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1 Introduction and summary

Even though holographic correlators have been a subject of study since the early days of the

AdS/CFT correspondence [1–3] (see for example [4–12] for early work on four-point func-

tions), they are in many cases hard or even impossible to compute directly. For instance,

in the case of higher derivative contact interactions in string theory or M-theory, where

the full supersymmetric completion of the first correction to the supergravity action is not

completely known (see however [13–16]), one cannot even write down the full set of relevant

Witten diagrams. In the past few years, however, it has become clear that in certain cases

one can essentially ‘bootstrap’ the answer using various consistency conditions [17–25].

These consistency conditions include crossing symmetry, the analytic properties of the cor-

relators in Mellin space, and supersymmetry. In particular, for tree level Witten diagrams

with supergravity and/or higher derivative vertices in 2d [26–28], 3d [22–24], 4d [19–21],

5d [29], and 6d [18, 25] maximally supersymmetric theories, these consistency conditions

determine the Witten diagrams contributing to the 4-point functions1 of 1/2-BPS oper-

ators up to a finite number of coefficients. For low orders in the derivative expansion,

one can further determine these coefficients using other methods, such as supersymmetric

localization [31, 32] or the relation between the Mellin amplitudes and flat space scattering

amplitudes in 10d or 11d [33–38]. In particular, refs. [21, 23, 25] showed that the tree-level

Witten diagram corresponding to an R4 contact interaction, which is the first correction

to supergravity in both 10d and 11d, can be completely determined using either super-

symmetric localization or the flat space scattering amplitudes. The agreement between the

two methods of fixing the undetermined coefficients in this case provides a precision test

of AdS/CFT beyond supergravity.

1See also [30] for recent work on holographic five-point functions in the 4d N = 4 super-Yang-Mills

theory in the supergravity approximation.
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The goal of this work is to move away both from maximal supersymmetry and from

1/2-BPS multiplets and to study the stress tensor multiplet tree level Witten diagrams in

the 3d N = 6 U(N)k×U(N)−k gauge theory of Aharony, Bergman, Jafferis, and Maldacena

(ABJM theory) [39], at large N .2 The reason for pursuing this generalization is that it

offers the possibility of an unprecedented test of AdS/CFT at finite string coupling gs.

Indeed, if in ABJM theory we take N to be large and of the same order as k5, then the

holographic dual is a weakly curved AdS4 × CP3 background of type IIA string theory

with finite gs [39]. Using the consistency conditions mentioned above supplemented by

supersymmetric localization results, we will be able to fully determine the contribution of

the R4 contact diagrams to the four-point function of the lowest dimension operator in the

same super-multiplet as the stress tensor. The flat space limit of the Mellin amplitude then

reproduces precisely the R4 contribution to the four-point scattering of super-gravitons in

type IIA string theory as a function of gs. This function receives contributions from genus

zero and genus one string worldsheets [41]. The reason why such a finite gs test of AdS/CFT

was not available in the maximally supersymmetric cases is that in 3d and 6d the bulk dual

was an M-theory as opposed to string theory background, while in the 4d case, whose dual

is type IIB string theory on AdS5 × S5, the required supersymmetric localization result

in the limit of large N and finite gs ∝ g2
YM is hard to evaluate due to the contribution of

instantons in the localized S4 partition function [31, 42–45].

In more detail, in this work we consider the four-point function of the scalar supercon-

formal primary of the N = 6 stress tensor multiplet, which is a 1/3-BPS operator that can

be represented as a traceless tensor Sa
b, with a, b = 1, . . . , 4, transforming in the 15 of the

SU(4)R R-symmetry [46–48]. In addition to the large N , fixed N/k5 limit mentioned above

where ABJM theory is dual to type IIA string theory at finite gs, we will also consider the

M-theory limit where N is taken to infinity while k is kept fixed, as well as the ’t Hooft

strong coupling limit where N is taken to infinity while N/k is fixed and large and where

ABJM theory is dual to weakly coupled type IIA strings on AdS4 × CP3. The latter two

limits can be obtained from the first: for small values of N/k5, one recovers the weakly

coupled type IIA limit, while for large N/k5 one recovers the M-theory limit. In all these

limits, we focus on the first few tree-level Witten diagrams that compute the 〈SSSS〉 cor-

relator. Our results will be expressed in terms of the following Mellin amplitudes (whose

definition will be made precise in the next section):

MSG(s, t) : meromorphic Mellin amplitude with linear growth at large s, t

M3(s, t) : polynomial Mellin amplitude of degree 3

M4(s, t) : polynomial Mellin amplitude of degree 4

(1.1)

Each of these Mellin amplitudes gives rise to correlation functions that are crossing-

invariant and solve the superconformal Ward identities. The first one, MSG(s, t) corre-

sponds to the sum of the contact and exchange diagrams using supergravity vertices. The

other two correspond to six-derivative and eight-derivative interaction vertices, respectively.

2One could also consider the U(N)k × U(M)−k and N 6= M theory due to Aharony, Bergman, and

Jafferis [40], but we will not do so here.
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With these ingredients and the definitions µ ≡ N/k5 and λ ≈ N/k (see eq. (3.40) for

the precise definition), we find

M-theory : M(s, t) =
1

cT

32

π2
MSG(s, t)+

1

c
5
3
T

1120

3π3

(
6π

k2

)1/3

M4(s, t)+O
(
c−2
T

)
,

’t Hooft : M(s, t) =
1

cT

(
32

π2
MSG(s, t)+

3
√

2ζ(3)

4π5

[
35M4(s, t)−72M3(s, t)

]
λ−

3
2 +O(λ−

5
2 )

)

+
1

c2
T

(
4480
√

2

3π3
M4(s, t)λ

1
2 +O(λ0)

)
+O(c−3

T ) ,

fixed µ: M(s, t) =
1

cT

32

π2
MSG(s, t)+

1

c
7
4
T

(
−576 23/83

1
4 ζ(3)

π23/4µ3/8
M3(s, t)

+
2

3
8 280

33/4π23/4

(
4
√

2π3µ
1
8 +3ζ(3)µ−

3
8

)
M4(s, t)

)
+O

(
c−2
T

)
, (1.2)

where we expanded the Mellin amplitudes in 1/cT instead of 1/N , with cT being the theory-

dependent constant that appears in the two-point function of the canonically-normalized

stress tensor Tµν :

〈Tµν(~x)Tρσ(0)〉 =
cT
64

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2~x2
, Pµν ≡ ηµν∇2 − ∂µ∂ν .

(1.3)

(As shown in [49], cT is exactly calculable in ABJM theory using the supersymmetric

localization results of [50] and [51]. It behaves as cT ∝ k1/2N3/2 at large N .) The Mellin

amplitudes in (1.2) can then be related to the 4-point scattering amplitudes of super-

gravitons in 11d and 10d flat space using the relation proposed in [36]:

M-theory: A11 = A11
SG

[
1 + `611

1

3 · 27
stu+O(`911)

]
,

type IIA, small gs: A10 = A10
SG

[
1 + `6s

(
ζ(3)

32
stu+O(`10

s )

)
+ g2

s

(
`6s
π2

96
stu+O(`8s)

)
+O(g4

s)

]
,

type IIA, finite gs: A10 = A10
SG

[
1 + `6sstu

(
ζ(3)

32
+ g2

s

π2

96

)
+O(`8s)

]
,

(1.4)

whereA11
SG andA10

SG are the scattering amplitudes in 11d and 10d supergravity, respectively,

`11 is the 11d Planck length, `s is the 10d string length, and s, t, u = −s − t are the

Mandelstam invariants.

Eqs. (1.4) are the well-known formulas describing the scattering of massless states in

M-theory and string theory in the small momentum expansion. They have the following

structure. The leading term in each equation is the supergravity scattering amplitude,
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and it contains information about the polarization and the type of massless particles being

scattered. In each case, the corrections to the supergravity amplitude are captured by a

single function of s and t that can be expanded at small s and t. Besides the supergravity

terms, the only other terms written down in (1.4) are proportional to stu and correspond

to an R4 correction.3 The various supergravity and R4 terms in the three equations are not

independent. Indeed, if in the first equation, one makes the replacement `11 = `s(2πgs)
1/3,

then the supergravity term in the first equation matches the supergravity terms in the

other two, and the R4 term in the first equation matches the g2
sstu terms in the other two.

Consequently, the first term in the first equation of (1.2) is identical to the first term in

the second equation of (1.2) and the second term in the first equation of (1.2) is identical

to the first term on the second line of the second equation of (1.2).

The terms given in (1.2) are derived solely using supersymmetric localization [32, 50], as

was originally done in [24] for k = 1, 2 when the theory has enhancedN = 8 supersymmetry.

Supersymmetric localization can be used to compute the S3 free energy in the presence of

real mass deformations of Lagrangian theories with at least N = 2 supersymmetry. When

viewed as an N = 2 SCFT, ABJM theory has an SO(4)×U(1) flavor symmetry,4 and it can

be deformed by three real mass parameters corresponding to the Cartan of SO(4) ×U(1).

We will focus on two of the three masses, which we denote by m+ and m−. The S3 free

energy F (m+,m−) was computed to all orders in 1/N for any k ≤ N in [67] using the

Fermi gas formalism developed in [68]. The two independent choices of four derivatives
∂4F
∂m4
±

∣∣
m±=0

and ∂4F
∂m2

+∂m
2
−

∣∣
m±=0

can be related to integrated four-point functions of the stress

tensor multiplet, which can in turn be related to 〈SSSS〉 using Ward identities to fix all

the coefficients shown in (1.2). In the m± → 0 limit, the non-perturbative corrections to

F (m+,m−) are expected to take the form e−
√
Nk and e−

√
N/k, so this expansion also holds

to all order in the finite ’t Hooft coupling λ ∼ N/k and finite µ = N/k5 expansions, with

no non-perturbative in µ terms.

The rest of this paper is organized as follows. In section 2, we set up the computation

of the 〈SSSS〉 correlator in terms of tree-level Mellin amplitudes. In particular, we deter-

mine M3 and M4 using the consistency conditions mentioned above. Implementing these

constraints is much trickier than in the maximal SUSY, 1/2-BPS case, and we get guidance

from solving a similar problem for flat space scattering amplitudes. Section 3 contains a

3It would be interesting to study the next few terms not written down in (1.4) in future work. In

particular, in M-theory the next correction not written down in (1.4) is at order `911, and it comes from the

11d supergravity amplitude that can be found in [52, 53]. The term after that, at order `12
11, comes from

a D6R4 interaction, it is protected, and it can be related to the D6R4 term in the type IIA string theory

amplitude at order g4
s [54–56]. In the string theory case, all terms at order g0

s can be resummed into an

expression involving Gamma functions that can be found, for instance, in [57, 58]. Starting at order g2
s ,

the scattering amplitude contains both analytic and non-analytic terms that can be derived from the tree

level terms using unitarity [59]. While the type II string theory S-matrix is known to order g4
s for finite

`s [60, 61], the lowest few protected terms in the small `s expansion are also known to order g6
s [62]. For

work on the Mellin amplitudes corresponding to the non-analytic terms, see [63–65].
4The U(1) is a flavor symmetry whose current lies in the N = 6 stress tensor multiplet, and so exists

for all N = 6 SCFTs [66]. If the theory has N = 8 supersymmetry, then SO(6)R × U(1) is enhanced to

SO(8)R.
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derivation of the supersymmetric localization constraints in ABJM theory. In section 4,

we combine the localization constraints with the general setup developed in section 2. We

end with a discussion of our results in section 5. Many technical details are relegated to

the appendices.

2 The 〈SSSS〉 correlator at strong coupling

We will begin by discussing the 〈SSSS〉 four-point function at strong coupling. In any of

the strong coupling limits mentioned in the Introduction, the correlator 〈SSSS〉 can be

written in terms of tree-level and loop Witten diagrams, although in this paper we focus

only on the tree-level contributions. The leading tree-level contribution comes from super-

gravity exchange diagrams. These are corrected by higher derivative contact interactions,

suppressed by the ratio `p/L in 11d or `s/L in 10d, depending on the limit being taken.

Beyond the supergravity term, the tree-level Witten diagrams take a particularly simple

form in Mellin space: at each order in the perturbative expansion only a finite number of

Mellin amplitudes M i(s, t) contribute, each of which is polynomial in s, t. In this section

our task is to determine the first few such amplitudes, using the flat space limit, crossing

symmetry, the supersymmetric Ward identities, and locality.

2.1 Setup

As mentioned in the Introduction, the S operator is the superconformal primary of the

stress tensor multiplet, and transforms in the 15 of the so(6) R-symmetry. In index notation

we write the operator as Sb
a(~x), where the raised index a = 1, . . . , 4 transforms in the 4 of

su(4) ∼= so(6) and the lowered indices in the 4. We will find it more convenient however to

use an index-free notation by defining

S(~x,X) = Xa
bSb

a(~x) , (2.1)

where X is an arbitrary traceless 4⊗ 4 matrix. We normalize this operator so that

〈S(~x1, X1)S(~x2, X2)〉 =
Tr(X1X2)

x2
12

. (2.2)

Using both conformal and so(6) symmetry, we can expand

〈S(~x1, X1) · · ·S(~x4, X4)〉 =
1

x2
12x

2
34

[
S1(U, V )A12A34 + S2(U, V )A13A24 + S3(U, V )A14A23

+ S4(U, V )B1423 + S5(U, V )B1234 + S6(U, V )B1342

]
, (2.3)

where we define the R-symmetry structures

Aij = tr(XiXj) , Bijkl = tr(XiXjXkXl) + tr(XlXkXjXi) , (2.4)

and where Si are functions of the conformal cross-ratios

U ≡ x2
12x

2
34

x2
13x

2
24

, V ≡ x2
14x

2
23

x2
13x

2
24

. (2.5)

– 5 –
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For future reference, we note that it is sometimes useful to write the four-point function

in a conformal block expansion, which reads5

〈S(~x1, X1)S(~x2, X2)S(~x3, X3)S(~x4, X4)〉 =
1

x2
12x

2
34

∑
R

TR(Xi)SR(U, V )

SR(U, V ) ≡
∑
∆,`

λ2
∆,`,RG∆,`(U, V ) ,

(2.6)

where G∆,`(U, V ) are the 3d conformal blocks normalized as in [69], TR(Xi) are the SU(4)

invariants corresponding to the s-channel exchange of an operator in the irrep R, and λ2
∆,`,R

are squared OPE coefficients. The SU(4) irreps R of the operators that appear in S×S are

15⊗ 15 = 1s ⊕ 15a ⊕ 15s ⊕ 20′s ⊕ 45a ⊕ 45a ⊕ 84s , (2.7)

where s/a denotes the symmetric/antisymmetric product. As explained in appendix A.1,

we find 

T1s

T15a

T15s

T20′s
T45a⊕45a

T84s


=



1 0 0 0 0 0

0 0 0 0 1 −1

−1 0 0 0 1 1

2 6 6 −6 −3 −3

0 4 −4 0 1 −1
4
15 4 4 4 −2

3 −
2
3





A12A34

A13A24

A14A23

B1423

B1234

B1342


. (2.8)

We can distinguish between 15s and 15a by (anti)symmetrizing appropriately, and we

should only consider the real combination 45⊕ 45.

Holographic correlators are simpler in Mellin space. To compute the Mellin transform

of Si(U, V ), we first compute the connected correlator by subtracting the disconnected part

Siconn(U, V ) ≡ Si(U, V )− Sidisc(U, V ) , Sidisc =
(

1 U U
V 0 0 0

)
, (2.9)

and then we define M i(s, t) through

Siconn(U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

u
2
−1Γ2

[
1− s

2

]
Γ2

[
1− t

2

]
Γ2
[
1− u

2

]
M i(s, t) , (2.10)

where u = 4 − s − t. The Mellin transform (2.10) is defined such that a bulk contact

Witten diagrams coming from a vertex with n = 2m derivatives gives rise to a polynomial

M i(s, t) of degree m [36]. (This property holds both for scalars and for operators with spin,

provided that the Mellin amplitudes for operators with spin are defined appropriately.) The

two integration contours in (2.10) are chosen such that6

Re(s) < 2 , Re(t) < 2 , Re(u) = 4− Re(s)− Re(t) < 2 , (2.11)

5We could reorganize this block expansion into superconformal blocks (as opposed to conformal blocks)

for each supermultiplet, but it is unnecessary to do so for our purposes.
6This is the correct choice of contour provided that M i(s, t) does not have any poles with <(s) < 2 or

<(t) < 2 or <(u) < 2. If this is not the case (such as for the supergravity Mellin amplitude), the integration

contour will have to be modified in such a way that the extra poles are on the same side of the contour as

the other poles in s, t, u, respectively.
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which include all poles of the Gamma functions on one side or the other of the contour.

These poles naturally incorporate the effect of double trace operators [70].

In this paper we focus on tree-level Witten diagrams, and in the rest of this section we

aim to determine a basis of Mellin amplitudes that can be used to write the contribution

from contact Witten diagrams with small numbers of derivatives. These Mellin amplitudes

obey three constraints:

1. They obey the crossing symmetry requirements

M1(s, t) = M1(s, u) , M2(s, t) = M1(t, s) , M3(s, t) = M1(u, t) ,

M4(s, t) = M4(s, u) , M5(s, t) = M4(t, s) , M6(s, t) = M4(u, t)
(2.12)

coming from the crossing symmetry of the full 〈SSSS〉 correlator.

2. They obey the SUSY Ward identities following from N = 6 superconformal symme-

try. The SUSY Ward identities not only constrain M i(s, t), but they also allow us

to determine the Mellin amplitudes corresponding to correlators of other operators

in the stress-tensor multiplet.

3. The M i(s, t) and all other Mellin amplitudes related to them by SUSY are polyno-

mials in s, t. We call the collection of Mellin amplitudes corresponding to four-point

functions of operators in the same super-multiplet a super-Mellin amplitude, and we

define the degree of a polynomial super-Mellin amplitude n to be the highest degree

of any component Mellin amplitude.

For fixed m, we will label the Mellin amplitudes obeying these requirements as M i
m(s, t) in

case there is a unique such amplitude for a given m or by M i
m,k(s, t) in the case that there

are multiple such amplitudes indexed by k. These Mellin amplitudes represent a basis for

contact Witten diagrams, with the number of derivatives in the interaction vertex being

bounded from below by 2m. In section 4, we will use these Mellin amplitudes and the

constraints coming from supersymmetric localization explored in the next section in order

to determine the first few terms in the strong coupling expansion of the 〈SSSS〉 correlator.

Note that, in general, supersymmetry relates the contact interactions for bulk fields

with various spins, and in flat space SUSY preserves the number of derivatives of the

interaction vertices it relates. In AdS however, the number of derivatives within a given

super-vertex may vary, with the change in the number of derivatives being compensated by

an appropriate power of the AdS radius L. Thus, it may happen that a four-scalar vertex

with a given number of derivatives is part of a supervertex containing other vertices with

more derivatives. The corresponding Mellin amplitudes M i(s, t) will then have lower degree

than those of some four-point function of superconformal descendants of S, and so M i
n(s, t)

may have degree less than n. This fact will be very important in the analysis that follows.

2.2 The flat-space limit and a toy problem

Finding the Mellin amplitudes M i
n(s, t) that obey the conditions listed above is a difficult

task, as satisfying the third condition requires us to calculate Ward identities for many

– 7 –
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different correlators and then examine the locality properties of their Mellin amplitudes.

We can simplify matters by first solving an analogous problem for flat space scattering

amplitudes.

At large AdS radius, we can recover flat space scattering amplitudes for scalars using

the Penedones formula [37]. Applied to the superconformal primary S the relationship is

(up to an overall normalization N (L))

Ai(s, t) = lim
L→∞

N (L)
√
π

∫ κ+i∞

κ−i∞

dα

2πi
eαα−

1
2M i

(
L2

2α
s,
L2

2α
t

)
. (2.13)

Here, κ > 0, and Ai(s, t) is the corresponding 4d flat space scattering amplitude of gravis-

calars (or more precisely a scattering amplitude in 10d string theory or 11d M-theory with

the momenta restricted to lie within 4d and polarizations transverse to this 4d space),

computed in the limit where the AdS radius L is taken to infinity while keeping some other

dimensionful length scale `UV fixed. For string or M-theory duals we can take `UV to be

either the 10d string length or 11d Planck length, as we will do in section 4.

From (2.13) we expect that each Mellin amplitude M i
m,k(s, t) must give rise to a local

N = 6 scattering amplitude Aim,k(s, t). This mapping should furthermore be one-to-one,

since if two amplitudes M i
m,k1

and M i
m,k2

have the same large s, t limit, then their difference

M i
m,k1
−M i

m,k2
will be a local Mellin amplitude with degree at most m − 1. Thus, if we

can find all of the number of local scattering amplitudes of a given degree in s, t, then this

will also tell us the number of Mellin amplitudes which occur at this degree:7

# of degree m scattering amplitudes in 4d SUGRA

= # of degree m Mellin amplitudes in 3d SCFT .
(2.14)

Because the flat space scattering amplitudes are obtained as the large s, t limits of Mellin

amplitudes, finding all crossing-invariant, supersymmetric, and local N = 6 flat space

scattering amplitudes is a strictly simpler problem than finding all Mellin amplitudes with

the same properties.

2.3 Counterterms in N = 6 supergravity

The toy problem described in the previous section is that of finding four-point scattering

amplitudes corresponding to counterterms in 4d N = 6 supergravity. Spinor helicity and

on-shell supersymmetric methods provide an efficient means to classify allowed countert-

erms in a theory. They were first applied to 4d N = 8 in [71, 72], and have subsequently

been generalized to other maximally supersymmetric theories in [73, 74]. In the context of

N = 6 supergravity these methods have been applied to study amplitudes involving bulk

graviton exchange [75, 76].

7At a more abstract level, we can justify the correspondence (2.14) as follows. Local Mellin amplitudes

correspond to bulk contact Witten diagrams, which are themselves in one-to-one correspondence with local

counterterms in AdS. But since AdS is maximally symmetric, local counterterms in AdS are equivalent

to local counterterms in flat-space. Since local counterterms in flat-space correspond exactly to scattering

amplitudes, we find that Mellin amplitudes and scattering amplitudes are in one-to-one correspondence.
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Φ Particles h+ ψ+ g+ F+ φ χ− a−

Helicity +2 +3/2 +1 +1/2 0 −1/2 −1

SU(6)R 1 6 15 20 15 6 1

Ψ Particles a+ χ+ φ F− g− ψ− h−

Helicity +1 +1/2 0 −1/2 −1 −3/2 −2

SU(6)R 1 6 15 20 15 6 1

Table 1. Massless particles in N = 6 supergravity.

Let us begin with a quick review of on-shell superspace (see also appendix B.1); for a

detailed textbook treatment of the subject we recommend [77]. In N = 6 supergravity, the

massless particles split into two supermultiplets: a multiplet we denote by Φ that contains

the positive helicity graviton h+, and its CPT conjugate multiplet we denote by Ψ that

contains the negative helicity graviton h−. In addition to the graviton h±, these multiplets

also contain the gravitino ψ±, the gauginos g±, fermions F±, scalars φ, and the graviphoton

a±. Table 1 lists the particles in these multiplets, along with their transformation properties

under the SU(6) R-symmetry of N = 6 supergravity. In the on-shell superspace formalism,

the Φ and Ψ superfields are polynomials in the Grassmann variables ηI , with I = 1, . . . 6

transforming in the 6 of SU(6):8

Φ ≡ h+ + ηIψ+
I +

1

2!
ηIηJg+

IJ +
1

3!
ηIηJηKF+

IJK +
1

4!2
ηIηJηKηLεIJKLMNφ

MN

+
1

5!
ηIηJηKηLηM εIJKLMNχ

N− +
1

6!
ηIηJηKηLηMηN εIJKLMNa

−

Ψ ≡ a+ + ηIχ+
I +

1

2!
ηIηJφIJ +

1

3!
ηIηJηKF+

IJK +
1

4!2
ηIηJηKηLεIJKLMNg

MN

+
1

5!
ηIηJηKηLηM εIJKLMNψ

N− +
1

6!
ηIηJηKηLηMηN εIJKLMNh

− .

(2.15)

In a four-point superamplitude, such as A[ΦΦΨΨ], each particle i = 1, . . . , 4 is associated

to some Grassmannian variable ηIi . To compute a component scattering amplitude we

simply differentiate with respect to some of the Grassmannian variables while setting all

others to zero. For instance:

A[h+h+h+h+] = A[ΦΦΨΨ]

∣∣∣∣∣
ηIi =0

,

A[h+h+h−h−] =

(
6∏

J=1

∂

∂ηJ3

)(
6∏

K=1

∂

∂ηK4

)
A[ΦΦΨΨ]

∣∣∣∣∣
ηIi =0

, (2.16)

A[φ56φ56φ12φ12] =

(
4∏

J=1

∂

∂ηJ1

)(
4∏

K=1

∂

∂ηK2

)(
2∏

L=1

∂

∂ηL3

)(
2∏

M=1

∂

∂ηM4

)
A[ΦΦΨΨ]

∣∣∣∣∣
ηIi =0

.

In this way a superamplitude A encodes all the amplitudes of its component particles.

8Upper I, J,K, . . . indices transform in the 6 of SU(6) while lower I, J,K, . . . indices transform in the 6

of SU(6).
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Up to crossing there are five possible 4 particle superamplitudes we can construct from

Φ and Ψ. However, under CPT the two supermultiplets Φ and Ψ are conjugates, and

their scattering amplitudes are related by complex conjugation (see appendix B.2 for a

description of how discrete space-time symmetries act on the scattering amplitudes):9

A[ΨΨΨΨ] = (A[ΦΦΦΦ])∗ , A[ΨΨΨΦ] = (A[ΦΦΦΨ])∗ . (2.17)

This leaves us only three independent superamplitudes, A[ΦΦΨΨ], A[ΦΦΦΨ], and

A[ΦΦΦΦ]. Our task now is to constrain the forms of these superamplitudes, beginning

with invariance under supersymmetry.

As explained in [77], for a given particle i the supermomentum is defined to be

qIi = |i〉ηIi , q̃Ii = |i] ∂
∂ηIi

, (2.18)

and it satisfies the on-shell SUSY algebra by construction. For a given amplitude the total

supermomentum is thus:

QI =
∑
i

qIi , Q̃I =
∑
i

q̃Ii . (2.19)

Superamplitudes must be annihiliated by these supercharges. For a four-point amplitude

such as A[ΦΦΨΨ] this implies that

QIA[ΦΦΨΨ] = 0 , Q̃IA[ΦΦΨΨ] = 0 . (2.20)

Imposing these conditions uniquely fixes any four-point superamplitudes up to an arbitrary

function of s and t:

A[ΦΦΨΨ] = δ12(Q)
[12]4

〈34〉2
f1(s, t) ,

A[ΦΦΦΨ] = δ12(Q)
[12]5〈14〉〈24〉
〈34〉4

f2(s, t) ,

A[ΦΦΦΦ] = δ12(Q)
[12]4

〈34〉4
f3(s, t) ,

(2.21)

where the first factor is the Grassmann delta function

δ12(Q) =
1

24

6∏
I=1

4∑
i,j=1

〈ij〉ηIi ηIj , (2.22)

which is annihilated by both QI and Q̃I , and fi(s, t) are arbitrary functions10 of s and t.

The delta function δ12(Q) is automatically invariant under SU(6)R, even if the full theory

does not preserve SU(6)R [72].11 Note that every term in each superamplitude contains

9Note that [ij]∗ = 〈ji〉 in terms of the spinor-helicity angle and square brackets.
10Since A[ΦΦΨΨ] is self-conjugate under CPT we find that f1(s, t) is real, as we show in appendix B.

We furthermore show that for CT -invariant theories f2,3(s, t) are also real.
11In flat space N = 6 the supersymmetry algebra does not require there to be an R-symmetry; it is an

accidental symmetry of the supergravity action. On the other hand, the superconformal algebra does require

that at least an SO(6)R symmetry be present in order for an AdS solution to preserve all supersymmetries

of the theory.
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∑
i |hi| A[ΦΦΨΨ] A[ΦΦΦΨ] A[ΦΦΦΦ]

0 A[φφφφ] None None

1 A[F+χ−φφ] A[φφφa+] None

A[φφχ+F−] A[φφF+χ+]

A[φχ−χ+φ] A[φφg+φ]

A[φF+F−φ]

2 A[F+F+F−F−] A[F+F+F+F−] A[F+F+F+F+]

A[χ−χ−χ+χ+] A[F+F+ψ−χ+] A[g+F+F+φ]

A[φg+g−φ] A[φφψ+F−] A[g+g+φφ]

A[φa−a+φ] A[ψ+χ−φφ] A[ψ+F+φφ]

A[φg+F−F−] A[g+F+χ−φ] A[h+φφφ]

. . . . . .

. . . . . . . . . . . .

6 . . . . . . A[h+h+a−a−]

7 . . . A[h+h+a−h−] None

8 A[h+h+h−h−] None None

Table 2. Component amplitudes of each superamplitude, organised by total helicity
∑

i |hi|. Here

hi is the helicity of the ith particle. We have not included amplitudes equivalent to the ones listed

here under crossing.

exactly 12 Grassmannian variables, and, as a result, many component amplitudes vanish,

including A[h+h+h+h+] = A[φφφφ] = 0. See table 2 for a list of component amplitudes

that do not vanish. The angle and square brackets in (2.21) are required so that the Φ and

Ψ components have the correct helicity, which for instance can be fixed by considering

A[h+h+h−h−] = [12]4〈34〉4f1(s, t) ,

A[h+h+h−a−] = [12]5〈34〉2〈14〉〈24〉f2(s, t) ,

A[h+h+a−a−] = [12]4〈34〉2f3(s, t) .

(2.23)

We are now left to constrain the forms of fi(s, t) using locality and crossing symmetry.

A tree-level scattering amplitude is local if and only if it can be written as a polynomial

in the spinor helicity variables [ij] and 〈ij〉; note that

s = [12]〈12〉 = [34]〈34〉 , t = [13]〈13〉 = [24]〈24〉 , u = [14]〈14〉 = [23]〈23〉 . (2.24)

From (2.23) we immediately see that it is not possible for fi(s, t) to contain poles in s, t

or u, or else the amplitudes in (2.23) would lead to non-polynomial expressions. Hence

fi(s, t) are necessarily polynomials for tree-level amplitudes. This is also sufficient, as when

fi(s, t) = 1 one can check that all amplitudes in the superamplitude are local.

Crossing symmetry imposes a series of further constraints. For instance, in (2.23) the

amplitudes must be invariant under interchanging the first and second particles. This gives
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Mellin deg. f1(s, t) f2(s, t) f3(s, t) Counterterms # sols.

3 — — 1 F 2R2 1

4 1 — — R4 1

5 s — s2 + t2 + u2 D4F 2R2 , D2R4 2

6 s2, t2 + u2 — stu D6F 2R2 , D4R4 3

7 s3, s(t2 + u2) — (s2 + t2 + u2)2 D8F 2R2 , D6R4 3

7.5 — (s− t)(t− u)(u− s) — D8FR3 1

Table 3. Counterterms in N = 6 supergravity, up to 15 derivatives.

us the relations

f1,3(s, t) = f1,3(s, u) , f2(s, t) = −f2(s, u) , (2.25)

where u = −s − t is the third Mandelstam variable. The superamplitudes A[ΦΦΦΦ] and

A[ΦΦΦΨ] are furthermore invariant under crossing which exchange the first and third

particles, giving rise to the further conditions:

f2(s, t) = −f2(u, t) , f3(s, t) = f3(u, t) . (2.26)

Together, eqs. (2.25) and (2.26) suffice to guarantee crossing under all possible permutations.

Having determined the allowed forms of fi(s, t), we can now determine the number

of derivatives in each interaction vertex. To this count each angle and square bracket

contribute 1, δ12(Q) contributes 6, and each power of s, t, u contributes 2. For instance, if

we set f2(s, t) = sk and consider the amplitude A[ΦΦΨΨ] = skδ12(Q) [12]4

〈34〉2 , it follows that

this amplitude comes from an interaction vertex with 8 + 2k derivatives, namely from an

D2kR4 term.

With this in mind, we can now systematically find all local counterterms up to a certain

number of derivatives. In table 3 we list all local counterterms up to 15 derivatives, corre-

sponding to Mellin amplitudes up to degree 7.5.12 In particular, the first local counterterm

has 6 derivatives, is unique, and contributes only to A[ΦΦΦΦ]. The next local counterterm

has 8 derivatives and is also unique and contributes only to A[ΦΦΨΨ]. There are two 10

derivative counterterms, one contributing to A[ΦΦΦΦ] and one to A[ΦΦΦΦ], and so on.

The counterterm with the lowest number of derivatives that contributes to A[ΦΦΦΨ] has

15 derivatives and will not be important in this work.

2.4 Implications for N = 6 SCFts

Having systematically computed the local amplitudes in N = 6 supergravity, we will now

discuss the implications for holographic N = 6 SCFTs. First, we can deduce that there are

five independent superconformal invariants in the four point function of four stress tensor

multiplets. This counting follows from the number of unknown real functions needed to

12A Mellin amplitude of degree 7.5 would seem to require non-polynomial contributions to M i(s, t). In

appendix B however we show that due to discrete symmetries the Mellin amplitudes corresponding to

A[ΦΦΦΨ] never contribute to 〈SSSS〉, so M i(s, t) remains a polynomial in s and t.
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fully determine the scattering amplitudes of supergravitons, one for f1(s, t) and two each

for f2(s, t) and f3(s, t), as these latter two functions are in general complex.

Second, from table 3 we can immediately deduce how many polynomial Mellin super-

amplitudes exist for a given degree in s, t. For instance, at third degree we have a single

polynomial super-Mellin amplitude with scalar component M i
3(s, t), and at fourth degree

we additionally have another polynomial super-Mellin amplitude with scalar component

M i
4(s, t). Here, by third and fourth degree we mean that the super-amplitudes that M i

3(s, t)

and M i
4(s, t) have degree 3 or 4 for some of the components of the amplitude, but not neces-

sarily for the scalar components M i
3(s, t) and M i

4(s, t) themselves. These scalar components

may be of less than third and fourth degree, respectively.

In fact, it can be argued that while the scalar component M i
4(s, t) is of degree 4 in

s, t, the scalar component M i
3(s, t) is actually at most quadratic. This is because the

leading order behavior of the super-Mellin amplitudes that M i
3(s, t) and M i

4(s, t) are part

of at large s and t must match the corresponding super-scattering amplitude. Since the

M i
3(s, t) amplitude contributes only to the superamplitude A[ΦΦΦΦ] (as can be seen from

table 2), it does not give rise to a scalar scattering amplitude. Therefore M i
3(s, t) must be

at most quadratic, rather than cubic, in s and t. On the other had, M i
4(s, t) contributes

to the superamplitude A[ΦΦΨΨ], and this superamplitude does include a scalar scattering

amplitude, A[φφφφ]. Thus, M i
4(s, t) must have degree 4.

We can be more precise and also find the leading large s, t behavior of all 〈SSSS〉Mellin

amplitudes M i(s, t) for which M i(s, t) is of highest degree in the super-Mellin amplitude.

(This means we will be able to find the leading large s, t behavior of M i
4(s, t) but not of

M i
3(s, t).) As per (2.13), the leading large s, t behavior of M i(s, t) comes from the flat space

amplitude Ai(s, t). The only scattering amplitude with a scalar component is A[ΦΦΨΨ]

which is fixed in terms of f1(s, t), and so the leading large s, t behavior of M i(s, t) depends

only on f1(s, t). To perform this calculation, we must first extract the scalar A[φφφφ]

component of A[ΦΦΨΨ], and then must relate φ and φ to the superconformal primary S.

We perform both computations in appendix C and find that

A1(s, t) = −1

2
tu
(
−s2f1(s, t) + u2f1(u, s) + t2f1(t, s)

)
,

A2(s, t) = −1

2
su
(
s2f1(s, t) + u2f1(u, s)− t2f1(t, s)

)
,

A3(s, t) = −1

2
ts
(
s2f1(s, t)− u2f1(u, s) + t2f1(t, s)

)
,

A4(s, t) = −1

2
stu (uf1(u, s) + tf1(t, s)) ,

A5(s, t) = −1

2
stu (uf1(u, s) + sf1(s, t)) ,

A6(s, t) = −1

2
stu (sf1(s, t) + tf1(t, s)) .

(2.27)

From (2.27), we can also determine f1(s, t) in terms of Ai(s, t):

f1(s, t) = − 1

s3

(
A2(s, t)

u
+
A3(s, t)

t

)
. (2.28)
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We can then apply (2.27) to M i
4(s, t), which at large s, t should asymptote to Ai(s, t)

with f1(s, t) = 1 (see table 3). We hence find

M i
4(s, t) =

(
t2u2 s2u2 s2t2 s2tu

2
st2u

2
stu2

2

)
+ subleading in s, t . (2.29)

2.5 Exchange amplitudes

So far we have considered local contact amplitudes. The only other tree-level diagrams

which appear in four point functions consist of exchange diagrams. These can be built up

from the on-shell three point amplitudes using on-shell recursion relations (see for instance

chapter 3 of [77]), and so our first task is to find the allowed three point amplitudes.

Three point amplitudes are subtle due to special kinematics; conservation of momen-

tum implies that either

[12] = [13] = [23] = 0 or 〈12〉 = 〈13〉 = 〈23〉 = 0 . (2.30)

For real momenta [ij]∗ = 〈ji〉 so this would seem to rule out any interesting amplitudes.

This issue is however resolved by analytically continuing to complex momenta. Locality

and little-group scaling then uniquely fix three-point functions to take the form:

A[1h12h23h3 ] =


c[12]h1+h2−h3 [13]h1+h3−h2 [23]h2+h3−h1 if h1 + h2 + h3 > 0

c〈12〉h3−h1−h2〈13〉h2−h1−h3〈23〉h1−h2−h3 if h1 + h2 + h3 < 0

c if h1 = h2 = h3 = 0

0 otherwise

(2.31)

where c is an arbitrary constant [77, 78]. Superamplitudes must furthermore satisfy the

supersymmetric Ward identities, and this uniquely fixes them to take the form:

A[ΦΦΨ] =
g1

[13]2[23]2
δ(6)([12]η3+[23]η1+[31]η2)+

g2〈12〉3

〈13〉7〈23〉7
δ(12)(〈12〉η3+〈23〉η1+〈31〉η2) ,

A[ΦΦΦ] =
g3

[12][13][23]
δ(6)([12]η3+[23]η1+[31]η2) , (2.32)

where

δ(6)([12]η3 + [23]η1 + [31]η2) =

6∏
I=1

([12]η3I + [23]η1I + [31]η2I) ,

δ(12)(〈12〉η3 + 〈23〉η1 + 〈31〉η2) =
6∏
I=1

(〈12〉η3I + 〈23〉η1I + 〈31〉η2I)
2 .

(2.33)

The g1 term in the A[ΦΦΨ] superamplitude corresponds to the usual supergravity three-

point function, and in particular gives rise to a graviton scattering amplitude

A[h+h+h−] = g1
[12]6

[13]2[23]2
. (2.34)

The g2 and g3 terms both vanish due to crossing symmetry; if we exchange 1 ↔ 2 then

A[ΦΦΦ] and A[ΦΦΨ] must be even, but this is only possible if g2 = g3 = 0.
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Operator ∆ Spin so(6)R irrep Flat space

S 1 0 15 φ+ φ

χ 3/2 1/2 6 χ±

F 3/2 1/2 10 F±

F 3/2 1/2 10 F±

P 2 0 15 i(φ− φ)

J 2 1 15 g±

j 2 1 1 a±

ψ 5/2 3/2 6 ψ±

T 3 2 1 h±

Table 4. The conformal primary operators in the N = 6 stress tensor multiplet. For each such op-

erator, we list the scaling dimension, spin, so(6)R representation, and the particle whose scattering

amplitudes it is related to in the flat space limit of the AdS4 dual.

Since there is only one supergravity three-point function, we can now determine the

corresponding unique four point exchange amplitude. Because the tree-level graviton am-

plitudes in pure supergravity are identical to those in pure gravity [77], we can simply use

the pure gravity result to deduce that

fSG
1 (s, t) =

g2
1

stu
, fSG

2 (s, t) = fSG
3 (s, t) = 0 . (2.35)

We can then substitute this into (2.27) to find that the A[φφφφ] amplitude at large s, t is

expected to be

M i
SG(s, t) = g2

1

(
tu
s

su
t

st
u

s
2

t
2
u
2

)
+ subleading in s, t . (2.36)

2.6 Supersymmetric Ward identities

Our task now is to determine M i
3(s, t) and M i

4(s, t). In order to do so we will need to

compute the superconformal Ward identities relating the Si(U, V ) both to one another and

to the correlators of the superconformal descendants of Sa
b.

The operators in the N = 6 stress tensor multiplet are shown in table 4. There are

three fermions with dimension 3/2, the χα, the Fα, and its Hermitian conjugate the Fα.

In addition to the pseudoscalar P , at dimension 2 there are two conserved currents; the R-

symmetry current Jµ in the 15, and the U(1) flavour current jµ which is an SO(6) singlet.

Completing the multiplet are the supercurrent ψµα in the 6 and finally the stress tensor

itself, Tµν . In table 4, we also list which particles these operators correspond to in the flat

space limit.

To impose superconformal invariance on a correlator, it is sufficient to impose con-

formal invariance, R-symmetry invariance, and invariance under the Poincaré supercharge

QαI . We have already seen how to impose the first two symmetries on the 〈SSSS〉, and it
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is straightforward to expand other correlators in the multiplet as a sum of conformal and

R-symmetry invariants. Explicit expressions for these can be found in appendix D. The

supersymmetric Ward identities then follow by imposing that the Q variations vanish:

δ〈SSSχ〉 = 0 , δ〈SSSF 〉 = 0 . (2.37)

From (2.37) we can derive

∂US6(U, V ) =
1

2U2

[
− (U3∂U + U2V ∂V )S1 + (1− V + U(V − 1)∂U + UV ∂V )S2

+ (1− U − V − U(1− 2U + U2 − V )∂U + U(1− U)V ∂V )S3

+ (2− U − 2V + 2U(U + V − 1)∂U + 2UV ∂V )S4

− U(1 + 2U(U − 1)∂U + 2UV ∂V )S5 + US6

]
,

∂V S6(U, V ) =
1

2U

[
U(U∂U + (V − 1)∂V )S1 + (1− U∂U − U∂V )S2

+ (1 + U(U − 1)∂U + UV ∂V )S3 + (2− 2U∂U )S4

+ (2U2∂U + 2UV ∂V )S5

]
.

(2.38)

We can use (2.37) as well as other similar SUSY Ward identities in order to determine

the relations between 〈SSSS〉 and other four-point functions of operators in the stress ten-

sor multiplet. Note, however, that we will not be able to determine the four-point function

of the stress tensor multiplet completely. This should already be clear from the flat space

limit, where we can ask the analogous question for the flat space scattering amplitudes:

given A[φφφφ], can we determine all the other component amplitudes? The answer is

no, because it is only the superamplitude A[ΦΦΨΨ] that contributes to A[φφφφ]. There-

fore, knowing A[φφφφ] allows us to determine the function f1(s, t) in (2.21) via (2.28) and

leaves the complex functions f2(s, t) and f3(s, t) undetermined. In other words, A[φφφφ]

determines only one out of five super-amplitudes.

The situation is better for N = 6 SCFTs where from 〈SSSS〉 we can determine more

than just one out of five superconformal invariants. The reason for this improvement is that

although some of the superconformal invariants do not contribute to 〈SSSS〉 in the flat

space limit, they do contribute at subleading orders in 1/L. It can be argued that 〈SSSS〉
is related to two out of the five super-invariants as follows. While the stress tensor multiplet

forms a representation of the superconformal group OSp(6|4), it also forms a representation

of a larger group that includes two Z2 transformations: a parity transformation P and

discrete R-symmetry transformation Z whose precise definitions are given in appendix B.3.

Moreover, the superconformal Ward identity relates four-point structures that have the

same P and Z charges. Because the 〈SSSS〉 correlator is P-even and Z-even, and only

one other structure has this property, it follows that from 〈SSSS〉 we can determine at

most two out of the five superconformal structures. Explicit computations show that we can

indeed determine two superconformal invariants. In table 5, we give examples of operators
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A[ΦΦΨΨ] A[ΦΦΦΨ], A[ΨΨΨΦ] A[ΦΦΦΦ], A[ΨΨΨΨ]

Z + − − + +

P, CT + + − + −
〈SSSS〉 A[φφφφ] None None Subleading None

〈SSPP 〉
〈PPPP 〉
〈SSSP 〉 None None Subleading None Subleading

〈SPPP 〉
〈SSFF 〉 A[φF+F−φ] Subleading Subleading Subleading Subleading

〈SPFF 〉
〈PPFF 〉
〈SSχχ〉 A[φχ−χ+φ] None None Subleading Subleading

〈SPχχ〉
〈PPχχ〉
〈SSSj〉 Subleading A[φφφa+] A[φφφa+] Subleading Subleading

〈SSPj〉
〈SPPj〉
〈PPPj〉
〈FFFF 〉 A[F+F+F−F−] A[F+F+F+F−] A[F+F+F+F−] A[F+F+F+F+] A[F+F+F+F+]

etc.

Table 5. Examples of CFT four-point correlators that contribute to the five superconformal in-

variants. Each superconformal invariant can be labeled by its transformation properties under the

discrete symmetries P and Z. For every CFT correlator in the first column, we list how it con-

tributes to the superconformal invariants in Mellin space: either at leading order, in which case we

list the scattering amplitude it should match at this order; either at subleading order, in which case

we write “Subleading”; or it does not contribute, in which case we write “None”.

that contribute to each superconformal structure. The correlator 〈SSSS〉 allows us to

determine the conformal structures in the second and fifth columns of this table.

In the next section, we will need to know the relation between 〈SSPP 〉 and 〈SSSS〉.
To derive this relation, we need to consider one more variation, δ〈SSPχ〉. Using the

results of (2.37) and the variation δ〈SSPχ〉, we can compute 〈SSPP 〉, along with 〈SPχχ〉
and 〈SPχF 〉. More details can be found in table 6 and in appendix D. Note that while,

as discussed above, the superconformal Ward identities fall short of making it possible to

determine the all five superconformal invariants (for instance, we cannot determine 〈SSFF 〉
fully), we will be able to completely determine the correlators 〈SSPP 〉 and, if we wish,

〈PPPP 〉 in terms of 〈SSSS〉.

2.7 The local Mellin amplitudes M i
3 and M i

4

We will now use these Ward identities to find the degree m polynomial Mellin amplitudes

M i
m(s, t) with m = 3, 4.
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Variation Correlators Used Correlators Obtained

δ〈SSSχ〉 〈SSSS〉 〈SSχχ〉 〈SSχF 〉 〈SSSj〉
δ〈SSSF 〉 〈SSSS〉 〈SSFF 〉 〈SSχF 〉 〈SSFF 〉 〈SSSJ〉
δ〈SSPχ〉 〈SSχχ〉 〈SSχF 〉 〈SPχχ〉 〈SPχF 〉 〈SSPP 〉 〈SSPj〉

Table 6. Taking supersymmetric variations to compute correlators. By setting the variation in the

first column to zero, we can use the correlators in the second column to compute the correlators in

the third column. For each correlator we only compute the P and Z invariant structures. In the

table we have not included correlators involving F which are related to those with F by Hermitian

conjugation.

2.7.1 M i
4

The amplitude M i
4 can be obtained from existing results in the literature as follows. A

particular case of N = 6 SCFTs are N = 8 SCFTs. In an N = 8 SCFT, the stress tensor

multiplet has as its bottom component ∆ = 1 scalar operators SAB(~x) transforming in

the 35c irrep of the so(8)R R-symmetry.13 (Here SAB(~x), with A,B = 1, . . . , 8 being 8c
indices, is a traceless symmetric tensor.) Like in the N = 6 case, we can use an index-free

notation by contracting SAB(~x) with a symmetric traceless 8 × 8 matrix XAB. The four-

point function of the 35c scalar operator is restricted by conformal invariance and so(8)R
to take the form

〈S(~x1, X1) · · ·S(~x4, X4)〉 =
1

x2
12x

2
34

[
S1

(U, V )A12A34 + S2
(U, V )A13A24 + S3

(U, V )A14A23

+ S4
(U, V )B1423 + S5

(U, V )B1234 + S6
(U, V )B1342

]
, (2.39)

where we defined14

Aij ≡ tr(XiXj) , Bijkl ≡ tr(XiXjXkX l) . (2.40)

The Mellin transforms of S
i

corresponding to contact interactions were found in [23].

With our definition (2.10) (with Siconn replaced by Siconn and M i replaced by M
i
), the

result in [23] for the quartic amplitude is

M
1
4 =

1

35
(t− 2)(u− 2)(35tu+ 100s− 112) ,

M
4
4 =

2

35
(s− 2)(35stu− 90(t2 + u2)− 280tu− 324s+ 1072) .

(2.41)

To relate (2.41) to M i
4(s, t) we should relate the so(8)R structures (2.40) to the su(4)R

ones defined in (2.4). Under the decomposition so(8)→ su(4), we have 8c → 4 + 4, which

13The fact that this representation is the 35c as opposed to one of the other two 35-dimensional irreducible

representations of so(8)R assumes a choice of the triality frame.
14Despite the use of matrix so(8) polarizations here, the Si

(U, V ) here are equal to the Si(U, V ) in [23].
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implies 35c → 10 + 10 + 15. To select the 15, we should restrict the 8× 8 matrices X to

take the form

X =
1√
2

[
(<X)⊗ I2 + (=X)⊗ (iσ2)

]
, (2.42)

where X is a 4× 4 traceless hermitian matrix, I2 is the 2× 2 identity matrix, and σ2 is the

second Pauli matrix. (See eq. (3.16) of [23].15) Then it is straightforward to check that

Aij = Aij , Bijkl =
1

4
Bijkl . (2.43)

This implies that Si = Si for i = 1, 2, 3 and Si = 1
4S

i
for i = 4, 5, 6 and analogously for

the Mellin amplitudes. Thus,

M4 : M1
4 =

1

35
(t− 2)(u− 2)(35tu+ 100s− 112) ,

M4
4 =

1

70
(s− 2)(35stu− 90(t2 + u2)− 280tu− 324s+ 1072) ,

(2.44)

where the other M i
4 are given by crossing (2.12). The Melin amplitudes M i

4 are normalized

so that at large s, t they obey (2.29).

2.7.2 M i
3

The degree 3 polynomial Mellin amplitude M i
3 is not allowed by N = 8 supersymmetry,

and so we must compute it using the N = 6 Ward identities derived in the previous section.

In particular, we impose the following constraints to find M3:

1. M i
3 must satisfy crossing symmetry (2.12).

2. M i
3 must be a degree 2 polynomial solution of the 〈SSSS〉 Ward identities given in

position space (2.38), which can be translated into Mellin space using the rules (E.1).

The ansatz for M3 is only degree 2, since in the previous section we showed that A3

does not appear in the scattering of four scalars, so M3 must vanish in the flat space

limit.

3. M3 must remain a polynomial when expressed as correlator of other operators in

the stress tensor multiplet using the Ward identities in the previous section.16 The

degree of these polynomials is at most 2 if the corresponding flat space amplitude

vanishes, and 3 otherwise.

Condition 3 was trivially satisfied in maximally supersymmetric cases considered before

in various dimensions [21, 24], where polynomial Mellin amplitudes for 〈SSSS〉 remained

15The factor of 1/
√

2 is just a choice of normalization.
16Instead of imposing this requirement, we could alternatively impose the condition that certain operators

in the S×S OPE do not acquire anomalous dimensions. For instance, we can uniquely determine M3 if we

impose this requirement for the spin 0 operators of dimension 2 in the 84, 20′, and 15s irreps of SO(6)R,

as well as for the spin 1 operator of dimension 3 in the 45⊕ 45, all of which belong to protected multiplets

and do not mix with unprotected operators.
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polynomials for all other stress tensor multiplets correlators. In our case though, we find

that just imposing conditions 1 and 2 leads to five linearly independent solutions: a degree

0, a degree 1, and three degree 2:

degree 0: M1 = 1 , M4 = 1 ,

degree 1: M1 = s , M4 =
s− 4

2
,

1st degree 2: M1 = (t− 2)(u− 2) , M4 =

(
s− 4

3

)
(s− 2) ,

2nd degree 2: M1 = tu , M4 =
s(s− 4)

2
,

3rd degree 2: M1 = s2 , M4 = s2 + tu− 3s .

(2.45)

To reduce these to a unique amplitude, we must consider the other Ward identities

〈SSχχ〉, 〈SSχF 〉, 〈SSFF 〉, and 〈SSFF 〉 given in appendix D, which we can transform into

Mellin space as in E.2. We can write 〈SSχχ〉 in terms of the structures Ca,I(U, V ) defined

in (D.7), where the indices a = 1, 2, 3 and I = 1, 2 refer to the various R-symmetry and

conformal structures, respectively. The Mellin transform MSSχχ
a,I (s, t) of these Ca,I(U, V )

is then defined by (E.3). We can relate MSSχχ
a,I (s, t) to M i(s, t) as

MSSχχ
a,1 =

(
1− s

2

)−1
D̂Cai,1(U, V, ∂U , ∂V )M i(s, t) ,

MSSχχ
a,2 =

(
1− s

2

)−2
D̂Cai,2(U, V, ∂U , ∂V )M i(s, t) ,

(2.46)

where the 〈SSχχ〉 Ward identity DCai,1 is given in position space in (D.9), we express

derivatives and powers of U and V in Mellin space using the rules (E.1), and s-dependent

prefactors come from the difference in the definition of the scalar and fermion Mellin

amplitudes in (2.10) and (E.3). We find that degree 0 amplitude in (2.45) gives

degree 0: MSSχχ
1,1 (s, t) = 0 , MSSχχ

2,1 (s, t) =
1

16
, MSSχχ

3,1 (s, t) =
2− t
16u

,

MSSχχ
1,2 (s, t) = 0 , MSSχχ

2,2 (s, t) =
1

8t
, MSSχχ

3,2 (s, t) =
1

8u
,

(2.47)

which contain poles, and so must be discarded.

When we apply this method to the Ward identities for 〈SSFF 〉 and 〈SSFF 〉, a new

subtlety is that these Ward identities (D.17), (D.19), and (D.21) depend on both 〈SSSS〉
and 〈SSFF 〉, and in particular can be written in terms of S1(U, V ) and S4(U, V ), as well

as the first conformal structure Fa,1(U, V ) for 〈SSFF 〉 as defined in (D.7), where here

a = 1, 2 for the two R-symmetry structures. So to get the constraints from these Ward

identities up to degree 2, we must also consider a degree 2 polynomial ansatz for the Mellin
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transform MSSFF
a,1 (s, t) of Fa,1(U, V ), which satisfies the crossing relations

MSSFF
1,1 (s, t) = MSSFF

2,1 (s, u) +
(

1− s

2

)
MSSFF

2,2 (s, u) ,

MSSFF
2,1 = MSSFF

1,1 (s, u) +
(

1− s

2

)
MSSFF

1,2 (s, u) ,

MSSFF
1,2 (s, t) = −

(
1− s

2

)
MSSFF

2,2 (s, u) ,

MSSFF
2,2 (s, t) = −

(
1− s

2

)
MSSFF

1,2 (s, u) ,

(2.48)

where the s-dependent prefactors come from the difference in the definition of the fermion

Mellin amplitudes in (E.3) for the two different conformal structures. After imposing the

〈SSχF 〉, 〈SSFF 〉, and 〈SSFF 〉 Ward identities, just as we did for 〈SSχχ〉 above, and

demanding that all poles vanish, we find that MSSFF
a,1 (s, t) is completely fixed in terms of

M i(s, t) up to degree 2, and that only a single degree 2 solution for M i(s, t) survives:

M3 : M1
3 = (t− 2)(u− 2) , M4

3 =

(
s− 4

3

)
(s− 2) , (2.49)

which in fact corresponds to the degree 3 Mellin amplitude M3(s, t) as discussed before.

2.8 Supergravity exchange Mellin amplitude

We will also use the supergravity amplitude M i
SG(s, t), which contains an infinite series

of poles that correspond to the stress tensor multiplet operators (or the exchange of the

graviton multiplet in the bulk) and their descendants. This amplitude is unique and can

be derived using the method we used above for determining M i
4 by translating the N = 8

SCFT results into N = 6 language. For the case of 3d N = 8 CFTs, M i
SG was derived

in [22]. From eqs. (E.1) and (4.8) of [24], and converting to N = 6 notation as we did

before in subsection 2.7.1, we find that

M1
SG = −(t− 2)(u− 2)

s(s+ 2)

(
4Γ
(

1−s
2

)
√
πΓ
(
1− s

2

) − (4 + s)

)
,

M4
SG = −s− 2

2tu

(
2uΓ

(
1−t

2

)
√
πΓ
(
1− t

2

) +
2tΓ

(
1−u

2

)
√
πΓ
(
1− u

2

) + 2s− tu− 8

)
,

(2.50)

where the other M i
SG are given by crossing (2.12). We normalize M i

SG so that at large s, t

they obey (2.36) with g1 = 1.

3 Constraints from supersymmetric localization

In order to determine the coefficients of the Mellin amplitudes M3 and M4 derived in the

previous section in the case of ABJM theory, we will use information from supersymmetric

localization. Similarly to [21, 23, 24], we will focus on the mass-deformed partition function

of ABJM theory on a round S3. While it would be interesting to also obtain constraints

coming from the partition function on a squashed S3 [79], in this work we will use the

round sphere simply because the mass-deformed partition function can be computed [67]

using the Fermi gas formalism developed in [68] to all orders in the 1/N expansion. A

similar result for the squashed sphere partition function is not currently available.
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3.1 Integrated correlators on S3

To set the stage, let us begin with the result for the S3 partition function in the presence

of a mass deformation. On S3, there are two classes of mass deformations of ABJM theory

that one can consider: in N = 2 notation, there are superpotential mass deformations and

real mass deformations. The S3 partition function has no dependence on the superpoten-

tial mass parameters, so we will focus on the real mass parameters. These real masses

are associated with global symmetries, because they can be constructed by coupling the

conserved currents of the N = 2 theory to background vector multiplets and giving expec-

tation values proportional to the mass parameters to the scalars in the vector multiplets.

Since ABJM theory has N = 6 SUSY for arbitrary k, it has an SO(6)R R-symmetry as

well as an U(1)F global symmetry, with both the SO(6)R and U(1)F conserved currents

belonging to the same multiplet as the stress-energy tensor, as discussed in the previous

section. When passing to N = 2 notation, a U(1)R subgroup of SO(6)R can be viewed as

the N = 2 R-symmetry, and in SO(6)R×U(1)F there are three other U(1)’s that commute

with one another and with U(1)R. (They are the Cartans of an SO(4) × U(1) flavor sym-

metry from the N = 2 point of view.) Each of these U(1)’s can be coupled to an Abelian

background vector multiplet, so for each of them one may consider introducing a real mass

parameter. There are thus three distinct real mass parameters.

For simplicity, in this work we will focus on only two of the three real mass parameters

of ABJM theory.17 Recall that ABJM theory in N = 2 notation is a theory of two

U(N) vector multiplets coupled to bifundamental chiral multiplets Wi, i = 1, 2 in (N,N)

and Zi in (N,N) of U(N) × U(N). The two mass parameters we consider, denoted m+

and m−, correspond to giving masses (m+/2,m−/2,−m+/2,−m−/2) to W1,W2,Z1,Z2,

respectively. The partition function can be written as [32, 50]:

Z =

∫
dNλ dNµ

eiπk
∑

i(λ
2
i−µ2

i )
∏
i<j 16 sinh2 [π(λi − λj)] sinh2 [π(µi − µj)]∏

i,j 4 cosh
[
π(λi − µj) + πm+

2

]
cosh

[
π(λi − µj) + πm−

2

] . (3.1)

The purpose of this section is to relate the mixed derivatives

∂4 logZ

∂m4
+

,
∂4 logZ

∂m4
−

,
∂4 logZ

∂m2
+∂m

2
−
, (3.2)

all evaluated at m+ = m− = 0, to the correlation functions of the Sa
b operators introduced

in the previous section.

In the ABJM Lagrangian on a unit radius S3, the parameters m+ and m− appear at

linear order as

m+

∫
(iJ+ +K+) +m−

∫
(iJ− +K−) +O(m2

±) , (3.3)

where J± are linear combinations of the S’s and K± are linear combinations of the P ’s.

In terms of the Lagrangian fields, the J± are scalar bilinears which are quadratic in the

17In terms of symmetries, the two mass parameters that we consider correspond to linear combinations

of U(1)F and one of the Cartans of an SU(2) factor inside SO(4) ∼= SU(2)× SU(2).
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bottom components of the chiral multiplets Wi = (Wi, χi) and Zi = (Zi, ψi), while the K±
are fermion mass terms quadratic in the fermions in the same chiral multiplets:

J+ =
1

2
tr
(
|W1|2 − |Z1|2

)
, J− =

1

2
tr
(
|W2|2 − |Z2|2

)
,

K+ =
1

2
tr
(
χ†1χ1 − ψ†1ψ1

)
, K− =

1

2
tr
(
χ†2χ1 − ψ†2ψ2

)
.

(3.4)

The mixed derivatives (3.2) are given in terms of connected correlation functions as

∂4 logZ

∂m4
+

=

〈(∫
(iJ++K+)

)4
〉

conn

+(2- and 3-pt functions) ,

∂4 logZ

∂m4
−

=

〈(∫
(iJ−+K−)

)4
〉

conn

+(2- and 3-pt functions) ,

∂4 logZ

∂m2
+∂m

2
−

=

〈(∫
(iJ++K+)

)2(∫
(iJ−+K−)

)2
〉

conn

+(2- and 3-pt functions) .

(3.5)

where the 2- and 3-point function terms not written in (3.5) come from the O(m2) terms

not written in (3.3). We will not write down these 2- and 3-point function contributions

because they will be automatically taken into account in the final formulas, by analogy

with the similar situation encountered in [21].

To determine how J± and K± are related to S and P , let us first note that Ca =

(W1, Z
†
1,W2, Z

†
2) and Ψa = (ψ†2, χ2, ψ

†
1, χ1) transform as fundamentals of SU(4)R,18 so J±

and K± can be written as

J± =
1

2
(X±)a

b tr(C†bC
a) , K± = −1

2
(X∓)a

b tr(Ψ†bΨ
a) (3.6)

where we defined

X+ ≡ diag{1,−1, 0, 0} , X− ≡ diag{0, 0, 1,−1} . (3.7)

Because trC†aCb and tr Ψ†aΨb transform in the 15 of SU(4)R, they must be proportional to

Sa
b and Pa

b, respectively. Eq. (3.6) then implies that

J±(~x) = NJS(~x,X±) , K±(~x) = NKP (~x,X∓) , (3.8)

where NJ and NK are normalization constants.

On general grounds, the two-point functions of J± and K± must be proportional

to the coefficient cT appearing in the two-point function of the canonically normalized

stress-energy tensor. Because the two-point functions of S and P are both normalized as

in (2.1), knowing that N2
J and N2

K are proportional to cT allows us to determine them

in a free theory, such as the k → ∞ limit of the U(1)k × U(1)−k ABJM theory. In this

18The reason why the components of the chiral multiplets do not appear in the same order

in this expression is that we require the U(1)R symmetry to be generated by the su(4)R matrix

diag{1/2,−1/2, 1/2,−1/2}.
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limit, the Wi and Zi chiral multiplets are free, and 〈Ca(~x1)C†b (~x2)〉 = δab /(4π |~x12|) and

〈Ψa(~x1)Ψ†b(~x2)〉 = δab γµx
µ
12/(4π |~x12|). From the definition (3.6), we then have

free theory: 〈J±(~x1)J±(~x2)〉 =
1

32π2 |~x12|2
, 〈K±(~x1)K±(~x2)〉 =

1

16π2 |~x12|4
. (3.9)

These expressions should be compared with what we obtain from (3.8) and (2.1), which is

free theory: 〈J±(~x1)J±(~x2)〉 =
2N2

J

|~x12|2
, 〈K±(~x1)K±(~x2)〉 =

2N2
K

|~x12|4
. (3.10)

Thus, for a free theory, we have N2
J = 1/(64π2) and N2

K = 2N2
J . In conventions in which

a free massless real scalar or a free real Majorana fermion has cT = 1, as in (1.3), the free

theory has cT = 16. From this, and the fact that N2
J and N2

K should be proportional to

cT , we conclude that we must have

N2
J =

cT
210π2

, N2
K = 2N2

J . (3.11)

Note that the second derivatives of Z are ∂2 logZ
∂m2
±

∣∣
m±=0

= 〈
(∫

(iJ+ +K+)
)2〉. Using (3.10)

and (3.11) and explicitly evaluating the integrals gives [51]

cT = −64

π2

∂2 logZ

∂m2
±

∣∣∣∣
m±=0

. (3.12)

Having determined the normalization factors in (3.8), we can then evaluate (3.5). The

result will be given in terms of the functions Si that appear in the 〈SSSS〉 correlator in

eq. (2.3) as well as analogous functions that appear in 〈SSPP 〉 and 〈PPPP 〉. While this

is certainly a valid procedure,19 it is possible to obtain simpler formulas by making use of

the fact that all N ≥ 4 SCFTs in 3d have a 1d topological sector [80–85].

In general, a 3d N = 4 SCFT has SU(2)H×SU(2)C R-symmetry, and one can consider

1/2-BPS operators that have scaling dimension ∆ = jH , where jH is the SU(2)H spin, and

are invariant under SU(2)C . Such operators can be written as rank-2jH symmetric tensors

19The result is

∂4 logZ

∂m4
+

=
∂4 logZ

∂m4
−

= 4

6∑
i=1

(
N4

JI1,1[Si] +N4
KI2,2[Pi]

)
− 24N2

JN
2
KI2,1[R1] + (2- and 3-pt functions) ,

∂4 logZ

∂m2
+∂m

2
−

=
4

3

3∑
i=1

(
N4

JI1,1[Si] +N4
KI2,2[Pi]

)
− 8N2

JN
2
K

(
I2,1[R2 +R3] +

6∑
i=1

I2,1[Ri]

)
+ (2- and 3-pt functions) , (3.13)

where Si are the functions appearing in (2.3), Ri are the functions appearing in the 〈SSPP 〉 correlator

given in (D.5), Pi are the six functions appearing in the 〈PPPP 〉 correlator defined as in (2.3) but with

S → P and Si → Pi, and

I∆A,∆B [G] =

∫ ( 4∏
i=1

d3~xi

)
[Ω(~x1)Ω(~x2)]3−∆A [Ω(~x3)Ω(~x4)]3−∆B

~x2∆A
12 ~x2∆B

34

G(U, V ) , Ω(~x) ≡ 1

1 + x2

4

. (3.14)

The powers of Ω in (3.14) appear because the operators are integrated over S3 as opposed to R3.
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Oa1a2...a2jH
(~x) where ai = 1, 2 are SU(2)H spinor indices. From these operators, one can

construct 1d topological operators by inserting them on a line, say the line (0, 0, x), and

contracting the SU(2)H indices with position-dependent polarizations:

ÕR3(x) = Oa1a2...a2jH
(0, 0, x)ua1(x) · · ·ua2jH (x) , (3.15)

where we can take20

ua(x) =

(
1 + ix

2

1− ix
2

)
. (3.16)

If we want to express the topological operator in terms of the operator Oa1a2...a2jH
when

the theory is placed on S3, we have

Õ(x) =
1(

1 + x2

4

)jH Oa1a2...a2jH
(0, 0, x)ua1(x) · · ·ua2jH (x) ,

(3.17)

where the extra factor accounts for the fact that the operators on R3 and those on S3 differ

by a Weyl factor. In this case, the 1d topological theory lives on a circle parameterized by

x, with the point at x = +∞ being identified with the point at x = −∞.

To connect this discussion to the N = 6 ABJM theory, let us embed the N = 4

SU(2)H × SU(2)C R-symmetry into SU(4)R such that SU(2)H corresponds to the top left

2 × 2 block of an SU(4)R matrix written in the fundamental representation and SU(2)C
corresponds to the bottom right 2× 2 block. Raising and lowering indices with the epsilon

symbol, eqs. (3.15) and (3.17) applied to S give

S̃(x) =

(
1 + ix

2

)2
1 + x2

4

S1
2(0, 0, x)−

(
1− ix

2

)2
1 + x2

4

S2
1(0, 0, x) + S1

1(0, 0, x)− S2
2(0, 0, x) (3.18)

on S3 and S̃R3(x) =
(

1 + x2

4

)
S(x) on R3. It is straightforward to check that the super-

conformal Ward identities (2.38) imply that the four-point function of S̃R3 , namely

〈S̃R3(x1)S̃R3(x2)S̃R3(x3)S̃R3(x4)〉 = S1 +
S2

z2
+

(1− z)2S3

z2

+
2(1− z)S4

z2
− 2(1− z)S5

z
+

2S6

z

∣∣∣∣ U=z2

V=(1−z)2

,
(3.19)

where z ≡ (x1−x2)(x3−x4)
(x1−x3)(x2−x4) , is piece-wise constant.

The advantage of the topological sector is that we can replace the integrated operator∫
S3 d

3~x
√
g(iJ+ +K+) by a different operator that is integrated only along the circle. Such

a replacement can be rigorously justified in the class of N = 4 theories studied in [83–85]

where it was shown how one can obtain a 1d action for the topological sector by using

supersymmetric localization in the 3d N = 4 theory. Unfortunately, ABJM theory with

20In the notation of [83] this choice corresponds to ha
b = (σ3)a

b.
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k > 1 falls outside the range of theories studied in [83–85]. Nevertheless, as explained in

section 3.1 of [86], one expects that such a replacement should be possible in ABJM theory

as well. In particular, one expects [86]

4π

∫
dx

1 + x2

4

iJ̃(x) =

∫
d3~x
√
g(iJ+ +K+) + (Q-exact terms) , (3.20)

where21

J̃(x) =
NJ

2
S̃(x) . (3.21)

Thus, instead of (3.5), we may write

∂ logZ

∂m4
+

= (4π)4

〈(∫
dx

1 + x2

4

iJ̃(x)

)4〉
conn

,

∂ logZ

∂m2
+∂m

2
−

= (4π)2

〈(∫
d3~x
√
g (iJ−(~x) +K−(~x))

)2
(∫

dx

1 + x2

4

iJ̃(x)

)2〉
conn

.

(3.22)

Because the correlation function 〈J̃ J̃ J̃ J̃〉 is topological, we can place the four operators

at any four locations of our choosing and multiply the answer by (2π)4. Using (3.18), we

have

∂ logZ

∂m4
+

= 128π8N4
JI++[Si] , (3.23)

where

I++[Si] = 2

S1+
S2

z2
+

(1−z)2S3

z2
+

2(1−z)S4

z2
− 2(1−z)S5

z
+

2S6

z

∣∣∣∣ U=z2

V=(1−z)2

−6 , (3.24)

where the −6 comes from subtracting the disconnected part. After relating NJ to cT
using (3.11), we obtain

∂ logZ

∂m4
+

=
π4c2

T

213
I++[Si] . (3.25)

The quantity I++[Si] is independent of z. It can be simplified significantly using the

conformal block expansion introduced in eq. (2.6). Indeed, (3.24) can be written as

I++[Si] = 2

[
S1 + S15a

2(z − 2)

z
+ S15s + 2S20′ + S45⊕45

4− 2z

z

+ S84
(

16

z2
− 16

z
+

44

15

)]∣∣∣∣ U=z2

V=(1−z)2

− 6 .
(3.26)

21A quick check of the normalization is as follows. The two-point function of the r.h.s. of (3.20) equals

4π2N2
J

∫
d3~x

(
−Ω(~x)2

|~x|2 + 2 Ω(~x)1

|~x|4

)
= −16π4N2

J . The two-point function of the l.h.s. gives −16π2(N2
J/4)4π2 =

−16π4N2
J .
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Each SR must be expanded in conformal blocks, which as z → 0 behave as (z/4)∆ where ∆

is the scaling dimension of the corresponding conformal primary. Since I++ is independent

of z, it follows that the only conformal primaries that can contribute must have either

∆ = 0 in the 1, 15s, 20′ channels, ∆ = 1 in the 15a and 45 ⊕ 45 channels, or ∆ = 2 in

the 84 channel. The only ∆ = 0 operator is the identity operator and it appears in the

1 channel with squared OPE coefficient λ2
0,0,1 = 1 by convention. The 15a and 45 ⊕ 45

channels contain only odd spin operators, and for them ∆ = 1 would violate the unitarity

bound. Thus, there are no ∆ = 1 operators contributing to (3.26). Consequently, the

only operators that can contribute to (3.26) are the identity operator and any ∆ = 2

operators in the 84. Such operators must be scalars because these are the operators that

are non-trivial in the 1d theory [81]. Using G2,0(U, V ) ≈ U/16 at small U , we have

I++[Si] = −4 + 2λ2
2,0,84 . (3.27)

As explained in more detail in appendix A.2, the OPE coefficient λ2
2,0,84 can be written

in terms of the Mellin amplitude corresponding to the 84 channel, which is defined as

M84(s, t) = (M2 +M3 + 2M4)/16. The final expression for I++[Si] is

I++[Si] = 32π2 lim
s→2

lim
t→3−s

(u−1)M84(s, t)

s−2
+

16i

π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s−2
(3.28)

with the contour in the t integral obeying 0 < <t < 1. For a derivation, see appendix A.2.

For the mixed derivative, let us take the first J̃ to be at x3 = 0 and the second at

x4 =∞ and multiply by (2π)2. Then, relating all the operators in the second line of (3.22)

to Si and Ri (where Ri are defined in (D.5)), and computing the required traces of M

matrices, we obtain

∂ logZ

∂m2
+∂m

2
−

= 16π4N2
J

[
N2
J Ĩ1[2S1]−N2

K Ĩ2[2R1 +R2 +R3 + 2R5 + 2R6]
]
, (3.29)

where

Ĩ∆[G] ≡
∫
d3~x1 d

3~x2
[Ω(~x1)Ω(~x2)]3−∆

~x2∆
12

G
(
~x2

12

~x2
1

,
~x2

2

~x2
1

)
, Ω(x) =

1

1 + x2

4

. (3.30)

We can evaluate (3.30) as follows. Using rotational symmetry, we can set ~x1 = (r1, 0, 0)

and ~x2 = (r2 cos θ, r2 sin θ, 0) and perform the angular integrals which give 4π × 2π = 8π2.

Thus

Ĩ∆[G] ≡ 8π2

∫
dr1 dr2 dθ r

2
1r

2
2 sin θ

[(
1 +

r2
1
4

)(
1 +

r2
2
4

)]∆−3

(r2
1 + r2

2 − 2r1r2 cos θ)∆
G
(
r2

1 + r2
2 − 2r1r2 cos θ

r2
1

,
r2

2

r2
1

)
.

(3.31)

Let us now change variables by setting r1 = 2ρ and r2 = 2rρ. Then (3.31) becomes

Ĩ∆[G]≡ 29−2∆π2

∫
dρdrdθρ5−2∆r2 sinθ

[(
1+ρ2

)(
1+r2ρ2

)]∆−3 G
(
1+r2−2r cosθ,r2

)
(1+r2−2r cosθ)∆

.

(3.32)
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The ρ integral can be done analytically. For the cases of interest, namely ∆ = 1 and 2, the

result is

Ĩ1[G] = 27π2

∫
dr dθ r2 sin θ

1− r2 + (1 + r2) log r

(r2 − 1)3

G
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

,

Ĩ2[G] = 25π2

∫
dr dθ r2 sin θ

log r

r2 − 1

G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)2

.

(3.33)

The expression (3.29) can be simplified further after using the Ward identity relating

Ri to Si in eqs. (D.27)–(D.30), and integrating by parts. We find

Ĩ2[2R1+R2+R3+2R5+2R6] =

∫
drdθS1

(
1+r2−2r cosθ,r2

)
×
(
−16π2 sinθ

−1−5r2+5r4+r6−8(r2+r4) logr

(r2−1)3(1+r2−2r cosθ)

)
.

(3.34)

Combining with (3.29), we obtain

∂ logZ

∂m2
+∂m

2
−

= 29π6N4
J

∫
dr dθ sin θ

S1
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

. (3.35)

Once again we can view the right-hand side as a linear functional defined on S, defining

I+−[Si] =

∫
dr dθ sin θ

S1
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

(3.36)

so that
∂ logZ

∂m2
+∂m

2
−

=
π2c2

T

211
I+−[Si]. (3.37)

See appendix F for an expression for I+−[Si] in terms of the Mellin amplitude corresponding

to Si.

3.2 Large cT expansion

We will now show how integrated correlators can be expanded to all orders in 1/cT . Using

the Fermi gas method [68], the localization formula (3.1) for the mass deformed partition

function was computed to all orders in 1/N [67]:

Z ≈ eAC−
1
3 Ai

[
C−

1
3 (N −B)

]
,

C =
2

π2k(1 +m2
+)(1 +m2

−)
, B =

π2C

3
− 1

6k

[
1

1 +m2
+

+
1

1 +m2
−

]
+

k

24
,

A =
A[k(1 + im+)] +A[k(1− im+)] +A[k(1 + im−)] +A[k(1− im−)]

4
,

(3.38)

where the constant map function A is given by

A(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

dx
x

ekx − 1
log
(
1− e−2x

)
= −ζ(3)

8π2
k2 + 2ζ ′(−1) +

log
[

4π
k

]
6

+

∞∑
g=0

(
2πi

k

)2g−2 4gB2gB2g−2

(4g)(2g − 2)(2g − 2)!
,

(3.39)
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and in the second line we wrote A in the large k expansion [87]. We will be interested in

derivatives of Z(m±) at m± = 0, in which case we expect the non-perturbative corrections

to take the form e−
√
Nk and e−

√
N/k, which is known for Z(0) that has been computed

exactly for all N and k in [68, 88–94]. The large N expansion is then expected to apply to

the finite k, the strong coupling ’t Hooft limit with ’t Hooft coupling

λ =
N

k
− 1

3k2
− 1

24
, (3.40)

and the finite µ ≡ N/k5 limit discussed in the Introduction, which interpolates between

finite k as µ → ∞ and the strong coupling ’t Hooft limit as µ → 0. In particular, the

non-perturbative corrections e−
√
Nk and e−

√
N/k do not allow for any non-perturbative

corrections in µ.

For each of these limits, we can use (3.38) and (3.12) to expand cT , ∂
4 logZ
∂m4
±

, and ∂4 logZ
∂m2

+∂m
2
−

to all orders in 1/N , and then rewrite the latter two quantities as expansions to all orders

in 1/cT . For the finite k limit, we find

finite k:
1

c2
T

∂4 logZ

∂m4
±

=
3π2

64

1

cT
+

3
4
3π4/3

2
8
3k2/3

1

c
5
3
T

+
k4A(4)(k)−3k2A′′(k)−3

2cT 2
+O(c

− 7
3

T ) ,

1

c2
T

∂4 logZ

∂m2
+∂m

2
−

=−π
2

64

1

cT
+

5π4/3

4 62/3k2/3

1

c
5
3
T

+
k2A′′(k)−1

2cT 2
+O(c

− 7
3

T ) ,

(3.41)

where we have only shown the lowest couple terms in 1/cT for simplicity. We can evaluate

A(4)(k) and A′′(k) using the definition in the first line of (3.39), which holds for finite k,

in which case the ζ(3) term is cancelled by the integral term.22

For the strong coupling ’t Hooft limit, we find the all orders in 1/λ and 1/cT result

’t Hooft:
1

c2
T

∂4 logZ

∂m4
±

=

[
3π2

64
+

9ζ(3)

512
√

2π

1

λ
3
2

+
27ζ(3)2

8192π4

1

λ3
+O(λ−

9
2 )

]
1

cT

+

[
3

2
π
√

2λ− 5

4
− 9ζ(3)

16π2

1

λ
+

15ζ(3)

32
√

2π3

1

λ
3
2

+O(λ−
5
2 )

]
1

c2
T

+O(c−3
T ) ,

1

c2
T

∂4 logZ

∂m2
+∂m

2
−

=

[
−π

2

64
− 3ζ(3)

512
√

2π

1

λ
3
2

− 9ζ(3)2

8192π4

1

λ3
+O(λ−

9
2 )

]
1

cT

+

[
5

6
π
√

2λ− 5

12
+

3ζ(3)

16π2λ
− 5ζ(3)

32
√

2π3

1

λ
3
2

+O(λ−
5
2 )

]
1

c2
T

+O(c−3
T ) ,

(3.43)

where we used the large k formula for A(k) in the second line of (3.39), so ζ(3) terms

appear. In fact, ζ(3) and π are the only transcendental numbers that appear to any order

in 1/λ and 1/cT .

22For instance, for k = 1, 2 these values are [86]

A′′(1) =
1

6
+
π2

32
, A′′(2) =

1

24
,

A′′′′(1) = 1 +
4π2

5
− π4

32
, A′′′′(2) =

1

16
+
π2

80
.

(3.42)
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Finally, for the finite µ limit we find

finite µ:
1

c2
T

∂4 logZ

∂m4
±

=
3π2

64

1

cT
+

3
5
4

(
4
√

2π3√µ+ ζ(3)
)

16 25/8π7/4µ3/8

1

c
7
4
T

− 5

4

1

c2
T

+O(c
− 9

4
T ) ,

1

c2
T

∂4 logZ

∂m2
+∂m

2
−

= −π
2

64

1

cT
+

20
√

2π3√µ− 3ζ(3)

16 25/833/4π7/4µ3/8

1

c
7
4
T

− 5

12

1

c2
T

+O(c
− 9

4
T ) ,

(3.44)

where we again used the large k formula for A(k).

From the finite µ limit we can derive both the ’t Hooft limit and the finite k limit by

taking µ→ 0 and µ→∞ respectively. To reproduce the ’t Hooft limit (3.43) we first solve

for µ in terms of λ and cT using (3.12) and (3.40), which at leading order in 1/cT gives

µ =
8192λ4

9c2
Tπ

2
+ . . . . (3.45)

We then take the large cT limit followed by the large λ limit. The ζ(3)µ−
3
8 c
− 7

4
T and µ

1
8 c
− 7

4
T

terms give rise to the ζ(3)λ−
3
2 c−1
T and

√
λc−2

T terms in (3.43), respectively.

To extract the finite k limit (3.41) from (3.44) we solve for µ in terms of cT and k

using (3.12), which at leading order in 1/cT gives

µ =
(3π)2/3cT

2/3

2
13
3 k

16
3

+ . . . . (3.46)

We then take the large cT limit. In this limit, the ratio c2
Tµ
−3 is finite, so we must sum

infinitely many terms in the finite µ limit to recover the finite k limit. This infinite sum

cancels all the ζ(3) terms which appear at finite µ. The µ
1
8 c
− 7

4
T term becomes a c

− 5
3

T term

at finite k.

4 N = 6 ABJM correlators at large cT

We will now combine the results of the previous to sections and determine the first few

terms in the large N expansion of the 〈SSSS〉 correlator in ABJM theory. We will do this

for the finite k, finite µ, and strong coupling ’t Hooft limits, which correspond to M-theory

on AdS4 × S7/Zk for the first limit, or to type IIA string theory on AdS4 × CP3 in the

second and third limits.

In each of these limits, we can use the Penedones formula (2.13) to relate the 〈SSSS〉
Mellin amplitude to the four-point scattering amplitudes of gravitons and their superpart-

ners in 11d (in the M-theory case) or 10d (in the type IIA case) flat space, with momenta

restricted to lie within a four-dimensional subspace. Of course, the flat space limit of the

〈SSSS〉 correlator in ABJM theory cannot give the four-point scattering amplitude of all

massless particles in 11d or 10d. Indeed, in either 11d M-theory or in 10d type IIA string

theory, the massless particle spectrum consists of 128 bosons and 128 fermions that are

related by maximal SUSY. The flat space limit of the 〈SSSS〉 correlator must match the

four-point scattering amplitude of only 15 of the 128 bosons, which all have the property
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that after restricting their momenta to lie within 4d, they can be thought of as scalars

from the 4d point of view.23 Note that when using eq. (2.13), we should keep either the

11d Planck length `11 or the 10d string length `s fixed as we send L→∞. In other words,

we should more precisely send L/`11 or L/`s to infinity.

As explained in section 2, the ingredients we will use to construct the first few terms

in the large N expansion of the 〈SSSS〉 correlator are the Mellin amplitudes

M i
SG , M i

3 , M i
4 (4.1)

given in (2.50), (2.49), and (2.44), respectively. M i
SG is the Mellin amplitude correspond-

ing to an exchange Witten diagram with supergravity vertices. M i
3 is a polynomial Mellin

amplitude that represents the 〈SSSS〉 component of a degree 3 super-Mellin amplitude

corresponding to a contact Witten diagram with an F 2R2 contact interaction vertex. Like-

wise, M i
4 is part of a degree 4 super-Mellin amplitude corresponding to a contact Witten

diagram with an R4 super-vertex. As explained in section 2, if we apply the Penedones

formula (2.13) to each of the Mellin amplitudes (4.1), we find that

1

L2N (L)
M i

SG(s, t) −→
flat space

AiSG(s, t) =
(
tu
s

su
t

st
u

s
2

t
2
u
2

)
,

1

L6N (L)
M i

3(s, t) −→
flat space

Ai3(s, t) = 0 ,

1

L8N (L)
M i

4(s, t) −→
flat space

Ai4(s, t) =
stu

105
AiSG(s, t) .

(4.2)

Here, the normalization constant N (L) appearing in (2.13) depends on our precise choice

of normalization for the 〈SSSS〉 correlator. If we normalize this correlator such that the

disconnected piece scales as c0
T , then we should take N (L) = N0L

D, where D = 7 for the

case of an 11d dual and D = 6 for the case of a 10d dual.

In addition to (4.1), we will also consider the contact Mellin amplitudes

M i
5,1 , M i

5,2 , (4.3)

which are part of degree-5 super-Mellin amplitudes corresponding to D2R4 and D4F 2R2

interaction vertices, respectively. While in section 2 we did not determine the forms of M i
5,1

and M i
5,2, we know that such Mellin amplitudes must exist because they must reproduce

the scattering amplitudes in the 3rd line of table 3 in the flat space limit. Upon a convenient

choice of normalization, the flat space limits of the Mellin amplitudes can be taken to be

1

L10N (L)
M i

5,1(s, t) −→
flat space

Ai5,1(s, t) =
1

945
stu
(
s2 + 3t2 + 3u2 · · ·

)
,

1

L10N (L)
M i

5,2(s, t) −→
flat space

Ai5,2(s, t) = 0 .

(4.4)

It is important to note that the Mellin amplitudes M i
SG, M i

3, M i
4, M i

5,1, and M i
5,2 are

the only crossing-invariant Mellin amplitudes that obey the SUSY Ward identities and that

grow at most as the fifth power of s, t at large s, t.

23More generally, from all the 4-point CFT correlators of the N = 6 stress tensor multiplet, we would

be able to determine the 4-point scattering amplitudes of precisely half (64 bosons + 64 fermions) of the

massless particles of both 11d M-theory and 10d type IIA string theory.
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4.1 Strong coupling expansions

Let us now analyze the (Mellin transform of) the 〈SSSS〉 correlator in each of the three

large N limits we consider.

4.1.1 Large cT , finite k

At large cT limit with k fixed, ABJM theory is dual to M-theory on AdS4 × S7/Zk. At

leading order in 1/cT , we have the AdS/CFT relation [23, 39]

L9

`911

=
3πk

211
cT + . . . , (4.5)

with corrections suppressed in 1/cT . From this relation, the flat space limits (4.2) and (4.4),

as well as the requirement that in the flat space limit the scattering amplitude should have

an expansion in `11 times momentum, we can infer that M i(s, t) can be expanded at large

cT in terms of M i
n(s, t) as

M i(s, t) =
1

cT
A1

SGM
i
SG+

1

c
13
9
T

[
A3

SGM
i
SG+A3

3M
i
3

]
+

1

c
5
3
T

[
A4

SGM
i
SG+A4

3M
i
3+A4

4M
i
4

]
+

1

c
17
9
T

[
A5

SGM
i
SG+A5

3M
i
3+A5

4M
i
4+A5

5,1M
i
5,1+A5

5,2M
i
5,2

]
+O(c−2

T ) ,

(4.6)

where Ali,j are k-dependent numerical coefficients. In the flat space limit only the maximal

degree Mellin amplitudes contribute at each order in 1/cT , and so from (4.2) and (4.4) we

find that

Ai(s, t) = `911

(
A1

SGAiSG +

(
3kπ

211

)2/3

`611A
4
4Ai4 +

(
3kπ

211

)8/9

`811A
5
5,1Ai5,1 + · · ·

)
. (4.7)

Note that neither Ai3 nor Ai5,2 give rise to scalar scattering amplitudes in flat space, which

is why they do not appear in (4.7). Comparing (4.7) to the known M-theory four-point

scattering amplitude [54]

A11 = A11
SG

[
1 + `611

1

3 · 27
stu+O(`911)

]
, (4.8)

where A11
SG is the 11d supergravity scattering amplitude, we can immediately deduce that

A4
4

A1
SG

= 35

(
2

9π2k2

)1/3

, A5
5,1 = 0 . (4.9)

Although M i
3 and M i

5,2 do not give rise to scattering amplitudes for the 11d super-

gravitons that are scalars from the 4d point of view, they do contribute to the scattering

of other particles in the same multiplet. The M-theory amplitude (4.8) however encodes

the scattering amplitudes for all such particles, and it does not contain any terms of order

`13
11 or `17

11. From this we conclude that

A3
3 = A5

5,2 = 0 . (4.10)

As a final aside, note that the O(c−2
T ) term (4.6) is not a local Mellin amplitude. It

instead corresponds to the one-loop supergravity term, which is not analytic in s and t.

We will not study this term further.
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4.1.2 ’t Hooft strong coupling limit

We next consider the strong coupling ’t Hooft limit of ABJM theory, whereby we first

take N → ∞ with fixed λ (see (3.40) for the definition of λ), and then take λ → ∞.

In this double limit, ABJM theory is dual to weakly coupled type IIA string theory on

AdS4 × CP3 [39]. The leading order AdS/CFT relations are [23, 39]

L8

`8s
= 4π4λ2 + . . . , g2

s =
512λ2

3cT
+ . . . , (4.11)

where both `s/L and the string coupling gs are small in this double expansion. The ellipses

in (4.11) stand for terms that are suppressed at large cT in both expressions. Similarly

to the M-theory limit discussed above, we can expand M i(s, t) in powers of `s/L, with

the appropriate powers of `s/L being such that after taking the flat space limit, the string

theory scattering amptliude has an expansion in `s times momentum. Unlike M-theory

however, type IIA string theory has an additional dimensionless parameter, the string

coupling constant gs, that governs the strength of string interactions. Simultaneously

expanding in both, we find that

M(s, t) =
1

cT

[
B1

SGMSG+
1

λ

(
B3

SGMSG+B3
3M3

)
+

1

λ
3
2

(
B4

SGMSG+B4
3M3+B4

4M4

)
+

1

λ2

(
B5

SGMSG+B5
3M3+B5

4M4+B5
5,1M5,1+B5

5,2M5,2

)
+O(λ−

5
2 )

]
+

1

c2
T

[
λ2B̃1

SGMSG+λ
(
B̃3

SGMSG+B̃3
3M3

)
+
√
λ
(
B̃4

SGMSG+B̃4
3M3+B̃4

4M4

)
+O(λ0)

]
+O(c−3

T ) ,

(4.12)

where Bl
i,j and B̃l

i,j are numerical coefficients. The leading order 1/cT behavior corresponds

to tree-level string theory, and the higher order terms are loop corrections. At fixed order

in 1/cT and 1/λ only the maximal degree Mellin amplitudes contribute in the flat space

limit, and so we find that

Ai(s, t) =
3π4

128
g2
s`

8
s

(
B1

SGAiSG + 2
√

2π3`6sB
4
4Ai4 + 4π4`8sB

5
5,1Ai5,1 + · · ·

)
+

9π4

216
g4
s`

8
s

(
B̃1

SGAiSG + 2
√

2π3`6sB̃
4
4Ai4 + · · ·

)
.

(4.13)

Although the 1/c2
T terms are one-loop corrections, non-analytic Mellin amplitudes will

occur first at λ0/c2
T corresponding to the one-loop correction in supergravity. Comparing

this to the IIA S-matrix at weak coupling [95]

A10
IIA = A10

SG

[(
1 + `6s

ζ(3)

32
stu+O(`10

s )

)
+ g2

s

(
`6s
π2

96
stu+O(`8s)

)
+O(g4

s)

]
, (4.14)

we find that

B4
4

B1
SG

=
105ζ(3)

64
√

2π3
,

B̃4
4

B1
SG

=
140
√

2

3π
, B5

5,1 = B̃1
SG = 0 . (4.15)
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Like the M-theory amplitude, the type IIA super-amplitude does not contain any terms

which could correspond to M i
3 or M i

5,2, which in 10d contribute at `12
s and `16

s . We hence

conclude that these terms do not contribute at leading order:

B3
3 = B̃3

3 = B5
5,2 = 0 . (4.16)

4.1.3 Large cT , finite µ

Finally, we consider the large cT expansion of ABJM at finite µ ≡ N/k5. Like the ’t

Hooft strong coupling limit, ABJM theory in this limit is dual to type IIA string theory on

AdS4×CP3, except now the string coupling gs is finite. The AdS/CFT relations are [23, 39]

L8

`8s
=

3cTπ
5√µ

16
√

2
+ · · · , g4

s = 32π2µ+ · · · , (4.17)

with corrections suppressed at large cT . The relation (4.17) implies that M i(s, t) can be

expanded at large cT in terms of M i
n(s, t) as

M i(s, t) =
1

cT
C1

SGM
i
SG+

1

c
3
2
T

[
C3

SGM
i
SG+C3

3M
i
3

]
+

1

c
7
4
T

[
C4

SGM
i
SG+C4

3M
i
3+C4

4M
i
4

]
+O(c−2

T ) ,

(4.18)

where now C li,j are µ-dependent numerical coefficients. (This expansion is nothing but a

reorganized version of the double expansion (4.12).) Unlike in the previous limits, we do

not include the two amplitudes M i
5,1 and M i

5,2 because in this case they contribute at the

same order in 1/cT as the one-loop supergravity Mellin amplitude. Taking the flat space

limit of (4.18) we find that

Ai(s, t) =
3π4

128
g2
s`

8
s

(
C1

SGAiSG + `6s

(
9π8g4

s

214

)3/8

C4
4Ai4 +O(`8s)

)
(4.19)

This expression can be compared with the type IIA scattering amplitude at fixed gs, which

is given by [59]

A10
IIA = A10

SG

[
1 + `6sstu

(
ζ(3)

32
+ g2

s

π2

96

)
+O(`8s)

]
. (4.20)

Note that the `6s term only receives contributions from tree-level and one-loop, and it does

not have any other perturbative or non-perturbative corrections.

From comparing (4.20) and (4.19), we conclude that

C4
4

C1
SG

=
35

2π4

(
9π2

32µ3

)1/8(
ζ(3) +

4

3

√
2µπ3

)
. (4.21)

We can recover both the finite k and strong coupling ’t Hooft limit expansions

from (4.18) by taking the µ → ∞ and µ → 0 limits respectively, as we explain at the

end of section 3.2. Using the relations (3.45) and (3.46), we find that the c
− 7

4
T term be-

comes the c
− 5

3
T term at finite k, and gives rise to both the c−1

T λ−
3
2 and c−2

T λ
1
2 terms in the

strong coupling ’t Hooft limit.
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4.2 Fixing the SUGRA coefficients

Our goal is now to fix the coefficients Ali,j , B
l
i,j , B̃

l
i,j , and C li,j in each expansion considered

above, purely using CFT data. We will begin with the supergravity coefficients AlSG, Bl
SG,

B̃l
SG, and C lSG, which we fix by determining how the various Mellin amplitudes contribute

to the squared OPE coefficient λ2
1,0,15s

with which the S operator appears in the S × S
OPE. As we will explain, this OPE coefficient is proportional to 1/cT , and this fact will

allow us to determine all AlSG, Bl
SG, B̃l

SG, and C lSG exactly.

Our starting point is the expression (A.8) for λ2
1,0,15s

in terms of the Mellin amplitude

M15s = 1
6

(
M2 +M3 −M4

)
+ 1

2(M5 +M6) corresponding to the 15s channel in the S×S
OPE. For the reader’s convenience, we reproduce it here

λ2
1,0,15s

= − 1

2i

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
lim
s→1

[
(s− 1)M15s(s, t)

]
, (4.22)

and refer the reader to appendix A.2 for a derivation. As can be seen from (4.22), it is only

the pole as s → 1 in M15s that contributes to λ2
1,0,15s

. Therefore local Mellin amplitudes

cannot contribute to λ2
1,0,15s

, so the only contribution will come from the supergravity

exchange Mellin amplitude. Indeed, the supergravity exchange amplitude M i
SG(s, t) does

have a pole at s = 1 with a residue independent of t:

lim
s→1

[
(s− 1)MSG,15s(s, t)

]
= − 1

π
. (4.23)

and thus MSG in each of the expansions presented above contributes to λ2
1,0,15s

an amount

equal to

1

2πi

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
= 2π2 . (4.24)

Note that although we have not yet discussed Mellin amplitudes for loop corrections,

by suitably adding to them an appropriate multiple of MSG we can always define them such

that they do not contribute to the
√
U term, so that λ2

1,0,15s
is purely fixed by the coefficient

of MSG. Furthermore, because the three-point function of three stress tensor multiplets

is uniquely determined up to an overall coefficient [47], λ2
1,0,15s

must be proportional to

the stress-tensor three-point function, which itself is proportional to 1/cT according to the

conformal Ward identity [96]. We hence determine that

A1
SG = B1

SG = C1
SG =

cT
2π2

λ2
1,0,15s

, B̃1
SG = 0 ,

AlSG = Bl
SG = B̃l

SG = C lSG = 0 , for l > 1 .
(4.25)

Our final step is to determine the relationship between λ2
1,0,15s

and c−1
T . We can do

so by considering the free N = 6 theory of four complex scalars and four 2-component

complex fermions, where the scalars φa (φ̄a) transform in the 4 (4̄) of SU(4)R. (This is the

same as the U(1)k × U(1)−k ABJM theory in the limit k →∞ considered in the previous

section.) We write S in this case as

Sb
a = φaφ̄b −

δab
4
φcφ̄c , (4.26)
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and then define S(~x,X) as in (2.1). We then perform Wick contractions with the propa-

gator 〈φa(~x)φ̄b(0)〉 =
δab
|~x| to find the 4-point function (2.3) with the crossing independent

coefficients

Sifree(U, V ) =
(

1 U U
V

U√
V

√
U√
V

√
U
)
, (4.27)

so that by computing S15s(U, 1) and comparing to (A.5), we find that λ2
1,0,15s

= 4. This

free theory has 8 real scalars and 8 Majorana fermions, so cT = 16 according to (1.3).

Because the relationship between λ2
1,0,15s

and c−1
T is fixed by the superconformal Ward

identity, we conclude that in general

λ2
1,0,15s

=
64

cT
. (4.28)

Combining (4.28) with (4.25) we conclude that

A1
SG = B1

SG = C1
SG =

32

π2
, (4.29)

which is the same coefficient that was found for the N = 8 case in [22]. This is the same

coefficient we would obtain if we decomposed the known N = 8 answer from [22] into

N = 6 language as we did in section 2.7.1. Indeed, the supergravity term does not depend

on k when written in terms of cT , because it is proportional to the effective 4d Newton

constant G4 ∝ 1/cT .

4.3 Constraints from supersymmetric localization

Let us now explore the constraints on the coefficients Ali,j , B
l
i,j , B̃

l
i,j , and C li,j coming

from the supersymmetric localization constraints of section 3. To do so, we can compute

the integrated constraints I++[Si] in (3.24) and I+−[Si] in (3.36) using the explicit Mellin

amplitudes for M i
SG, M i

4, and M i
3 given in (2.50), (2.44), and (2.49), respectively. We have:

I++[M i
SG] = 12 , I+−[M i

SG] = −π2 ,

I++[M i
3] =

8

3
, I+−[M i

3] =
2

3
π2 ,

I++[M i
4] =

288

35
, I+−[M i

4] =
8

7
π2 .

(4.30)

(For the details of the computation that gives (4.30), see appendix F.)

Plugging (4.30) into (3.25) and (3.37) and using eqs. (3.41), (3.43), and (3.44), we can

obtain the following results. First, without using the constraints from the flat space limit

or the constraints (4.25) coming from the superconformal block expansion, the supersym-

metric localization constraints (3.25) and (3.37) reproduce the coefficients in the first line

of (4.25). This is a stringent consistency check on the accuracy of our computations.

Second, using the constraints (4.25) coming from the superconformal block expansion

as an input, the supersymmetric localization constraints allow us to fix the coefficients at
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the next two orders in each of the expansions (4.6), (4.12), and (4.18). The result is

finite k: A4
4 =

2240

(6π4k)2/3
, A3

3 =A4
3 = 0 ,

’t Hooft: B4
3 =−54

√
2ζ(3)

π5
, B4

4 =
105ζ(3)

2
√

2π5
, B̃4

4 =
4480

√
2

3π3
,

B3
3 = B̃3

3 = B̃4
3 = 0 ,

finite µ: C4
3 =−576 23/83

1
4 ζ(3)

π23/4µ3/8
, C4

4 =
2

3
8 280

33/4π23/4

(
4
√

2π3µ
1
8 +3ζ(3)µ−

3
8

)
,

C3
3 = 0 .

(4.31)

These equations agree with the constraints from the flat space limit, thus providing a very

non-trivial precision test of AdS/CFT.

Third, using both the constraints (4.25) as well as the constraints coming from the

flat space limit as input, the constraints from supersymmetric localization allow us to

conclude that

A5
3 = A5

4 = B5
3 = B5

4 = 0 . (4.32)

We can then plug these values back into (4.6), (4.12), and (4.18) to get the final

answers (1.2) as advertised in the Introduction.

5 Discussion

In this paper we used superconformal symmetry, the flat space limit, and most importantly

supersymmetric localization results for the mass deformed sphere free energy to compute

the R4 correction to the stress tensor multiplet bottom component four point function

〈SSSS〉 in N = 6 U(N)k × U(N)−k ABJM theory in the large N finite µ = N/k5 limit.

After taking the flat space limit we matched the known type IIA string theory S-matrix for

finite gs, which is the first check of AdS/CFT of this type for local operators. This finite

µ result interpolates between the large N finite k limit at µ → ∞ and the large ’t Hooft

coupling λ ∼ N/k limit at µ→ 0, which in the flat space limit are related to the S-matrix

of M-theory and weakly coupled type IIA string theory, respectively.

There were several technical innovations in this work relative to similar studies of

N = 8 ABJM theory in [24] and N = 4 SYM in [21], which all stem from the fact that

our theory is not maximally supersymmetric like these other theories. One implication is

that the stress tensor multiplet is 1
3 -BPS, not 1

2 -BPS as in the other cases, so the Ward

identities that we derived for various four point functions in this multiplet are the first such

derivation for operators annihilated by less than half the supercharges. Another novelty

of this calculation was that demanding bulk locality, i.e. that higher derivative corrections

to supergravity correspond to polynomial Mellin amplitudes, in stress tensor correlators

other than 〈SSSS〉 gave additional constraints, unlike the maximally supersymmetric cases

were only 〈SSSS〉 gave such constraints. Finally, in the flat space limit, stress tensor

multiplet correlators in holographic theories are dual to supergraviton multiplet amplitudes
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in one more dimension. For maximally supersymmetric supergravity there is just one such

amplitude supermultiplet, but for our sub-maximal case two amplitudes exist, which is

related to the fact that we found an extra subleading term in the large N expansion of

〈SSSS〉 relative to the analogous expressions in N = 8 ABJM and N = 4 SYM.

A crucial ingredient in our finite gs check of AdS/CFT was the conjecture that the all

orders in large N localization expression for derivatives ∂4
m±F

∣∣
m±=0

and ∂2
m+
∂2
m−F

∣∣
m±=0

of the mass deformed sphere partition function F (m±) in [67] only receive non-perturbative

corrections of form e−
√
N/k and e−

√
Nk. When m± = 0, these corrections can be interpreted

as instanton effects in string theory, and it was proven in [68, 88–94] that for F (0) they do

take the form mentioned above. Since a small mass deformation changes the geometry only

slightly, we expect that for sufficiently small masses these instanton effects have the same

N and k scaling as for m± = 0. It would be interesting to find a more rigorous justification

of this fact in the future.

Looking ahead, there are more localization constraints that can be used to fix 〈SSSS〉.
As discussed in section 3, the N = 6 ABJM free energy can be computed using localization

as a function of not only the two masses m± considered in this work, but also of a third

mass m̃. The reason why there are three mass parameters is that, as an N = 2 SCFT,

any N = 6 SCFT has SU(2) × SU(2) × U(1) flavor symmetry, and the Cartan of the

flavor symmetry algebra is three-dimensional. In addition to the three mass parameters,

one can also consider placing the theory on a squashed sphere parameterized by squashing

parameter b [79] (with b = 1 corresponding to the round case). There are then seven

potentially independent combinations of four derivatives of these parameters that can be

related to integrated 4-point functions of the stress tensor multiplet:

∂4
m±F , ∂2

m+
∂2
m−F , ∂4

bF , ∂2
b∂

2
m±F , ∂4

m̃F , ∂2
m±∂

2
m̃F , ∂2

b∂
2
m̃F , (5.1)

all evaluated at m± = m̃ = 0 and b = 1. Only the first two were considered in this work. In

section 2, we showed that there are seven polynomial Mellin amplitudes of maximal degree

six,24 as well as the supergravity Mellin amplitude that is already fixed by the conformal

Ward identity. This means that we could potentially use localization to fix the coefficients

of all these Mellin amplitudes, which would thus allow us to determine the D4R4 term

in the large N finite µ limit, that could be checked in the flat space limit against the

known [97] finite gs term in the type IIA S-matrix. These are the highest order terms we

would expect to be able to fix with N = 6 supersymmetry.

For N = 8 ABJM theory, the U(1) flavor symmetry combines with SU(4)R to form

the larger R-symmetry SO(8)R, so the dependence on m̃ is now related to that on m±. As

discussed in [24], there are only two quartic Casimir invariants for SO(8), so only the first

four constraints in (5.1) would be linearly independent. On the other hand, for N = 8 there

are only three polynomial Mellin amplitudes of maximal degree 7, so we could fix the tree

level D6R4 term, which is the highest order term that is protected by supersymmetry. In

fact, there is only one additional Mellin amplitude at maximal degree 8, so four constraints

would seem sufficient to fix tree level D8R4, but this term is not expected to be fixed by

24As shown in table 3, we have one degree 3, one degree 4, two degree 5, and three degree 6.
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supersymmetry, so it is likely that one of these constraints becomes redundant for N = 8

ABJM when we take the large N limit.

To go beyond these protected coefficients, we need a more general method such as

the numerical conformal bootstrap. Our computation of the N = 6 Ward identities for

〈SSSS〉 opens the door to a numerical bootstrap study of N = 6 ABJM theory, which

would generalize the N = 8 studies of [49, 81, 86]. In the N = 8 case, the bootstrap bounds

were found to be conjecturally saturated by CFT data in ABJM theory, so that all low-

lying CFT data, both protected and unprotected, could be read off up to numerical error.

If a similar thing occurs for N = 6 ABJM theory, then we can use this unprotected CFT

data to extend the derivation in this work to higher order, and perhaps even interpolate

between M-theory at finite k and type IIA string theory at weak and strong coupling in

the ’t Hooft limit of ABJM theory.
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A Useful details on the conformal block expansion

A.1 Derivation of the SU(4) invariants

The SU(4) invariants presented in (2.8) can be derived as follows. The TR(Xi) are eigen-

functions of the SU(4) quadratic Casimir C2 acting on X1 and X2, namely

C2TR(Xi) = cRTR(Xi) , (A.1)

where

C2T (Xi) =

15∑
a=1

(
T ([ta, [ta, X1]], X2, X3, X4) + T (X1, [t

a, [ta, X2]], X2, X3, X4)

+ 2T ([ta, X1], [ta, X2], X3, X4)

)
.

(A.2)

Here, ta, a = 1, . . . , 15, are the (hermitian traceless) SU(4) generators. In the normalization

where tr(tatb) = δab

2 , the eigenvalues cR are

c1 = 0 , c15 = 4 , c20′ = 6 , c45 = c45 = 8 , c84 = 10 . (A.3)

In the basis given in (2.3), the tensor structures TR(Xi) obeying (A.1) are then those given

in (2.8). (See also eq. (B.25) of [47].)
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In terms of Si, the functions of (U, V ) corresponding to the various representations are

S1 = S1 +
1

30

(
2S2 + 2S3 − S4

)
+

1

2

(
S5 + S6

)
,

S15a =
1

8

(
−S2 + S3

)
+

1

2

(
S5 − S6

)
,

S15s =
1

6

(
S2 + S3 − S4

)
+

1

2

(
S5 + S6

)
,

S20′ =
1

24

(
S2 + S3 − 2S4

)
,

S45⊕45 =
1

8

(
S2 − S3

)
,

S84 =
1

16

(
S2 + S3 + 2S4

)
.

(A.4)

A.2 Extracting OPE coefficients

We will be interested in extracting25 two OPE coefficients of protected (1/3-BPS) scalar

operators in the S × S OPE: the OPE coefficient of an operator with ∆ = 1 in the 15s
irrep of SU(4) (this is the same as the external operator Sa

b), and that of an operator with

∆ = 2 in the 84. In the theories of interest to us, both of these operators are the lowest

dimension operators in their corresponding R-symmetry channels.

Let us start with λ2
1,0,15s

, and let us take U → 0 while setting V = 1. In this limit,

G1,0(U, V ) ≈
√
U/4, so we must have

S15s(U, 1) =
λ2

1,0,15s

4

√
U + · · · . (A.5)

Thus, in order to extract λ2
1,0,15s

, all we need to do is extract the coefficient of
√
U in the

small U expansion of S15s(U, 1). Note that the disconnected piece Sdisc,15s(U, 1) = O(U)

in this limit, so the
√
U term in the small U expansion of S15s(U, 1) must come from a

pole at s = 1 in the Mellin amplitude M15s(s, t) corresponding to S15s(U, V ), namely

M15s ≡
1

6

(
M2 +M3 −M4

)
+

1

2
(M5 +M6) (A.6)

(see (A.4)). Performing the s integral in (2.10) and picking up the residue at s = 1,

we obtain

S15s(U, 1) = −
√
U

8i

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
lim
s→1

[
(s− 1)M15s(s, t)

]
+ · · · , (A.7)

where the integration contour can be chosen such that <t < 2. Comparing with (A.5),

we have

λ2
1,0,15s

= − 1

2i

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
lim
s→1

[
(s− 1)M15s(s, t)

]
. (A.8)

25See [22, 98] for similar calculations in N = 8 SCFTs.
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Next, let us consider extracting λ2
2,0,84 by considering S84(U, 1) in the limit U → 0.

Because G2,0(U, 1) = U
16 + · · · in this limit, we have

S84(U, 1) =
λ2

2,0,84

16
U + · · · . (A.9)

So, in this case, we should evaluate the coefficient multiplying U in the small U ex-

pansion of S84(U, 1). This coefficient receives contributions from the disconnected piece,

Sdisc,84(U, V ) = (U + U/V )/16, which gives

Sdisc,84(U, 1) =
U

8
, (A.10)

as well as from the connected piece from the s = 2 pole in the Mellin integral. The Gamma

functions in the definition (2.10) of the Mellin transform have a double pole at s = 2, so

M84 =
1

16

(
M2 +M3 + 2M4

)
(A.11)

must vanish at least linearly as s→ 2. Combining the contribution of this pole with (A.10),

we have

S84(U, 1) = U

[
1

8
+

i

2π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2

]
+ · · · . (A.12)

The integration contour here must be such that <t is smaller than the minimum between

2 and the pole in t of M84(s, t) with the smallest real part, and such that 2−<t is smaller

than the minimum between 2 and the pole in u of M84(s, t) with the smallest real part.

Such a condition is obeyed by 0 < <t < 2 for polynomial M84(s, t), but it is tricky to

impose it when M84(s, t) has both a pole at t = 1 and a pole at u = 1, as is the case for the

SUGRA amplitude. In the case that both of these poles are present, let us use 0 < <t < 1.

Because if we closed the t contour on the right we would pick up both the pole at t = 1

and that at u = 1, we should subtract by hand the contribution from the pole at u = 1.

Thus, the correct formula is

S84(U, 1) = U

[
1

8
+ π2 lim

s→2
lim

t→3−s

(u− 1)M84(s, t)

s− 2

+
i

2π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2

]
+ · · · .

(A.13)

Comparing with (A.9), we extract

λ2
2,0,84 = 2 + 16π2 lim

s→2
lim

t→3−s

(u− 1)M84(s, t)

s− 2

+
8i

π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2
,

(A.14)

with the t contour obeying 0 < <t < 1.
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B Discrete symmetries of N = 6 theories

Both N = 6 SCFTs and flat space scattering amplitudes may posses various discrete

symmetries that can be used to impose selection rules. The symmetries we will focus on

here are parity P, time reversal combined with charge conjugation, CT , and a discrete

R-symmetry we will call Z. Even for theories that break these symmetries, organizing the

SCFT correlators and scattering amplitudes in terms of them will prove very useful.

B.1 Review of spinor helicity formalism

For massless fermions, the Dirac equation for the wavefunction of 4-component spinors

implies

/v±(p) = 0 , u±(p)/p = 0 . (B.1)

Here ± indicated the helicity h = ±1
2 of the wavefunction. If we take our Dirac matrices

to be in the Weyl basis, namely

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−1 0

0 1

)
, (B.2)

where 1 stands for the 2×2 identity matrix and σi, i = 1, 2, 3 are the standard Pauli matri-

ces, then the top two components of the Dirac spinor transform in the (1/2, 0) and bottom

two in the (0, 1/2) of SO(3, 1). For a given momentum pµ = (E,E sin θ cosφ,E sin θ sinφ,

E cos θ), we can then define the angle and square brackets as

|p〉ȧ =
√

2E

(
cos θ2

sin θ
2e
iφ

)
, |p]a =

√
2E

(
sin θ

2

− cos θ2e
iφ

)
,

[p|a =
√

2E

(
cos θ2

sin θ
2e
−iφ

)
, 〈p|ȧ =

√
2E

(
sin θ

2

− cos θ2e
−iφ

) (B.3)

such that

v+(p) =

(
|p]a
0

)
, v−(p) =

(
0

|p〉ȧ

)
,

u+(p) =
(

[p|a 0
)
, u−(p) =

(
0 〈p|ȧ

) (B.4)

are solutions to (B.1).

Let us consider the scattering of massless particles b±i for i = 1, 2, . . .. We define the

scattering amplitude to be:

A[b±1 b
±
2 . . .]δ

(4)(p1 + p2 + . . .) = 〈a±1 (p1)a±2 (p2) . . .〉 (B.5)

where a±i (p) is the annihilation operator of the ith particle, annihilating a particle of helicity

± and momentum pi.

– 42 –



J
H
E
P
0
1
(
2
0
2
0
)
0
3
4

B.2 Discrete symmetries for scattering amplitudes

We will begin by discussing the discrete symmetries of the 4d amplitudes, motivated by

two reasons: 1) given that in N = 6 supergravity, we have two CPT conjugate multiplets,

we should understand how CPT relates the scattering amplitudes; and 2) we can use

discrete symmetries in order to classify the structures that appear in the super-amplitude.

As mentioned above, we will discuss parity P, the product CT , as well as a discrete R-

symmetry we denote by Z.

Under parity P, we reverse the spatial components of the momentum of a particle,

while leaving the spin unchanged. Flipping the direction of ~p is equivalent to sending

θ → π − θ and φ→ φ± π in (B.3). Under this transformation, the spinors in the first line

of (B.3) get interchanged and so do the spinors on the bottom line. Thus, parity acts26 as

either Paȧ or P ȧa

Paȧ|p〉ȧ = |p]a , P ȧa|p]a = |p〉a , [p|aPaȧ = 〈p|ȧ , 〈p|ȧP ȧa = [p|a . (B.6)

Hence the effect of parity is to swap all angle brackets with square brackets and vice versa,

while leaving all coefficients unchanged. For instance, P(c〈12〉) = c[12] for any constant c.

The second discrete symmetry we consider is CT . Under CT , the spatial components

of momentum also flip sign, just like for P, but in addition CT also implements complex

conjugation. Thus, from (B.3), we see that CT acts as either (CT )ȧḃ or (CT )ab as follows:

(CT )ȧḃ|p〉
ḃ = 〈p|ȧ , (CT )ab|p]b = [p|a , 〈p|ȧ(CT )ȧḃ = |p〉ḃ , [p|a(CT )ab = |p]b .

(B.7)

Thus, the effect of CT is to flip all the brackets and perform complex conjugation on the

coefficients — for instance CT (c〈12〉) = c∗〈21〉 for any constant c.

The combined transformation of the two symmetries above, CPT , is a symmetry

of all unitary QFTs. On amplitudes, it acts by exchanging angle brackets with flipped

square brackets and vice versa, and it complex conjugates the coefficients. For instance,

CPT (c〈12〉) = c∗[21]. Using CPT , we can relate a given amplitude to the amplitude of

the CPT conjugate particles. For particles b1, b2, etc. with CPT conjugate particles b1, b2,

etc., we have

CPT
(
A[b±1 b

±
2 . . .]

)
= A[b

∓
1 b
∓
2 . . .] . (B.8)

Because CT does not change the helicity of the particles, it relates a given amplitude

to itself. Thus, we can classify the various scattering amplitudes based on whether they

are CT -even or CT -odd. (In a CT -preserving theory, such as pure N = 6 supergravity, all

26In terms of the four-component spinors (B.4), the action of parity takes the usual form:

v±(p0,−~p) = γ0v±(p0, ~p) =

(
0 1

1 0

)
v±(p0, ~p) .
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amplitudes should be CT -even. But the CT symmetry may be broken by higher derivative

corrections.) For instance, if we consider the amplitude

A[h+h+a−a−] = [12]4〈34〉2f3(s, t) , (B.9)

we see that

CT
(
A[h+h+a−a−]

)
= [12]4〈34〉2f∗3 (s, t) (B.10)

and so the amplitude (B.9) is CT even / odd if f3(s, t) is real / pure imaginary. From this

we conclude that A[ΦΦΦΦ] can be thought of as containing two distinct superstructures,

one of which is CT even and the other CT odd. Similar manipulations show that A[ΦΦΦΨ]

also contains a CT even and CT odd structure, corresponding to f2(s, t) purely real and

purely imaginary respectively.

On the other hand, one can show that A[ΦΦΨΨ] is always CT even, even in a theory

in which CT is not a symmetry. We can see this by considering the graviton scattering

amplitude:

A[h+h+h−h−] = [12]4〈34〉4f1(s, t) , A[h−h−h+h+] = 〈12〉4[34]4f1(s, t) , (B.11)

where A[h−h−h+h+] is related to A[h+h+h−h−] under crossing both 1 ↔ 3 and 2 ↔ 4.

But the two amplitudes in (B.11) are also related by CPT ,

CPT
(
A[h+h+h−h−]

)
= A[h−h−h+h+] = 〈12〉4[34]4f∗1 (s, t) , (B.12)

and from comparing this expression with (B.11) we conclude that f1(s, t) must be real.

Then

CT
(
A[h+h+h−h−]

)
= [12]4〈34〉4f∗1 (s, t) = A[h+h+h−h−] , (B.13)

and so A[h+h+h−h−] is always CT -even. This relation extends to the full multiplet thus

showing that A[ΦΦΨΨ] is CT -even.

Let us now consider all possible discrete R-symmetries of N = 6 supergravity and

its higher derivative corrections. Before doing so, let us recall that, as discussed in the

main text, the various particles in the Φ and Ψ multiplets transform under an SU(6)R R-

symmetry that is a symmetry of pure supergravity and of the higher derivative corrections

considered here. Under SU(6)R, the supercharges transform contravariantly

ηI →M I
Jη

J , (B.14)

where M I
J is a unitary matrix with determinant 1. The supergraviton fields h±, ψ±I ,

g±IJ , . . . transform covariantly, so that overall the superfields Φ and Ψ are invariant.

To see what discrete R-symmetries might be possible, let us first focus on the pure

supergravity case and consider relaxing the condition that M I
J has determinant 1. Instead,

let us consider a more general element of U(6). Without loss of generality let us consider

a transformation:

ηI → eiθηI (B.15)
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in the center of U(6). We can also allow the superfields Φ and Ψ to pick up an overall phase:

Φ→ eiαΦ , Ψ→ eiβΨ. (B.16)

The supergravitons will then transform as:

h+ → eiαh+ , a+ → eiβa+ ,

ψ+ → eiα−iθψ+ , χ+ → eiβ−iθχ+ ,

g+ → eiα−2iθg+ , φ→ eiβ−2iθφ ,

...
...

a+ → eiα−6iθa+ , h− → eiβ−6iθh− .

(B.17)

We cannot however choose α , β, and θ arbitrarily. The graviton and gauge fields are real,

and so we can only transform them by a factor of ±1. This restricts us to the cases eiθ = ±i
or eiθ = ±1, as well as eiα = ±1 and eiβ = ±1. The case eiθ = ±1 is already in SU(6), so let

us focus on the possibility eiθ = ±i. To determine eiα and eiβ , let us make use of the CT -

invariance of supergravity in order to write the scattering amplitudes for three gravitons as

A[h+h+h−] = g
[12]6

[13]2[23]2
, A[h−h−h+] = g

〈12〉6

〈13〉2〈23〉2
, (B.18)

with real g. Since the right-hand sides of these equations are invariant under the transfor-

mation considered above, we deduce that eiα = 1 and eiβ = −1.

We can now check that the transformation:

Z : Φ→ Φ , Ψ→ −Ψ , ηI → iηI (B.19)

is in fact a symmetry of pure supergravity, as is the symmetry −Z which sends ηI → −iηI .
Under both Z and −Z the gauge fields flip sign

Z : a± → −a∓ , g± → −g∓ (B.20)

while the gravitons h± and the graviscalar φ are left invariant. The fermions will transform

with additional factors of i:

Z : Ψ± → ±iΨ∓ , F± → ∓iF∓ , χ± → ±iχ∓ . (B.21)

The full symmetry group is now (Z4 × SU(6))/Z2, the subgroup of U(6) of matrices with

determinant ±1.

Note however that only fermion bilinears are physical. As a result, the transformation

ηI → −ηI acts trivially on all amplitudes. After quotienting the SU(6) by this Z2 symmetry,

we find that the symmetry group acting on the amplitudes is Z2×(SU(6)/Z2), with Z2 = I.

While Z is a discrete R-symmetry of pure supergravity, it may or may not be a

symmetry of the corrections to supergravity, so we can classify the various amplitude

structures as Z-even or Z-odd. Since δ(12)(Q) contains twelve η’s, it is even under Z, and

so we conclude that A[ΦΦΨΨ] and A[ΦΦΦΦ] are even under Z and that A[ΦΦΦΨ] is odd.
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Amplitude CT Z First counterterm # derivatives

A[ΦΦΦΦ] , A[ΨΨΨΨ] ± + F 2R2 6

A[ΦΦΨΨ] + + R4 8

A[ΦΦΦΨ] , A[ΨΨΨΦ] ± − D8FR3 15

Table 7. Four particle scattering in N = 6 supergravity. The dimension is the mass dimension

of the lowest bulk counterterm contributing to the amplitude, and CT and Z are the discrete

symmetries defined in the main text.

We can alternatively deduce this from (2.23), since A[ΦΦΦΨ] contains an amplitude with

an odd number of gauge fields, while the other two amplitudes contain an even number.

We can summarize these results in table 7. In total, the scattering of four supergravi-

tons is fixed up to five arbitrary functions of s and t. To determine the Z and CT even

part of the amplitude there are two functions, while for each of the other combinations

there is a single function. Because the only superamplitude contribution to scalar scat-

tering, A[ΦΦΨΨ], is automatically Z and CT invariant, it is impossible to know whether

these symmetries are present or not in the full theory just by considering scalar scattering,

without any additional information.

B.3 Discrete symmetries for N = 6 SCFTs

Analogous P, CT , and Z symmetries exist for N = 6 superconformal theories, with CT P
always being a symmetry. Individually, P, CT , and Z may not be symmetries of a given

theory, as we will see, but they are symmetries of the free theory (or more generally of

the U(1)k × U(1)−k ABJM theory for all k) and of the leading order large cT holographic

correlators.

Under P and CT , the ∆ = 1 operators S are even, while the ∆ = 2 operators P are

odd. Just as for amplitudes, we expect that three out of the five superconformal structures

given in table 5 are P or CT even, while the other two are P and CT odd.

The Z R-symmetry is trickier in the case of SCFTs than for scattering amplitudes, be-

cause while in the case of scattering amplitudes it commutes with the SU(6)R R-symmetry,

for SCFTs it does not commute with the SO(6)R R-symmetry. Instead, it extends SO(6)R
to O(6)R. Let us define the Z generator so that it corresponds to the O(6) matrix

ZIJ = diag{−1,−1,−1, 1, 1, 1} (B.22)

that is not part of SO(6). The group O(6) has two 6-dimensional representations: the

vector representation 6+ under which a vector vI transforms as vI → ZIJvJ , and the

pseudovector representation under which vI → −ZIJvJ . By convention, we take the

supercharges to transform as the 6+.27 The representations of O(6) appearing in the stress

tensor multiplet are all antisymmetric products of the 6+, because we can start with the

stress-energy tensor, which is a singlet, and obtain all the other operators by acting with

27We could’ve considered the supercharges to transform as a pseudovector, but this choice is related to

the first choice by an SO(6) rotation.
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Operators Tµν ψαµ Jµ Fα S, P χα jµ

O(6) 1+ 6+ 15+ 20 15− 6− 1−

SO(6) 1 6 15 10 + 10 15 6 1

Table 8. O(6) and SO(6) assignments for operators in the stress-tensor multiplet.

anti-symmetric products of the superconformal generators. Thus: the rank-0 tensor is the

singlet 1+ that is invariant under Z; the rank-1 anti-symmetric tensor is the 6+; the rank-2

anti-symmetric tensor is the adjoint representation 15+; the rank-3 anti-symmetric tensor,

the 20 is irreducible under O(6) but would’ve been reducible to 10 + 10 under SO(6);

the rank-4 anti-symmetric tensor is the 15− and can also be represented as a rank-2 anti-

symmetric tensor with the same SO(6) transformation properties as the 15+ except for

an additional minus sign under Z; the rank-5 anti-symmetric tensor is the 6− and can

also be represented as a pseudovector; and lastly, the rank-6 anti-symmetric tensor 1−

is invariant under SO(6) but it gets multiplied by (−1) under Z. See table 8 for a list

of conformal primaries of the stress tensor multiplet and the O(6) representations under

which they transform. In particular, note that the superconformal primary S is an O(6)

antisymmetric rank-2 pseudotensor.

To gain intuition about the Z transformation, let us describe how it acts in the free

N = 6 theory of 4 complex fields Ca and 4 complex two-component fermions ψa where it is

actually a symmetry. Both φa and ψa transform in the 4 of SU(4)R, and their conjugates

φ†a and ψ†a transform in the 4 of SU(4)R. In this case, one can show that the Z symmetry

acts as charge conjugation

φa′ = φ†a , φ†′a = φa , (B.23)

and similarly on ψa and ψ†a. Indeed, from φa and ψa, we can construct the various operators

in the stress-tensor multiplet. For example,

Sa
b = φ†aφ

b − 1

4
δbaφ
†
cφ
c ,

Pa
b = ψ†aψ

b − 1

4
δbaψ

†
cψ

c ,

jµ = −i
(
φ†a∂µφ

a − (∂µφ
†
a)φ

a
)

+ ψ†aγ
µψa ,

(Jµ)a
b = −i

(
φ†a∂µφ

b − (∂µφ
†
a)φ

b
)

+ ψ†aγ
µψb − 1

4
δbaψ

†
cγ
µψc ,

etc.

(B.24)

It is easy to see that under (B.23), jµ acquires a −1 factor, as implied by table 8. To

see whether Sa
b, Pa

b, (Jµ)a
b transform in the expected way, we should represent these

operators as rank-two anti-symmetric tensors of SO(6). This is done by defining

SIJ = iSa
bC

[I
bcC

J ]ac
, (B.25)
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and similarly for P and Jµ, with the C matrices given in (D.1) and C being their complex

conjugates. (The C and C matrices are the Clebsch-Gordan coefficients for the 6 of SU(4)

in the products 4⊗ 4 and 4⊗ 4, respectively.) One can check that (B.23) implies

SIJ → −ZIKZJLSKL ,
P IJ → −ZIKZJLPKL ,

(Jµ)IJ → ZIKZJL(Jµ)KL ,

(B.26)

as expected from table 8. One can make similar checks for the other operators in the stress

tensor multiplet.

One can ask whether Z is a symmetry in ABJM theory as well, where the scalars φa and

fermions ψa are bifundamental fields transforming in the (N,N) of the U(N)k × U(N)−k
gauge symmetry. If the two gauge fields corresponding to the U(N) factors are A1µ and A2µ,

the action is invariant under Z provided that A1µ−A2µ change sign under Z. In the N = 1

case, this can be accomplished by requiring A1µ → −A1µ and A2µ → −A2µ under Z, and

one can check that the action (including the Chern-Simons terms) is invariant under this

transformation. Thus, Z is a symmetry of the U(1)k×U(1)−k ABJM theory. Such a trans-

formation of A1µ and A2µ does not leave the action invariant in the non-Abelian case due to

the cubic terms in the Chern-Simons action. In the non-Abelian case, however, one can con-

sider sending A1µ ↔ A2µ under Z, which also has the effect of flipping the sign of A1µ−A2µ.

Under this transformation, the action stays unchanged with the only exception that k→−k.

Thus, the Z transformation is not a symmetry of the U(N)k×U(N)−k for N>1.

Note that CT and P are not separately symmetries either of ABJM theory with k > 1,

because they also send k → −k. However, the combination PZ where Z is assumed to

interchange the two gauge fields in addition to acting as in (B.23) becomes a new parity

symmetry of ABJM theory [39]. To summarize, ABJM theory with k = 1 preserves CT ,

P, Z separately, while ABJM theory with k > 1 preserves only CPT and PZ (or CT Z).

Having discussed CT , P, and Z, let us now argue that the 4-point superconformal

invariants (i.e. invariants under OSp(6|4)) can be classified as even or odd under P (or

CT ) and Z. This fact may not be immediately obvious, because it may happen that the

superconformal Ward identities mix together Z-odd with Z-even structures. The argument

that this mixing does not occur is as follows. As we have seen, the stress tensor multiplet

naturally forms a representation of (Z2×Z2)nOSp(6|4), that is, the superconformal group

extended by the action of parity P (or CT ) and also Z. As we shall see, this means that

we can classify correlation functions of the stress tensor multiplet by their P (or CT ) and

Z transformation properties. It is a consequence of the following proposition:

Proposition 1. Let H be a group, G a normal subgroup of H, and a be a representation

of H. Then the space V of G-invariant maps from a→ 1 forms a representation of H/G.

Proof. The space of functionals from F : a → 1 naturally forms a representation of H.

Since V is the space of G-invariant maps, a functional V is in V if and only if

gV = V for all g ∈ G. (B.27)
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Next we prove that for any h ∈ H, then hV ∈ V . To do so, let us check that hV

satisfies (B.27):

g(hV ) = (hh−1)ghV = h(h−1gh)V = hg′V = hV, (B.28)

where we have used the fact that G is a normal subgroup of H to write h−1gh = g′ for some

g′ ∈ G. Hence V is a representation of H for which G acts trivially, and so we conclude

that V is a representation of H/G.

To apply this to OSp(6|4), take H to be the group (Z2×Z2)nOSp(6|4) group. We can

think of the stress tensor multiplet as a superfield Sab (xµ, θαc ) which forms a representation

t of the group H. The OSp(6|4) invariant structures in〈
Sa1
b1

(
xµ1 , θ

α1A1
1

)
Sa2
b2

(
xν2 , θ

α2A2
2

)
. . .Sanbn

(
xνn, θ

αnAn
n

)〉
are then maps from t⊗n → 1, and so by proposition 1 can be classified by their represen-

tations under H/G ≈ Z2 × Z2.

Analogous to the amplitudes case, the correlator 〈SSSS〉 is always invariant under P,

CT , and Z separately. This is also true for 〈SSPP 〉 (and also 〈PPPP 〉), so if we are only

interested in the Ward identities relating these correlators, we can restrict to structures

that are even under all of these transformations without loss of generality. This also means

it is impossible to check whether a theory is P or Z invariant from just 〈SSSS〉 without

having more information about the theory. If, however, we had some information about

the spectrum of the theory, then we could potentially determine whether a theory is parity-

preserving or not based on the conformal block expansion of 〈SSSS〉. Without such extra

assumptions, in order to see whether a theory is invariant under P or Z, we would need

to see whether the P-odd or Z-odd part of a correlator such as 〈SSSJµ〉 vanishes. The

amplitudes calculation furthermore suggests that together 〈SSSS〉 and 〈SSSJµ〉 should

suffice to fix all four-point functions of the stress tensor multiplet operators.

C Relating A[ΦΦΨΨ] to 〈SSSS〉

In this appendix, we shall explain how to relate the superamplitude A[ΦΦΨΨ] to the large

s, t behaviour of the Mellin amplitudes in 〈SSSS〉. The calculation proceeds in two steps.

First we compute the amplitude A[φABCDφEFGHφIJφKL], where we have made explicit

the SU(6) indices on φ and φ. We then relate φ and φ to the CFT operator S a
b , requiring

us to convert the SU(6) structures to SO(6) structures.

To compute A[φABCDφEFGHφIJφKL], we must differentiate A[ΦΦΨΨ] with respect to

the Grassmannian variables:

A[φABCDφEFGHφIJφKL] =
∂

∂ηA1
· · · ∂

∂ηL4
A[ΦΦΨΨ]

=
∂

∂ηA1
· · · ∂

∂ηL4
δ12(Q)

[12]4

〈34〉2
f1(s, t)

=
[12]4

24〈34〉2
f1(s, t)

∂

∂ηA1
· · · ∂

∂ηL4

6∏
M=1

4∑
i,j=1

〈ij〉ηMi ηMj

(C.1)
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To simplify the process of differentiating δ(12)(Q), we can use SU(6) invariance to expand

A[φABCDφEFGHφIJφKL]

= εABCDIJεEFGHKLF1(s, t) + εABCDKLεEFGHIJF2(s, t) + εABEFIKεCDGHJLF3(s, t).

(C.2)

for some functions Fi(s, t). We can then choose specific numbers for each index A through

L to isolate each structure, and hence to find that

F1(s, t) = 2s2u(4t− u)f1(s, t) , F2(s, t) = 2s2t(4u− t)f1(s, t) F3(s, t) = −s2tuf1(s, t) .

(C.3)

Now we must relate A[φφφφ] to 〈SSSS〉. To do so, we can rewrite S b
a as an antisym-

metric 6× 6 matrix:

ŠIJ = S b
a C

[I
bcC

J ]ac
, (C.4)

where CIac are SO(6) gamma matrices. Explicit expressions for these matrices are given in

appendix D. Up to normalization, we then find that

ŠIJ −→
flat space

φABCDε
ABCDIJ + δIAδJBφAB. (C.5)

This expression for ŠIJ breaks the SU(6) symmetry down to SO(6) due to the presence of

the δIA symbol. Applying this to the four-point function, we find that

〈ŠI1J1 . . . ŠI4J4〉 −→
flat space

sum of contracted permutations of A[φφφφ]. (C.6)

We must now expand our final answer in terms of the SO(6) structures appearing in (2.3).

To do so we choose a series of polarization matrices (Xi)
a
b and then define

X̌IJ
i = (Xi)

a
bC

[I
acC

J ]bc
. (C.7)

Contracting both sides of (C.6) with matrices XIJ
i , on the left-hand side we find that

〈ŠI1J1(~x1) . . . ŠI4J4(~x4)〉X̌I1J1
1 · · ·X̌I4J4

4 ∝〈S(~x1,X1) · · ·S(~x4,X4)〉

=
1

x2
12x

2
34

[
S1(U,V )A12A34+· · ·+S6(U,V )B1342

]
.

(C.8)

We then Mellin transform and take the flat-space limit (2.13) to find that

〈ŠI1J1(~x1) . . . ŠI4J4(~x4)〉X̌I1J1
1 · · ·X̌I4J4

4 −→
flat space

N
x2

12x
2
34

[
A1(s, t)A12A34+· · ·+A6(s, t)B1342

]
(C.9)

for some overall normalization constant N . Computing the right-hand side of (C.6) is

more straightforward; we simply contract the XIiJi
i matrices with the various permutations

of A[φφφφ]. By imposing (C.6) for many differents matrices (Xi)
a
b we can completely

determine Ai(s, t) in terms of f1(s, t), and upon choosing a suitable value for N we can

reproduce (2.27).
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D Supersymmetric Ward identities

D.1 Stress tensor multiplet four-point functions

To describe the supersymmetric variations which relate operators in the stress tensor mul-

tiplet, it will be convenient to introduce index-free notation to encode the so(6) ≈ su(4)

representations which appear. We will use indices I, J, . . . for the 6; and raised and lowered

a, b, . . . indices for the 4 and 4 as in section 2. The gamma matrices CIab and C
Iab

convert

antisymmetric tensors of the 4 and 4 into the 6; a convenient basis for these matrices is:

C1 =

(
0 σ1

−σ1 0

)
, C2 =

(
0 −σ3

σ3 0

)
, C3 =

(
iσ2 0

0 iσ2

)
,

C4 = −i

(
0 iσ2

iσ2 0

)
, C5 = −i

(
0 I2

−I2 0

)
, C6 = −i

(
−iσ2 0

0 iσ2

)
,

(D.1)

where σi are the Pauli matrices.

We can now describe operators in index-free notation as:

S(~x,X) = X b
a S

a
b (~x) , F (~x, Y ) = Y abFab(~x) , χI(~x, Z) = ZIχI(~x) , (D.2)

with analogous notation for other operators in the stress tensor multiplet. To implement

tracelessness of S a
b we impose the condition X a

a = 0, and similarly we impose that the

matrix Y ab is symmetric. We can alternative think of the matrix X b
a as an antisymmetric

tensor X̌IJ via the mapping

X̌IJ = Xa
bC

[I
acC

J ]bc
. (D.3)

Similarly, the ZI can also be written as antisymmetric tensors /Zab = CIabZI and

/Z
ab

= C
ab
I Z

I .

We can normalize our operators by defining their two-point functions, as we did for S

in (2.2):

〈χα(~x1, Z1)χβ(~x2, Z2)〉 = (Z1 · Z2)
i/x12

x4
12

,

〈Fα(~x1, Y )F
β
(~x2, Y )〉 = Y abY ab

i/x12

x4
12

,

〈P (~x1, X1)P (~x2, X2)〉 =
Tr(X1X2)

x4
12

.

(D.4)

We can expand four point correlators as a sum over conformally invariant and so(6)

invariant structures. As explained in section 2.6 we restrict to those structures which are

parity preserving and C invariant. For instance,

〈S(~x1, X1)S(~x2, X2)P (~x3, X3)P (~x4, X4)〉

=
1

x2
12x

4
34

[
R1(U, V )A12A34 +R2(U, V )A13A24 +R3(U, V )A14A34

+R4(U, V )B1423 +R5(U, V )B1234 +R6(U, V )B1342

]
,

(D.5)
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where we define as in (2.4) the structures

Aij = tr(XiXj) , Bijkl = tr(XiXjXkXl) + tr(XlXkXjXi) . (D.6)

Similarly, for the fermionic correlators we can expand:

〈S(~x1, X1)S(~x2, X2)χα(~x3, Z3)χβ(~x4, Z4)〉

=
i/x
αβ
34

x2
12x

4
34

[
Tr(X1X2)(Z3 · Z4)C1,1 + (Z3X̌1X̌2Z4)C2,1 + (Z3X̌1X̌2Z4)C3,1

]
+
i(/x13/x24/x12)αβ

2x4
12x

4
34

[
Tr(X1X2)(Z3 · Z4)C1,2 + (Z3X̌1X̌2Z4)C2,2 + (Z3X̌1X̌2Z4)C3,2

]
,

〈S(~x1, X1)S(~x2, X2)χα(~x3, Z3)F β(~x4, Y4)〉

=
i/x
αβ
34

x2
12x

4
34

[
Tr(X1X2Y4 /Z3)E1,1 + Tr(X2X1Y4 /Z3)E2,1 + Tr(X2Y4X

T
1 /Z3)E3,1

]
+
i(/x13/x24/x12)αβ

2x4
12x

4
34

[
Tr(X1X2Y4 /Z3)E1,2 + Tr(X2X1Y4 /Z3)E2,2 + Tr(X2Y4X

T
1 /Z3)E3,2

]
,

〈S(~x1, X1)S(~x2, X2)Fα(~x3, Z3)F β(~x4, Y4)〉

=
i/x
αβ
34

x2
12x

4
34

[(
εabcd(X1)aeY

eb
1 (X2)cfY

fd
2

)
F1,1 +

(
εabcd(X1)aeY

eb
2 (X2)cfY

fd
1

)
F2,1

]
+
i(/x13/x24/x12)αβ

2x4
12x

4
34

[(
εabcd(X1)aeY

eb
1 (X2)cfY

fd
2

)
F1,2 +

(
εabcd(X1)aeY

eb
2 (X2)cfY

fd
1

)
F2,2

]
,

〈S(~x1, X1)S(~x2, X2)F
β
(~x3, Y 3)Fα(~x4, Y4)〉

=
i/x
αβ
34

x2
12x

4
34

[
Tr(X1X2)Tr(Y4Y 3)G1,1 + Tr(Y4Y 3X2X1)G2,1

+ Tr(Y4Y 3X2X1)G3,1 + Tr(Y4X
T
2 Y 3X1)G4,1

]
+
i(/x13/x24/x12)αβ

2x4
12x

4
34

[
Tr(X1X2)Tr(Y4Y 3)G1,2 + Tr(Y4Y 3X2X1)G2,2

+ Tr(Y4Y 3X2X1)G3,2 + Tr(Y4X
T
2 Y 3X1)G4,2

]
. (D.7)

D.2 Ward identities

As discussed in section 2.6, to compute the supersymmetric Ward identities we need only

the action of the Poincaré supercharges QαI on the operators in the stress tensor multiplet.
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Using the index free notation of the prevoius section, these variations can be written as

δα(Z)S(~x,X) =
1

4

[
Fα(~x,X · /Z) + F

α
(~x, /Z ·X)

]
+

1

4
χα(~x, X̌ · Z) ,

δα(Z)F β(~x, Y ) =
1

2
εαβP (~x, Y · /Z) + σαβµ Jµ(~x, /Z1 · /Z2 − /Z2 · /Z1)

− i

2
σαβµ ∂µS(~x, Y · /Z)

δα(Z1)χβ(~x, Z2) =
1

2
εαβP (~x, /Z1 · /Z2 − /Z2 · /Z1) + Z1 · Z2 iσ

αβ
µ jµ(~x) ,

+
i

8
σαβµ ∂µS(~x, /Z1 · /Z2 − /Z2 · /Z1) ,

δα(Z)P (~x,X) =
i

6

(
σαβµ ∂µFβ(~x,X · /Z) + σαβµ ∂µFβ(~x, /Z ·X)

)
− i

6
σαβµ ∂µχβ(~x, X̌ · Z) ,

etc.

(D.8)

Here, δα(Z) represents the action of ZIQ
αI on the various operators, and σµ are the

3d gamma matrices, which we can take to be the Pauli matrices. We have omitted the

supersymmetric variations of J, j, ψ, and T as they are not needed in this work.

We will now give the Ward identities for two scalars and two fermions derived in

section 2.7. We will begin with 〈SSχχ〉 and 〈SSχF 〉, which can be derived from δ〈SSSχ〉.
We will omit those functions of the cross-ratios that are related to these under crossing.

The expressions for 〈SSχχ〉 are:

C1,1 =− 1

2U

(
U2∂V S1(U,V )+4U2∂US1(U,V )+4U2∂US5(U,V )+U(V −U)∂V S2(U,V )

+U(−U+V −1)∂US2(U,V )+UV ∂V S3(U,V )+U(U+V −1)∂US3(U,V )

+2UV ∂V S4(U,V )+2U(V −1)∂US4(U,V )−4US1(U,V )−3US5(U,V )−US6(U,V )

+(U−V +1)S2(U,V )−(V −1)S3(U,V )+(U−2V +2)S4(U,V )
)
, (D.9)

C2,1 =− 1

32U

(
U2∂US2(U,V )+U2∂US3(U,V )−U2∂V S1(U,V )+U(U+V )∂V S2(U,V )

+UV ∂US2(U,V )−U∂US2(U,V )+UV ∂V S3(U,V )+UV ∂US3(U,V )−U∂US3(U,V )

+2UV ∂V S4(U,V )+2UV ∂US4(U,V )−2U∂US4(U,V )−US2(U,V )+US4(U,V )

+US5(U,V )−US6(U,V )−V S2(U,V )+S2(U,V )−V S3(U,V )+S3(U,V )

−2V S4(U,V )+2S4(U,V )
)
, (D.10)

C1,2 =
1

2
(U((3V +1)∂V S1(U,V )+3U∂US1(U,V )−∂V S2(U,V )−∂US2(U,V )

+(U−1)∂US3(U,V )−2∂US4(U,V )+V (∂V S3(U,V )+4∂V S5(U,V ))+4U∂US5(U,V ))

+S2(U,V )+S3(U,V )+2S4(U,V )) , (D.11)

C2,2 =
1

32
(U((V −1)∂V S1(U,V )+U∂US1(U,V )+∂V S2(U,V )−∂US2(U,V )+V ∂V S3(U,V )

+(U−1)∂US3(U,V )−2∂US4(U,V ))+S2(U,V )+S3(U,V )+2S4(U,V )) . (D.12)
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The expressions for 〈SSFχ〉 are:

E1,1 = − V ∂V S2(U, V )− (V − 1)∂US2(U, V )− V ∂V S3(U, V )− (U + V − 1)∂US3(U, V )

− 2V ∂V S4(U, V )− 2(V − 1)∂US4(U, V )− 2U∂US5(U, V )

+
(V − 1)S2(U, V )

U
+

(V − 1)S3(U, V )

U
+ S5(U, V ) + S6(U, V )

− (U − 2V + 2)S4(U, V )

U
, (D.13)

E3,1 = − U(∂V S2(U, V ) + ∂US2(U, V )− ∂US3(U, V )) + S2(U, V )− S3(U, V ) , (D.14)

E1,2 = U(−∂US2(U, V ) + V ∂V S3(U, V ) + (U − 1)∂US3(U, V )− 2∂US4(U, V )

+ 2V ∂V S5(U, V ) + 2U∂US5(U, V )) + S2(U, V ) + S3(U, V ) + 2S4(U, V ) , (D.15)

E3,2 = U(∂V S2(U, V )− V ∂V S3(U, V )− U∂US3(U, V )) . (D.16)

Next we shall give expressions for 〈SSFF 〉 and 〈SSFF 〉, which can be computed from

δ〈SSSF 〉. Unlike the previous correlators, we cannot completely fix these in terms of

〈SSSS〉. We will instead also leave F1,1(U, V ) and F2,1(U, V ) undetermined. We then find

that the other components of 〈SSFF 〉 are:

F2,1(U,V ) =
1

V

(
−4UV ∂V S4(U,V )−4UV ∂US4(U,V )−2(U−2V )S4(U,V )

+(U−V )F1,1(U,V )+F1,2(U,V )
)
, (D.17)

F2,2(U,V ) =− 1

V

(
U
(
−4V ∂V S4(U,V )−2S4(U,V )+F1,1(U,V )

)
+F1,2(U,V )

)
. (D.18)

Furthermore, by imposing conservation on 〈SSSJ〉, we find that F1,1(U, V ) and

F2,1(U, V ) are constrained by the Ward identities:

F1,1(U, V ) =
1

3U
2U3(U + 2V − 2)∂2

US1(U, V ) + 2U2V (U + 2V − 2)∂2
V S1(U, V )

+ U2(U + 2V − 2)∂US1(U, V )

+ 2U2(U + V − 1)(U + 2V − 2)∂U∂V S1(U, V )

− 2U2(U + 2V − 2)∂2
US2(U, V )− 2U2V (U + 2V − 2)∂2

US3(U, V )

+ 8U2V (U − V + 1)∂2
US4(U, V )− 2UV 2(U + 2V − 2)∂2

V S3(U, V )

+ 8UV 2(U − V + 1)∂2
V S4(U, V ) + U(2U − V + 1)(U + 2V − 2)∂V S1(U, V )

− 2UV (U + 2V − 2)∂2
V S2(U, V ) + U(U + 2V − 2)∂US2(U, V )

− 2U(U + V − 1)(U + 2V − 2)∂U∂V S2(U, V )

− (U − 1)U(U + 2V − 2)∂US3(U, V )

− 2UV (U + V − 1)(U + 2V − 2)∂U∂V S3(U, V )

+ 4(U − 1)U(U − V + 1)∂US4(U, V )

+ 8UV (U − V + 1)(U + V − 1)∂U∂V S4(U, V )

− (U − 2V + 2)(U + 2V − 2)∂V S2(U, V )

+ V (U + 2V − 2)(−3U + 2V − 2)∂V S3(U, V )

+ 4V (U − V + 1)(3U − 2V + 2)∂V S4(U, V )− 2U
(
U2 − U(2V + 1)
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+ (V − 1)2
)
∂UF1,1(U, V ) +

(
U2(1− 2V ) + U(4V + 3)(V − 1)

− 2(V − 1)3
)
∂V F1,1(U, V ) +

(
U2 − 3U(V + 1) + 2(V − 1)2

)
∂V F1,2(U, V )

+ U(−U + V − 1)∂UF1,2(U, V )− (U + 2V − 2)S2(U, V )

− (U + 2V − 2)S3(U, V ) + 4(U − V + 1)S4(U, V ) , (D.19)

F1,2(U, V ) =
1

3

(
2U3∂2

US1(U, V ) + 2U2V ∂2
V S1(U, V ) + U2∂US1(U, V )

+ 2U2(U + V − 1)∂U∂V S1(U, V )− 2U2∂2
US2(U, V )− 2U2V ∂2

US3(U, V )

− 4U2V ∂2
US4(U, V )− 2UV 2∂2

V S3(U, V )− 4UV 2∂2
V S4(U, V )

+ U(2U − V + 1)∂V S1(U, V )− 2UV ∂2
V S2(U, V ) + U∂US2(U, V )

− 2U(U + V − 1)∂U∂V S2(U, V )− (U − 1)U∂US3(U, V )

− 2UV (U + V − 1)∂U∂V S3(U, V )− 2(U − 1)U∂US4(U, V )

− 4UV (U + V − 1)∂U∂V S4(U, V )− (U − 2V + 2)∂V S2(U, V )

+ V (−3U + 2V − 2)∂V S3(U, V ) + 2V (−3U + 2V − 2)∂V S4(U, V )

+ U(U − V + 1)∂UF1,1(U, V ) + 2U∂UF1,2(U, V ) +
(
U(V + 1)

− (V − 1)2
)
∂V F1,1(U, V ) + (U + V − 1)∂V F1,2(U, V )− S2(U, V )

− S3(U, V )− 2S4(U, V )
)
. (D.20)

We also find the following expressions for 〈SSFF 〉:

G1,1(U, V ) =
1

U

(
− 2U2∂US1(U, V )− 4U2∂US5(U, V )− 2UV ∂V S3(U, V )

− 2U(U + V − 1)∂US3(U, V )− 4UV ∂V S4(U, V )− 4U(V − 1)∂US4(U, V )

+ 2US1(U, V ) + 2US5(U, V ) + 2(V − 1)S3(U, V )− 2(U − 2V + 2)S4(U, V )

+ (U − V + 1)F1,1(U, V ) + F1,2(U, V )
)
, (D.21)

G2,1(U, V ) =
1

U

(
4U2∂US5(U, V )− 2UV ∂V S2(U, V )− 2U(V − 1)∂US2(U, V )

+ 2UV ∂V S3(U, V ) + 2U(U + V − 1)∂US3(U, V ) + 4UV ∂V S4(U, V )

+ 4U(V − 1)∂US4(U, V )− 2US5(U, V ) + 2US6(U, V ) + 2(V − 1)S2(U, V )

− 2(V − 1)S3(U, V ) + 2(U − 2V + 2)S4(U, V )− (U − 2V + 2)F1,1(U, V )

− 2F1,2(U, V )
)
, (D.22)

G4,1(U, V ) =
1

V
U
(

2V
(
∂V S2(U, V ) + ∂US2(U, V ) + ∂US3(U, V ) + 2(∂V S4(U, V )

+ ∂US4(U, V ))) + 2S4(U, V )−F1,1(U, V )
)
−F1,2(U, V )

)
− 2
(
S2(U, V )

+ S3(U, V ) + 2S4(U, V )
)
, (D.23)

G1,2(U, V ) = 2U
(
U∂US1(U, V ) + (U − 1)∂US3(U, V )− 2∂US4(U, V ) + V (∂V S1(U, V )

+ ∂V S3(U, V ) + 2∂V S5(U, V )) + 2U∂US5(U, V )
)

+ 2S3(U, V ) + 4S4(U, V )

−F1,1(U, V ) , (D.24)
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G2,2(U, V ) = − 2U
(
∂US2(U, V ) + V ∂V S3(U, V ) + (U − 1)∂US3(U, V )− 2∂US4(U, V )

+ 2V ∂V S5(U, V ) + 2U∂US5(U, V )
)

+ 2S2(U, V )− 2S3(U, V )− 4S4(U, V )

+ 2F1,1(U, V ) + F1,2(U, V ) , (D.25)

G4,2(U, V ) =
1

V

(
U(−2V (∂V S2(U, V ) + V ∂V S3(U, V ) + U∂US3(U, V ) + 2∂V S4(U, V ))

− 2S4(U, V ) + F1,1(U, V )) + F1,2(U, V )
)
−F1,2(U, V ) . (D.26)

Finally, in section 3.1 we need Ward identities relating 〈SSPP 〉 to 〈SSSS〉. These

expressions can be derived by considering the supersymmetric variation δ〈SSPχ〉:

R1(U,V ) = 2V 2∂2
V S2(U,V )+2V 2∂2

V S3(U,V )+4V 2∂2
V S4(U,V )

+2V (U+V −1)∂U∂V S2(U,V )+2UV ∂2
US2(U,V )−V (−3U+2V −2)∂V S3(U,V )

U

+2V (U+V −1)∂U∂V S3(U,V )+2UV ∂2
US3(U,V )+4V (U+V −1)∂U∂V S4(U,V )

+4UV ∂2
US4(U,V )+2V ∂V S5(U,V )−2V ∂V S6(U,V )

+
V (U−2V +2)∂V S2(U,V )

U
+

4V (U−V +1)∂V S4(U,V )

U
−U∂US1(U,V )

−(V +1)∂US2(U,V )−(−U+V +1)∂US3(U,V )−2(−U+V +1)∂US4(U,V )

−2U∂US6(U,V )+S1(U,V )− (U−2(V +1))S4(U,V )

U
+S5(U,V )+S6(U,V )

+
(V +1)S2(U,V )

U
+

(V +1)S3(U,V )

U
, (D.27)

R2(U,V ) =−U2∂US1(U,V )−2U2V ∂2
US1(U,V )−4U2V ∂2

US5(U,V )−2UV 2∂2
V S1(U,V )

−4UV 2∂2
V S5(U,V )+2V 2∂2

V S2(U,V )+2V 2∂2
V S3(U,V )+4V 2∂2

V S4(U,V )

−2UV (U+V −1)∂U∂V S1(U,V )+2UV ∂2
US2(U,V )+2UV ∂2

US3(U,V )

+4UV ∂2
US4(U,V )−2(U−1)U∂US5(U,V )−4UV (U+V −1)∂U∂V S5(U,V )

−2U∂US6(U,V )−V (3U−2V +2)∂V S1(U,V )−(V +1)∂US2(U,V )

+2V (U+V −1)∂U∂V S2(U,V )−(−U+V +1)∂US3(U,V )

+2V (U+V −1)∂U∂V S3(U,V )−2(−U+V +1)∂US4(U,V )

+4V (U+V −1)∂U∂V S4(U,V )−2V (3U−2V +1)∂V S5(U,V )−2V ∂V S6(U,V )

+
V (U−2V +2)∂V S2(U,V )

U
−V (−3U+2V −2)∂V S3(U,V )

U

+
4V (U−V +1)∂V S4(U,V )

U
−S5(U,V )+S6(U,V )+

(V +1)S2(U,V )

U

+
(V +1)S3(U,V )

U
− (U−2(V +1))S4(U,V )

U
, (D.28)

R4(U,V ) =− 1

2

(
2
(
−2U2−(U+3)V +U+2V 2+1

)
∂V S5(U,V )+2U2∂US1(U,V )

+2U2(2U+V −1)∂2
US1(U,V )+4U2(U+V −1)∂2

US5(U,V )

+
(

4U2+U−2(V −1)2
)
∂V S1(U,V )−

(
U2+U(4−3V )+2(V −1)2

)
∂V S2(U,V )

U
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−
2
(
U2+U−2(V −1)2

)
∂V S4(U,V )

U

−

(
(U(2U−1)−4)V −2(U+1)(U−1)2−2V 2

)
∂V S3(U,V )

U

+2UV (2U+V −1)∂2
V S1(U,V )+2U(U+V −1)(2U+V −1)∂U∂V S1(U,V )

−2U(2U+V −1)∂2
US2(U,V )−2U

(
V −(U−1)2

)
∂2
US3(U,V )

−4U(U+V −1)∂2
US4(U,V )+4UV (U+V −1)∂2

V S5(U,V )

+2(U−1)U∂US5(U,V )+4U(U+V −1)2∂U∂V S5(U,V )+2U∂US6(U,V )

−2V (2U+V −1)∂2
V S2(U,V )+(3U+V −1)∂US2(U,V )

−2(U+V −1)(2U+V −1)∂U∂V S2(U,V )−2V
(
V −(U−1)2

)
∂2
V S3(U,V )

+(U+V −1)∂US3(U,V )+2
(

(U−1)2−V
)

(U+V −1)∂U∂V S3(U,V )

−4V (U+V −1)∂2
V S4(U,V )+2(U+V −1)∂US4(U,V )

−4(U+V −1)2∂U∂V S4(U,V )+2(U+V −1)∂V S6(U,V )+S5(U,V )−S6(U,V )

− (3U+V −1)S2(U,V )

U
− (2U+V −1)S3(U,V )

U
− (3U+2V −2)S4(U,V )

U

)
,

(D.29)

R5(U,V ) =− 1

2

(
−2U2∂2

US1(U,V )−2V 2∂2
V S3(U,V )−4V 2∂2

V S4(U,V )+2UV ∂2
V S1(U,V )

+2U(U+V −1)∂U∂V S1(U,V )−2U(U+V )∂2
US2(U,V )−2UV ∂2

US3(U,V )

−4UV ∂2
US4(U,V )+2U∂US6(U,V )+(U−2V +2)∂V S1(U,V )

−2V (U+V )∂2
V S2(U,V )+(U+V +1)∂US2(U,V )

−2(U+V −1)(U+V )∂U∂V S2(U,V )−(U−V −1)∂US3(U,V )

−2V (U+V −1)∂U∂V S3(U,V )−2(U−V −1)∂US4(U,V )

−4V (U+V −1)∂U∂V S4(U,V )−2V ∂V S5(U,V )+2V ∂V S6(U,V )

− (U+V )(U−2V +2)∂V S2(U,V )

U
−V (3U−2V +2)∂V S3(U,V )

U

− 4V (U−V +1)∂V S4(U,V )

U
−S5(U,V )−S6(U,V )− (U+V +1)S2(U,V )

U

− (V +1)S3(U,V )

U
− (−U+2V +2)S4(U,V )

U

)
. (D.30)

E Mellin amplitudes

In this appendix we will first review how to convert supersymmetric Ward identities to

position space. We will then describe the Mellin space formulation for four point functions

of two scalars and two fermions, following [99].
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E.1 Ward identities in Mellin space

From the definition of the Mellin transform M i(s, t) of 〈SSSS〉 in (2.10), we can derive

the effect of multiplication by UmV n and of differentiating with respect to U and V :

ÛmV nM(s, t) = M(s− 2m, t+ 2m+ 2n)
(

1− s

2

)2

m

(
1− t

2

)2

−m−n

(
1− u

2

)2

n
,

∂̂mUM(s, t) =
(s

2
+ 1−m

)
m
Û−mM(s, t) ,

∂̂mV M(s, t) =
(u

2
−m

)
m
V̂ −mM(s, t) .

(E.1)

We can apply these rules to the position space Ward identities in (2.38), so that they

act on M i(s, t).

E.2 Scalar-scalar-fermion-fermion

Next, we consider the Mellin transform of the 4-point function 〈SSψαψβ〉 of dimension

one scalar operators S and dimension 3
2 spin half operators ψα and ψβ with spinor indices

α, β = 1, 2. We consider parity even four point functions, which contain two conformal

structures:

〈S(~x1)S(~x2)ψα(~x3)ψβ(~x4)〉 =
i/x
αβ
34

x2
12x

4
34

H1(U, V ) +
i(/x13/x24/x12)αβ

2x4
12x

4
34

H2(U, V ) . (E.2)

The Mellin transforms MSSψψ
i (s, t) of the connected parts of the correlators HSSψψconn,i can

then be defined by

HSSψψconn,1(U,V ) =

∫ i∞

−i∞

dsdt

(4πi)2
U

s
2V

u
2
−1Γ

[
1− s

2

]
Γ
[
2− s

2

]
Γ2

[
1− t

2

]
Γ2
[
1−u

2

]
MSSψψ

1 (s, t) ,

HSSψψconn,2(U,V ) =

∫ i∞

−i∞

dsdt

(4πi)2
U

s
2V

u
2
−1Γ2

[
2− s

2

]
Γ2

[
1− t

2

]
Γ2
[
1−u

2

]
MSSψψ

2 (s, t) , (E.3)

where as previously we define u = 4−s−t. These expression were derive in [99] using AdS4

Witten diagram calculations, where the arguments of the Gamma functions were chosen

so that bulk contact Witten diagrams correspond to polynomial Mellin amplitudes.

Derivatives of U and V and powers of U and V in position space act on MSSψψ
i (s, t)

according to the definition (E.3) as

∂̂mUM
SSψψ
i (s, t) =

(s
2

+1−m
)
m
Û−mMSSψψ

i (s, t) ,

∂̂mV M
SSψψ
i (s, t) =

(u
2
−m

)
m
V̂ −mMSSψψ

i (s, t) ,

ÛmV nMSSψψ
1 (s, t) =MSSψψ

1 (s−2m,t+2m+2n)
(
1− s

2

)
m

(
2− s

2

)
m

(
1− t

2

)2

−m−n

(
1−u

2

)2

n
,

ÛmV nMSSψψ
2 (s, t) =MSSψψ

2 (s−2m,t+2m+2n)
(

2− s
2

)2

m

(
1− t

2

)2

−m−n

(
1−u

2

)2

n
.

(E.4)
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F Evaluating I+−[Si] and I++[Si]

In this appendix, we will describe how to evaluate I++[Si(U, V )] and I+−[Si(U, V )] using

the Mellin transform M i(s, t) defined in (2.10). Each of these reduces to integrals over s

and t, which can be evaluated by summing all poles that appear in the contour defined

in (2.11). In some cases, the pole summation can be easily done using the Barnes lemma∫ i∞

−i∞

ds

2πi
Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) =

Γ(a+ c)Γ(b+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
, (F.1)

which holds for contours for which the poles of each Gamma function lie either to the left

or to the right of the contour.

F.1 I+−[Si]

We begin by writing I+−[Si] (3.36) as an integral over M i(s, t):

I+−[Si] =

∫ ∞
0

dr

∫ π

0
dθ sin θ

S1
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

=

∫
ds dt

(4πi)2

(
Γ2
[
1− s

2

]
Γ2

[
1− t

2

]
Γ2

[
s+ t− 2

2

]
M1(s, t)

×
∫ ∞

0
dr

∫ π

0
dθ sin θ

(
1 + r2 − 2r cos θ

)s/2−1
r2−s−t

)
.

(F.2)

The integral of r and θ can now be explicitly performed to get

I+−[Si] =

∫
ds dt

(4πi)2

2
√
π

(2− t)(s+ t− 2)
M1(s, t)

× Γ
[
1− s

2

]
Γ

[
s+ 1

2

]
Γ

[
1− t

2

]
Γ

[
t− 1

2

]
Γ

[
s+ t− 2

2

]
Γ

[
3− s− t

2

]
.

(F.3)

The polynomial Mellin amplitudes M1
3 (s, t) (2.49) and M1

4 (s, t) (2.44) both equal

(t− 2)(2− s− t) times a polynomial in s, t, so I+−[Sin] can be evaluated for n = 3, 4 by

writing the integrand as a sum of products of six Gamma functions in s, t and then applying

the Barnes lemma twice. For example, for M1
3 (s, t) = (t− 2)(2− s− t) we compute

I+−[Si3] =

∫
dsdt

(4πi)2
2
√
πΓ
[
1− s

2

]
Γ

[
s+1

2

]
Γ

[
1− t

2

]
Γ

[
t−1

2

]
Γ

[
2−s−t

2

]
Γ

[
3−s−t

2

]
=

∫
dt

4πi
π3/2Γ

[
1− t

2

]
Γ

[
2− t

2

]
Γ

[
t−1

2

]
Γ

[
t

2

]
=

2π2

3
, (F.4)

where the last two equalities followed from the Barnes lemma. We can evaluate I+−[Si4]

similarly to get the result in (4.30).
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The supergravity Mellin amplitude M1
1 (s, t) (2.50) is also proportional to (t − 2)(2 −

s− t), but the remaining function is not a polynomial in s, t and so we must work harder.

We compute

I+−[Si1] =

∫
dsdt

(4πi)2

1

4π2s(2 + s)

[√
π(4 + s)Γ

[
1− s

2

]
− 4Γ

[
1− s

2

]]
× Γ

[
s+ 1

2

]
Γ

[
1− t

2

]
Γ

[
t− 1

2

]
Γ

[
s+ t− 2

2

]
Γ

[
3− s− t

2

]
=

∫
ds

4πi

Γ
[
1− s

2

]
Γ
[
s
2

]
Γ
[
s+1

2

]
4πs(2 + s)

[√
π(4 + s)Γ

[
1− s

2

]
− 4Γ

[
1− s

2

]]
= −π2 ,

(F.5)

where in the first equality we used the Barnes lemma, and in the second equality we

summed over poles with the contour 0 < <(s) < 1. Note that this contour is different

from the range 0 < <(s) < 2 that would follow form (2.11), since the supergravity term

includes the stress tensor multiplet superblock, which contain extra poles that require a

more constraining contour [100].

F.2 I++[Si]

I++[Si] can be easily evaluated using eq. (3.28). For the polynomial Mellin amplitudes M i
3

and M i
4, the first term in (3.28) vanishes, and in the second term we have

lim
s→2

M3,84

s− 2
= − 1

24
,

lim
s→2

M3,84

s− 2
= −1

5
− 3t(t− 2)

56
.

(F.6)

For the supergravity term, the first term in (3.28) gives 8π/3 and in the integrand of the

second term we have

lim
s→2

MSG,84

s− 2
=

(t− 2)Γ
(

1−t
2

)
8
√
πt(t+ 2)Γ

(
1− t

2

) − t2Γ
(
t−1

2

)
16
√
π(t− 2)(t− 4)Γ

(
1 + t

2

)
− t4 − 4t3 − 12t2 + 32t− 32

16t(t− 4)(t2 − 4)
.

(F.7)

Using (3.28), we then obtain the results given in (4.30).
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