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ABSTRACT: We consider the four-point function of operators in the stress tensor multiplet
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in 1/N, the stress tensor multiplet four-point function can be computed from type ITA
supergravity, in this work we focus on the first subleading correction, which comes from
tree level Witten diagrams with an R?* interaction vertex. Using superconformal Ward
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1 Introduction and summary

Even though holographic correlators have been a subject of study since the early days of the
AdS/CFT correspondence [1-3] (see for example [4-12] for early work on four-point func-
tions), they are in many cases hard or even impossible to compute directly. For instance,
in the case of higher derivative contact interactions in string theory or M-theory, where
the full supersymmetric completion of the first correction to the supergravity action is not
completely known (see however [13-16]), one cannot even write down the full set of relevant
Witten diagrams. In the past few years, however, it has become clear that in certain cases
one can essentially ‘bootstrap’ the answer using various consistency conditions [17-25].
These consistency conditions include crossing symmetry, the analytic properties of the cor-
relators in Mellin space, and supersymmetry. In particular, for tree level Witten diagrams
with supergravity and/or higher derivative vertices in 2d [26-28], 3d [22-24], 4d [19-21],
5d [29], and 6d [18, 25] maximally supersymmetric theories, these consistency conditions
determine the Witten diagrams contributing to the 4-point functions' of 1/2-BPS oper-
ators up to a finite number of coefficients. For low orders in the derivative expansion,
one can further determine these coefficients using other methods, such as supersymmetric
localization [31, 32] or the relation between the Mellin amplitudes and flat space scattering
amplitudes in 10d or 11d [33-38]. In particular, refs. [21, 23, 25] showed that the tree-level
Witten diagram corresponding to an R* contact interaction, which is the first correction
to supergravity in both 10d and 11d, can be completely determined using either super-
symmetric localization or the flat space scattering amplitudes. The agreement between the
two methods of fixing the undetermined coeflicients in this case provides a precision test
of AdS/CFT beyond supergravity.

!See also [30] for recent work on holographic five-point functions in the 4d N = 4 super-Yang-Mills
theory in the supergravity approximation.



The goal of this work is to move away both from maximal supersymmetry and from
1/2-BPS multiplets and to study the stress tensor multiplet tree level Witten diagrams in
the 3d N = 6 U(N) x U(N)_j, gauge theory of Aharony, Bergman, Jafferis, and Maldacena
(ABJM theory) [39], at large N.? The reason for pursuing this generalization is that it
offers the possibility of an unprecedented test of AdAS/CFT at finite string coupling gs.
Indeed, if in ABJM theory we take N to be large and of the same order as k°, then the
holographic dual is a weakly curved AdSs; x CP? background of type ITA string theory
with finite g5 [39]. Using the consistency conditions mentioned above supplemented by
supersymmetric localization results, we will be able to fully determine the contribution of
the R* contact diagrams to the four-point function of the lowest dimension operator in the
same super-multiplet as the stress tensor. The flat space limit of the Mellin amplitude then
reproduces precisely the R* contribution to the four-point scattering of super-gravitons in
type IIA string theory as a function of g;. This function receives contributions from genus
zero and genus one string worldsheets [41]. The reason why such a finite g, test of AdS/CFT
was not available in the maximally supersymmetric cases is that in 3d and 6d the bulk dual
was an M-theory as opposed to string theory background, while in the 4d case, whose dual
is type IIB string theory on AdSs; x S%, the required supersymmetric localization result
in the limit of large N and finite g; o g%, is hard to evaluate due to the contribution of
instantons in the localized S* partition function [31, 42-45].

In more detail, in this work we consider the four-point function of the scalar supercon-
formal primary of the N' = 6 stress tensor multiplet, which is a 1/3-BPS operator that can
be represented as a traceless tensor S,°, with a,b = 1,...,4, transforming in the 15 of the
SU(4)r R-symmetry [46-48]. In addition to the large N, fixed N/k5 limit mentioned above
where ABJM theory is dual to type IIA string theory at finite gs, we will also consider the
M-theory limit where NN is taken to infinity while k is kept fixed, as well as the 't Hooft
strong coupling limit where N is taken to infinity while N/k is fixed and large and where
ABJM theory is dual to weakly coupled type ITA strings on AdS; x CP3?. The latter two
limits can be obtained from the first: for small values of N/k°, one recovers the weakly
coupled type ITA limit, while for large N/k5 one recovers the M-theory limit. In all these
limits, we focus on the first few tree-level Witten diagrams that compute the (SSSS) cor-
relator. Our results will be expressed in terms of the following Mellin amplitudes (whose
definition will be made precise in the next section):

Mg (s, t) : meromorphic Mellin amplitude with linear growth at large s,t
Ms(s,t) : polynomial Mellin amplitude of degree 3 (1.1)
My(s,t) : polynomial Mellin amplitude of degree 4

Each of these Mellin amplitudes gives rise to correlation functions that are crossing-
invariant and solve the superconformal Ward identities. The first one, Mgg(s,t) corre-
sponds to the sum of the contact and exchange diagrams using supergravity vertices. The
other two correspond to six-derivative and eight-derivative interaction vertices, respectively.

20One could also consider the U(N)y x U(M)_x and N # M theory due to Aharony, Bergman, and
Jafferis [40], but we will not do so here.



With these ingredients and the definitions ;4 = N/k® and A =~ N/k (see eq. (3.40) for
the precise definition), we find
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where we expanded the Mellin amplitudes in 1/cp instead of 1/N, with ¢y being the theory-
dependent constant that appears in the two-point function of the canonically-normalized
stress tensor T),,:

cr 1
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<TIU/ (f)TpU (O)> Pul/ = nuuv2 - 8uay .

(1.3)

(As shown in [49], cp is exactly calculable in ABJM theory using the supersymmetric
localization results of [50] and [51]. It behaves as ¢p o< k'/2N3/2 at large N.) The Mellin
amplitudes in (1.2) can then be related to the 4-point scattering amplitudes of super-
gravitons in 11d and 10d flat space using the relation proposed in [36]:

1
M—theory: All = Aé%} |:1 + 6?1 ﬁstu + O(ggl)l):| )

type IIA, small g,: A0 = AL {1 + ¢8 (ng)stu + O(ﬁ;o)>
e (1.4)
a2 (5ot 00) + 0l

type IIA, finite go: A0 = ALY [1 + stu <CZ§§) + g?g;) + O(ﬁg)} ,
where Aé%; and .Aé% are the scattering amplitudes in 11d and 10d supergravity, respectively,
£11 is the 11d Planck length, ¢4 is the 10d string length, and s, t, u = —s — t are the
Mandelstam invariants.
Eqgs. (1.4) are the well-known formulas describing the scattering of massless states in
M-theory and string theory in the small momentum expansion. They have the following
structure. The leading term in each equation is the supergravity scattering amplitude,



and it contains information about the polarization and the type of massless particles being
scattered. In each case, the corrections to the supergravity amplitude are captured by a
single function of s and ¢ that can be expanded at small s and ¢. Besides the supergravity
terms, the only other terms written down in (1.4) are proportional to stu and correspond
to an R* correction.® The various supergravity and R* terms in the three equations are not
independent. Indeed, if in the first equation, one makes the replacement £11 = fs(2wgs)1/ 3,
then the supergravity term in the first equation matches the supergravity terms in the
other two, and the R?* term in the first equation matches the g2stu terms in the other two.
Consequently, the first term in the first equation of (1.2) is identical to the first term in
the second equation of (1.2) and the second term in the first equation of (1.2) is identical

to the first term on the second line of the second equation of (1.2).

The terms given in (1.2) are derived solely using supersymmetric localization [32, 50], as
was originally done in [24] for & = 1,2 when the theory has enhanced N' = 8 supersymmetry.
Supersymmetric localization can be used to compute the S3 free energy in the presence of
real mass deformations of Lagrangian theories with at least A/ = 2 supersymmetry. When
viewed as an A" = 2 SCFT, ABJM theory has an SO(4) x U(1) flavor symmetry,* and it can
be deformed by three real mass parameters corresponding to the Cartan of SO(4) x U(1).
We will focus on two of the three masses, which we denote by m, and m_. The S free
energy F(m4,m_) was computed to all orders in 1/N for any k¥ < N in [67] using the

Fermi gas formalism developed in [68]. The two independent choices of four derivatives
o'F

Bmi m+=0
tensor multiplet, which can in turn be related to (SSSS) using Ward identities to fix all

and can be related to integrated four-point functions of the stress

g |

Om4 0m= Im4+=0
the coefficients shown in (1.2). In the m4 — 0 limit, the non-perturbative corrections to
F(m4,m_) are expected to take the form e=VNE and ef\/Ni/k, so this expansion also holds
to all order in the finite 't Hooft coupling A ~ N/k and finite 4 = N/k® expansions, with
no non-perturbative in p terms.

The rest of this paper is organized as follows. In section 2, we set up the computation
of the (SSSS) correlator in terms of tree-level Mellin amplitudes. In particular, we deter-
mine M3 and M, using the consistency conditions mentioned above. Implementing these
constraints is much trickier than in the maximal SUSY, 1/2-BPS case, and we get guidance
from solving a similar problem for flat space scattering amplitudes. Section 3 contains a

31t would be interesting to study the next few terms not written down in (1.4) in future work. In
particular, in M-theory the next correction not written down in (1.4) is at order £31, and it comes from the
11d supergravity amplitude that can be found in [52, 53]. The term after that, at order £{3, comes from
a DSR* interaction, it is protected, and it can be related to the D°R* term in the type IIA string theory
amplitude at order g2 [54-56]. In the string theory case, all terms at order g% can be resummed into an
expression involving Gamma functions that can be found, for instance, in [57, 58]. Starting at order g2,
the scattering amplitude contains both analytic and non-analytic terms that can be derived from the tree
level terms using unitarity [59]. While the type II string theory S-matrix is known to order g2 for finite
5 [60, 61], the lowest few protected terms in the small /s expansion are also known to order g¢ [62]. For
work on the Mellin amplitudes corresponding to the non-analytic terms, see [63—-65].

4The U(1) is a flavor symmetry whose current lies in the ' = 6 stress tensor multiplet, and so exists
for all N'= 6 SCFTs [66]. If the theory has N/ = 8 supersymmetry, then SO(6)r x U(1) is enhanced to
SO(8)r.



derivation of the supersymmetric localization constraints in ABJM theory. In section 4,
we combine the localization constraints with the general setup developed in section 2. We
end with a discussion of our results in section 5. Many technical details are relegated to
the appendices.

2 The (SSSS) correlator at strong coupling

We will begin by discussing the (SSSS) four-point function at strong coupling. In any of
the strong coupling limits mentioned in the Introduction, the correlator (SSSS) can be
written in terms of tree-level and loop Witten diagrams, although in this paper we focus
only on the tree-level contributions. The leading tree-level contribution comes from super-
gravity exchange diagrams. These are corrected by higher derivative contact interactions,
suppressed by the ratio ¢,/L in 11d or ¢;/L in 10d, depending on the limit being taken.
Beyond the supergravity term, the tree-level Witten diagrams take a particularly simple
form in Mellin space: at each order in the perturbative expansion only a finite number of
Mellin amplitudes M?(s,t) contribute, each of which is polynomial in s,¢. In this section
our task is to determine the first few such amplitudes, using the flat space limit, crossing
symmetry, the supersymmetric Ward identities, and locality.

2.1 Setup

As mentioned in the Introduction, the S operator is the superconformal primary of the
stress tensor multiplet, and transforms in the 15 of the s0(6) R-symmetry. In index notation
we write the operator as Sp%(Z), where the raised index a = 1,...,4 transforms in the 4 of
su(4) 2 s0(6) and the lowered indices in the 4. We will find it more convenient however to
use an index-free notation by defining

S(Z,X) = X,28,%(%) (2.1)

where X is an arbitrary traceless 4 ® 4 matrix. We normalize this operator so that
- S Tr( X1 X
(S(F1, X1)S(72, X2)) = (95212) (2:2)
12

Using both conformal and s0(6) symmetry, we can expand

. . 1
(S(71, X1) - S(4, X4)) = o SYU,V)A12A34 + S*(U, V) A13404 + S*(U, V) A1 Ass
12734
+ SYU, V) Biaas + S°(U, V) Biags + S*(U, V) Bisaz | (2.3)

where we define the R-symmetry structures

Aij = tr(Xin) , Bz’jkl = tr(XinXle) -+ tI‘(XleXjXZ‘) s (2.4)
and where S’ are functions of the conformal cross-ratios
U= 7”3225”%4 . V= Li‘@% . (2.5)
L1394 L1324



For future reference, we note that it is sometimes useful to write the four-point function
in a conformal block expansion, which reads®

<S(.’f1,Xl)S(fg,XQ)S(fg,X3)S(x4,X4 ZTR SR U V)
x12 e R
(2.6)
'SR(U7 V) = Z )‘A,E,RGA/(Uv V),
AL
where Ga ¢(U, V) are the 3d conformal blocks normalized as in [69], Tr(X;) are the SU(4)
invariants corresponding to the s-channel exchange of an operator in the irrep R, and )\QA’ LR

are squared OPE coefficients. The SU(4) irreps R of the operators that appear in S x S are
15015 =1,® 15, ¢ 15, ¢ 20', © 45, © 45, © 84, , (2.7)

where s/a denotes the symmetric/antisymmetric product. As explained in appendix A.1,
we find

iy 100 0 0 0\ [ApAs
T15a 000 O 1 -1 A13A24
Tis, | _|-100 0 1 1 |]Audy 28)
Taor 266 —6-3-3|| Buos
y— 04-40 1 —1|| Bua
Tg4, % 4 4 4 —% —% B34

We can distinguish between 15, and 15, by (anti)symmetrizing appropriately, and we
should only consider the real combination 45 @ 45.
Holographic correlators are simpler in Mellin space. To compute the Mellin transform

of S'(U, V'), we first compute the connected correlator by subtracting the disconnected part
Son(UV) = S(UV) - S4UV). She= (10 %000).  (29)

and then we define M?(s,t) through

100
SLon(UV) :/m (Zij; UsvE-ir? [1 - g} r2 [1 . ﬂ T2 [1 - g} Mi(s,t), (2.10)
where u = 4 — s — t. The Mellin transform (2.10) is defined such that a bulk contact
Witten diagrams coming from a vertex with n = 2m derivatives gives rise to a polynomial
M?(s,t) of degree m [36]. (This property holds both for scalars and for operators with spin,
provided that the Mellin amplitudes for operators with spin are defined appropriately.) The
two integration contours in (2.10) are chosen such that®

Re(s) <2, Re(t) <2, Re(u)=4—Re(s)—Re(t) <2, (2.11)

"We could reorganize this block expansion into superconformal blocks (as opposed to conformal blocks)
for each supermultiplet, but it is unnecessary to do so for our purposes.

This is the correct choice of contour provided that M*(s,t) does not have any poles with R(s) < 2 or
R(t) < 2 or R(u) < 2. If this is not the case (such as for the supergravity Mellin amplitude), the integration
contour will have to be modified in such a way that the extra poles are on the same side of the contour as
the other poles in s, t, u, respectively.



which include all poles of the Gamma functions on one side or the other of the contour.
These poles naturally incorporate the effect of double trace operators [70].

In this paper we focus on tree-level Witten diagrams, and in the rest of this section we
aim to determine a basis of Mellin amplitudes that can be used to write the contribution
from contact Witten diagrams with small numbers of derivatives. These Mellin amplitudes
obey three constraints:

1. They obey the crossing symmetry requirements

coming from the crossing symmetry of the full (SSSS) correlator.

2. They obey the SUSY Ward identities following from N = 6 superconformal symme-
try. The SUSY Ward identities not only constrain M?(s,t), but they also allow us
to determine the Mellin amplitudes corresponding to correlators of other operators
in the stress-tensor multiplet.

3. The M'(s,t) and all other Mellin amplitudes related to them by SUSY are polyno-
mials in s, £. We call the collection of Mellin amplitudes corresponding to four-point
functions of operators in the same super-multiplet a super-Mellin amplitude, and we
define the degree of a polynomial super-Mellin amplitude n to be the highest degree
of any component Mellin amplitude.

For fixed m, we will label the Mellin amplitudes obeying these requirements as M_ (s, t) in
case there is a unique such amplitude for a given m or by Mfmk(s, t) in the case that there
are multiple such amplitudes indexed by k. These Mellin amplitudes represent a basis for
contact Witten diagrams, with the number of derivatives in the interaction vertex being
bounded from below by 2m. In section 4, we will use these Mellin amplitudes and the
constraints coming from supersymmetric localization explored in the next section in order
to determine the first few terms in the strong coupling expansion of the (SSSS) correlator.

Note that, in general, supersymmetry relates the contact interactions for bulk fields
with various spins, and in flat space SUSY preserves the number of derivatives of the
interaction vertices it relates. In AdS however, the number of derivatives within a given
super-vertex may vary, with the change in the number of derivatives being compensated by
an appropriate power of the AdS radius L. Thus, it may happen that a four-scalar vertex
with a given number of derivatives is part of a supervertex containing other vertices with
more derivatives. The corresponding Mellin amplitudes M?(s, ) will then have lower degree
than those of some four-point function of superconformal descendants of .S, and so M} (s, t)
may have degree less than n. This fact will be very important in the analysis that follows.

2.2 The flat-space limit and a toy problem

Finding the Mellin amplitudes M} (s,t) that obey the conditions listed above is a difficult
task, as satisfying the third condition requires us to calculate Ward identities for many



different correlators and then examine the locality properties of their Mellin amplitudes.
We can simplify matters by first solving an analogous problem for flat space scattering
amplitudes.

At large AdS radius, we can recover flat space scattering amplitudes for scalars using
the Penedones formula [37]. Applied to the superconformal primary S the relationship is
(up to an overall normalization A/ (L))

) K4+100 d ) L2 L2
Al(s,t) = ngr;oN(L)ﬁ 2—:1, a2 M (2048’ 2at> : (2.13)

K—100

Here, x > 0, and A’(s,t) is the corresponding 4d flat space scattering amplitude of gravis-

calars (or more precisely a scattering amplitude in 10d string theory or 11d M-theory with

the momenta restricted to lie within 4d and polarizations transverse to this 4d space),

computed in the limit where the AdS radius L is taken to infinity while keeping some other

dimensionful length scale fyvy fixed. For string or M-theory duals we can take fyv to be
either the 10d string length or 11d Planck length, as we will do in section 4.

From (2.13) we expect that each Mellin amplitude Mfmk(s, t) must give rise to a local

N = 6 scattering amplitude Aimk(s,t). This mapping should furthermore be one-to-one,

since if two amplitudes an K, and an k, have the same large s, ¢ limit, then their difference

fn ke an k, Will be a local Mellin amplitude with degree at most m — 1. Thus, if we
can find all of the number of local scattering amplitudes of a given degree in s, ¢, then this

will also tell us the number of Mellin amplitudes which occur at this degree:”

# of degree m scattering amplitudes in 4d SUGRA

2.14
= # of degree m Mellin amplitudes in 3d SCFT . ( )

Because the flat space scattering amplitudes are obtained as the large s, ¢ limits of Mellin
amplitudes, finding all crossing-invariant, supersymmetric, and local N' = 6 flat space
scattering amplitudes is a strictly simpler problem than finding all Mellin amplitudes with
the same properties.

2.3 Counterterms in A/ = 6 supergravity

The toy problem described in the previous section is that of finding four-point scattering
amplitudes corresponding to counterterms in 4d N = 6 supergravity. Spinor helicity and
on-shell supersymmetric methods provide an efficient means to classify allowed countert-
erms in a theory. They were first applied to 4d N' = 8 in 71, 72], and have subsequently
been generalized to other maximally supersymmetric theories in [73, 74]. In the context of
N = 6 supergravity these methods have been applied to study amplitudes involving bulk
graviton exchange [75, 76].

7At a more abstract level, we can justify the correspondence (2.14) as follows. Local Mellin amplitudes
correspond to bulk contact Witten diagrams, which are themselves in one-to-one correspondence with local
counterterms in AdS. But since AdS is maximally symmetric, local counterterms in AdS are equivalent
to local counterterms in flat-space. Since local counterterms in flat-space correspond exactly to scattering
amplitudes, we find that Mellin amplitudes and scattering amplitudes are in one-to-one correspondence.



® Particles | hT T | g™ Fr| ¢ X | a

Helicity | +2 | +3/2 | +1 | +1/2| 0] -1/2| -1
SU(6)g 1 6|15 20|15| @] 1
U Particles | a™ xT| 6| F | g P~ | hT

Helicity 1 +1/2| 0| —-1/2| -1 |—=3/2| -2
SU(6)r 1 6| 15| 20 6| 1

&
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Table 1. Massless particles in A" = 6 supergravity.

Let us begin with a quick review of on-shell superspace (see also appendix B.1); for a
detailed textbook treatment of the subject we recommend [77]. In N/ = 6 supergravity, the
massless particles split into two supermultiplets: a multiplet we denote by ® that contains
the positive helicity graviton h*, and its CPT conjugate multiplet we denote by ¥ that
contains the negative helicity graviton h~. In addition to the graviton h*, these multiplets
also contain the gravitino *, the gauginos g%, fermions F*, scalars ¢, and the graviphoton
a®. Table 1 lists the particles in these multiplets, along with their transformation properties
under the SU(6) R-symmetry of N/ = 6 supergravity. In the on-shell superspace formalism,
the ® and ¥ superfields are polynomials in the Grassmann variables n!, with I = 1,...6
transforming in the 6 of SU(6):®

1 1 1
o =ht +plyf + gnlnjg{, + gnln‘]nKFff]K + mnIWJnKnLUJKLMNﬁbMN

1 _ 1 -
+ *,UIUJUKULHMGIJKLMNXN + =t M N e vva

5 L 6! . (2.15)
U= a4 n'xp 4 g s+ gt F g+ ot encn g™
1 _ 1 _
+ QUIWJUKULHMGUKLMN%DN + @WIHJTZKHLUMHNGUKLMNh :
In a four-point superamplitude, such as A[®PPPY Y], each particle i = 1,...,4 is associated

to some Grassmannian variable 7]{ . To compute a component scattering amplitude we
simply differentiate with respect to some of the Grassmannian variables while setting all
others to zero. For instance:

ARTRThTAY] = A[@PU Y]

9

nf=0
L) (1o%)
A[RThTh h™] = — —— | A[PDPTY , 2.16
[ ] (Hf?ng’ ;__Ilanf [ ]?7{—0 (2.16)
pnt = (g ) (M o) (L) (11 o)
A[p*0 0 = Shal — — —— | A[®OUV
[¢°0¢°0P12615)] (g o7 fg B LH:1 e Agl o ) A ]ngo

In this way a superamplitude A encodes all the amplitudes of its component particles.

8Upper I, J, K, ... indices transform in the 6 of SU(6) while lower I,J, K, ... indices transform in the 6
of SU(6).



Up to crossing there are five possible 4 particle superamplitudes we can construct from
® and ¥. However, under CP7T the two supermultiplets ® and ¥ are conjugates, and
their scattering amplitudes are related by complex conjugation (see appendix B.2 for a
description of how discrete space-time symmetries act on the scattering amplitudes):?

ATUUT] = (A[@DDD))*,  AVTTD| = (A[PDDV])*. (2.17)

This leaves us only three independent superamplitudes, A[PPYV], A[PPPY]|, and
A[®PPP]. Our task now is to constrain the forms of these superamplitudes, beginning
with invariance under supersymmetry.

As explained in [77], for a given particle i the supermomentum is defined to be

9
8772-1 ’

I

g =lim,  an=1i (2.18)

and it satisfies the on-shell SUSY algebra by construction. For a given amplitude the total

Q1=Zqil, Q1=Zfin- (2.19)

Superamplitudes must be annihiliated by these supercharges. For a four-point amplitude
such as A[®®WY] this implies that

supermomentum is thus:

QIA®PIW]) =0,  QrA[®PTY] =0. (2.20)

Imposing these conditions uniquely fixes any four-point superamplitudes up to an arbitrary
function of s and t:

12y 112

A[2PU V] =67(Q) <34>2f1(s,t) :

A[PDPV] = 512(Q)“2]E;<;Mf2(s,t) : (2.21)
12y 112

A[P22P] =4 (Q)@fzz(s’t) )

where the first factor is the Grassmann delta function

6 4
1 .
Q) = 57 [ D_ Gidming . (2.22)
I=1ij=1
which is annihilated by both Q! and Q;, and fi(s,t) are arbitrary functions'” of s and t.
The delta function 6'2(Q) is automatically invariant under SU(6)g, even if the full theory
does not preserve SU(6)g [72].!! Note that every term in each superamplitude contains

9Note that [ij]* = (ji) in terms of the spinor-helicity angle and square brackets.

10Since A[®PTT] is self-conjugate under CPT we find that fi(s,t) is real, as we show in appendix B.
We furthermore show that for C7-invariant theories f2 3(s,t) are also real.

"1n flat space N = 6 the supersymmetry algebra does not require there to be an R-symmetry; it is an
accidental symmetry of the supergravity action. On the other hand, the superconformal algebra does require
that at least an SO(6)r symmetry be present in order for an AdS solution to preserve all supersymmetries
of the theory.
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S lhi| | AU A[PDDU] A[PDDP]

[
0 Alppd] None None
1 A[Ftx~¢g)] Alppgat] None
Alppx T F] AlppF*x ]
Alpx™xT 9] Alppg™
AlpF*F~ ¢
9 | A[FtF+F-F-| | A[FtFYFTF-] | A[FTF+F+F+]
AX X xTXT] | A[FTE Y XT] | AlgTFTET ]
AlpgTg ¢l AlppyT F] Algtgtog]
Alpa~at¢] AlYtx~ ¢d) AT F* o]
Alpg™F~F~] | AlgtFtx—¢] | A" dog]
e Alhthta=a™]
7 . AlhThta=h7] None
8 A[hThT™h~h~] | None None

Table 2. Component amplitudes of each superamplitude, organised by total helicity >, |h;|. Here
h; is the helicity of the it" particle. We have not included amplitudes equivalent to the ones listed
here under crossing.

exactly 12 Grassmannian variables, and, as a result, many component amplitudes vanish,
including A[hThThTh™| = A[pdpg] = 0. See table 2 for a list of component amplitudes
that do not vanish. The angle and square brackets in (2.21) are required so that the ® and
¥ components have the correct helicity, which for instance can be fixed by considering

AlRThTR™R™] = [12]*(34)4 f1 (s, 1),
A[RThTh™a™] = [12]°(34)%(14)(24) fa(s, 1) , (2.23)
Alhthta=a™] = [12]4(34)2 f3(s, 1) .

We are now left to constrain the forms of f;(s,t) using locality and crossing symmetry.
A tree-level scattering amplitude is local if and only if it can be written as a polynomial
in the spinor helicity variables [ij] and (ij); note that

s = [12](12) = [34](34), ¢ =[13](13) = [24](24), w = [14](14) = [23)(23).  (2.24)

From (2.23) we immediately see that it is not possible for f;(s,t) to contain poles in s,
or u, or else the amplitudes in (2.23) would lead to non-polynomial expressions. Hence
fi(s,t) are necessarily polynomials for tree-level amplitudes. This is also sufficient, as when
fi(s,t) = 1 one can check that all amplitudes in the superamplitude are local.

Crossing symmetry imposes a series of further constraints. For instance, in (2.23) the
amplitudes must be invariant under interchanging the first and second particles. This gives
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Mellin deg. fi(s, 1) fa(s,t) fa(s,t) Counterterms | # sols.
3 — — 1 F2R? 1
4 1 — — R! 1
5 s — s+ t2+u® | D*F?R?, D?°R* 2
6 s2, 12 4+ u? — stu DSF?R?, D*R* 3
7 s3, s(t? +u?) — (2 + 12 +u?)? | D’F?R? | DSR? 3
7.5 — (s —t)(t —u)(u—s) — D3FR? 1

Table 3. Counterterms in N' = 6 supergravity, up to 15 derivatives.

us the relations
J13(s,t) = f1,3(s,u), fa(s,t) = — fa(s,u), (2.25)

where w = —s — t is the third Mandelstam variable. The superamplitudes A[®PPP| and
A[®PPY] are furthermore invariant under crossing which exchange the first and third
particles, giving rise to the further conditions:

f2<3at) = _fQ(uat) ) f3(37t) - f3(u7t> : (2'26)

Together, egs. (2.25) and (2.26) suffice to guarantee crossing under all possible permutations.

Having determined the allowed forms of f;(s,t), we can now determine the number
of derivatives in each interaction vertex. To this count each angle and square bracket
contribute 1, 6'2(Q) contributes 6, and each power of s, ¢, u contributes 2. For instance, if
we set fo(s,t) = s* and consider the amplitude A[@PTT] = s#§1%(Q) g}i};, it follows that
this amplitude comes from an interaction vertex with 8 4+ 2k derivatives, namely from an
D?*R* term.

With this in mind, we can now systematically find all local counterterms up to a certain

number of derivatives. In table 3 we list all local counterterms up to 15 derivatives, corre-
sponding to Mellin amplitudes up to degree 7.5.12 In particular, the first local counterterm
has 6 derivatives, is unique, and contributes only to A[®PPP|. The next local counterterm
has 8 derivatives and is also unique and contributes only to A[®®WW]. There are two 10
derivative counterterms, one contributing to A[®@PPP] and one to A[PPPP|, and so on.
The counterterm with the lowest number of derivatives that contributes to A[®PPW¥] has
15 derivatives and will not be important in this work.

2.4 Implications for N'= 6 SCFts

Having systematically computed the local amplitudes in A/ = 6 supergravity, we will now
discuss the implications for holographic N' = 6 SCFTs. First, we can deduce that there are
five independent superconformal invariants in the four point function of four stress tensor
multiplets. This counting follows from the number of unknown real functions needed to

12 A Mellin amplitude of degree 7.5 would seem to require non-polynomial contributions to M*(s,t). In
appendix B however we show that due to discrete symmetries the Mellin amplitudes corresponding to
A[®PDT] never contribute to (SSSS), so M’(s,t) remains a polynomial in s and .
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fully determine the scattering amplitudes of supergravitons, one for fi(s,t) and two each
for fa(s,t) and f3(s,t), as these latter two functions are in general complex.

Second, from table 3 we can immediately deduce how many polynomial Mellin super-
amplitudes exist for a given degree in s,t. For instance, at third degree we have a single
polynomial super-Mellin amplitude with scalar component M(s,t), and at fourth degree
we additionally have another polynomial super-Mellin amplitude with scalar component
M(s,t). Here, by third and fourth degree we mean that the super-amplitudes that M3(s, )
and M, i(S, t) have degree 3 or 4 for some of the components of the amplitude, but not neces-
sarily for the scalar components M4(s, ) and Mj(s,t) themselves. These scalar components
may be of less than third and fourth degree, respectively.

In fact, it can be argued that while the scalar component M}(s,t) is of degree 4 in
s,t, the scalar component Mg(s,t) is actually at most quadratic. This is because the
leading order behavior of the super-Mellin amplitudes that M2 (s,t) and Mi(s,t) are part
of at large s and ¢ must match the corresponding super-scattering amplitude. Since the
Mi(s,t) amplitude contributes only to the superamplitude A[@®P®P] (as can be seen from
table 2), it does not give rise to a scalar scattering amplitude. Therefore Mi(s,t) must be
at most quadratic, rather than cubic, in s and t. On the other had, Mi(s,t) contributes
to the superamplitude A[®PW V], and this superamplitude does include a scalar scattering
amplitude, A[ppp@]. Thus, M} (s,t) must have degree 4.

We can be more precise and also find the leading large s, ¢ behavior of all (S5SS) Mellin
amplitudes M?(s,t) for which M?(s,t) is of highest degree in the super-Mellin amplitude.
(This means we will be able to find the leading large s,¢ behavior of M(s,t) but not of
Mi(s,t).) As per (2.13), the leading large s, ¢ behavior of M(s,t) comes from the flat space
amplitude A’(s,t). The only scattering amplitude with a scalar component is A[®® W]
which is fixed in terms of fi(s,t), and so the leading large s, t behavior of M?(s,t) depends
only on fi(s,t). To perform this calculation, we must first extract the scalar A[pppd)
component of A[®®WV¥], and then must relate ¢ and ¢ to the superconformal primary S.
We perform both computations in appendix C and find that

Al(s,t) = —%tu (—52f1(5, t) 4+ u>f1(u, s) + 2 fi(t, s)) ,
A%(s,t) = —%su (s®fi(s,t) + vl fi(u, s) — 2 fi(t, ) ,

Ad(s,t) = —%ts (s®fi(s,t) —uPfi(u, s) + 2 f1(t, s)) ,

: (2.27)
Al(s,t) = —5stu (wfi(u,s) +tfi(t,s)),
A (s,8) = —%stu (wfi(u,s) + sfi(s,1)) |
(s, ) = —%stu (sf1(5,8) + LA () -
From (2.27), we can also determine fi(s,t) in terms of A%(s,t):
Fils,t) = —8% (AQ(;’t) + Ag(:’t)) . (2.28)
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We can then apply (2.27) to M}(s,t), which at large s,t should asymptote to A(s,t)
with fi(s,t) =1 (see table 3). We hence find

Mi(s,t) = (t2u2 s2u? s2t2 52# # 52‘2) + subleading in s,t. (2.29)

2.5 Exchange amplitudes

So far we have considered local contact amplitudes. The only other tree-level diagrams
which appear in four point functions consist of exchange diagrams. These can be built up
from the on-shell three point amplitudes using on-shell recursion relations (see for instance
chapter 3 of [77]), and so our first task is to find the allowed three point amplitudes.

Three point amplitudes are subtle due to special kinematics; conservation of momen-
tum implies that either

[12] = [13] = [23] = 0 or (12) = (13) = (23) = 0. (2.30)

For real momenta [ij]* = (ji) so this would seem to rule out any interesting amplitudes.
This issue is however resolved by analytically continuing to complex momenta. Locality
and little-group scaling then uniquely fix three-point functions to take the form:

c[12]mtha=hs[13]htha=ha[gg]hetha=h1 if by 4 By + hy >0
12)hs=hi=ha (1 3yha=h1=hs (93)m=h2=hs if h; 4 hy + h3 < 0

A[1h12h23h3] _ C< > < > < > 1 1+ h2+ N3 (231)
C ifh1:h2:h3:O

0 otherwise

where ¢ is an arbitrary constant [77, 78]. Superamplitudes must furthermore satisfy the
supersymmetric Ward identities, and this uniquely fixes them to take the form:

3
A[@DT] = [13]*2323]26@<[12]n3+[23]m+[31]n2>+<19;><71<22>3>76“2><<12>n3+<23>m+<31>n2>,
A[@D] = mﬁwy@([m]nﬁ[23]m+[31}n2), (2.32)
where

o

69 ([12]ms + [23)m + [31n2) = [ [([12lmar + [23)mr + [31]me) ,

I=1

R (2.33)

sUD((12)n3 + (23)m + (31)m2) = [ [((12)msr + (23)mr + (31)mar)? -
=1
The g; term in the A[®P V]| superamplitude corresponds to the usual supergravity three-
point function, and in particular gives rise to a graviton scattering amplitude

[12]°

A[h+h+h_] = QIW .

(2.34)

The g2 and g3 terms both vanish due to crossing symmetry; if we exchange 1 <> 2 then
A[PPP] and A[PPY] must be even, but this is only possible if go = g3 = 0.
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Operator | A | Spin | s0(6)r irrep | Flat space

S 1 0 15 ¢+ ¢

X 3/2 | 1/2 6 x*t

F 3/2 | 1/2 10 F*

F 3/2 | 1/2 10 F*

P 2 0 15 i(p— @)
J 2 1 15 g*

j 2 1 1 a*t

0 5/2 | 3/2 6 Es

T 3 2 1 hE

Table 4. The conformal primary operators in the N = 6 stress tensor multiplet. For each such op-
erator, we list the scaling dimension, spin, s0(6) g representation, and the particle whose scattering
amplitudes it is related to in the flat space limit of the AdS, dual.

Since there is only one supergravity three-point function, we can now determine the
corresponding unique four point exchange amplitude. Because the tree-level graviton am-
plitudes in pure supergravity are identical to those in pure gravity [77], we can simply use
the pure gravity result to deduce that

2
g
1SG(37t) = 717 f28G<37t) :f?ssG(svt) =0. (235)
stu
We can then substitute this into (2.27) to find that the A[ppp¢] amplitude at large s,t is
expected to be

Mig(s,t) = g} (%“ sy stos L %) + subleading in s, ¢t . (2.36)

2.6 Supersymmetric Ward identities

Our task now is to determine M(s,t) and Mj(s,t). In order to do so we will need to
compute the superconformal Ward identities relating the S*(U, V') both to one another and
to the correlators of the superconformal descendants of S,°.

The operators in the N' = 6 stress tensor multiplet are shown in table 4. There are
three fermions with dimension 3/2, the x4, the F,,, and its Hermitian conjugate the F,,.
In addition to the pseudoscalar P, at dimension 2 there are two conserved currents; the R~
symmetry current J, in the 15, and the U(1) flavour current j,, which is an SO(6) singlet.
Completing the multiplet are the supercurrent v, in the 6 and finally the stress tensor
itself, 7},,. In table 4, we also list which particles these operators correspond to in the flat
space limit.

To impose superconformal invariance on a correlator, it is sufficient to impose con-
formal invariance, R-symmetry invariance, and invariance under the Poincaré supercharge
Q*". We have already seen how to impose the first two symmetries on the (SSSS), and it
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is straightforward to expand other correlators in the multiplet as a sum of conformal and
R-symmetry invariants. Explicit expressions for these can be found in appendix D. The
supersymmetric Ward identities then follow by imposing that the ) variations vanish:

5(SSSx) =0, (SSSF)=0. (2.37)
From (2.37) we can derive
ouSS (U, V) = 2%]2 [ —(U30y + UV S+ (1 =V +U(V —1)dy + UVy)S?

+(1-U-V-UQ-2U0+U*-V)oy +U(1 - U)Voy)S?
+(2-U =2V +2U(U +V —1)dy + 2UVdy)S?

~ U1+ 2U(U —1)dy +2UVy)S® + USY |, (2.38)

2U
+ A4+ UU —-1)y +UVy)S? + (2 — 2U00y)S*

oSS(U, V) = 1 [U(U@U +(V=1)0y)S' + (1 = Udy — Udy)S?

+ (2U20y + 22UV y)S?| .

We can use (2.37) as well as other similar SUSY Ward identities in order to determine
the relations between (555S) and other four-point functions of operators in the stress ten-
sor multiplet. Note, however, that we will not be able to determine the four-point function
of the stress tensor multiplet completely. This should already be clear from the flat space
limit, where we can ask the analogous question for the flat space scattering amplitudes:
given A[pdped], can we determine all the other component amplitudes? The answer is
no, because it is only the superamplitude A[®@®WW¥] that contributes to A[ppdg]. There-
fore, knowing A[ppdg] allows us to determine the function fi(s,t) in (2.21) via (2.28) and
leaves the complex functions fo(s,t) and f3(s,t) undetermined. In other words, A[pddd]
determines only one out of five super-amplitudes.

The situation is better for N'= 6 SCFTs where from (SSSS) we can determine more
than just one out of five superconformal invariants. The reason for this improvement is that
although some of the superconformal invariants do not contribute to (SSSS) in the flat
space limit, they do contribute at subleading orders in 1/L. It can be argued that (SSSS)
is related to two out of the five super-invariants as follows. While the stress tensor multiplet
forms a representation of the superconformal group OSp(6/4), it also forms a representation
of a larger group that includes two Zs transformations: a parity transformation P and
discrete R-symmetry transformation Z whose precise definitions are given in appendix B.3.
Moreover, the superconformal Ward identity relates four-point structures that have the
same P and Z charges. Because the (SSSS) correlator is P-even and Z-even, and only
one other structure has this property, it follows that from (SSSS) we can determine at
most two out of the five superconformal structures. Explicit computations show that we can
indeed determine two superconformal invariants. In table 5, we give examples of operators
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APV D] A[BDDV], A[TTTP] A[BDDD], A[TTTY]
z + - - + +
P, CT + + —~ + -
(SSS5S) Alppod) None None Subleading None
(SSPP)
(PPPP)
(SSSP) None None Subleading None Subleading
(SPPP)
(SSFF) A[pFTF~¢] Subleading Subleading Subleading Subleading
(SPFF)
(PPFF)
(SSxx) Alpx~x" @] None None Subleading Subleading
(SPxx)
(PPxx)
(SSS7) Subleading Alppgpa™] Alppgpa™] Subleading Subleading
(SSPj)
(SPPj)
(PPPj)
(FFFF) | AJFtFTF-F-] | AIFTFtFYF-] | A[FtFYRTR-] | A[FTFYRTRT] | A[FtETFTEY]
ete.

Table 5. Examples of CFT four-point correlators that contribute to the five superconformal in-
variants. Each superconformal invariant can be labeled by its transformation properties under the
discrete symmetries P and Z. For every CFT correlator in the first column, we list how it con-
tributes to the superconformal invariants in Mellin space: either at leading order, in which case we
list the scattering amplitude it should match at this order; either at subleading order, in which case
we write “Subleading”; or it does not contribute, in which case we write “None”.

that contribute to each superconformal structure. The correlator (SSSS) allows us to
determine the conformal structures in the second and fifth columns of this table.

In the next section, we will need to know the relation between (SSPP) and (SSSS).
To derive this relation, we need to consider one more variation, §(SSPyx). Using the
results of (2.37) and the variation 6(SSPY), we can compute (SSPP), along with (SPyxx)
and (SPxF). More details can be found in table 6 and in appendix D. Note that while,
as discussed above, the superconformal Ward identities fall short of making it possible to
determine the all five superconformal invariants (for instance, we cannot determine (SSF'F')
fully), we will be able to completely determine the correlators (SSPP) and, if we wish,
(PPPP) in terms of (S5SS).

2.7 The local Mellin amplitudes Mg and Mi

We will now use these Ward identities to find the degree m polynomial Mellin amplitudes
M, (s,t) with m = 3, 4.
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Variation Correlators Used Correlators Obtained
5(SSSx) | (SSSS) (SSxx) (SSxF) (SSSj)

0(SSSF) | (SSSS) (SSFF) (SSxF) (SSFF) (SSSJ)

5(SSPx) | (SSxx) (SSxF) (SPxx) (SPxF) (SSPP) (S5Pj)

Table 6. Taking supersymmetric variations to compute correlators. By setting the variation in the
first column to zero, we can use the correlators in the second column to compute the correlators in
the third column. For each correlator we only compute the P and Z invariant structures. In the
table we have not included correlators involving F which are related to those with F' by Hermitian
conjugation.

2.7.1 M}

The amplitude M} can be obtained from existing results in the literature as follows. A
particular case of N' =6 SCFTs are N' =8 SCFTs. In an N' =8 SCFT, the stress tensor
multiplet has as its bottom component A = 1 scalar operators Sag(¥) transforming in
the 35, irrep of the s50(8)r R-symmetry.'® (Here S (%), with A,B = 1,...,8 being 8.
indices, is a traceless symmetric tensor.) Like in the N' = 6 case, we can use an index-free
notation by contracting S p(Z) with a symmetric traceless 8 x 8 matrix X 45. The four-
point function of the 35, scalar operator is restricted by conformal invariance and so(8)g
to take the form

o o 1 _ . _ o _ o
(5(21,X1) - S(#4, X4)) = —5—5 |8 (U, V) A12A5s + S (U, V) A13Anq + 8 (U, V) A14 Ags

L1934

+ 34(U, V)E1423 + ES(U, V)§1234 + SG(U, V)§1342 N (2.39)

where we defined!*
Zz'j = tr(yiyj) s Eijkl = tr(yiyjykyl) . (2.40)

The Mellin transforms of ' corresponding to contact interactions were found in [23].
With our definition (2.10) (with SZ,,, replaced by S.,,, and M’ replaced by M), the

conn conn
result in [23] for the quartic amplitude is

1
My = —(t — 2)(u — 2)(35tu + 100s — 112) ,

4 325 (2.41)
My = (s — 2)(35stu — 90(t* + u®) — 280tu — 3245 + 1072)..

To relate (2.41) to Mi(s,t) we should relate the s0(8)g structures (2.40) to the su(4)p
ones defined in (2.4). Under the decomposition s0(8) — su(4), we have 8. — 4 + 4, which

13The fact that this representation is the 35, as opposed to one of the other two 35-dimensional irreducible
representations of s0(8)r assumes a choice of the triality frame.
“Despite the use of matrix so(8) polarizations here, the S’ (U, V) here are equal to the S;(U, V) in [23].
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implies 35, — 10 4+ 10 + 15. To select the 15, we should restrict the 8 x 8 matrices X to
take the form

— 1

X=—|RX)® I+ (SX) ® (i02) |, (2.42)

V2
where X is a 4 x 4 traceless hermitian matrix, I is the 2 x 2 identity matrix, and o5 is the
second Pauli matrix. (See eq. (3.16) of [23].1°) Then it is straightforward to check that
_ — 1

ij = Aij,  Biju = 3 Bijii- (2.43)

o

This implies that S* = S' for i = 1,2,3 and S* = %gz for ¢ = 4,5,6 and analogously for
the Mellin amplitudes. Thus,

1
My M :g(t—Q)(u—Q)(&Btu—i—lOOs—112),
A (2.44)

1= o (5= 2)(3bstu — 90(¢2 + u?) — 280tu — 3245 + 1072) ,
where the other M are given by crossing (2.12). The Melin amplitudes M} are normalized

so that at large s,t they obey (2.29).

2.7.2 M}

The degree 3 polynomial Mellin amplitude M? is not allowed by N = 8 supersymmetry,
and so we must compute it using the A’ = 6 Ward identities derived in the previous section.
In particular, we impose the following constraints to find Mjs:

1. M must satisfy crossing symmetry (2.12).

2. M: must be a degree 2 polynomial solution of the (SSSS) Ward identities given in
position space (2.38), which can be translated into Mellin space using the rules (E.1).
The ansatz for M3 is only degree 2, since in the previous section we showed that As
does not appear in the scattering of four scalars, so M3 must vanish in the flat space
limit.

3. M3 must remain a polynomial when expressed as correlator of other operators in
the stress tensor multiplet using the Ward identities in the previous section.'® The
degree of these polynomials is at most 2 if the corresponding flat space amplitude
vanishes, and 3 otherwise.

Condition 3 was trivially satisfied in maximally supersymmetric cases considered before
in various dimensions [21, 24], where polynomial Mellin amplitudes for (SSSS) remained

5The factor of 1/4/2 is just a choice of normalization.

161nstead of imposing this requirement, we could alternatively impose the condition that certain operators
in the S xS OPE do not acquire anomalous dimensions. For instance, we can uniquely determine M3 if we
impose this requirement for the spin 0 operators of dimension 2 in the 84, 20’, and 15, irreps of SO(6)r,
as well as for the spin 1 operator of dimension 3 in the 45 @ 45, all of which belong to protected multiplets
and do not mix with unprotected operators.
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polynomials for all other stress tensor multiplets correlators. In our case though, we find
that just imposing conditions 1 and 2 leads to five linearly independent solutions: a degree
0, a degree 1, and three degree 2:

degree 0: M=1, M*=1,
—4
degree 1: M =s, M4:$2 ,
4
1st degree 2: M = (t —2)(u—2), Mt = (s — 3> (s—2), (2.45)
—4
2nd degree 2: M = tu, M4:8(82),
3rd degree 2: Mt =s%, M* = s* +tu—3s.

To reduce these to a unique amplitude, we must consider the other Ward identities
(SSxX), (SSXF), (SSFF), and (SSFF) given in appendix D, which we can transform into
Mellin space as in E.2. We can write (SSxx) in terms of the structures C%!(U, V') defined
in (D.7), where the indices a = 1,2,3 and I = 1,2 refer to the various R-symmetry and
conformal structures, respectively. The Mellin transform M as fxx(s,t) of these C*! (U, V)

is then defined by (E.3). We can relate M>7%X(s,t) to M(s,t) as

-1 — X
M= (1= 2) DG, (U, V. 0, 0)M(5,1).

S5 < _2/0\ ) (2.46)
M2 =(1—§) D, (U, V, 0y, 0y )M (s, 1)

where the (SSxx) Ward identity DS;J is given in position space in (D.9), we express
derivatives and powers of U and V' in Mellin space using the rules (E.1), and s-dependent
prefactors come from the difference in the definition of the scalar and fermion Mellin

amplitudes in (2.10) and (E.3). We find that degree 0 amplitude in (2.45) gives

1 2—t
Y AP SV =)
’ ’ 16 ’ 16u = (947
SS SS 1 S5 1 :
My (s, t) =0, My;™(s,t) = 3 M35 (s,t) = 8u’

which contain poles, and so must be discarded.

When we apply this method to the Ward identities for (SSFF) and (SSFF), a new
subtlety is that these Ward identities (D.17), (D.19), and (D.21) depend on both (SSSS)
and (SSFF), and in particular can be written in terms of SY(U, V) and S*(U, V), as well
as the first conformal structure F%Y(U,V) for (SSFF) as defined in (D.7), where here
a = 1,2 for the two R-symmetry structures. So to get the constraints from these Ward
identities up to degree 2, we must also consider a degree 2 polynomial ansatz for the Mellin
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transform M, (ffF F(s,t) of F»Y(U, V), which satisfies the crossing relations

MffFF(s,t) = ésszF(s,u) + (1 - g) MngF(s,u),
MﬁngF = MEfFF(S,u) + (1 - g) MngF(s,u),
SSFF s SSFF (2.48)
MP37 7 (s,t) = — (1 - 5) M537 " (s,u),

MESFE(s,) = — (1= 5) MESTT (s u),

where the s-dependent prefactors come from the difference in the definition of the fermion
Mellin amplitudes in (E.3) for the two different conformal structures. After imposing the
(SSYF), (SSFF), and (SSFF) Ward identities, just as we did for (SSyx) above, and
demanding that all poles vanish, we find that MffF F(s,t) is completely fixed in terms of
M?(s,t) up to degree 2, and that only a single degree 2 solution for M?(s,t) survives:

4
Ms:  M}=(t—-2)(u-2), M§:<s—3>(s—2), (2.49)
which in fact corresponds to the degree 3 Mellin amplitude Ms(s,t) as discussed before.

2.8 Supergravity exchange Mellin amplitude

We will also use the supergravity amplitude M¢q(s,t), which contains an infinite series
of poles that correspond to the stress tensor multiplet operators (or the exchange of the
graviton multiplet in the bulk) and their descendants. This amplitude is unique and can
be derived using the method we used above for determining M} by translating the N’ = 8
SCFT results into N’ = 6 language. For the case of 3d N' = 8 CFTs, M{, was derived
in [22]. From egs. (E.1) and (4.8) of [24], and converting to N' = 6 notation as we did
before in subsection 2.7.1, we find that

A@G:_@—mw—m< ﬂ%iﬂ)_u+$>,

s(s+2) VAl (1—3%

2 [ 2ur (151 2T (154) (250)
Mig=-"" ( il S VA 2 +2s—tu—8>,

2tu \ Al (1-4%)  al(1-%)

where the other MéG are given by crossing (2.12). We normalize MéG so that at large s,t
they obey (2.36) with g; = 1.

3 Constraints from supersymmetric localization

In order to determine the coefficients of the Mellin amplitudes M3 and M, derived in the
previous section in the case of ABJM theory, we will use information from supersymmetric
localization. Similarly to [21, 23, 24], we will focus on the mass-deformed partition function
of ABJM theory on a round S3. While it would be interesting to also obtain constraints
coming from the partition function on a squashed S3 [79], in this work we will use the
round sphere simply because the mass-deformed partition function can be computed [67]
using the Fermi gas formalism developed in [68] to all orders in the 1/N expansion. A
similar result for the squashed sphere partition function is not currently available.

- 21 —



3.1 Integrated correlators on S3

To set the stage, let us begin with the result for the S® partition function in the presence
of a mass deformation. On S3, there are two classes of mass deformations of ABJM theory
that one can consider: in N' = 2 notation, there are superpotential mass deformations and
real mass deformations. The S2 partition function has no dependence on the superpoten-
tial mass parameters, so we will focus on the real mass parameters. These real masses
are associated with global symmetries, because they can be constructed by coupling the
conserved currents of the A/ = 2 theory to background vector multiplets and giving expec-
tation values proportional to the mass parameters to the scalars in the vector multiplets.
Since ABJM theory has N' = 6 SUSY for arbitrary k, it has an SO(6)r R-symmetry as
well as an U(1)r global symmetry, with both the SO(6)r and U(1)r conserved currents
belonging to the same multiplet as the stress-energy tensor, as discussed in the previous
section. When passing to N' = 2 notation, a U(1)g subgroup of SO(6)g can be viewed as
the ' = 2 R-symmetry, and in SO(6) g x U(1)r there are three other U(1)’s that commute
with one another and with U(1)g. (They are the Cartans of an SO(4) x U(1) flavor sym-
metry from the N' = 2 point of view.) Each of these U(1)’s can be coupled to an Abelian
background vector multiplet, so for each of them one may consider introducing a real mass
parameter. There are thus three distinct real mass parameters.

For simplicity, in this work we will focus on only two of the three real mass parameters
of ABJM theory.!” Recall that ABJM theory in N' = 2 notation is a theory of two
U(N) vector multiplets coupled to bifundamental chiral multiplets W;, i = 1,2 in (N, N)
and Z; in (N,N) of U(N) x U(N). The two mass parameters we consider, denoted m
and m_, correspond to giving masses (my/2,m_/2, —my /2, —m_/2) to Wi, Wa, Z1, 2o,
respectively. The partition function can be written as [32, 50]:

etk 32 (A =) [l;;16 sinh? [r(\; — A;j)] sinh? [7(p; — ;)]

4= /dN)\dN'u [1; ;4 cosh [w(X; — pj) + T5+] cosh [m(Ni — py) + 5= ] (3.1)
The purpose of this section is to relate the mixed derivatives
0*log Z 0*log Z 0*log Z
omi omt 7 omiom2’ (3:2)
all evaluated at m, = m_ = 0, to the correlation functions of the S,* operators introduced

in the previous section.
In the ABJM Lagrangian on a unit radius S, the parameters m. and m_ appear at
linear order as

my / (iJy + Ky)+m_ / (iJ- +K_)+0(m3), (3.3)

where J4 are linear combinations of the S’s and K4 are linear combinations of the P’s.
In terms of the Lagrangian fields, the Ji are scalar bilinears which are quadratic in the

Tn terms of symmetries, the two mass parameters that we consider correspond to linear combinations
of U(1)r and one of the Cartans of an SU(2) factor inside SO(4) = SU(2) x SU(2).

- 29 —



bottom components of the chiral multiplets W; = (W, x;) and Z; = (Z;,¢;), while the K
are fermion mass terms quadratic in the fermions in the same chiral multiplets:

Te=suw(WilP-1zP) . Jo=Fu (Wl -2

K= tr (xba - o) -

N =D =
N =D =

tr(xba-ole) . Ko =

The mixed derivatives (3.2) are given in terms of connected correlation functions as

log Z 4
ai — < (/ (iJ++K+)> > +(2- and 3-pt functions),

2
om?.

4 4
6817::%1Z = < (/ (z’J+K)> > +(2- and 3-pt functions), (3.5)

0*log Z ) 2 . 2 .
= /(1J++K+) /(1J+K) +(2- and 3-pt functions).
am+am_ conn

where the 2- and 3-point function terms not written in (3.5) come from the O(m?) terms
not written in (3.3). We will not write down these 2- and 3-point function contributions
because they will be automatically taken into account in the final formulas, by analogy
with the similar situation encountered in [21].

To determine how Ji and K4 are related to S and P, let us first note that C* =
(W1, ZI, W, Z;r) and U = (1#%,)(2,1#1, x1) transform as fundamentals of SU(4)g,'® so Ju
and K4 can be written as

1 1
Je = 5 (X" tr(C)C) Ky = 5 (K)o tr(T)U) (3.6)
where we defined
Xy = diag{1,-1,0,0}, X_ = diag{0,0,1,—1}. (3.7)

Because tr C};C’b and tr \IIL\I'Z’ transform in the 15 of SU(4) g, they must be proportional to
S,b and P,°, respectively. Eq. (3.6) then implies that

Ji (%) = N;S(# X1),  Ki(&) = NgP(# X+), (3.8)

where N; and N are normalization constants.

On general grounds, the two-point functions of Ji and K1 must be proportional
to the coefficient ¢y appearing in the two-point function of the canonically normalized
stress-energy tensor. Because the two-point functions of S and P are both normalized as
n (2.1), knowing that N; and NIQ( are proportional to ¢y allows us to determine them
in a free theory, such as the & — oo limit of the U(1); x U(1)_x ABJM theory. In this

8The reason why the components of the chiral multiplets do not appear in the same order
in this expression is that we require the U(1)r symmetry to be generated by the su(4)r matrix
diag{1/2,-1/2,1/2,—1/2}.
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limit, the W; and Z; chiral multiplets are free, and <C“(§c’1)Cg(fg)> = 0y /(4m |Z12]) and
<\I'“(51)QIZ(5;’2)> = 0pyualy/ (4w |Z12]). From the definition (3.6), we then have
1 1

(Ke(T)Kx(P2)) = ———— - (3.9)

free theory: (Ji(Z1)J4+(T3)) = ——,

These expressions should be compared with what we obtain from (3.8) and (2.1), which is

. . 2N7 . . 2N?
free theory: (Je(21)JL(Z2)) = ﬁ, (K4 (Z1)K4(Z2)) = z T (3.10)
712 T12

Thus, for a free theory, we have N7 = 1/(647%) and N7 = 2N?%. In conventions in which
a free massless real scalar or a free real Majorana fermion has ¢y = 1, as in (1.3), the free
theory has ¢y = 16. From this, and the fact that N} and NIQ( should be proportional to
cr, we conclude that we must have

cr
Note that the second derivatives of Z are 82;‘;%? mi=0 = ((f Iy + K+))2>. Using (3.10)
and (3.11) and explicitly evaluating the integrals gives [51]
64 0% log Z
cr = T2 omZ o (3.12)

Having determined the normalization factors in (3.8), we can then evaluate (3.5). The
result will be given in terms of the functions S’ that appear in the (SSSS) correlator in
eq. (2.3) as well as analogous functions that appear in (SSPP) and (PPPP). While this
is certainly a valid procedure,!? it is possible to obtain simpler formulas by making use of
the fact that all N’ > 4 SCFTs in 3d have a 1d topological sector [80-85].

In general, a 3d N' = 4 SCFT has SU(2) g x SU(2)¢ R-symmetry, and one can consider
1/2-BPS operators that have scaling dimension A = jp, where jg is the SU(2) g spin, and
are invariant under SU(2)¢. Such operators can be written as rank-2j5 symmetric tensors

9The result is

6

4 4
9 aﬁg z_9 log Z _ Z (NJh 1[S7] + NIy 2 [P ]) — 24N2NZ1,1[R'] + (2- and 3-pt functions)
x

logZ AL : ; - i
gz _ =y (N}llm[s ]+ NI 2[P ]) —8N7Ni <12,1[R2+R3] +3 DLalR ]>

Im3om? 3 < ‘
i=1 i=1
+ (2- and 3-pt functions), (3.13)

where S* are the functions appearing in (2.3), R’ are the functions appearing in the (SSPP) correlator
given in (D.5), P* are the six functions appearing in the (PPPP) correlator defined as in (2.3) but with
S — P and 8 — P*, and

Z - \13—Ay4 s i 3—Ap .
In,apl0) = /(Hd“) )Q(xQ)]ﬁ?AgéB)Q( ) GU,V), Q(x)zl_:ﬁ. (3.14)

The powers of 2 in (3.14) appear because the operators are integrated over 53 as opposed to R?.

— 94 —



Ouayas...az;,, (T) Where a; = 1,2 are SU(2)y spinor indices. From these operators, one can
construct 1d topological operators by inserting them on a line, say the line (0,0, x), and
contracting the SU(2)y indices with position-dependent polarizations:

Ops () = Oa1a2~--a2jH (0,0, z)u(z) - - - um (x), (3.15)

where we can take?Y

iz
1_2

u(z) = (1 + g) . (3.16)

If we want to express the topological operator in terms of the operator Oalaz..vang when
the theory is placed on S, we have

) —
O(z) = (1 n %Q)JH

where the extra factor accounts for the fact that the operators on R3 and those on S differ

OaIGQ,,,ang (0,0, z)u® (z) - - - u*n (),

(3.17)

by a Weyl factor. In this case, the 1d topological theory lives on a circle parameterized by
x, with the point at x = +00 being identified with the point at x = —oc.

To connect this discussion to the N = 6 ABJM theory, let us embed the N' = 4
SU(2)g x SU(2)¢ R-symmetry into SU(4)g such that SU(2) g corresponds to the top left
2 x 2 block of an SU(4)r matrix written in the fundamental representation and SU(2)¢
corresponds to the bottom right 2 x 2 block. Raising and lowering indices with the epsilon
symbol, egs. (3.15) and (3.17) applied to S give

; 2 ; 2
. 14 1 _ iz
S(z) = 7( + 22) 512(0,0,z) — 7( 22 S51(0,0,2) 4+ 511(0,0,2) — S22(0,0,z)  (3.18)
1+ % 1+ %

on 5% and Sgs(z) = (1 + %2) S(z) on R3. Tt is straightforward to check that the super-
conformal Ward identities (2.38) imply that the four-point function of Sgs, namely

~ - . ~ 82 1— 283
(s (1) S (2) s 3) S () = 81+ 55 + 1)
21— 2)8t  2(1—2)S5 286 (3.19)
+ o +=
z z z U=z

V=(1-2)2

(z1—x2)(z3—24)
(z1—23)(22—74)
The advantage of the topological sector is that we can replace the integrated operator

J g8 3z V9(iJy 4+ K ) by a different operator that is integrated only along the circle. Such
a replacement can be rigorously justified in the class of N'= 4 theories studied in [83-85]

where z = , 1s piece-wise constant.

where it was shown how one can obtain a 1d action for the topological sector by using
supersymmetric localization in the 3d N = 4 theory. Unfortunately, ABJM theory with

*°Tn the notation of [83] this choice corresponds to ha’ = (03).".
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k > 1 falls outside the range of theories studied in [83-85]. Nevertheless, as explained in
section 3.1 of [86], one expects that such a replacement should be possible in ABJM theory
as well. In particular, one expects [86]

47r/ ! j_xﬂ iJ(x) = /d?’f Va(iJy + Ky) + (Q-exact terms), (3.20)
4
where?!
- Ny~
J(x) = 7J5(x). (3.21)

Thus, instead of (3.5), we may write

4
dlog Z dr . -
s =<47r>4<( / x2zJ<x>>> ,
m+ 1+T conn

ﬁgiz_:(47r)2<</d3f\/§(ij_(f)+l(_(f)))2 (/1f_ngij(x>>2> .

Because the correlation function <j JJJ ) is topological, we can place the four operators

(3.22)

at any four locations of our choosing and multiply the answer by (27)%. Using (3.18), we

have
Olog Z 84 -
= 1287 NJI++[SZ], (323)
8mi
where
, S§2 (1-2)28% 2(1—2)8* 2(1—2)8°> 286
I [8]=2 81+—2+( 22) +( ;) _20=2) + , | -6, (3.24)
z z z z z V:(:iz)2

where the —6 comes from subtracting the disconnected part. After relating Ny to cr
using (3.11), we obtain

dlogZ 7wtc? ,
= 213T I [S]. (3.25)

1
om?,
The quantity Iy,[S?] is independent of z. It can be simplified significantly using the

conformal block expansion introduced in eq. (2.6). Indeed, (3.24) can be written as

. 2(z —2 4—2z
I, [S']=2 {Sl + Slsa(z) + S15, + 2S20' + 345@%7

(1510w
84\ 22 z 15

2L A quick check of the normalization is as follows. The two-point function of the r.h.s. of (3.20) equals
472 N2 fd?’f (— “I;ff + 2%;?11) = —167*N3. The two-point function of the Lh.s. gives —1672(N3/4)4n? =
—167* N3,

(3.26)
—6.
U=22
V=(1-2)2
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Each Sk must be expanded in conformal blocks, which as z — 0 behave as (z/4)® where A
is the scaling dimension of the corresponding conformal primary. Since I, is independent
of z, it follows that the only conformal primaries that can contribute must have either
A = 0 in the 1, 154, 20’ channels, A = 1 in the 15, and 45 @ 45 channels, or A = 2 in
the 84 channel. The only A = 0 operator is the identity operator and it appears in the
1 channel with squared OPE coefficient )\(2)70,1 = 1 by convention. The 15, and 45 ¢ 45
channels contain only odd spin operators, and for them A = 1 would violate the unitarity
bound. Thus, there are no A = 1 operators contributing to (3.26). Consequently, the
only operators that can contribute to (3.26) are the identity operator and any A = 2
operators in the 84. Such operators must be scalars because these are the operators that
are non-trivial in the 1d theory [81]. Using G2(U,V) =~ U/16 at small U, we have

Lii[S] = —4 42X 4 (3.27)

As explained in more detail in appendix A.2, the OPE coefficient )\570784 can be written
in terms of the Mellin amplitude corresponding to the 84 channel, which is defined as
Mga(s,t) = (M? + M? + 2M*)/16. The final expression for I [S] is

: —1)Mga(s,t) 167 [*° t t Mga(s,t
I,4[S]=3272lim lim (=) Msa(s, )+62/ dtT? (1—2> 2 <> lim 84(5:1)

s—2t—3—s 5—2 m 2 /)52 s—2
(3.28)
with the contour in the t integral obeying 0 < Rt < 1. For a derivation, see appendix A.2.

—100

For the mixed derivative, let us take the first J to be at x5 = 0 and the second at
x4 = oo and multiply by (27)2. Then, relating all the operators in the second line of (3.22)
to 8" and R' (where R are defined in (D.5)), and computing the required traces of M
matrices, we obtain

dlog Z 482 [A27, 1961 27 1 2 3 5 6
—5—>— = 16n" N7 |N7[1[25"] — Nz L[2R" + R* + R° + 2R’ + 2R :
gmZomZ ~ 167 J[ 7h[28'] = Ng[2R' + R* +R” 4+ 2R + ]] ;o (3:29)
where
7 s - Q@)@ (Fy T 1
o= [@nen 000 g (TR ) @)=ty @30
) Ty Ty L+

We can evaluate (3.30) as follows. Using rotational symmetry, we can set #; = (r1,0,0)
and #y = (12 cosf,r2sind, 0) and perform the angular integrals which give 47 x 27 = 872,
Thus

, 2\ 1A-3

8 1+%) <1+%>} r? + 713 — 2riracosf r3

I :82/ddd922-9[< L2 2 3

alg] =8r R T S e g cos 0) J ri 5t
(3.31)

Let us now change variables by setting r1 = 2p and ro = 2rp. Then (3.31) becomes

A—3G (1 +72—2rcosb, 7“2)

(14+72—2rcosf)A
(3.32)

fA[g] E29_2A7r2/dpdrdeS_QATQSinﬂ [(1—|—p2) (1—|—r2p2)}
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The p integral can be done analytically. For the cases of interest, namely A = 1 and 2, the

result is

1—r2 4+ (1+72)logrG (1 +72 - 2rcosd,r?)
(r2 —1)3 1472 —2rcosf

logr G (1 + 72 — 2rcos 9,7“2)

r2—1 (147r2—2rcosb)?

NL[G] = 2772 / dr dfr?sin
(3.33)

L[G] = 257r2/drd0r2 sin 6

The expression (3.29) can be simplified further after using the Ward identity relating
R to S in egs. (D.27)-(D.30), and integrating by parts. We find

LR 4R+ R3+2R° +2RI] :/drd6’81 (1+r*—2rcosf,r?)

9 <—167T2 Sine—1—57"2—1—57“44-7“6—8(7“24-7"4)logr)

(r2—=1)3(147r2—2rcosf)

(3.34)
Combining with (3.29), we obtain
dlog Z 9 6 4/ oSt (1—1—7"2—27“0080,7"2)
—————5 =27 Nj [ drdf sinf 3.35
om%om? T arar e 1472 —2rcosf (3:35)

Once again we can view the right-hand side as a linear functional defined on S, defining

i St (1+r2—2rcos(9,r2)
+-[8 = /dr df sinf T2 —2rcos0 (3.36)

so that o1 -
og/Z TECT i
= I _ . 37

See appendix F for an expression for I, _[S?] in terms of the Mellin amplitude corresponding
to S°.
3.2 Large cr expansion

We will now show how integrated correlators can be expanded to all orders in 1/¢p. Using
the Fermi gas method [68], the localization formula (3.1) for the mass deformed partition
function was computed to all orders in 1/N [67]:

Z ~ eACT5AL[CT3(N — B)] ,

_ 2 B ™C 1] 1 RS S B3
TR+ mI)(1+m2)’ T3 Tk |Tamd TTrmz| T2 (B39)
. Alk(L +imy )] + Alk(1 —im4)] + Alk(1 + im_)] + A[k(1 — im_)]
— ; :
where the constant map function A is given by
2((3) K3 k2 /°° _2
= 1-— i 7 log (1 — @
A(k) % ( o)t ; dx a7 108 (1—e*")
(3.39)

_ ¢(3) l 2mi\ %97° 49BogBog—2
=G Z%( ) e
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and in the second line we wrote A in the large k expansion [87]. We will be interested in
derivatives of Z(m4) at my = 0, in which case we expect the non-perturbative corrections
to take the form e~VN* and 67\/N7/k, which is known for Z(0) that has been computed
exactly for all N and k in [68, 88-94]. The large N expansion is then expected to apply to
the finite k, the strong coupling 't Hooft limit with 't Hooft coupling

A= — — — — — (3.40)

and the finite u = N/k® limit discussed in the Introduction, which interpolates between

finite £ as p — oo and the strong coupling 't Hooft limit as ¢ — 0. In particular, the
VNE /N/k

non-perturbative corrections e~ and e~ do not allow for any non-perturbative

corrections in .

9% log Z d 9% log Z
Bm‘i ) Bmiamz_

to all orders in 1/N, and then rewrite the latter two quantities as expansions to all orders

in 1/cp. For the finite k limit, we find

For each of these limits, we can use (3.38) and (3.12) to expand cr,

1 *loe 7 2 4 S14/3 1 4 A4 (1Y 912 AN (1) _ 7
fnite k- 78 oi _ 31 3z7r L E* AW (k) 3k2.,4 (k) 3+O(CT3),
c Omi 64 cr  93k2/3 e 2¢r
(3.41)
1 9*logZ w2 1 5ct3 1 K2A"(k)—-1 -1
S A 9 a9 =———+ 27372 375"1‘ 5 +O(CT ),
cp Omi.0m? 64 cr 4 62/3k2/ c% 2er

where we have only shown the lowest couple terms in 1/cp for simplicity. We can evaluate

AW (k) and A" (k) using the definition in the first line of (3.39), which holds for finite k,

in which case the ¢(3) term is cancelled by the integral term.??

For the strong coupling 't Hooft limit, we find the all orders in 1/ and 1/cp result

1 9*logZ [372  9¢(3) 1 27¢(3)%1 'NE!
't Hooft: — ==— — —+O0(\"2)| —
OO 2 oml [64 512v2r 8 | stoz2nt w O 2)} or

3 5 9¢(3)1  15¢(3) 1 s ] 1 5

e SVP) — —+O0(\ =
* [2” 4 1672 )\+32\/§7T3 A2 o) c2T+O(CT )

1 dtlogZ 2 1 21 1
7%: [_W_mg_wl3+0()\3> il
c7. 0m3.0m?2 64 512v/27 )z 819274\ cr

5 5 3¢(3)  5¢(3) 1 5] 1 3
—TVI2\N— — _ R P} N
[6” A~ 12 T 16m2n 32V2713 \3 O) c2 Oler™).

(3.43)

where we used the large k formula for A(k) in the second line of (3.39), so ¢((3) terms
appear. In fact, ((3) and 7 are the only transcendental numbers that appear to any order
in 1/\ and 1/cp.

*2For instance, for k = 1,2 these values are [86]

” m? " 1
A(l)—*'f‘@a A(Q)_ﬂv
(3.42)
A////(l) =14 ﬁ - 77: A//H(2) _ i + LQ )
5 327 16 80
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Finally, for the finite u limit we find

19%*ogZ 3n21 31(4V2m3/m+CB3) 1 51 o
finite i 1 0% _ 31 (4v2m /i + (( ))77_772_#0(%4)’
2 omi 64 cr 16 25877438 1 Ay
T (3.44)
1 0*logZ w1 202r/n—3¢38) 1 51 Lo _g)
_—— — —— —— —_—_— — — C y
2. Om2.om? 64 cp 16 25/833/477/43/8 ng 12 2, r

where we again used the large k formula for A(k).

From the finite p limit we can derive both the 't Hooft limit and the finite k£ limit by
taking p — 0 and g — oo respectively. To reproduce the 't Hooft limit (3.43) we first solve
for 1 in terms of A and c¢7 using (3.12) and (3.40), which at leading order in 1/cp gives

81921

— 3.45
9c2.72 (3.45)

7

_T
1

We then take the large ¢ limit followed by the large A limit. The ((3) M_%CT and u%c;

sl

terms give rise to the C(S)/\_%c;l and VAcy? terms in (3.43), respectively.
To extract the finite k limit (3.41) from (3.44) we solve for p in terms of ¢y and k
using (3.12), which at leading order in 1/cr gives

(37T)2/3CT2/3

13 16

pw= (3.46)

3

We then take the large ¢ limit. In this limit, the ratio c%,u_ is finite, so we must sum

infinitely many terms in the finite p limit to recover the finite k limit. This infinite sum
5

_7 _5
cancels all the ((3) terms which appear at finite x. The ,u,%cT4 term becomes a c,® term
at finite k.

4 N =6 ABJM correlators at large cr

We will now combine the results of the previous to sections and determine the first few
terms in the large N expansion of the (SSSS) correlator in ABJM theory. We will do this
for the finite k, finite u, and strong coupling 't Hooft limits, which correspond to M-theory
on AdSy x S7/Z;, for the first limit, or to type ITA string theory on AdS; x CP? in the
second and third limits.

In each of these limits, we can use the Penedones formula (2.13) to relate the (SSSS)
Mellin amplitude to the four-point scattering amplitudes of gravitons and their superpart-
ners in 11d (in the M-theory case) or 10d (in the type IIA case) flat space, with momenta
restricted to lie within a four-dimensional subspace. Of course, the flat space limit of the
(SSSS) correlator in ABJM theory cannot give the four-point scattering amplitude of all
massless particles in 11d or 10d. Indeed, in either 11d M-theory or in 10d type ITA string
theory, the massless particle spectrum consists of 128 bosons and 128 fermions that are
related by maximal SUSY. The flat space limit of the (SSSS) correlator must match the
four-point scattering amplitude of only 15 of the 128 bosons, which all have the property
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that after restricting their momenta to lie within 4d, they can be thought of as scalars
from the 4d point of view.?> Note that when using eq. (2.13), we should keep either the
11d Planck length ¢1; or the 10d string length /5 fixed as we send L — oo. In other words,
we should more precisely send L/¢1; or L/ls to infinity.

As explained in section 2, the ingredients we will use to construct the first few terms
in the large N expansion of the (SSSS) correlator are the Mellin amplitudes

given in (2.50), (2.49), and (2.44), respectively. M is the Mellin amplitude correspond-
ing to an exchange Witten diagram with supergravity vertices. Mg is a polynomial Mellin
amplitude that represents the (SSSS) component of a degree 3 super-Mellin amplitude
corresponding to a contact Witten diagram with an F?R? contact interaction vertex. Like-
wise, M} is part of a degree 4 super-Mellin amplitude corresponding to a contact Witten
diagram with an R* super-vertex. As explained in section 2, if we apply the Penedones
formula (2.13) to each of the Mellin amplitudes (4.1), we find that

]‘ j ] t { t
T M) o Asals = (222543
1 . .
— Mi(s.t i(s.1) =0 .
L6N(L) 3(5’ )ﬂats—p;ce AB(sv ) ) (4 2)
1

. . stu .
 Mi(s,t i(5,8) = 2% AL (5,1).
AN Mt o At = Japdsals )

Here, the normalization constant N (L) appearing in (2.13) depends on our precise choice
of normalization for the (SSSS) correlator. If we normalize this correlator such that the
disconnected piece scales as ¢, then we should take N (L) = NoLP, where D = 7 for the
case of an 11d dual and D = 6 for the case of a 10d dual.

In addition to (4.1), we will also consider the contact Mellin amplitudes

Mé,l ) Mé,2 ) (4'3)

which are part of degree-5 super-Mellin amplitudes corresponding to D?R* and D*F?R?
interaction vertices, respectively. While in section 2 we did not determine the forms of M, g,l
and Mgg, we know that such Mellin amplitudes must exist because they must reproduce
the scattering amplitudes in the 3rd line of table 3 in the flat space limit. Upon a convenient
choice of normalization, the flat space limits of the Mellin amplitudes can be taken to be

1 . ) 1
S Vi N i . ( 2 4 342 1 32 )
LION(L) 571(57 t) flat space ./4571(8, t) 945 stu | s“ + 3t + 3u y (4 )
L ML) s A5t =0 ?
L10N<L) 5,21 flat space 5,23 '

It is important to note that the Mellin amplitudes MéGv Mé, Mi, ME’;J, and ngQ are
the only crossing-invariant Mellin amplitudes that obey the SUSY Ward identities and that
grow at most as the fifth power of s,t at large s, t.

ZMore generally, from all the 4-point CFT correlators of the A = 6 stress tensor multiplet, we would
be able to determine the 4-point scattering amplitudes of precisely half (64 bosons + 64 fermions) of the
massless particles of both 11d M-theory and 10d type ITA string theory.
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4.1 Strong coupling expansions

Let us now analyze the (Mellin transform of) the (SSSS) correlator in each of the three
large N limits we consider.

4.1.1 Large cr, finite k

At large cr limit with k fixed, ABJM theory is dual to M-theory on AdSy x S7/Z. At
leading order in 1/cp, we have the AdS/CFT relation [23, 39]

L _ 37k
AL

with corrections suppressed in 1/cy. From this relation, the flat space limits (4.2) and (4.4),

cr+..., (4.5)

as well as the requirement that in the flat space limit the scattering amplitude should have
an expansion in /11 times momentum, we can infer that M?(s,t) can be expanded at large
cr in terms of Mi(s t) as

. . o . . .
M'(s,t) = ASGMSG+ I [AS GM§G+A§M§]+7§ [ASqMéq+A3M5+ AfMj]

er T (4.6)
[ASGMSG+A5M3+A5M4+A5 1M5 1+A5 oM 2} +0(cr %),

o
%\q\ -

where Al are k-dependent numerical coefficients. In the flat space limit only the maximal
degree Melhn amplitudes contribute at each order in 1/c¢p, and so from (4.2) and (4.4) we
find that
; 3km\?/? 3k /0 ;
Ai(s, ) = £, (AéGASG H(5T) matas (57) Sandie )L @)
Note that neither Ag nor Agz give rise to scalar scattering amplitudes in flat space, which

is why they do not appear in (4.7). Comparing (4.7) to the known M-theory four-point
scattering amplitude [54]

1
Al = AlL [1 + 05— 5o stu+ o )} , (4.8)
where A%é is the 11d supergravity scattering amplitude, we can immediately deduce that
Al 2 \'3
-+ =35(—— A} =0. 4.9
AéG <97T2k‘2) ) 5,1 ( )

Although M§ and Mg,2 do not give rise to scattering amplitudes for the 11d super-
gravitons that are scalars from the 4d point of view, they do contribute to the scattering
of other particles in the same multiplet. The M-theory amplitude (4.8) however encodes
the scattering amplitudes for all such particles, and it does not contain any terms of order
013 or 7. From this we conclude that

A§=AZ,=0. (4.10)

As a final aside, note that the 0(0;2) term (4.6) is not a local Mellin amplitude. It
instead corresponds to the one-loop supergravity term, which is not analytic in s and t.
We will not study this term further.
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4.1.2 ’t Hooft strong coupling limit

We next consider the strong coupling 't Hooft limit of ABJM theory, whereby we first
take N — oo with fixed A (see (3.40) for the definition of ), and then take A — oc.
In this double limit, ABJM theory is dual to weakly coupled type IIA string theory on
AdS, x CP? [39]. The leading order AdS/CFT relations are [23, 39

L? 512X

— = 4n* N+ ... 2 = 4.11
€§W+,QS3CT+, (4.11)

where both ¢,/ L and the string coupling gs are small in this double expansion. The ellipses
in (4.11) stand for terms that are suppressed at large ¢y in both expressions. Similarly
to the M-theory limit discussed above, we can expand M(s,t) in powers of £s/L, with
the appropriate powers of ¢s/L being such that after taking the flat space limit, the string
theory scattering amptliude has an expansion in ¢4 times momentum. Unlike M-theory
however, type IIA string theory has an additional dimensionless parameter, the string
coupling constant g, that governs the strength of string interactions. Simultaneously
expanding in both, we find that

1 1
[BéGMS(;—i-)\ (B3 Msg+ B3 Ms) +E (B§Msc+BiMs+BiM,)

1

M(s,t)= -

1 _5
+p(BchSG+B§’M3+BZ)M4+B§,1M5,1+B§,2Ms,2)+O(>\ 2) (412)
412
1 - ~ ~
+5 [)\ZBéGMSGJr)\ (BSGMsg—i—Bg’Mg)
T
+VX (EgGMSG+§§M3+§3M4) +O(/\0)} +0(c7%),

where Bf? ; and Ef ; are numerical coefficients. The leading order 1 /et behavior corresponds
to tree-level string theory, and the higher order terms are loop corrections. At fixed order
in 1/er and 1/X only the maximal degree Mellin amplitudes contribute in the flat space
limit, and so we find that

rt
128

9t - , o
+ S5 9l <Bée«4ée+2x/§7r3£§3;§ gﬁ.._) .

Ai(s,t) = g5 (Bha A + 2V2r S BIA; + An B3B3, AL + - )

(4.13)

Although the 1 /c% terms are one-loop corrections, non-analytic Mellin amplitudes will
occur first at A\°/c% corresponding to the one-loop correction in supergravity. Comparing
this to the ITA S-matrix at weak coupling [95]

3 2
ARy = AL [(1 + Eg%;stu + O(£§0)> + g2 <£§g€)stu + O(€§)> + O(g;*)} . (4.14)
we find that
B} 105((3) B}  140V2 BB —o (4.15)
Bly 64v2m3’  Bl, 31 517 786 = F '
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Like the M-theory amplitude, the type IIA super-amplitude does not contain any terms
which could correspond to M} or Mgg, which in 10d contribute at £1? and ¢1°. We hence
conclude that these terms do not contribute at leading order:

B3 =DB3=B2,=0. (4.16)

4.1.3 Large cr, finite u
Finally, we consider the large ¢y expansion of ABJM at finite 4 = N/k°. Like the ’t
Hooft strong coupling limit, ABJM theory in this limit is dual to type ITA string theory on
AdS, x CP3, except now the string coupling g, is finite. The AdS/CFT relations are [23, 39
L3 B 3CT7T5\/;7 n

B 16v2 ’

with corrections suppressed at large cp. The relation (4.17) implies that M®(s,t) can be

g =320+ -, (4.17)

expanded at large cr in terms of M (s,t) as

M (s,1) = Clho Mig + 5 [Cl Mig +CIMS] + - [Cho Mig +CIME+CIM] +0(c?).
4 : o

(4.18)

where now ng,j are p-dependent numerical coefficients. (This expansion is nothing but a

reorganized version of the double expansion (4.12).) Unlike in the previous limits, we do

not include the two amplitudes M, 571 and Mg’z because in this case they contribute at the

same order in 1/cp as the one-loop supergravity Mellin amplitude. Taking the flat space

limit of (4.18) we find that

. It ) A
Al(s,t) = T2 05 <C§GAgG + ] ( o1t CiAL + 0(55)) (4.19)
This expression can be compared with the type ITA scattering amplitude at fixed g5, which
is given by [59]
10 10 6 ((3) | om? 8
AHA = ASG 1+ fsstu — + 9s — + O(ﬁs) . (420)
32 96
Note that the £8 term only receives contributions from tree-level and one-loop, and it does
not have any other perturbative or non-perturbative corrections.
From comparing (4.20) and (4.19), we conclude that

ci 35 (92 \'/® 4

We can recover both the finite k£ and strong coupling 't Hooft limit expansions
from (4.18) by taking the pu — oo and g — 0 limits respectively, as we explain at the
7

end of section 3.2. Using the relations (3.45) and (3.46), we find that the ¢, term be-

5 3

comes the c}g term at finite k, and gives rise to both the c;l)\72 and 0;2/\% terms in the
strong coupling 't Hooft limit.
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4.2 Fixing the SUGRA coefficients

Our goal is now to fix the coefficients Al ., B! Bf- i and C’f ; in each expansion considered

i Pigo
above, purely using CFT data. We will lieginjwith the supergravity coefficients AlSG, BZSG,
EZSG, and CéG, which we fix by determining how the various Mellin amplitudes contribute
to the squared OPE coefficient )\%707155 with which the S operator appears in the § x S
OPE. As we will explain, this OPE coefficient is proportional to 1/cp, and this fact will
allow us to determine all AZSG, BlSG, EISG, and CéG exactly.

Our starting point is the expression (A.8) for )\%70’155 in terms of the Mellin amplitude
Mys, = & (M? 4+ M3 — M*) + (M + MP®) corresponding to the 15, channel in the S x S
OPE. For the reader’s convenience, we reproduce it here

1 [ t t—1Y\ ..
A 15, = —5 dt T2 (1 — 2) 2 () lim [(s — 1)Mus,(s, )] , (4.22)

—i00 2 s—1

and refer the reader to appendix A.2 for a derivation. As can be seen from (4.22), it is only
the pole as s — 1 in M5, that contributes to )\%0’153. Therefore local Mellin amplitudes
cannot contribute to )\%0’153, so the only contribution will come from the supergravity
exchange Mellin amplitude. Indeed, the supergravity exchange amplitude MgG(s,t) does
have a pole at s = 1 with a residue independent of ¢:

lim [(s - 1)Msg7l5s(s,t)] _ ! (4.23)

s—1 ; '
and thus Mgg in each of the expansions presented above contributes to )‘%,0,153 an amount

! dtT? <1 - ;) 12 (H> =272 (4.24)

2mi | i 2

equal to

Note that although we have not yet discussed Mellin amplitudes for loop corrections,
by suitably adding to them an appropriate multiple of Mgg we can always define them such
that they do not contribute to the v/U term, so that )\%’071 5, is purely fixed by the coefficient
of Mgg. Furthermore, because the three-point function of three stress tensor multiplets
is uniquely determined up to an overall coefficient [47], )\%707155 must be proportional to
the stress-tensor three-point function, which itself is proportional to 1/cp according to the
conformal Ward identity [96]. We hence determine that

cr ~
Agq = Bsg = Cig = ﬁA%,O,mS : Biq =0, (4.25)
AISG:BZSGZEéG:CéG:O, for [>1.

Our final step is to determine the relationship between )\%707158 and c}l. We can do
so by considering the free N' = 6 theory of four complex scalars and four 2-component
complex fermions, where the scalars ¢ (¢,) transform in the 4 (4) of SU(4). (This is the
same as the U(1); x U(1)_ ABJM theory in the limit ¥ — oo considered in the previous
section.) We write S in this case as

- oe
S = ¢"d — Lo (4.26)
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and then define S(Z, X) as in (2.1). We then perform Wick contractions with the propa-
_ 9%

gator (¢%(7)gp(0)) @ to find the 4-point function (2.3) with the crossing independent
coefficients
) _ u U U
Sfree(Ua V) - <1 U vV UV % \/U) ) (427)

so that by computing Sy5,(U, 1) and comparing to (A.5), we find that )\%’07155 = 4. This
free theory has 8 real scalars and 8 Majorana fermions, so ¢y = 16 according to (1.3).
Because the relationship between )\%707155 and c;l is fixed by the superconformal Ward
identity, we conclude that in general

64

)\%,0,155 =—. (4.28)
cr

Combining (4.28) with (4.25) we conclude that

32
1 1 1

Asq = Bsa =Csa = 3 (4.29)
which is the same coefficient that was found for the N/ = 8 case in [22]. This is the same
coefficient we would obtain if we decomposed the known A = 8 answer from [22] into
N = 6 language as we did in section 2.7.1. Indeed, the supergravity term does not depend
on k when written in terms of ¢p, because it is proportional to the effective 4d Newton

constant G4 o< 1/cr.

4.3 Constraints from supersymmetric localization

Let us now explore the constraints on the coefficients Aé,j’ le,j’
from the supersymmetric localization constraints of section 3. To do so, we can compute
the integrated constraints Iy [S?] in (3.24) and I, _[S] in (3.36) using the explicit Mellin

amplitudes for M, M}, and M} given in (2.50), (2.44), and (2.49), respectively. We have:

Dl l :
B; ;, and Cj; coming

L [Mig] = 12, I [Mig) = —n,
i 8 i 2
Iy [M3] = 3 I [M;] = §W2= (4.30)
. 288 o8
Ly [My] = 5, I [Mj] = §W2~

(For the details of the computation that gives (4.30), see appendix F'.)

Plugging (4.30) into (3.25) and (3.37) and using egs. (3.41), (3.43), and (3.44), we can
obtain the following results. First, without using the constraints from the flat space limit
or the constraints (4.25) coming from the superconformal block expansion, the supersym-
metric localization constraints (3.25) and (3.37) reproduce the coefficients in the first line
of (4.25). This is a stringent consistency check on the accuracy of our computations.

Second, using the constraints (4.25) coming from the superconformal block expansion
as an input, the supersymmetric localization constraints allow us to fix the coefficients at
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the next two orders in each of the expansions (4.6), (4.12), and (4.18). The result is
L 2240

; . _ 3 _ A4
ﬁnlte kf A4—W, A —A —0,
94v/2((3 105¢(3 ~ 4480/ 2
't Hooft: Bgz—@, Bi‘: o ), 32247
o 2/275 373

. 5T623/33i¢(3) ., 25280

finite u: C3= W’ 4= 33/4,23/4

<4v5ﬁ3u§+3CCﬁu‘g),

These equations agree with the constraints from the flat space limit, thus providing a very
non-trivial precision test of AdS/CFT.

Third, using both the constraints (4.25) as well as the constraints coming from the
flat space limit as input, the constraints from supersymmetric localization allow us to
conclude that

A3=A}=B}=B]=0. (4.32)

We can then plug these values back into (4.6), (4.12), and (4.18) to get the final
answers (1.2) as advertised in the Introduction.

5 Discussion

In this paper we used superconformal symmetry, the flat space limit, and most importantly
supersymmetric localization results for the mass deformed sphere free energy to compute
the R* correction to the stress tensor multiplet bottom component four point function
(SSSS) in NV =6 U(N); x U(N)_;, ABJM theory in the large N finite u = N/k° limit.
After taking the flat space limit we matched the known type ITA string theory S-matrix for
finite g5, which is the first check of AdS/CFT of this type for local operators. This finite
p result interpolates between the large IV finite k limit at 4 — oo and the large 't Hooft
coupling A ~ N/k limit at g — 0, which in the flat space limit are related to the S-matrix
of M-theory and weakly coupled type IIA string theory, respectively.

There were several technical innovations in this work relative to similar studies of
N =8 ABJM theory in [24] and N/ = 4 SYM in [21], which all stem from the fact that
our theory is not maximally supersymmetric like these other theories. One implication is
that the stress tensor multiplet is %-BPS, not %-BPS as in the other cases, so the Ward
identities that we derived for various four point functions in this multiplet are the first such
derivation for operators annihilated by less than half the supercharges. Another novelty
of this calculation was that demanding bulk locality, i.e. that higher derivative corrections
to supergravity correspond to polynomial Mellin amplitudes, in stress tensor correlators
other than (SSSS) gave additional constraints, unlike the maximally supersymmetric cases
were only (SSSS) gave such constraints. Finally, in the flat space limit, stress tensor
multiplet correlators in holographic theories are dual to supergraviton multiplet amplitudes
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in one more dimension. For maximally supersymmetric supergravity there is just one such
amplitude supermultiplet, but for our sub-maximal case two amplitudes exist, which is
related to the fact that we found an extra subleading term in the large N expansion of
(SSSS) relative to the analogous expressions in N/ =8 ABJM and N/ =4 SYM.

A crucial ingredient in our finite g5 check of AdS/CFT was the conjecture that the all

orders in large N localization expression for derivatives d, , F |mi:0 and 92, N 02 F ‘miz()

of the mass deformed sphere partition function F(m4.) in [67] only receive non-perturbative
corrections of form e~V N/* and e~ VVE, When m4 = 0, these corrections can be interpreted
as instanton effects in string theory, and it was proven in [68, 88-94] that for F'(0) they do
take the form mentioned above. Since a small mass deformation changes the geometry only
slightly, we expect that for sufficiently small masses these instanton effects have the same
N and k scaling as for m+ = 0. It would be interesting to find a more rigorous justification
of this fact in the future.

Looking ahead, there are more localization constraints that can be used to fix (SSS.S).
As discussed in section 3, the A" = 6 ABJM free energy can be computed using localization
as a function of not only the two masses m4 considered in this work, but also of a third
mass m. The reason why there are three mass parameters is that, as an N' = 2 SCFT,
any N' = 6 SCFT has SU(2) x SU(2) x U(1) flavor symmetry, and the Cartan of the
flavor symmetry algebra is three-dimensional. In addition to the three mass parameters,
one can also consider placing the theory on a squashed sphere parameterized by squashing
parameter b [79] (with b = 1 corresponding to the round case). There are then seven
potentially independent combinations of four derivatives of these parameters that can be
related to integrated 4-point functions of the stress tensor multiplet:

O, F, 04, 00 F, OF, 0j05.F, 03F, 0, 05F, O;0LF, (5.1)
all evaluated at my = m = 0 and b = 1. Only the first two were considered in this work. In
section 2, we showed that there are seven polynomial Mellin amplitudes of maximal degree
six,?* as well as the supergravity Mellin amplitude that is already fixed by the conformal
Ward identity. This means that we could potentially use localization to fix the coefficients
of all these Mellin amplitudes, which would thus allow us to determine the D*R* term
in the large N finite p limit, that could be checked in the flat space limit against the
known [97] finite g5 term in the type ITA S-matrix. These are the highest order terms we
would expect to be able to fix with N' = 6 supersymmetry.

For N' = 8 ABJM theory, the U(1) flavor symmetry combines with SU(4)g to form
the larger R-symmetry SO(8) g, so the dependence on m is now related to that on m4. As
discussed in [24], there are only two quartic Casimir invariants for SO(8), so only the first
four constraints in (5.1) would be linearly independent. On the other hand, for N" = 8 there
are only three polynomial Mellin amplitudes of maximal degree 7, so we could fix the tree
level DSR?* term, which is the highest order term that is protected by supersymmetry. In
fact, there is only one additional Mellin amplitude at maximal degree 8, so four constraints
would seem sufficient to fix tree level D8R?, but this term is not expected to be fixed by

24 As shown in table 3, we have one degree 3, one degree 4, two degree 5, and three degree 6.
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supersymmetry, so it is likely that one of these constraints becomes redundant for N’ = 8
ABJM when we take the large N limit.

To go beyond these protected coefficients, we need a more general method such as
the numerical conformal bootstrap. Our computation of the N' = 6 Ward identities for
(SSSS) opens the door to a numerical bootstrap study of N/ = 6 ABJM theory, which
would generalize the N' = 8 studies of [49, 81, 86]. In the N' = 8 case, the bootstrap bounds
were found to be conjecturally saturated by CFT data in ABJM theory, so that all low-
lying CFT data, both protected and unprotected, could be read off up to numerical error.
If a similar thing occurs for ' = 6 ABJM theory, then we can use this unprotected CFT
data to extend the derivation in this work to higher order, and perhaps even interpolate
between M-theory at finite k and type ITA string theory at weak and strong coupling in
the 't Hooft limit of ABJM theory.
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A Useful details on the conformal block expansion

A.1 Derivation of the SU(4) invariants

The SU(4) invariants presented in (2.8) can be derived as follows. The Tr(X;) are eigen-
functions of the SU(4) quadratic Casimir Cy acting on X; and X9, namely

CoTr(X;) = crTrR(X:) (A1)
where
15
CT(X;) = Z(T([t“, [t X1]], X2, X3, X4) + T(X7, [t%, [t*, X2]], X2, X3, X4)
a=1 (A.2)
+ 27 ([t*, X4, [t*, X2, X3,X4)> .
Here, t*, a = 1,...,15, are the (hermitian traceless) SU(4) generators. In the normalization

where tr(t*t?) = ‘%b, the eigenvalues cp are
6120, 015:4, 020/:6, 64526528, 684:10. (A?))

In the basis given in (2.3), the tensor structures Tr(X;) obeying (A.1) are then those given
in (2.8). (See also eq. (B.25) of [47].)
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In terms of 8%, the functions of (U, V') corresponding to the various representations are

31:51+;—0(252+253—54)+%(35+36),
1

Si5, = = (-8*+8°) + % (8° -89,

| = ool

Sis5, == (SP+8* -8 + % (8°+5%,
(A4)

1
820/ = ﬂ (82 + 83 - 284) 5

1
S45@E = 8 (32 - 53) )
Sga = % (8% + 8% +25%) .

A.2 Extracting OPE coefficients

We will be interested in extracting?® two OPE coefficients of protected (1/3-BPS) scalar
operators in the S x S OPE: the OPE coeflicient of an operator with A = 1 in the 154
irrep of SU(4) (this is the same as the external operator S,”), and that of an operator with
A = 2 in the 84. In the theories of interest to us, both of these operators are the lowest
dimension operators in their corresponding R-symmetry channels.

Let us start with /\%’0,153, and let us take U — 0 while setting V' = 1. In this limit,
G10(U, V) ~ VU /4, so we must have

)\2
Sis,(U,1) = %th _ (A.5)

Thus, in order to extract )\%’07155, all we need to do is extract the coefficient of /U in the
small U expansion of Sis,(U,1). Note that the disconnected piece Sgisc15,(U,1) = O(U)
in this limit, so the /U term in the small U expansion of Sys, (U, 1) must come from a
pole at s = 1 in the Mellin amplitude Mis, (s, t) corresponding to S1s, (U, V'), namely
Lo 3 N 6

M15556(M + M —M)+§(M + M) (A.6)
(see (A.4)). Performing the s integral in (2.10) and picking up the residue at s = 1,
we obtain

Sis. (U1 = YU [ gyr2 <1 _ ;) T2 <H> Jim [(s _ 1)M15S(s,t)] e (AT

87/ —ico 2 s—1

where the integration contour can be chosen such that %t < 2. Comparing with (A.5),
we have

1 [P t t—1Y\ .
/\%,0,155 = —2/ dt T2 (1 - 2> r? <2> lim {(s - 1)M15s(s,t)] . (A.8)

1 ) _ico s—1

#5See [22, 98] for similar calculations in A = 8 SCFTs.
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Next, let us consider extracting )\%70784 by considering Sg4(U, 1) in the limit U — 0.
Because G2(U,1) = & + -+ in this limit, we have

)\2
Sga(U,1) = 22847 4 (A.9)

16
So, in this case, we should evaluate the coefficient multiplying U in the small U ex-
pansion of Sga(U, 1). This coefficient receives contributions from the disconnected piece,
Sise,84(U, V) = (U + U/V')/16, which gives

U
Saise,84(U, 1) = 3 (A.10)

as well as from the connected piece from the s = 2 pole in the Mellin integral. The Gamma
functions in the definition (2.10) of the Mellin transform have a double pole at s = 2, so

1
Msa = 1 (M? + M3+ 2M*) (A.11)
must vanish at least linearly as s — 2. Combining the contribution of this pole with (A.10),
we have

I T t\ o (1) . Mza(s,t)
=U|-+ — - = - e A.12
Ss4(U, 1) U[S + 5 atT <1 2> r <2> lim + ( )

The integration contour here must be such that Rt is smaller than the minimum between
2 and the pole in t of Mgy4(s,t) with the smallest real part, and such that 2 — Rt is smaller
than the minimum between 2 and the pole in u of Mgy4(s,t) with the smallest real part.
Such a condition is obeyed by 0 < Rt < 2 for polynomial Mgy(s,t), but it is tricky to
impose it when Mgy(s,t) has both a pole at ¢ = 1 and a pole at u = 1, as is the case for the
SUGRA amplitude. In the case that both of these poles are present, let us use 0 < Rt < 1.
Because if we closed the ¢ contour on the right we would pick up both the pole at t = 1
and that at u = 1, we should subtract by hand the contribution from the pole at u = 1.
Thus, the correct formula is

(u — 1)Mg4(8, t)

1
Ssa(U,1) =U [8 + 72 lim lim

- " (A.13)
1 100 " ; M . '
+ o0 arr? (1 Y2 (L) gy Meals:0)]
21 ) o 2 2)552 s5—2
Comparing with (A.9), we extract
— 1) M, t
A3 oga =2+ 167% lim lim (u—1)Mga(s, )
H S oy (A.14)
8i [ . t [ |
+= dtT? (1— - )12 = hmM,
T J—ico 2 2)s—»2 s§—2

with the ¢ contour obeying 0 < Rt < 1.
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B Discrete symmetries of N' = 6 theories

Both N' = 6 SCFTs and flat space scattering amplitudes may posses various discrete
symmetries that can be used to impose selection rules. The symmetries we will focus on
here are parity P, time reversal combined with charge conjugation, CT, and a discrete
R-symmetry we will call Z. Even for theories that break these symmetries, organizing the
SCFET correlators and scattering amplitudes in terms of them will prove very useful.

B.1 Review of spinor helicity formalism
For massless fermions, the Dirac equation for the wavefunction of 4-component spinors
implies

$.(p)=0,  Tur(p)p=0. (B.1)

Here + indicated the helicity h = :t% of the wavefunction. If we take our Dirac matrices
to be in the Weyl basis, namely

01 . 0 o -10

0 7 5

— = . = B.2
i (10)’ i (—&0)’ i (0 1)’ (B-2)

where 1 stands for the 2 x 2 identity matrix and o?, i = 1,2, 3 are the standard Pauli matri-
ces, then the top two components of the Dirac spinor transform in the (1/2,0) and bottom
two in the (0,1/2) of SO(3,1). For a given momentum p* = (E, E sin 6 cos ¢, E sin f sin ¢,
E cosf), we can then define the angle and square brackets as

[% 0
d: °F COSQ, _ °F Sln§ .
p)* =V <sm 0o | pla=vV2E( Do | -

[p\a—\/ﬁ< cosg >’ <P|a_\/@< sing )

sin ge_i‘b — cos ge_i‘p

_ (Pl (0
U+(p) - ( 0 > ’ U*(p) - <‘p>a> ’ (B_4)

arm) = (Il 0) . 7= (0 (ola)

such that

are solutions to (B.1).
Let us consider the scattering of massless particles bii for i = 1,2,.... We define the
scattering amplitude to be:

ApEbE . J6W (1 +p2 +...) = (aF (p1)az (p2) ... (B.5)

where a;"(p) is the annihilation operator of the i*" particle, annihilating a particle of helicity
4+ and momentum p;.
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B.2 Discrete symmetries for scattering amplitudes

We will begin by discussing the discrete symmetries of the 4d amplitudes, motivated by
two reasons: 1) given that in N' = 6 supergravity, we have two CPT conjugate multiplets,
we should understand how CPT relates the scattering amplitudes; and 2) we can use
discrete symmetries in order to classify the structures that appear in the super-amplitude.
As mentioned above, we will discuss parity P, the product CT, as well as a discrete R-
symmetry we denote by Z.

Under parity P, we reverse the spatial components of the momentum of a particle,
while leaving the spin unchanged. Flipping the direction of p’ is equivalent to sending
0 —m—6and ¢ - ¢+ 7 in (B.3). Under this transformation, the spinors in the first line
of (B.3) get interchanged and so do the spinors on the bottom line. Thus, parity acts?® as
either P, or P

Paalp)* = Pla,  Ppla=ID)*,  [PI"Paa=®la,  ®laP*=[p*.  (B.6)

Hence the effect of parity is to swap all angle brackets with square brackets and vice versa,
while leaving all coefficients unchanged. For instance, P(c(12)) = ¢[12] for any constant c.

The second discrete symmetry we consider is C7. Under CT, the spatial components
of momentum also flip sign, just like for P, but in addition C7 also implements complex
conjugation. Thus, from (B.3), we see that CT acts as either (CT),; or (CT)® as follows:

CTulp) = wlay €Tl =[p",  PlalCT)s = I0)’, PlI“CT)™ = |pls.
(B.7)

Thus, the effect of CT is to flip all the brackets and perform complex conjugation on the
coefficients — for instance CT (¢(12)) = ¢*(21) for any constant c.

The combined transformation of the two symmetries above, CP7T, is a symmetry
of all unitary QFTs. On amplitudes, it acts by exchanging angle brackets with flipped
square brackets and vice versa, and it complex conjugates the coefficients. For instance,
CPT (c(12)) = ¢*[21]. Using CPT, we can relate a given amplitude to the amplitude of
the CPT conjugate particles. For particles by, by, etc. with CPT conjugate particles by, bo,
etc., we have

CPT (A[pEbE..]) = Al b .. ]. (B.8)

Because CT does not change the helicity of the particles, it relates a given amplitude
to itself. Thus, we can classify the various scattering amplitudes based on whether they
are CT-even or CT-odd. (In a CT-preserving theory, such as pure N' = 6 supergravity, all

26In terms of the four-component spinors (B.4), the action of parity takes the usual form:

01
vi(p’, —p) =YV v (0, p) = <1 0) v+ (p”, P).
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amplitudes should be CT-even. But the CT symmetry may be broken by higher derivative
corrections.) For instance, if we consider the amplitude

AlRThTa"a™] = [12]*(34)% f3(s, 1), (B.9)
we see that
CT (AlhthTa~a™]) = [12]%(34)* £ (s, ) (B.10)

and so the amplitude (B.9) is CT even / odd if f3(s,t) is real / pure imaginary. From this
we conclude that A[®PPP| can be thought of as containing two distinct superstructures,
one of which is CT even and the other C7 odd. Similar manipulations show that A[®PP V|
also contains a CT even and C7 odd structure, corresponding to fa(s,t) purely real and
purely imaginary respectively.

On the other hand, one can show that A[®®WY] is always CT even, even in a theory
in which CT is not a symmetry. We can see this by considering the graviton scattering
amplitude:

ARTRTh R = [1214(34) fi(s, 1), Al h™hTRT) = (12)434) f1(s,t),  (B.11)

where A[h~h~hTh™] is related to A[hTh*th~h~] under crossing both 1 +» 3 and 2 + 4.
But the two amplitudes in (B.11) are also related by CPT,

CPT (A[hthTh™h7]) = A[h"h™ T RY] = (12)[34) £ (s, 1) , (B.12)

and from comparing this expression with (B.11) we conclude that f;(s,t) must be real.
Then

CT (A[WThTh™h7]) = [12](34)* f (s,t) = A[hthTh™h7], (B.13)

and so A[hThTh~h~] is always CT-even. This relation extends to the full multiplet thus
showing that A[®PWYV] is CT-even.

Let us now consider all possible discrete R-symmetries of N' = 6 supergravity and
its higher derivative corrections. Before doing so, let us recall that, as discussed in the
main text, the various particles in the ® and ¥ multiplets transform under an SU(6)r R-
symmetry that is a symmetry of pure supergravity and of the higher derivative corrections
considered here. Under SU(6) g, the supercharges transform contravariantly

nt — M7, (B.14)

where M7 ; is a unitary matrix with determinant 1. The supergraviton fields A7, 1#?:,
g;EJ, ... transform covariantly, so that overall the superfields ® and ¥ are invariant.

To see what discrete R-symmetries might be possible, let us first focus on the pure
supergravity case and consider relaxing the condition that M7 ; has determinant 1. Instead,
let us consider a more general element of U(6). Without loss of generality let us consider
a transformation:

nt — efnt (B.15)
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in the center of U(6). We can also allow the superfields ® and ¥ to pick up an overall phase:
d— P, U P (B.16)

The supergravitons will then transform as:

ht — ent, at = ePat,

Wt = iyt Vs B

+ ia—2i0 + = iB—2i077

gt =gt g T, (B.17)
+ ia—6i0  + - iB—6i6 1, —

a” — e aT, h~ — eB=60p—

We cannot however choose «, 3, and 6 arbitrarily. The graviton and gauge fields are real,
and so we can only transform them by a factor of 1. This restricts us to the cases e’ = +i
or e = +1, as well as ¢’® = £1 and e’ = +1. The case ¥ = +1 is already in SU(6), so let
us focus on the possibility e = +i. To determine ¢* and €%’ let us make use of the CT-
invariance of supergravity in order to write the scattering amplitudes for three gravitons as

[12]°
[13]2[23]> 7

(12)°

AWthTh =g m,

Al h ht] =g (B.18)
with real g. Since the right-hand sides of these equations are invariant under the transfor-
mation considered above, we deduce that ¢’ = 1 and e = —1.

We can now check that the transformation:
Z:0 -, U — -0, nt — in! (B.19)

is in fact a symmetry of pure supergravity, as is the symmetry —Z which sends n! — —in!.
Under both Z and —Z the gauge fields flip sign

Z: at - —aF, gt = —g7 (B.20)

while the gravitons A* and the graviscalar ¢ are left invariant. The fermions will transform
with additional factors of i:

Z: Ut o 0T F* & FiFT, YT = +ixT . (B.21)

The full symmetry group is now (Z4 x SU(6))/Za, the subgroup of U(6) of matrices with
determinant +1.

Note however that only fermion bilinears are physical. As a result, the transformation
n' — —n! acts trivially on all amplitudes. After quotienting the SU(6) by this Zy symmetry,
we find that the symmetry group acting on the amplitudes is Zs x (SU(6)/Zs), with 22 = I.

While Z is a discrete R-symmetry of pure supergravity, it may or may not be a
symmetry of the corrections to supergravity, so we can classify the various amplitude
structures as Z-even or Z-odd. Since 5(12)(Q) contains twelve n’s, it is even under Z, and
so we conclude that A[@PV V| and A[PPPP]| are even under Z and that A[PPPY] is odd.
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Amplitude | CT | Z | First counterterm | # derivatives
A[®PPD], AYTYV] | £+ | + F2R? 6

A[@PTVY] | + | + R? 8
A[@DDV], A[YYUP] | + | — D3FR3 15

Table 7. Four particle scattering in N’ = 6 supergravity. The dimension is the mass dimension
of the lowest bulk counterterm contributing to the amplitude, and C7 and Z are the discrete
symmetries defined in the main text.

We can alternatively deduce this from (2.23), since A[@PP Y] contains an amplitude with
an odd number of gauge fields, while the other two amplitudes contain an even number.

We can summarize these results in table 7. In total, the scattering of four supergravi-
tons is fixed up to five arbitrary functions of s and t. To determine the Z and C7T even
part of the amplitude there are two functions, while for each of the other combinations
there is a single function. Because the only superamplitude contribution to scalar scat-
tering, A[®@PWYV], is automatically Z and C7T invariant, it is impossible to know whether
these symmetries are present or not in the full theory just by considering scalar scattering,
without any additional information.

B.3 Discrete symmetries for N' = 6 SCFTs

Analogous P, CT, and Z symmetries exist for N' = 6 superconformal theories, with CTP
always being a symmetry. Individually, P, CT, and Z may not be symmetries of a given
theory, as we will see, but they are symmetries of the free theory (or more generally of
the U(1); x U(1)_r ABJM theory for all k) and of the leading order large ¢ holographic
correlators.

Under P and CT, the A = 1 operators S are even, while the A = 2 operators P are
odd. Just as for amplitudes, we expect that three out of the five superconformal structures
given in table 5 are P or CT even, while the other two are P and CT odd.

The Z R-symmetry is trickier in the case of SCF'Ts than for scattering amplitudes, be-
cause while in the case of scattering amplitudes it commutes with the SU(6) g R-symmetry,
for SCFTs it does not commute with the SO(6) g R-symmetry. Instead, it extends SO(6) g
to O(6)g. Let us define the Z generator so that it corresponds to the O(6) matrix

z! = diag{-1,-1,-1,1,1,1} (B.22)

that is not part of SO(6). The group O(6) has two 6-dimensional representations: the
vector representation 67 under which a vector v! transforms as v/ — Z/¢7, and the
pseudovector representation under which v! — —2Z!/v/. By convention, we take the
supercharges to transform as the 6%.27 The representations of O(6) appearing in the stress
tensor multiplet are all antisymmetric products of the 6, because we can start with the
stress-energy tensor, which is a singlet, and obtain all the other operators by acting with

2"We could’ve considered the supercharges to transform as a pseudovector, but this choice is related to
the first choice by an SO(6) rotation.
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Operators | TH | p** | JH Fe S, P | x| g*
O(6) 1t | 6+ | 15T 20 15~ |6~ | 1
SO(6) 1 6 | 15 ([10+10| 15 | 6 | 1

Table 8. O(6) and SO(6) assignments for operators in the stress-tensor multiplet.

anti-symmetric products of the superconformal generators. Thus: the rank-0 tensor is the
singlet 17 that is invariant under Z; the rank-1 anti-symmetric tensor is the 6; the rank-2
anti-symmetric tensor is the adjoint representation 15%; the rank-3 anti-symmetric tensor,
the 20 is irreducible under O(6) but would’ve been reducible to 10 + 10 under SO(6);
the rank-4 anti-symmetric tensor is the 15~ and can also be represented as a rank-2 anti-
symmetric tensor with the same SO(6) transformation properties as the 15" except for
an additional minus sign under Z; the rank-5 anti-symmetric tensor is the 6~ and can
also be represented as a pseudovector; and lastly, the rank-6 anti-symmetric tensor 1~
is invariant under SO(6) but it gets multiplied by (—1) under Z. See table 8 for a list
of conformal primaries of the stress tensor multiplet and the O(6) representations under
which they transform. In particular, note that the superconformal primary S is an O(6)
antisymmetric rank-2 pseudotensor.

To gain intuition about the Z transformation, let us describe how it acts in the free
N = 6 theory of 4 complex fields C* and 4 complex two-component fermions ¥® where it is
actually a symmetry. Both ¢® and ¢ transform in the 4 of SU(4)g, and their conjugates
gbl; and @Z)(Tl transform in the 4 of SU(4)g. In this case, one can show that the Z symmetry
acts as charge conjugation

v =ol, ol =0¢", (B.23)

and similarly on ¥* and 1/12. Indeed, from ¢* and %, we can construct the various operators
in the stress-tensor multiplet. For example,

1
Sa" = 616" — J0aslo”,

1
Pot =yl — Johwlye,

7= =i (010u0" — (0ul)e" ) + vl (B.24)
1
(I1)a = =i (940u6" = (Bu0h) ") +wlnrs? — Johulnre,
etc.

It is easy to see that under (B.23), j# acquires a —1 factor, as implied by table 8. To
see whether S,°, P,°, (J“)ab transform in the expected way, we should represent these
operators as rank-two anti-symmetric tensors of SO(6). This is done by defining

s = isbelie’ (B.25)
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and similarly for P and J#, with the C' matrices given in (D.1) and C being their complex
conjugates. (The C' and C matrices are the Clebsch-Gordan coefficients for the 6 of SU(4)
in the products 4 ® 4 and 4 ® 4, respectively.) One can check that (B.23) implies

SIJ N _ZIKZJLSKL
Pt — K zIEpRL (B.26)

(J,LL)IJ N ZIKZ{JL(J;L)KL7

as expected from table 8. One can make similar checks for the other operators in the stress
tensor multiplet.

One can ask whether Z is a symmetry in ABJM theory as well, where the scalars ¢* and
fermions ¢ are bifundamental fields transforming in the (N, N) of the U(N)g x U(N)_g
gauge symmetry. If the two gauge fields corresponding to the U(JV) factors are Ay, and Ay,
the action is invariant under Z provided that Ay, — Ao, change sign under Z. Inthe N =1
case, this can be accomplished by requiring Ay, — —Ay, and Az, — —As, under Z, and
one can check that the action (including the Chern-Simons terms) is invariant under this
transformation. Thus, Z is a symmetry of the U(1)x x U(1)_x ABJM theory. Such a trans-
formation of Ay, and Ay, does not leave the action invariant in the non-Abelian case due to
the cubic terms in the Chern-Simons action. In the non-Abelian case, however, one can con-
sider sending A1, <+ Ag, under Z, which also has the effect of flipping the sign of A1, —Az,,.
Under this transformation, the action stays unchanged with the only exception that k— —k.
Thus, the Z transformation is not a symmetry of the U(N)i x U(N)_j for N >1.

Note that CT and P are not separately symmetries either of ABJM theory with k > 1,
because they also send £k — —k. However, the combination PZ where Z is assumed to
interchange the two gauge fields in addition to acting as in (B.23) becomes a new parity
symmetry of ABJM theory [39]. To summarize, ABJM theory with k& = 1 preserves CT,
P, Z separately, while ABJM theory with k£ > 1 preserves only CPT and PZ (or CT 2).

Having discussed CT, P, and Z, let us now argue that the 4-point superconformal
invariants (i.e. invariants under OSp(6|4)) can be classified as even or odd under P (or
CT) and Z. This fact may not be immediately obvious, because it may happen that the
superconformal Ward identities mix together Z-odd with Z-even structures. The argument
that this mixing does not occur is as follows. As we have seen, the stress tensor multiplet
naturally forms a representation of (Zg x Zgy) x OSp(6]4), that is, the superconformal group
extended by the action of parity P (or CT) and also Z. As we shall see, this means that
we can classify correlation functions of the stress tensor multiplet by their P (or CT) and
Z transformation properties. It is a consequence of the following proposition:

Proposition 1. Let H be a group, G a normal subgroup of H, and a be a representation
of H. Then the space V of G-invariant maps from a — 1 forms a representation of H/G.

Proof. The space of functionals from F : a — 1 naturally forms a representation of H.
Since V is the space of G-invariant maps, a functional V' is in V if and only if

gV =V forall geG. (B.27)
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Next we prove that for any h € H, then hV € V. To do so, let us check that AV
satisfies (B.27):
g(hV) = (hh~HghV = h(h " gh)V = hg'V = RV, (B.28)

where we have used the fact that G is a normal subgroup of H to write h~'gh = ¢’ for some
g € G. Hence V is a representation of H for which G acts trivially, and so we conclude
that V is a representation of H/G. O

To apply this to OSp(6[4), take H to be the group (Za x Z2) x OSp(6]4) group. We can
think of the stress tensor multiplet as a superfield 8% (z*, %) which forms a representation
t of the group H. The OSp(6]4) invariant structures in

<5ab11 (=4, e?lf‘l)sagz (25,0522) ... S% (x4, 00" n)>

are then maps from t®" — 1, and so by proposition 1 can be classified by their represen-
tations under H/G = Zg X Zs.

Analogous to the amplitudes case, the correlator (SSSS) is always invariant under P,
CT, and Z separately. This is also true for (SSPP) (and also (PPPP)), so if we are only
interested in the Ward identities relating these correlators, we can restrict to structures
that are even under all of these transformations without loss of generality. This also means
it is impossible to check whether a theory is P or Z invariant from just (SSSS) without
having more information about the theory. If, however, we had some information about
the spectrum of the theory, then we could potentially determine whether a theory is parity-
preserving or not based on the conformal block expansion of (SSSS). Without such extra
assumptions, in order to see whether a theory is invariant under P or Z, we would need
to see whether the P-odd or Z-odd part of a correlator such as (SSSJ#) vanishes. The
amplitudes calculation furthermore suggests that together (SSSS) and (SSSJ*) should
suffice to fix all four-point functions of the stress tensor multiplet operators.

C Relating A[®PTT] to (SSSS)

In this appendix, we shall explain how to relate the superamplitude A[®PY Y] to the large
s,t behaviour of the Mellin amplitudes in (SSSS). The calculation proceeds in two steps.
First we compute the amplitude A[papcpdrrard;;Pxr], where we have made explicit
the SU(6) indices on ¢ and ¢. We then relate ¢ and ¢ to the CFT operator S,%, requiring
us to convert the SU(6) structures to SO(6) structures.

To compute A[papcpdrrcHdr Prr), we must differentiate A[®® W] with respect to
the Grassmannian variables:

AlpaBcDPEFGHO DKL) = 32{‘ e 825“4[(1@\1@]
_ 0 9 19,4 1211
_877{"“87755 (Q)<34>2f1(8’t) (C.1)
6 4
_[12]2f1( a _ HZU??M;M
< > 1 77 _
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To simplify the process of differentiating 5(12)(62), we can use SU(6) invariance to expand

AlpapcpdErendridKr)

= €Apcp1i€EFGHKLE1(8,t) + €eapcprLeerauriFa(s,t) + eaperikecpauinFs(s,t).

(C.2)

for some functions Fj(s,t). We can then choose specific numbers for each index A through
L to isolate each structure, and hence to find that

Fi(s,t) = 25%u(4t —u) fi(s,t), Fy(s,t) = 25°t(du —t) fi(s,t) Fs(s,t) = —s’tufi(s,t).
(C.3)
Now we must relate A[¢ppod] to (SSSS). To do so, we can rewrite S,° as an antisym-
metric 6 X 6 matrix:
5 I-~J)
g1 = g oot (C.4)
where CZ, are SO(6) gamma matrices. Explicit expressions for these matrices are given in
appendix D. Up to normalization, we then find that
STy papoperBCDPI 4 §IASIBg (C.5)
flat space
This expression for S’/ breaks the SU(6) symmetry down to SO(6) due to the presence of
the 674 symbol. Applying this to the four-point function, we find that

(&0 §laJsy __ sum of contracted permutations of A[ppde|. (C.6)

flat space

We must now expand our final answer in terms of the SO(6) structures appearing in (2.3).
To do so we choose a series of polarization matrices (X;)% and then define

X1 = (x,)e,clic’ . (C.7)

Contracting both sides of (C.6) with matrices X7, on the left-hand side we find that

(ST (). STz )\ XTI XTI o (S (2, X)) -+ S (i, Xy))
1

=32 [51(U7V)A12A34+--'+56(U, V)Bl342] .
12734
(C.8)
We then Mellin transform and take the flat-space limit (2.13) to find that
<S’h'h(.fl)...SI4J4(54)>X111J1"'Xi4j4 SN 2N2 [Al(s,t)A12A34+'"+A6(S,t)31342]
flat space T19T3y
(C.9)

for some overall normalization constant A'. Computing the right-hand side of (C.6) is
more straightforward; we simply contract the X ZI’JZ matrices with the various permutations
of Alpppg]. By imposing (C.6) for many differents matrices (X;)% we can completely
determine A’(s,t) in terms of fi(s,t), and upon choosing a suitable value for A we can
reproduce (2.27).
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D Supersymmetric Ward identities

D.1 Stress tensor multiplet four-point functions

To describe the supersymmetric variations which relate operators in the stress tensor mul-
tiplet, it will be convenient to introduce index-free notation to encode the s0(6) ~ su(4)
representations which appear. We will use indices I, J, ... for the 6; and raised and lowered
a,b, ... indices for the 4 and 4 as in section 2. The gamma matrices Cgb and éhb convert
antisymmetric tensors of the 4 and 4 into the 6; a convenient basis for these matrices is:

Cy — 00’1 C. 0*0’3 C:iO'QO
"6y 0/ " \oy 0 ) 3 0 ioy )’

(D.1)
. 0 ’iO’Q . 0 IQ . *’L'O'Q 0
C - — 5 C = — 3 C - - . ’
1 Z(m 0) 5 Z(—bO) 6 Z(o m)
where o; are the Pauli matrices.
We can now describe operators in index-free notation as:
S@EX) = X9, F@Y)=Y%Fu(@), u(@2) =2, (D2)

with analogous notation for other operators in the stress tensor multiplet. To implement
tracelessness of S, we impose the condition X,* = 0, and similarly we impose that the
matrix Y% is symmetric. We can alternative think of the matrix X,° as an antisymmetric
tensor X7/ via the mapping

. —J]b

X1 = xaclie’ (D.3)
Similarly, the Z! can also be written as antisymmetric tensors Z, = C’ébZI and
—ab .
7" =0vz.

We can normalize our operators by defining their two-point functions, as we did for S
in (2.2):

(@ 20X En, 20)) = (20 22) 2

Lo
o= =B/ > 37 _ vyabys Z¢12
<F (Iljl,Y)F (1‘2,Y)>—Y YabTA y (D4)
12
R R Tr(X; X
(P(#1, X1) P, X3)) = (55412)
12

We can expand four point correlators as a sum over conformally invariant and so0(6)
invariant structures. As explained in section 2.6 we restrict to those structures which are
parity preserving and C invariant. For instance,

(S(@1, X1)S(Z2, X2) P(T3, X3) P(Z4, X4))
1

= —— |RNU, V) A12434 + R*(U, V) A13A04 + R*(U, V) A14As4
T12T34 (D.5)

+ RYU, V) Biags + R°(U,V)Biazs + RO (U, V) Biaa | ,
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where we define as in (2.4) the structures
Aij = tr(Xin) , Bz’jkl = tr(XinXle) + tr(XleXin) . (DG)
Similarly, for the fermionic correlators we can expand:

<S(517X1)S(f2,X2)Xa(f37Z3)X5(f47Z4)>

of
— 332 o [Tr(XlXQ)(Zg Zy)CH (23X Xy Z4)CP + (23X1X224)C371]
12434
(¢12i’>¢24¢12) [Tr(Xng)(Zg - Z4)CY2 4 (Z3 X1 X2 Z4)C + (ZaXleZ4)C3’2] :
9512%4

(S(#1, X1)8(Za, Xo) X (T3, Z3) FP (24, Y1)

. QIB
7
= xfm [Tr(X1X2Y4Z3)51 1L Tr(Xo X1 V3 Z5)E%Y + Tr(Xo Vi XT 74)E% 1]
1234
W [Tr(X1X2Y423)51 2 4 Tr(Xo X 1YaZ3)E%% + Tr(XoYu XT 75)E3 2]
1234

(S(Z1, X1)S(Z2, Xo) F(Z3, Z3) FP (24, Yy))

ity d d
= x%i:;fg‘l |:(6abcd(X1)ae)/leb(XQ)chéf )]:171 + (eabcd(Xl)aeYer(X2)ch1f )]:271:|
(¢123f24f12) [(Eabcd(Xl)ae}/leb(XQ) de)]_- + (Eabcd(Xl) Yer(Xg)chIfd)fQ’Q] ,
12734

<S(a:~’1,X1>S<fg,X2>Fﬁ<f3,?3)F“<f4,Y4)>

= ¢ [Tr(Xng)Tr(Y4Y3)Q1 1 Tr(Y,Y 3 X0 X1)G21

“7123734

+ Tr(Y,Y 3X2X1)G3 + Tr(Y4X2TY3X1)Q4’1}

(¢13¢24¢12)

[Tr(X1X2)Tr(Y4Y3)gL2 + Tr(Y1Y 3X2X1)G??
221513,

+ Tr(Y3Y 3X2X1)G3% + Tr(Yy XTI Y3X1)g4’2} : (D.7)

D.2 Ward identities

As discussed in section 2.6, to compute the supersymmetric Ward identities we need only
the action of the Poincaré supercharges Q! on the operators in the stress tensor multiplet.
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Using the index free notation of the prevoius section, these variations can be written as

5°(2)S(, X) = % [F@x -0+ @7 X))+ @ X 2),
54(2)FB(F,Y) = %eo‘ﬁP(f, Y- Z)+ 0PI (T, 2y Ty — 2y )
-~ %oﬁﬂa“S(f, Y- Z)
FBNE 2) = 3P PE 11 Fa— By Ta) + T 2 i),
+ éagﬁaw(f, 21 Zy—22- 7).

5*(2)P(%, X) = % (020" Fo(@, X - 2) + 0220  Fy(7, Z - X))

(D.8)

Here, §%(Z) represents the action of Z QT on the various operators, and o, are the
3d gamma matrices, which we can take to be the Pauli matrices. We have omitted the
supersymmetric variations of J, j, ¢, and T" as they are not needed in this work.

We will now give the Ward identities for two scalars and two fermions derived in
section 2.7. We will begin with (SSxx) and (SSxF"), which can be derived from §(SSSx).
We will omit those functions of the cross-ratios that are related to these under crossing.

The expressions for (SSxy) are:

L
2U

+U(-U+V -1)9yS*(U,V)+UVayS*(U,V)+U((U+V —1)0yS3 (U, V)

+2UV oy SHU,V)+2U (V —1)0yS*(U,V)—4USH (U, V) —3U S (U, V)-USS (U, V)

HU-VHD)SHUY) = (V-1)S (U, V) + (U -2V +29SHT,V) ) (D.9)

chlt= (UQGVSI(U, V)+4U?0y S (U, V) +4U%0yS* (U, V)+U(V U)oy S*(U,V)

c*= —% <U28U82(U,V)+U28US3(U,V)—U28V81(U,V)+U(U+V)8VSQ(U,V)

+UVOyS*(U,V)-UdyS*(U,V)+UVayS*(U,V)+UVoyS* (U, V)—~UdyS*(U,V)
+2UV Oy SHU,V)+2UV oy SHU,V)—2U0y SHU,V)-US* (U, V)+USHU,V)
+US(U,V)-USS(U,V)-VS*(U,V)+S*(U,V)-VS3(U,V)+S*(U,V)

2V SHU,V)+284(U, V)) , (D.10)

cl? = %(U((3V+1)8V31(U, V)4+3U0ySH (U, V) -y S*(U, V) —0yS*(U,V)

+(U-1)0yS3* (U, V) =20y S* (U, V) +V (0yS* (U, V) +40yS>(U,V)) +4U 8y S* (U, V))

+S*(U,V)+8*(U,V)+284(U, V), (D.11)
€* = — (U((V=1)0y S (UV)+U0S (U V)+ 0y S* (U, V) ~0uS*(U,V)+ Vo S(U,V)

+(U-1)0yS3* (U, V) —20yS* (U, V) +S*(U, V) +S3(U,V)+284(U,V)). (D.12)
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The expressions for (SSF) are:

EVl = —VouS2(U, V) — (V= 1)0ySHU, V) = VoS3 (U, V) — (U+V — 1)oyS*(U, V)
—2VoySHU, V) — 2(V — 1)oyS*(U, V) — 200y S° (U, V)

L (V- 1)52(U, V) n (V- 1)53(U, V)

(U =2V +28' (U, V) (D.13)

U

E¥ = —UOyS*(U,V) 4+ 0yS*(U, V) — 0yS*(U,V)) + S*(U, V) — S3(U, V), (D.14)

EV2 =U(=0yS* (U, V) + VoyS* (U, V) + (U — 1)0yS3* (U, V) — 20y SY (U, V)
+2VoySS (U, V) + U0y S* (U, V) 4+ S (U, V) + S3(U, V) + 284 (U, V), (D.15)

EX =UOyS*HU,V) - VoyS3(U,V) - UdyS3(U,V)). (D.16)

+S>(U, V) 4+ S5U, V)

Next we shall give expressions for (SSFF) and (SSFF), which can be computed from
0(SSSF). Unlike the previous correlators, we cannot completely fix these in terms of
(SSSS). We will instead also leave F1:1(U, V) and F21(U, V) undetermined. We then find
that the other components of (SSF'F) are:

F2L U V)= % (—4UV8VS4(U, V)—4UVaySHU,V)-2(U-2V)SHU,V)

FU—V)FY U, V) + FR(, V)) : (D.17)
1

FRUV) == (U(—4V8V84(U, V)—284 (U, V)+ FLHU,V)) + FRA(U, V)) . (D.18)

Furthermore, by imposing conservation on (SSS.J), we find that FL'(U,V) and
F2U(U, V) are constrained by the Ward identities:

FLlu,v) = %QUS(U +2V —2)2SYU, V) + 22UV (U 4 2V — 2)d2S8H (U, V)
+ UX(U 42V - 2)oySH(U, V)
+2U%(U +V = 1)(U 4 2V —2)oydySHU, V)
—2UX(U + 2V —2)03S*(U, V) — 2UV (U + 2V — 2)03S3(U, V)
+8UV(U =V + 1)03S8HU, V) = 2UV3(U 4 2V — 2)02.S83(U, V)
+8UVHU -V + 1)3ZSY U, V) + UQQU — V + 1)(U + 2V — 2)aySY(U,V)
— UV (U +2V — 2)02S*(U, V) + U(U + 2V — 2)ayS*(U, V)
—2U(U +V —1)(U + 2V — 2)0y0yS*(U, V)
— (U -1)UU + 2V —2)ayS3(U, V)
—2UV(U+V —1)(U 42V —2)oydyS3(U,V)
+4(U - 1)UU -V + 1)oySHU, V)
+8UV(U -V +1)(U+V = 1)9ydySHU, V)
— (U =2V +2)(U + 2V — 2)0yS*(U, V)
+ V(U +2V —2)(—3U + 2V — 2)0yS3(U, V)

+4V(U -V +1)(3U — 2V + 2)0ySHU, V) — 2U <U2 — U@V +1)
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(V= D))o F UV + (U0 -2V) + UMV +3)(V = 1)
oV - 1)3)6‘/}"1’1(& V) + (U2 —3U(V +1)+2(V — 1)2)8V]-“1’2(U, V)
+U(-U+V =10y FH2(U,V) — (U + 2V — 2)S*(U, V)
— (U +2V —-2)S3(U, V) +4U -V + )84 (U, V), (D.19)
1
FRAUV) =3 <2U38%}31(U, V) + 202VORSY (U, V) + U9y SH (U, V)
+ 203 (U 4+ V — 1)9ydySH(U, V) — U203 S*(U, V) — 2UVIES3 (U, V)
— AUV OESHU, V) — 2UV203.S3(U, V) — 4UV20ESH (U, V)
+UQU =V +1)oySYU, V) =20V ZS*(U, V) + UdyS*(U, V)
—2U(U +V — 1)oydyS*(U, V) — (U = 1)US*(U, V)
—2UV(U 4V —1)aydyS*(U, V) = 2(U — 1)UdyS*U, V)
—AUV(U +V —1)0yoyS* (U, V) — (U — 2V + 2)0yS%(U, V)
+ V(=3U +2V = 2)ayS3(U, V) + 2V (=3U + 2V — 2)aySY(U,V)
YU~V 4+ D)y FYNU, V) + 208y FL2(U, V) + (U(V +1)
— (V= D)) FHOV) + (U +V = Doy F AU, V) - SXU,V)
~ S}, V) — 284U, V)) . (D.20)
We also find the following expressions for (SSFF):

Ghl(U,v) = %( — 2020y S (U, V) — 4U?0y S5 (U, V) — 2UV oy S3 (U, V)
—2U(U+V —1)9yS*(U, V) —4UVySHU, V) — AU (V — 1)y SHU, V)
+2USHU, V) +2USS(U, V) +2(V — 1)S3(U, V) — 2(U — 2V 4+ 2)SY(U, V)
+ (U -V +1D)FNU, V) + FL2u, V)), (D.21)
G (U, v) = %<4U26US5(U, V) = 2UVayS*(U,V) —2U(V — 1)0yS*(U, V)

+2UVoyS3(U, V) +2U(U +V —1)oyS3(U, V) + 4UV oy SHU, V)

+4U(V = 1)oySY U, V) = 2US>(U, V) + 2USS (U, V) 4+ 2(V — 1)S*(U, V)

—2(V = 1)S3U, V) +2(U — 2V +2)SHU, V) — (U — 2V 4+ 2) FLY(U, V)

—2FL2(y, V)) : (D.22)
A %U(QV(@VSQ(U, V) + 0uS2(U, V) + 0y S (U, V) + 2(0y S*(U, V)

+ O SHU,VY)) + 284U, V) — FUU(U, V)) — F(u, V)) - 2(32((], V)

+ 83U, V) + 284U, V)) , (D.23)
G'A(U,V) = 20 (VoS (U V) + (U = )ouS*(U,V) = 2008 (U, V) + V(S (U, V)

+ oS3 (U, V) + 20y S®(U, V) + 200y S>(U, V)) +283(U, V) + 484U, V)

- FHl U, vy, (D.24)
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G (U, V)

gh* (U, V)

— 2U(8U$2(U, V) + VayS3(U,V) + (U — 1)ayS3(U, V) — 20ySY U, V)
VY S (U, V) + 208y S (U, V)> 128U, V) — 28%(U, V) — 484U, V)

+ 275U, V) + FLYA (U, V), (D.25)
1

= (U(-QV(&VSZ(U, V) + VayS3U, V) + UdyS3 (U, V) + 20y S4(U, V)

284U, V) + FRLU, V) + FL(U, V)) ~ FL2u,v). (D.26)

Finally, in section 3.1 we need Ward identities relating (SSPP) to (SS55S). These
expressions can be derived by considering the supersymmetric variation 6(SSPx):

RY U, V)=

RA(U,V) =

RYU, V)=

V20283 (U, V) +2V202.S3(U, V) +4V292.84 (U, V)
V(=3U+2V —2)0yS*(U,V)
U
+2V(U+V =1)0ydyS3 (U, V) +2UV S} (U,V)+4V (U +V —1)dydy SHU, V)

+4UVOESH U, V)42V oy S5 (U, V) =2V oy SS (U, V)
V(U—-2V+2)0yS2(U,V) 4V(U-V+1)dySYU,V)
* U * U
—(V4+1) 0y S (U, V)~ (~U+V+1)yS* (U, V) —2(~U+V +1)9yS*(U,V)
(U—-2(V+1))SHU,V)
U

+2V(U4V —1)0ydyS*(U,V)+2UVIZS?(U, V) —

—UdySHU,V)

—2UySS(U,V)+SY U, V) —
N (V4+1)S3(U,V) N (V+1)S3(U,V) |
U U

~U%0ySH U, V) —2UVOES (U, V) —4UV 9} S° (U, V) —2U V203 SH (U, V)
—AUV20ESP(U, V) +2V202 8% (U, V) +2V20E S3 (U, V) +4V29E S (U, V)
—2UV(UA4V —1)0yoySH(U, V) 42UV IES*(U,V)4+2UV O3S (U, V)
+4UVOESH U, V) =2(U-1)UdyS* (U, V) —4UV (U+V —1)0ydy S>(U, V)
—2U 0SS (U, V)=V (3U -2V +2)0y S (U, V) — (V+1)0yS*(U, V)
+2V(U+V =100y S (U, V)= (~U+V +1)oyS*(U, V)

+2V(U+V =1)0ydyS3 (U, V)=2(~U+V +1)dyS*(U,V)

+4V(U+V =1)0yoy SY U, V) =2V (3U =2V + 1)y S* (U, V) -2V, S (U, V)
+V(U—2V+2)8VSQ(U,V) V(=3U+2V —2)0yS3(U,V)

U U

+4V(U—V+[1])8VS4(U,V) S US4 (V+1)S2(U,V)

U
N (V+1)53(U, V) (U—2(V+é))34(U7V) 7 (D.28)
1

= (2(—2U2—(U+3)V+U+2V2+1)avs5(U,V)+2U28U51<U,V)

+S5(UV)+S8%(U, V)

(D.27)

U2 UV —1)03SH U, V) +4U*(U+V —1)0E S5 (U, V)
(U2+U(4—3V)+2(V—1)2)aV82(U, V)
U

+ <4U2+U—2(V—1)2>8V81(U,V)—
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RO(U, V)=

2(U2+U—2(V—1)2)6V54(U,V)
U
<(U(2U—1)—4)V—2(U+ 1)(U—1)2—2v2) Oy S3(U,V)
U

+2UV (U +V —1)03SY U V) +2U (U+V —1) (U +V —1)0ydy SH(U, V)
—2U(2U+V—1)8§,82(U,V)—2U<V—(U—1)2>6[2]83(U, V)
—AU(U+V —1)0iSH (U, V) +4UV (U+V —1)9E S5 (U, V)
+2(U-1)UdyS* (U, V) +4U (U+V —1)20y0yv S* (U, V) +-2U 0y S5 (U, V)
—2VQU+V —1)92S*(U,V)+BU+V —-1)dyS*(U,V)
—2AU+V=1)QU+V 1) dyS*(U,V) -2V (V—(U-1)* )} S*(U,V)

UV -1)ayS3 (U, V)+2((U—1)2—V>(U+V—1)8U6V83(U,V)

—4V(U+V -1)0S* (U, V)+2(U+V —1)9yS*(U,V)

—4(U+V =1)20p0y SHU,V)+2(U+V —1)ayS* (U, V) +8°(U, V) =SS (U, V)
BU+V-1)S*(U,V) (U+V-1)S*(U,V) (3U+2V—2)84(U,V)>

U U U

(D.29)

—%<—2U 058N (U, V) —2V205 83 (U, V) -4V 20y SH (U, V) +2UV 03 SN (U, V)

H2U(UAV —1)0yovSHU, V) —2U (U +V)0ES*(U, V) —2UV i S* (U, V)

—4UVOESY U, V) +2U0y S8 (U, V) +(U -2V +2)dySY (U, V)

—2V(U+V)OES*(U,V)+(U+V +1)0yS*(U,V)

—2U+V=1)(U+V)0ydyS*(U,V)—(U -V —1)0yS*(U, V)

—2V(U+V -1)0ydyS3(U,V)=2(U -V —1)ayS* (U, V)

—4AV(U4V =1)0ydy SHU, V) =2V oy S5 (U, V)42V, S (U, V)
(U+V)(U=2V+2)8yS2(U,V) V(BU—-2V+2)dyS3(U,V)

U U

_4V(U—V+[1])8VS4(U,V) SOV S (UV)— (U+V+1U)82(U, V)
(V+1)S}(U, V) (~U+2V+2)S4U,V)
- = - = ) . (D.30)

E Mellin amplitudes

In this appendix we will first review how to convert supersymmetric Ward identities to

position space. We will then describe the Mellin space formulation for four point functions

of two scalars and two fermions, following [99].
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E.1 Ward identities in Mellin space

From the definition of the Mellin transform M?(s,t) of (SSSS) in (2.10), we can derive
the effect of multiplication by U™V™ and of differentiating with respect to U and V:

— S\ 2 £\ 2 uN 2
UPVEM (s,0) = Ms = 2m ¢+ 2m+ 2n) (1= 5) (1‘2>_m_n<1‘2)n’
8A’U'”‘M(snf)z(§+1—m) U~"M(s,t), (E.1)

~

DM (5,t) = (g - m)mV’mM(s,t) .

We can apply these rules to the position space Ward identities in (2.38), so that they
act on M(s,t).

E.2 Scalar-scalar-fermion-fermion

Next, we consider the Mellin transform of the 4-point function (SSy®)?) of dimension
one scalar operators S and dimension 2 5 spin half operators * and P with spinor indices

a,B = 1,2. We consider parity even four point functions, which contain two conformal
structures:

(S(E) (@) @0 @) — ~T g, 0,1y + Watad )y oy ()

129534 23”129534

The Mellin transforms Mfsww(s,t) of the connected parts of the correlators Hfoilfff can
then be defined by

Homl (U, V) = /Z (Zif; vivEIT [1-2]r [2- 2] 12 [1—;] rf1-

ss i dsdt s ou_ s t Ul AgSs
He )= [ it =g [1‘2]F2 -5 M s, (B3)
—100

u SS
§:| Ml ¢¢(S’t) )

where as previously we define u = 4—s—t. These expression were derive in [99] using AdS,
Witten diagram calculations, where the arguments of the Gamma functions were chosen
so that bulk contact Witten diagrams correspond to polynomial Mellin amplitudes.

Derivatives of U and V' and powers of U and V in position space act on Missw)(s, t)
according to the definition (E.3) as

@MZSSW( ( 11 m) meSW(s,t),
DI MISVY (5,1) = (%—m) VA (5,1,

2
. t 2
TV M5 (5,8) = MO (5—9m, t+-2m +2n) (1-%) (2_%) <_> ( _E) ’
m m —m—n

_— 2 £\ 2 2
UmV”Mfsww(s,t):Mfsww(s—Qm,t—i—Qm—i—Qn) (2—%) <1—2> <1—B) .
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F Evaluating I,_[S?] and I, [S?]

In this appendix, we will describe how to evaluate I, [S*(U, V)] and I,_[S*(U, V)] using
the Mellin transform M?(s,t) defined in (2.10). Each of these reduces to integrals over s
and ¢, which can be evaluated by summing all poles that appear in the contour defined
n (2.11). In some cases, the pole summation can be easily done using the Barnes lemma

—F(a + s)I'(b+ s)I'(c — s)['(d — s) = , (F.1)

I'(a+b+c+d)

—ico 2T

which holds for contours for which the poles of each Gamma function lie either to the left
or to the right of the contour.

F.1 I, _[SY]

We begin by writing I, _[S?] (3.36) as an integral over M*(s,t):

S’ P 40 0 1+r —2rcost9r)
/ T/ sin 1—1—7’2—27’0050

- / (‘Zj; <r2 [1 - f] 2|1 [ ;] I [SJF;J] M*(s,t) (F.2)

></ dr/ df sin 0 (1 42 2rcos9)s/2*1 T2St>,
0 0

The integral of » and 6 can now be explicitly performed to get

qa [ dsdt 2/
I+_[S]_/(47ri)2 e-ne oy &)

xF[l—;}F[S;I]F[1—;}F[tgl]F[S+;_2]F[3_;_t] .

The polynomial Mellin amplitudes M3 (s,t) (2.49) and Mj}(s,t) (2.44) both equal
(t —2)(2 — s —t) times a polynomial in s,t, so I, _[S!] can be evaluated for n = 3,4 by

(F.3)

writing the integrand as a sum of products of six Gamma functions in s, ¢t and then applying
the Barnes lemma twice. For example, for Mi(s,t) = (t —2)(2 — s — t) we compute

el
:/4‘?@ /2r{1 ;]F[%;]r[t;l]r[ﬂ
22

== (F.4)

where the last two equalities followed from the Barnes lemma. We can evaluate I, _[Si]
similarly to get the result in (4.30).
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The supergravity Mellin amplitude M{(s,t) (2.50) is also proportional to (t —2)(2 —
s —t), but the remaining function is not a polynomial in s,¢ and so we must work harder.
We compute

I [Si] = / (det ! [ﬁ(zl + )0 [1 - f] AT {1 - 8”

471)2 4725(2 + 5) 2 2
Sl | G e e el RO
- [y [ g - [57]]

= —-7°,

where in the first equality we used the Barnes lemma, and in the second equality we
summed over poles with the contour 0 < R(s) < 1. Note that this contour is different
from the range 0 < R(s) < 2 that would follow form (2.11), since the supergravity term
includes the stress tensor multiplet superblock, which contain extra poles that require a
more constraining contour [100].

F.2 I,..[SY

I;+[S7] can be easily evaluated using eq. (3.28). For the polynomial Mellin amplitudes M
and M}, the first term in (3.28) vanishes, and in the second term we have

. M3 84 1
sl—% 8—2 - _ﬂ7

F.6
. M3zga 1 3t(t—2) (6)
lim — = —— — —.
s—2 §—2 5 56

For the supergravity term, the first term in (3.28) gives 87/3 and in the integrand of the
second term we have

i Mscisa _ (=20 ‘) T (5
s=2 s —2  8mt(t+2)L(1-1L) 16y/m(t—2)(t—4)r (1+ L)
th— 4¢3 — 1242 4 32t — 32
16t — ) (2 —4)

(F.7)

Using (3.28), we then obtain the results given in (4.30).
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