and Li, L. (2016), “Doubly Robust Off-Policy Value Evaluation
for Reinforcement Learning,” in Proceedings of the 33rd International
Conference on Machine Learning, Proceedings of Machine Learning
Research (PMLR). [392,394,396,397]

Kakade, S.M. (2003), “On the Sample Complexity of Reinforcement Learn-
ing,” PhD thesis, University of London, London, England. [395]

Kallus, N. (2018), “Balanced Policy Evaluation and Learning,” in Advances
in Neural Information Processing Systems, pp. 8909–8920. [394]

Kallus, N., and Uehara, M. (2020), “Statistically Efficient Off-Policy
Policy Gradients,” in International Conference on Machine Learning.
[398]

Kallus, N., and Zhou, A. (2018), “Confounding-Robust Policy Improve-
ment,” in Advances in Neural Information Processing Systems, pp. 9269–
9279. [392]

Kitagawa, T., and Tetenov, A. (2018), “Who Should Be Treated? Empirical
Welfare Maximization Methods for Treatment Choice,” Econometrica,
86, 591–616. [392,394,397,398]

Kosorok, M. R., and Laber, E. B. (2019), “Precision Medicine,” Annual
Review of Statistics and Its Application, 6, 263–286. [397]

Lavori, P. W., and Dawson, R. (2000), “A Design for Testing Clinical
Strategies: Biased Adaptive Within-Subject Randomization,” Journal of
the Royal Statistical Society, Series A, 163, 29–38. [397]

Le, H., Voloshin, C., and Yue, Y. (2019), “Batch Policy LearningUnder Con-
straints,” in International Conference on Machine Learning, pp. 3703–
3712. [397,402]

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020), “Offline Reinforcement
Learning: Tutorial, Review, and Perspectives on Open Problems,” arXiv
no. 2005.01643. [397]

Liu, Q., Li, L., Tang, Z., and Zhou, D. (2018), “Breaking the Curse of
Horizon: Infinite-HorizonOff-Policy Estimation,” inAdvances in Neural
Information Processing Systems, pp. 5361–5371. [398]

Liu, Y., Gottesman, O., Raghu, A., Komorowski, M., Faisal, A. A., Doshi-
Velez, F., and Brunskill, E. (2018), “Representation Balancing MDPs
for Off-Policy Policy Evaluation,” in Advances in Neural Information
Processing Systems, pp. 2649–2658. [394]

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2019), “Off-Policy
Policy Gradient With State Distribution Correction,” in Proceedings of
Uncertainty in AI. [397]

Luckett, D. J., Laber, E. B., Kahkoska, A. R., Maahs, D. M., Mayer-Davis, E.,
and Kosorok, M. R. (2020), “Estimating Dynamic Treatment Regimes
in Mobile Health Using V-Learning,” Journal of the American Statistical
Association, 115, 692–706. [392,398]

Luedtke, A., and Chambaz, A. (2017), “Faster Rates for Policy Learning,”
arXiv no. 1704.06431. [399]

Manski, C. F. (2004), “Statistical Treatment Rules for Heterogeneous Popu-
lations,” Econometrica, 72, 1221–1246. [392,394,397,398]

Moodie, E. E., Platt, R.W., andKramer,M. S. (2009), “Estimating Response-
Maximized Decision Rules With Applications to Breastfeeding,” Journal
of the American Statistical Association, 104, 155–165. [392]

Mordecki, E. (2002), “Optimal Stopping and Perpetual Options for Lévy
Processes,” Finance and Stochastics, 6, 473–493. [398]

Munos, R. (2003), “Error Bounds for Approximate Policy Iteration,” in
ICML (Vol. 3), pp. 560–567. [397]

Munos, R., and Szepesvári, C. (2008), “Finite-Time Bounds for Fit-
ted Value Iteration,” Journal of Machine Learning Research, 9, 815–
857. [397,398]

Murphy, S. A. (2003), “Optimal Dynamic Treatment Regimes,” Journal of
the Royal Statistical Society, Series B, 65, 331–355. [392,393,397]

(2005), “A Generalization Error for Q-Learning,” Journal of
Machine Learning Research, 6, 1073–1097. [392,393,395,397,402]

Neyman, J. (1923), “Sur les applications de la théorie des probabilités aux
experiences agricoles: Essai des principes,”Roczniki Nauk Rolniczych, 10,
1–51. [393]

Prasad, N., Cheng, L.-F., Chivers, C., Draugelis, M., and Engelhardt, B. E.
(2017), “A Reinforcement Learning Approach toWeaning ofMechanical
Ventilation in Intensive Care Units,” in Conference on Uncertainty in
Artificial Intelligence. [392]

Precup, D. (2000), “Eligibility Traces for Off-Policy Policy Evalu-
ation,” Computer Science Department Faculty Publication Series,
p. 80. [394]

Robins, J. (1986), “A New Approach to Causal Inference in Mortality
Studies With a Sustained Exposure Period: Application to Control of
the Healthy Worker Survivor Effect,” Mathematical Modelling, 7, 1393–
1512. [393,397]

(2004), “Optimal Structural NestedModels for Optimal Sequential
Decisions,” inProceedings of the second Seattle Symposium inBiostatistics,
Springer, pp. 189–326. [392,393,397]

Robins, J. M., Hernán, M. A., and Brumback, B. (2000), “Marginal Struc-
tural Models and Causal Inference in Epidemiology,” Epidemiology, 11,
551, 2000. [394]

Robins, J. M., and Rotnitzky, A. (1995), “Semiparametric Efficiency inMul-
tivariate RegressionModelsWithMissing Data,” Journal of the American
Statistical Association, 90, 122–129. [396]

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994), “Estimation of
Regression Coefficients When Some Regressors Are Not Always
Observed,” Journal of the American Statistical Association, 89, 846–866.
[395]

Rosenbaum, P. R., andRubin,D. B. (1983), “TheCentral Role of the Propen-
sity Score in Observational Studies for Causal Effects,” Biometrika, 70,
41–55. [393]

Rubin, D. B. (1974), “Estimating Causal Effects of Treatments in Random-
ized andNonrandomized Studies,” Journal of Educational Psychology, 66,
688. [393]

Rust, J. (1987), “Optimal Replacement of GMC Bus Engines: An Empirical
Model of Harold Zurcher,” Econometrica: Journal of the Econometric
Society, 55, 999–1033. [398]

Schick, A. (1986), “On Asymptotically Efficient Estimation in Semipara-
metric Models,” The Annals of Statistics, 14, 1139–1151. [396]

Sutton, R. S., and Barto, A. G. (2018), Reinforcement Learning: An Introduc-
tion, Cambridge, MA: MIT Press. [393,397]

Swaminathan, A., and Joachims, T. (2015), “Batch Learning From Logged
Bandit Feedback Through Counterfactual Risk Minimization,” Journal
of Machine Learning Research, 16, 1731–1755. [392,394,397,398]

Thomas, P., and Brunskill, E. (2016), “Data-Efficient Off-Policy Policy
Evaluation for Reinforcement Learning,” in International Conference on
Machine Learning, pp. 2139–2148. [392,394,396,397,407]

Tsiatis, A. A., Davidian, M., Holloway, S. T., and Laber, E. B. (2019),
Dynamic Treatment Regimes: Statistical Methods for Precision Medicine,
Boca Raton, FL: CRC Press. [392,395,397]

Uehara,M., and Jiang, N. (2019), “MinimaxWeight andQ-Function Learn-
ing for Off-Policy Evaluation,” arXiv no. 1910.12809. [398]

Van der Laan, M. J., and Rose, S. (2018), Targeted Learning in Data Science,
Cham: Springer. [392,395]

Van Moerbeke, P. (1976), “On Optimal Stopping and Free Boundary
Problems,” Archive for Rational Mechanics and Analysis, 60, 101–
148. [393,398]

Vansteelandt, S., and Joffe, M. (2014), “Structural Nested Models and G-
Estimation: The Partially Realized Promise,” Statistical Science, 29, 707–
731. [397]

Watkins, C. J., and Dayan, P. (1992), “Q-Learning,” Machine Learning, 8,
279–292. [397]

When To Start Consortium (2009), “Timing of Initiation of Antiretroviral
Therapy in AIDS-Free HIV-1-Infected Patients: A Collaborative Analy-
sis of 18 HIV Cohort Studies,” The Lancet, 373, 1352–1363. [392]

Zanette, A., and Brunskill, E. (2019), “Tighter Problem-Dependent Regret
Bounds in Reinforcement Learning Without Domain Knowledge Using
Value Function Bounds,” in International Conference on Machine Learn-
ing, pp. 7304–7312. [399]

Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. (2012),
“Estimating Optimal Treatment Regimes From a Classification Perspec-
tive,” Stat, 1, 103–114. [392,394]

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013), “Robust
Estimation of Optimal Dynamic Treatment Regimes for Sequential
Treatment Decisions,” Biometrika, 100, 681–694. [392,394,395,396,397]

Zhang, Y., Laber, E. B., Davidian, M., and Tsiatis, A. A. (2018), “Inter-
pretable Dynamic Treatment Regimes,” Journal of the American Statis-
tical Association, 113, 1541–1549. [392,397]

Zhang, Y., Laber, E. B., Tsiatis, A., andDavidian,M. (2015), “UsingDecision
Lists to Construct Interpretable and Parsimonious Treatment Regimes,”
Biometrics, 71, 895–904. [395]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 409

Zhao, Y.-Q., Zeng, D., Laber, E. B., and Kosorok, M. R. (2015), “New Sta-
tistical Learning Methods for Estimating Optimal Dynamic Treatment
Regimes,” Journal of the American Statistical Association, 110, 583–598.
[394,397]

Zhao, Y., Zeng, D., Rush, A. J., and Kosorok,M. R. (2012), “Estimating Indi-
vidualizedTreatment RulesUsingOutcomeWeighted Learning,” Journal
of the American Statistical Association, 107, 1106–1118. [392,394,397]

Zhou, X., Mayer-Hamblett, N., Khan, U., and Kosorok, M. R. (2017),
“Residual Weighted Learning for Estimating Individualized Treatment
Rules,” Journal of the American Statistical Association, 112, 169–187.
[394]

Zhou, Z., Athey, S., and Wager, S. (2018), “Offline Multi-Action Pol-
icy Learning: Generalization and Optimization,” arXiv no. 1810.04778.
[392,399]


