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Adaptive experimental designs can dramatically improve effi-

ciency in randomized trials. But with adaptively collected

data, common estimators based on sample means and inverse

propensity-weighted means can be biased or heavy-tailed. This

poses statistical challenges, in particular when the experimenter

would like to test hypotheses about parameters that were not tar-

geted by the data-collection mechanism. In this paper, we present

a class of test statistics that can handle these challenges. Our

approach is to adaptively reweight the terms of an augmented

inverse propensity-weighting estimator to control the contribu-

tion of each term to the estimator’s variance. This scheme reduces

overall variance and yields an asymptotically normal test statistic.

We validate the accuracy of the resulting estimates and their CIs

in numerical experiments and show that our methods compare

favorably to existing alternatives in terms of mean squared error,

coverage, and CI size.

adaptive experimentation | multiarmed bandits | policy evaluation |
central limit theorem | frequentist inference]

Adaptive experimental designs can dramatically improve effi-
ciency for particular objectives: maximizing welfare during

the experiment (1, 2) or after it (3, 4); quickly identifying the
best treatment arm (5, 6); maximizing the power of a particular
hypothesis (7–9); and so on. To achieve these efficiency gains,
we adaptively choose assignments to resolve uncertainty about
some aspects of the data-generating process, at the expense of
learning little about others. For example, welfare-maximizing
designs tend to focus on differentiating optimal and near-optimal
treatments, collecting relatively little data about suboptimal
ones.

However, once the experiment is over, we are often inter-
ested in using the adaptively collected data to answer a vari-
ety of questions, not all of them necessarily targeted by the
design. For example, a company experimenting with many types
of web ads may use a bandit algorithm to maximize click-
through rates during an experiment, but still want to quantify
the effectiveness of each ad. At this stage, fundamental ten-
sions between the experiment objective and statistical infer-
ence become apparent: Extreme undersampling or nonconver-
gence of the assignment probabilities make reusing these data
challenging.

In this paper, we propose a method for constructing frequen-
tist CIs based on approximate normality, even when challenges
of adaptivity are severe, provided that the treatment-assignment
probabilities are known and satisfy certain conditions. To get
a better sense of the challenges we face, we’ll first consider an
example in which traditional approaches to statistical testing fail.
Suppose we run a two-stage, two-arm trial as follows. For the
first T/2 time periods, we randomize assignments with probabil-
ity 50% for each arm. After T/2 time periods, we identify the
arm with the higher sample mean, and for the next T/2 time
periods, we allocate treatment to the seemingly better arm 90%
of the time. Then, one estimator of the expected value Q(w)
for each arm w ∈{1, 2} is the sample mean at the end of the
experiment,

Q̂
AVG(w)=

1

Tw

∑

t≤T
Wt=w

Yt , Tw :=
∑

t≤T
Wt=w

1, [1]

where Wt denotes the arm pulled in the t-th time period
and Yt denotes the observed outcome. Both arms have the
same outcome distribution: Yt

∣∣Wt =w ∼N (0, 1)for all values
of t and w .

This example is relatively benign, in that adaptivity is min-
imal. Yet, as Fig. 1, Left shows, the estimate of the value of

the first arm Q̂AVG(1) is biased downward. This is a well-known
phenomenon; see, e.g., refs. 10–16. The downward bias occurs
because arms in which we observe random upward fluctuations
initially will be sampled more, while arms in which we observe
random downward fluctuations initially will be sampled less. The
upward fluctuations are corrected as estimates of arms that are
sampled more regress to their mean, while the downward ones
may not be corrected because of the reduction in sampling.
Here, we only show estimates for the first arm, so there are
no selection-bias effects; the bias is a direct consequence of the
adaptive data collection.

One often-discussed fix to this particular bias problem is

to use the inverse-probability weighting estimator, Q̂ IPW(w)=

T−1∑T

t=1 I {Wt =w}Yt/et(w), where et(w) is the probability
with which our adaptive experiment drew arm w in step t . This
compensates for the outsize influence of early downward fluc-
tuations that reduce the probability of an arm being assigned
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Fig. 1. Distribution of the estimates Q̂AVG(1) and Q̂IPW(1) described in the introduction. The plots depict the distribution of the estimators for T = 106, scaled

by a factor
√

T for visualization. The distributions are overlaid with the normal curve that matches the first two moments of the distribution, along with a

dashed line that denotes the mean. All numbers are aggregated over 1 million replications.

by up-weighting later observations within that arm when we see
them. As seen in Fig. 1, Right, inverse-probability weighting fixes
the bias problem, but results in a nonnormal asymptotic distribu-
tion. In fact, it can exacerbate the problem of inference: When
the probability of assignment to the arm of interest tends to zero,
the inverse probability weights increase, which, in turn, causes
the tails of the distribution to become heavier.

If adaptivity essentially vanishes over the experiment, then we
are justified in using naive estimators that ignore adaptivity. In
particular, if assignment probabilities quickly converge to con-
stants, then, in long-running experiments, we can often treat
the data as if treatments had always been assigned according
to these limiting probabilities; see, e.g., ref. 17 or 9. It can be
argued that most adaptive designs would eventually converge
in this sense if run forever. However, how quickly they con-
verge, and, therefore, the number of samples we’d need for
adaptivity to be ignorable can vary considerably with the data-
generating process. For example, we know that so long as some
arm is best, an ε-greedy K -armed bandit algorithm will eventu-
ally assign to the best arm with probability 1− ε+ ε/K and the
others with probability ε/K ; however, this happens only after the
best arm is identified, which depends strongly on the unknown
spacing between the arm values Q(1), . . . ,Q(K ). Moreover, in
practice, adaptive experiments are often used precisely when
there is limited budget for experimentation; therefore, sub-
stantial data collection after convergence is rare. As a result,
if we try to exploit this convergence by using estimators that
are only valid in convergent designs, we get brittle estima-
tors. If we want an estimator that is reliable, we must use one
that is valid, regardless of whether the assignment probabilities
converge.

In this work, we propose a test statistic that is asymptotically
unbiased and normal, even when assignment probabilities con-
verge to zero or do not converge at all.∗ We believe this approach

* In SI Appendix, section A.5, we revisit the example shown in the introduction and

demonstrate how our method leads to an asymptotically normal test statistic for the

arm value.

to be of practical interest because normal CIs are widely used
in several fields, including, e.g., medicine and economics. More-
over, though we focus on estimating the value of a prespecified
policy, our estimates can also be used as input to procedures for
testing adaptive hypotheses, which have as their starting point a
vector of normal estimates (e.g., ref. 18).

Other approaches to inference with adaptively collected data
are available. One line of research eschews asymptotic nor-
mality in favor of developing finite-sample bounds using mar-
tingale concentration inequalities (e.g., refs. 19 and 20, and
references therein). Ref. 10 considers approaches to debiasing
value estimates using ideas from conditional inference (21). And
some avoid frequentist arguments altogether, preferring a purely
Bayesian approach, although this can produce estimates that
have poor frequentist properties (22). Related Literature further
reviews papers on policy evaluation.

Policy Evaluation with Adaptively Collected Data

We start by establishing some definitions. Each observation
in our data is represented by a tuple (Wt ,Yt). The random
variables Wt ∈W are called the arms, treatments, or inter-
ventions. Arms are categorical. The reward or outcome Yt

represents the individual’s response to the treatment. The set
of observations up to a certain time HT := {(Ws ,Ys)}

T
s=1

is called a history. The treatment-assignment probabilities
et(w) :=P[Wt =w

∣∣H t−1], also called propensity scores, are
time-varying and decided via some known algorithm, as it is the
case with many popular bandit algorithms, such as Thompson
sampling (23, 24).

We define causal effects using potential outcome notation
(25). We denote by Yt(w) the random variable representing the
outcome that would be observed if individual t were assigned
to a treatment w . In any given experiment, this individual can
be assigned only one treatment, Wt , from a set of options
W , so we observe only one realized outcome Yt =Yt(Wt).
We focus on the “stationary” setting, where individuals, rep-
resented by a vector of potential outcomes (Yt(w))w∈W , are
independent and identically distributed. However, the observed
outcomes Yt are, in general, neither independent nor identically
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distributed, because the distribution of the treatment assignment
Wt depends on the history of outcomes up to time t .

Given this setup, we are concerned with the problem of esti-
mating and testing prespecified hypotheses about the value of
an arm, denoted by Q(w) :=E [Yt(w)], as well as differences
between two such values, denoted by ∆(w , w ′) :=E [Yt(w)]−
E [Yt(w

′)]. We would like to do that even in data-poor situ-
ations, in which the data-collection mechanism did not target
these estimands.

We will provide consistent and asymptotically normal test
statistics for Q(w) and ∆(w , w ′). This is done in three steps.
First, we start with a class of scoring rules, which are transfor-
mations of the observed outcomes that can be used for unbiased
arm evaluation, but whose sampling distribution can be nonnor-
mal and heavy-tailed due to adaptivity. Second, we average these
objects with carefully chosen data-adaptive weights, obtaining
an estimator with controlled variance at the cost of some finite-
sample small bias. Finally, by dividing these estimators by their
SE, we obtain a test statistic that has a centered and standard
normal limiting distribution.

Unbiased Scoring Rules. A first step in developing methods for
inference with adaptive data is to account for sampling bias. The
following construction provides a generic way of doing so. We say

that Γ̂t(w) is an unbiased scoring rule for Q(w) if for all w ∈W
and t =1, . . . , T ,

E

[
Γ̂t(w)

∣∣H t−1
]
=Q(w). [2]

Given this definition, we can readily verify that a simple average
of such a scoring rule,

Q̂T (w)=
1

T

T∑

i=1

Γ̂t(w), [3]

is unbiased for Q(w), even though the Γ̂t(w) are correlated over
time, as the next proposition shows.

Proposition 1. Let {Yt(w)}w∈W be an independent and identi-
cally distributed sequence of potential outcomes for t =1, . . . , T ,
and let H t denote the observation history up to time t , as described
above. Then, any estimator of the form [3] based on an unbiased

scoring rule [2] satisfies E[Q̂T (w)] =Q(w).
One can easily verify Proposition 1 by applying the law of

iterated expectations and [2],

E

[
Q̂T (w)

]
=E

[
1

T

T∑

t=1

E

[
Γ̂t(w)

∣∣H t−1
]]

=Q(w).

The key fact underlying this result is that the normalization fac-
tor 1/T used in [3] is deterministic, and so cannot be correlated

with stochastic fluctuations in the Γ̂t(w). In particular, we note
that the basic averaging estimator [1] is not of the form [3] and,
instead, has a random denominator Tw—and is thus not covered
by Proposition 1.

Given Proposition 1, we can readily construct several unbiased
estimators for Q(w). One straightforward option is to use an
inverse propensity score weighted (IPW) estimator:

Q̂
IPW
T (w) :=

1

T

T∑

t=1

Γ̂IPW
t (w), Γ̂IPW

t (w) :=
I {Wt =w}

et(w)
Yt . [4]

This estimator is simple to implement, and one can directly
check that the condition [2] holds because, by construction,
P
[
Wt =w

∣∣H t−1, Yt(w)
]
=P

[
Wt =w

∣∣H t−1
]
= e(w ;H t−1).

The augmented inverse propensity weighted (AIPW) estimator
generalizes this by incorporating regression adjustment (26):

Q̂
AIPW
T (w) :=

1

T

T∑

t=1

Γ̂ AIPW
t (w),

Γ̂ AIPW
t (w) :=

I {Wt =w}

et(w)
Yt +

(
1−

I {Wt =w}

et(w)

)
m̂t(w).

[5]

The symbol m̂t(w) denotes an estimator of the conditional mean
function m(w)=E[Yt(w)] based on the history H t−1, but it
need not be a good one—it could be biased, or even inconsistent.

The second term of Γ̂ AIPW
t (w) acts as a control variate: Adding it

preserves unbiasedness, but can reduce variance, as it has mean
zero conditional on H t−1 and, if m̂t(w) is a reasonable estima-
tor of m(w), is negatively correlated with the first term. When
m̂t(w) is identically zero, the AIPW estimator reduces to the
IPW estimator.

Asymptotically Normal Test Statistics. The estimators discussed in
the previous section are unbiased by construction, but, in gen-
eral, they are not guaranteed to have an asymptotically normal
sampling distribution. The reason for this failure of normality
was illustrated in the example in the introduction for the IPW
estimator. When, purely by chance, an arm has a higher sam-
ple mean in the first half of the experiment, it is sampled often
in the second half, and the IPW estimator concentrates tightly.
When the opposite happens, the arm is sampled less frequently,
and the IPW estimator is more spread out. What we see in
Fig. 1 is a heavy-tailed distribution corresponding to the mixture
of the two behaviors. Qualitatively, what we need for normality
is for the variability of the estimator to be deterministic. For-
mally, what is required is that the sum of conditional variances of
each term in the sequence converges in ratio to the unconditional
variance of the estimator (see e.g., ref. 27, theorem 3.5). Simple
averages of unbiased scoring rules [1] fail to satisfy this because,
as we’ll elaborate below, the conditional variances of the terms in
[5] depend primarily on the behavior of the inverse assignment
probabilities 1/et(w), which may diverge to infinity or fail to
converge.

To address this difficulty, we consider a generalization of the
AIPW estimator [5] that nonuniformly averages the unbiased

scores Γ̂ AIPW using a sequence of evaluation weights ht(w). The
resulting estimator is the adaptively weighted AIPW estimator:

Q̂
h
T (w)=

∑T

t=1 ht(w)Γ̂ AIPW
t (w)

∑T

t=1 ht(w)
. [6]

Evaluation weights ht(w) provide an additional degree of flex-
ibility in controlling the variance and tails of the sampling
distribution. When chosen appropriately, these weights compen-
sate for erratic trajectories of the assignment probabilities et(w),
stabilizing the variance of the estimator. With such weights, the
adaptively weighted AIPW estimator [6], when normalized by an
estimate of its SD, has a centered and normal asymptotic dis-
tribution. Similar “self-normalization” schemes are often key to
martingale central-limit theorems (see e.g., ref. 28).

Throughout, we will use evaluation weights ht(w) that are
a function of the history H t−1; we will call such functions
history-adapted. Note that if we used weights with sum equal
to one, we would have a generalization of the unbiased scoring

property [3], E[ht(w)Γ̂t(w) |H t−1] = ht(w)Q(w), so the adap-
tively weighted estimator [6] would be unbiased. In Constructing
Adaptive Weights, we will discuss weight heuristics that do not
sum to one, but that empirically seem to reduce variance and
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mean-squared error relative to alternatives. In that case, the esti-
mator [6] will have some bias due to the random denominator∑T

t=1 ht(w). However, for the appropriate choices of evaluation
weights ht(w) , this bias disappears asymptotically.

The main conditions required by our weighting
scheme are stated below. Assumption 1 requires that
the effective sample size after adaptive weighting—

that is, the ratio (
∑T

t=1 E[αt |H
t−1])2/E[

∑T

t=1 α
2
t ] where

αt := ht(w)I {Wt =w}/et(w)—goes to infinity. This implies
that the estimator converges. Assumption 2 is the more subtle
condition that unbiased estimators such as [3] [i.e., estimators
with ht(w)≡ 1] often fail to satisfy. Assumption 3 is a Lyapunov-
type regularity condition on the weights controlling higher
moments of the distribution.

Assumption 1 (Infinite Sampling). The weights used in [6]
satisfy

(
T∑

t=1

ht(w)

)2/
E

[
T∑

t=1

h2
t (w)

et(w)

]
p

−−−−→
T→∞

∞. [7]

Assumption 2 (Variance Convergence). The weights used in [6]
satisfy, for some p> 1,

T∑

t=1

h2
t (w)

et(w)

/
E

[
T∑

t=1

h2
t (w)

et(w)

]
Lp

−−−−→
T→∞

1. [8]

Assumption 3 (Bounded Moments). The weights used in [6]
satisfy, for some δ > 0,

T∑

t=1

h2+δ(w)

e1+δ(w)

/
E

[
T∑

t=1

h2
t (w)

et(w)

]1+δ/2
p

−−−−→
T→∞

0. [9]

Theorem 2. Suppose that we observe arms Wt and rewards Yt =
Yt(Wt), and that the underlying potential outcomes (Yt(w))w∈W

are independent and identically distributed with nonzero variance,
and satisfy E|Yt(w)|2+δ <∞ for some δ > 0 and all w . Suppose
that the assignment probabilities et(w) are strictly positive, and let
m̂t(w) be any history-adapted estimator of Q(w) that is bounded
and that converges almost-surely to some constant m∞(w). Let
ht(w) be nonnegative, history-adapted weights satisfying Assump-
tions 1, 2, and 3. Suppose that either m̂t(w) is consistent or et(w)
has a limit e∞(w)∈ [0, 1], i.e., either

m̂t(w)
a.s.

−−−→
t→∞

Q(w) or et(w)
a.s.

−−−→
t→∞

e∞(w). [10]

Then, for any arm w ∈W , the adaptively weighted estimator [6] is
consistent for the arm value Q(w), and the following studentized
statistic is asymptotically normal:

Q̂h
T (w)−Q(w)

V̂ h
T (w)

1
2

d
−→N (0, 1), where

V̂
h
T (w) :=

∑T

t=1 h
2
t (w)

(
Γ̂t(w)− Q̂T (w)

)2

(∑T

t=1 ht(w)
)2 .

[11]

As Theorem 2 suggests, the asymptotic behavior of our estima-
tor is largely determined by the behavior of the propensity scores
et(w) and evaluation weights ht(w). If the former’s behavior
is problematic, the latter can correct for that. For instance, the
bounded-moments condition [9] implies that when et(w) decays
very fast, the evaluation weights must also decay at an appropri-
ate rate, so that the variance of the estimator does not explode.

However, there are limits to what this approach can correct. For
example, aggressive bandit procedures may assign some arms
only finitely many times, and, in that case, it is impossible to esti-
mate their values consistently. This scenario is ruled out by our
infinite-sampling condition [7], which would not be satisfied.

To build more intuition for the variance-convergence
condition [8], pretend for the moment that the evalua-
tion weights ht(w) sum to one and that m̂t(w) is consis-
tent. Under these conditions, the variance of each AIPW

score Γ̂t(w) conditional on the past can be shown to be
Var[Y1(w)]/et(w) plus asymptotically negligible terms, so the
sum of conditional variances is asymptotically equivalent to
Var[Y1(w)]

∑T

t=1 h
2
t (w)/et(w). The variance-convergence con-

dition [8] says that this sum of conditional variances converges
to its mean, which will be the unconditional variance of the
estimator. If these simplifying assumptions really held, this argu-
ment would almost suffice to establish asymptotic normality,
since variance-convergence conditions like this are nearly suf-
ficient for martingale central-limit theorems (see, e.g., ref. 27,
theorem 3.5).

When we use history-dependent weights ht(w) that do not

sum to one, the normalized weights h̃t := ht(w)/
∑T

s=1 hs(w)
that scale our terms in [6] are not a function of past data alone.
However, the argument above provides valuable intuition in our

proof, and Var[Y1(w)]
∑T

t=1 h̃
2
t /et(w) can be thought of as a

reasonable proxy for the estimator’s variance. Minimizing this
variance proxy suggests the use of weights ht(w)∝ et(w). This
heuristic, in combination with appropriate constraints, motivates
an empirically successful weighting scheme that we’ll further
discuss in Constructing Adaptive Weights.

If the weights ht(w) are not constructed appropriately,
then h2

t (w)/et(w) may behave erratically, and the variance-
convergence condition will fail to hold. This can happen, for
example, in a bandit experiment, in which there are multiple
optimal arms, and uniform weights ht(w)≡ 1 are used. In this
setting, the bandit algorithm may spuriously choose one arm
at random early on and assign the vast majority of observa-
tions to it, so that no run of the experiment will look like
an “average run,” and the ratio in [8] will not converge. Or
it may switch between arms infinitely often, in which case the
ratio will converge only if it switches quickly enough that the
random order is “forgotten” in the average. This issue per-
sists even when assignment probabilities are guaranteed to stay
above a strictly positive lower bound. In the next section, we will
construct weights so that “variance-convergence” [8] is guaran-
teed to be satisfied not only asymptotically, but for all sample
sizes T .

The simplifying assumption that m̂t(w) is consistent is not
necessary: As stated in [10], a variant of the argument above
still goes through if the propensity score et(w) converges. In
a nonadaptive experiment, the AIPW estimator will have opti-
mal asymptotic variance if m̂t(w) is consistent; if it is not, the
excess asymptotic variance is a function of limt→∞ et(w) and
limt→∞ m̂t(w)−Q(w).

Constructing Adaptive Weights. A natural question is how to
choose evaluation weights ht(w) for which the adaptively
weighted AIPW estimator [6] is asymptotically unbiased and
normal with low variance, i.e., for which we get narrow and
approximately valid CIs. To this end, we’ll start by focusing on
the variance-convergence condition [8]. Once we have a recipe
for building weights that satisfy it, we’ll consider how to sat-
isfy the other conditions of Theorem 2 and how to optimize for
power.

The variance-convergence condition [8] requires the sum∑T

t=1 h
2
t /et to concentrate around its expectation. A direct way

to ensure this is to make the sum deterministic. To do this,
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we choose weights via a recursively defined “stick-breaking”
procedure,†

h2
t

et
=

(

1−
t−1∑

s=1

h2
s

es

)

λt , [12]

where λt satisfies 0≤λt < 1 for all 1≤ t ≤T − 1, and λT =1.
Because λT =1, the definition above for t =T directly implies

that
∑T

t=1 h
2
t /et =1. This ensures that the variance-convergence

condition [8] is satisfied, so we call these variance-stabilizing
weights.

We call the function λt an allocation rate because it qualita-
tively captures the fraction of our remaining variance that we
allocate to the upcoming observation. This is a useful class to
consider because the analyst has substantial freedom in con-
structing weights by choosing different allocation rates λt , while
ensuring that the resulting evaluation weights automatically
satisfy the variance-convergence assumption, and satisfy other
assumptions of Theorem 2 with some generality.

Theorem 3. In the setting of Theorem 2, suppose that the
treatment propensities satisfy

et(w)≥Ct
−α, [13]

for α∈ [0, 1) and any positive constant C . Then, the variance-
stabilizing weights [12] defined by a history-adapted allocation
rate λt(w) are history-adapted and satisfy Assumptions 1, 2, and
3 if λt(w)< 1 for t <T , λT (w)= 1 and, for a finite positive
constant C ′,

1

T − t +1
≤λt(w)≤C

′ et(w)

t−α+T 1−α− t1−α
. [14]

The main requirement of Theorem 3 is [13], a limit on the rate
at which treatment-assignment propensities et decay. In a bandit
setting, this constraint requires that suboptimal arms be pulled
more often than implied by rate-optimal algorithms (see e.g.,
ref. 29, chapter 15), but still allows for sublinear regret. Given
this constraint, the allocation-rate bounds [14] are weak enough
to allow us to construct variance-reducing heuristics, like [18]
below.

Given these simple sufficient conditions for our asymptotic
normality result (Theorem 2) when we use variance-stabilizing
weights, it remains to choose a specific allocation rate λt .
This next step is what will allow us to be able to provide
valid estimates, even when the share of relevant data vanishes
asymptotically. A simple choice of allocation rate is

λconst
t :=

1

T − t +1
. [15]

Given this choice, we can solve [12] in closed form and get ht =√
et/T . Weights of this type were proposed by ref. 30 for the

purpose of estimating the expected value of nonunique optimal
policies that possibly depend on observable covariates. We call
this method the constant-allocation scheme, because the variance
contribution of each observation is constant (since h2

t /et ≡ 1/T
for these weights).

The constant-allocation scheme guarantees the variance-
convergence condition [8] and ensures asymptotic normality
of the test statistic [11], but it does not result in a variance-
optimal estimator. We propose an alternative scheme in which

†For notational efficiency, whenever it does not lead to confusion, we will drop the

dependence on arm and write, e.g., Q̂T simply to mean our adaptively weighted

estimator [6], ht for evaluation weights, et for assignment probabilities, and so on.

λt adapts to past data and reweights observations to better con-
trol the estimator’s variance. To get some intuition, recall from

the discussion following Theorem 2 that the variance of Q̂h
T (w)

essentially scales like
∑

t
(h2

t /et) / (
∑T

t=1 ht)
2. This implies that,

in the absence of any constraints on how we choose the weights,
we would minimize variance by setting ht ∝ et ; this can be accom-

plished by using the allocation rate λt = et/
∑T

s=t
es . If we use

these weights and set m̂t ≡ 0 in [6], the result is an estimator that
differs from the sample average [1] only in that it replaces the
normalization 1/Tw with 1/

∑T

t=1 et . Our results do not apply
to this choice of allocation rate λt because it depends on future
treatment-assignment probabilities, and Theorem 3 requires that
λt depend only on the history H t−1.

However, this form of allocation rate suggests a natural
heuristic choice of allocation rate:

λt = Êt−1

[
et(w)

∑T

s=t
es(w)

]

, [16]

where Êt−1 denotes an estimate of the future behavior of the
propensity scores using information up to the beginning of the
current period. It can be estimated via Monte Carlo methods.
A high-quality approximation is unnecessary for valid inference.
All that is required is that the allocation-rate bounds [14] be
satisfied, although better approximations likely lead to better
statistical efficiency.

In practice, the need to compute these estimates renders the
construction [16] unwieldy. Furthermore, the way the resulting
weights depend on our model of the assignment mechanism is
fairly opaque. As an alternative, we consider a simple heuristic
that exhibits similar behavior and can be used when assign-
ment probabilities are decided via Bayesian methods, such as
Thompson sampling.

To derive our scheme, we consider two scenarios: one in which
the assignment probabilities et are currently high and will con-
tinue being so in the future, as is the case when a bandit algorithm
deems w to be an optimal arm; and a second scenario, in which
the assignment probabilities will asymptotically decay toward
zero as fast as the lower bound [13] permits it to. If the first sce-
nario is true, then we could approximate the behavior of [16] by
setting es =1 for all periods. If the second scenario is true, then
we could do so by setting es =Cs−α for all periods. Letting A be
an indicator that we are in the first scenario, we can consider a
heuristic approximation to [16]:

λt ≈A
1

∑T

s=t
1
+ (1−A)

t−α
∑T

s=t
s−α

. [17]

Of course, we don’t know which scenario we are in. However,
when assigning treatment via Thompson sampling, et is the
posterior probability at time t that arm w is optimal. This sug-
gests the heuristic of averaging the two possibilities according to
this posterior probability. Substituting, in addition, an integral
approximation to

∑T

s=t+1 s
−α, we get the following allocation

rate:

λ
two-point
t := et

1

T − t +1
+ (1− et)

t−a

t−α+ T1−α−t1−α

1−α

. [18]

We call this the two-point allocation scheme. Both the constant
[15] and two-point [18] allocation schemes satisfy the allocation-
rate bounds [14] from Theorem 3; see SI Appendix, section C.5.

Estimating Treatment Effects

Our discussion so far has focused on estimating the value Q(w)
of a single arm w . In many applications, however, we may seek to
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provide inference for a wider variety of estimands, starting with
treatment effects of the form ∆(w1, w2)=E [Yt(w1)−Yt(w2)].
There are two natural ways to approach this problem in our
framework. The first involves revisiting our discussion from Unbi-
ased Scoring Rules, and directly defining unbiased scoring rules
for ∆(w1, w2) that can then be used as the basis for an adaptively
weighted estimator. The second is to reuse the value estimates

derived above and set ∆̂(w1, w2)= Q̂(w1)− Q̂(w2); the chal-
lenge then becomes how to provide uncertainty quantification

for ∆̂(w1, w2). We discuss both approaches below.
In the first approach, we use the difference in AIPW scores as

the unbiased scoring rule for ∆(w1, w2).

Γ̂t(w1, w2)= Γ̂ AIPW
t (w1)− Γ̂ AIPW

t (w2),

E

[
Γ̂t(w1, w2)

∣∣H t−1
]
=∆(w1, w2).

[19]

One can then construct asymptotically normal estimates of

∆(w1, w2) by adaptively weighting the scores Γ̂t(w1, w2) as in
[6]. In SI Appendix, section B, our main formal result allows for
adaptively weighted estimation of general targets, such that both
Theorem 2 and adaptively weighted estimation with scores [19]
are special cases of this result.‡

The second approach is conceptually straightforward; how-

ever, we still need to check that the estimator ∆̂(w1, w2)=

Q̂(w1)− Q̂(w2) can be used for asymptotically normal inference
about ∆(w1, w2). Theorem 4 provides such a result, under a
modified version of the conditions of Theorem 2, along with an
extra assumption [21].

Theorem 4. In the setting of Theorem 2, let w1, w2 ∈W denote
a pair of arms, and suppose that Assumptions 1, 2, and 3 are satis-
fied for both arms. In addition, suppose that the variance estimates
defined in [11] satisfy

V̂
h
T (w1)

/
V̂

h
T (w2)

p
−−−−→
T→∞

r ∈ [0,∞], [21]

and that for at least one j ∈{1, 2}, either

m̂t(wj )
a.s.

−−−→
t→∞

Q(wj ) or et(wj )
a.s.

−−−→
t→∞

0. [22]

Then, the vector of studentized statistics [11] for w1 and w2 is
asymptotically jointly normal with identity covariance matrix. More-

over, ∆̂T (w1,w2) below is a consistent estimator of ∆(w1,w2)=
E [Yt(w1)−Yt(w2)],

∆̂T (w1,w2) :=

∑T

t=1 ht(w1)Γ̂t(w1)∑T

t=1 ht(w1)
−

∑T

t=1 ht(w2)Γ̂t(w2)∑T

t=1 ht(w2)
,

[23]

‡ Our result allows for considerably more generality than either of the cases discussed

above and applies whenever our target admits a doubly robust estimator in the sense of

ref. 31, whose Riesz representer is a function of the treatment-assignment mechanism.

For example, consider an adaptive clinical trial setting in which patients were given

random doses of a continuous treatment Wt drawn from a time-varying dosing policy

ft (w), i.e., Wt is a random variable with density ft (w), and write m(w) = E [Yt (w)]. Now,

suppose that, given a specific treatment-assignment policy with density f(w), we are

interested in estimating ψ(m) =
∫

m′(w)f(w)dw, i.e., how patients’ outcomes would

change if they received doses in slightly larger amounts than those suggested by the

baseline policy f(w). An unbiased scoring rule for this estimand is

Γ̂t = γtYt +

(∫
m̂

′
(w)f(w)dw − γtm̂(Wt )

)
where γt =−

f′(Wt )

ft (Wt )
, [20]

and our results apply to inference about ψ(m) by adaptively weighted aggregation of

these Γ̂t . See SI Appendix, section B for further discussion.

and the following studentized statistic is asymptotically standard
normal.

∆̂T (w1,w2)−∆(w1,w2)(
V̂ h

T (w1)+ V̂ h
T (w2)

)
1/2

d
−−−−→
T→∞

N (0, 1). [24]

Both approaches to inference about ∆(w1, w2) are of interest,
and may be relevant in different settings. In our experiments, we

focus on the estimator ∆̂(w1, w2)= Q̂(w1)− Q̂(w2) studied in
Theorem 4, as we found it to have higher power—presumably
because allowing separate weights ht(w) for different arms
gives us more control over the variance. However, adaptively
weighted estimators following [19] that directly target the dif-
ference ∆(w1, w2) may also be of interest in some applications.
In particular, they render an assumption like [21] unnecessary
and, following the line of argumentation in ref. 32, they may be
more robust to nonstationarity of the distribution of the potential
outcomes Yt(w).

Numerical Experiments

We compare methods for estimating of arm values Q(w) and
their differences ∆(w ,w ′), as well as constructing CIs around
these estimates, under different data-generating processes.

We consider four point estimators of arm values Q(w): the
sample mean [1], the AIPW estimator [5], and the adaptively
weighted AIPW estimator [6] with constant [15] and two-point
[18] allocation rates. Around each of these estimators, we con-
struct CIs Q̂T ± zα/2V̂

1/2
T based on the assumption of approx-

imate normality. For the AIPW-based estimators,§ we use the
sample mean of arm rewards up to period t − 1 as the plug-
in estimator m̂t(w) and the estimate of the variance given in
[11]. For the sample mean, we use the usual variance estimate

V̂ AVG(w) :=T−2
w

∑T

t:Wt=w
(Yt − Q̂AVG

T (w))2. Approximate nor-
mality is not theoretically justified for the unweighted AIPW esti-
mator or for the sample mean. We also consider nonasymptotic
CIs for the sample mean, based on the method of time-uniform
confidence sequences described in ref. 19. See SI Appendix,
section D.2 for details.

In addition, we consider four analogous estimators for the
treatment effect ∆(w ,w ′): the difference in sample means, the
difference in AIPW estimators [5], and the adaptively weighted
AIPW estimator [23] with constant [15] and two-point [18] allo-
cation rates. For the AIPW-based estimators, we use m̂t(w) as
above for the plug-in and the estimate of the variance given in
[24]. For the sample mean, we use the usual variance estimate

V̂ AVG(w)+ V̂ AVG(w ′). For the method based on ref. 19, we con-
struct CIs for the treatment effect by using the union bound to
combine intervals around each sample mean.

We have three simulation settings, each with K =3 arms,
yielding rewards that are observed with additive uniform[−1, 1]
noise. The settings differ in the size of the gap between the arm
values. In the no-signal case, we set arm values to Q(w)= 1 for all
w ∈{1, 2, 3}; in the low-signal case, we set Q(w)= 0.9+0.1w ;
and in the high-signal case, we set Q(w)= 0.5+0.5w . During
the experiment, treatment is assigned by a modified Thompson
sampling method (see, e.g., ref. 24): First, tentative assignment
probabilities are computed via Thompson sampling with normal
likelihood and normal prior; they are then adjusted to impose
the lower bound et(w)≥ (1/K )t−0.7. See SI Appendix, section
D.2 for details.

As a short mnemonic, in what follows, we call arms 1 and 3
the “bad” arm and “good” arm, respectively. As these labels are
fixed, tests involving the value of the good arm are tests of a

§Recall that the AIPW estimator [5] is an instance of the adaptively weighted AIPW [6]

with uniform weights ht ≡ 1, so we may use the same formula for the variance [11].
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Fig. 2. Evolution of estimates of Q(3) − Q(1) across simulation settings for different experiment lengths. Error bars are 95% CIs around averages across 105

replications.

prespecified hypothesis. Fig. 2 shows the evolution of estimates
of the difference ∆(3, 1)=E [Y (3)−Y (1)] over time; Fig. 3
shows the asymptotic distribution of studentized test statistics

of the form (∆̂T −∆)/V̂
1/2
T for each estimator at the end of a

long (T =105) experiment; and Fig. 4 shows arm-value statistics.

Additional results are shown in SI Appendix, section A.¶

Figs. 2 and 4 show that, although the AIPW estimator with
uniform weights (labeled as “unweighted AIPW”) is unbiased,
it performs very poorly in terms of root-mean-square error
(RMSE) and CI width. In the low- and high-signal case, its prob-
lem is that it does not take into account the fact that the bad arm
is undersampled, so its variance is high; in the no-signal case, it
yields studentized statistics that are far from normal, as we see in
Fig. 3.

Figs. 2 and 4 show that our adaptively weighted AIPW esti-
mators perform relatively well, and normal CIs around them
have roughly correct coverage. We see that these estimators
do have approximately normal studentized statistics in Fig. 3.
Note that even in our longest experiments, in high-signal set-
tings, the bad arm receives only around 50 observations, which
suggests that normal approximation does not require an imprac-

¶Reproduction code can be found at https://github.com/gsbDBI/adaptive-confidence-

intervals.

tical number of observations.‖ Of these two methods, two-point
allocation better controls the variance of bad-arm estimates by
more aggressively downweighting “unlikely” observations associ-
ated with large inverse propensity weights; this results in smaller
RMSE and tighter CIs.

As mentioned in the introduction, the sample mean is down-
wardly biased for arms that are undersampled. Fig. 4 shows that
this bias can be nonmonotonic in signal strength. In the high-
signal case, the probability of pulling the bad arm decays so fast
that very few observations are assigned to it. Most of these come
from the beginning of the experiment, when the algorithm is
still exploring, and sampling is less adaptive, resulting in smaller
bias. In the no-signal case, the bias is small because the good
and bad arms have the same value. In some simulations, one
arm or another is discarded, and its estimate is biased down-
ward; in others, it is collected heavily, and its estimate is nearly
unbiased. Averaging over these scenarios results in the low bias
we observe. Between these extremes, in the low-signal case, the
bad arm is usually collected for some period and then discarded,
so its bias is larger in magnitude. For this estimator, naive CIs
based on the normal approximation are invalid, with severe

‖For intuition about the number of observations we see in the bad arm in the high-

signal case, consider that the assignment probabilities of suboptimal arms quickly hit

their lower bound et = (1/3)t−0.7; (1/3)
∑105

t=1 t−0.7 ≈ 35.
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Fig. 3. Histogram of studentized statistics of the form (∆̂T −∆)/V̂
1/2
T for the difference in arm values ∆(3, 1) =E [Yt(3) − Yt(1)] at T = 105. Numbers are

aggregated across over 105 replications.

undercoverage when there’s little or no signal. On the other
hand, the nonasymptotic confidence sequences of ref. 19 are
conservative, but often wide.

These simulations suggest that, in similar applications, the
adaptively weighted AIPW estimator with two-point allocation
[18] and the sample mean with confidence sequences based on
ref. 19 should be preferred. These two methods have comple-
mentary advantages. In terms of mean-squared error, the sample
mean often performs better, in particular, in the presence of
stronger signal. As for inference, normal intervals around the
adaptively weighted estimator with two-point allocation have
asymptotically nominal coverage, while confidence sequences
are often conservative and wider than those based on normal
approximations; however, the former is valid only at a prespec-
ified horizon, while the latter is valid for all time periods and
allows for arbitrary stopping times. Finally, in terms of assump-
tions, the adaptively weighted estimator requires knowledge
of the propensity scores, and its justification requires that the
propensity scores decay at a slow enough rate; the nonasymptotic
confidence sequences for the sample mean require no restric-
tions on the assignment process and can be used even with
deterministic methods such as Upper Confidence Bound (UCB)
algorithms (2),∗∗ but require knowledge about other aspects of
the distribution of potential outcomes, such as their support or
an upper bound on their variance (ref. 34, section 3.2).

Related Literature

Much of the literature on policy evaluation with adaptively col-
lected data focuses on learning or estimating the value of an
optimal policy. The classical literature (e.g., ref. 35) focuses on
strategies for allocating treatment in clinical trials to optimize var-

**For deterministic algorithms, such as UCB, the methods in ref. 33 suggest inverse

propensity weighting schemes, whose weights are of the form 1/max{êt (w), γ},

where êt (w) are estimates of assignment probabilities based, e.g., on the empirical

distribution of past assignments, and γ > 0 is a lower bound. However, this heuristic is

not guaranteed to produce asymptotically normal estimates.

ious criteria, such as determining whether a treatment is helpful
or harmful relative to control. Ref. 9 generalizes this substantially,
addressing the problem of optimally allocating treatment to esti-
mate or testing a hypothesis about a finite-dimensional parameter
of the distribution of the data. In optimal-allocation problems,
the undersampling issue we address by adaptive weighting does
not arise, as undersampling treatments relevant to the estimand
or hypothesis of interest is suboptimal.

Ref. 36 considers the problem of policy evaluation when treat-
ment is sequentially randomized, but otherwise unrestricted.
The estimator they propose in their section 10.3, when spe-
cialized to the problem of estimating an arm value, reduces to
the AIPW estimator [6]. They establish asymptotic normality of
their estimator under assumptions, implying that a nonnegligible
proportion of participants is assigned the treatment of interest
throughout the study. Ref. 30 proposes a stabilized variant of
this estimator, which, similarly specialized, reduces to the adap-
tively weighted estimator with constant allocation rates [15]. The
applicability of this approach to bandit problems is mentioned in
ref. 37. Ref. 32 considers a similar refinement of an analogous
weighted-average estimator ([25]) for batched adaptive designs.

Drawing on the tradition of debiasing in high-dimensional
statistics, ref. 15 proposes a method that can be used to estimate
policy values in noncontextual and linear-contextual bandits.
Their approach, W-decorrelation, yields consistent and asymp-
totically normal estimates of linear-regression coefficients when
the covariates have strong serial correlation. For multiarmed
bandits, where the arm indicators are used as the covariates, their
estimates of arm values take the form

Q̂
WD
T (w) := Ȳw ,T +

T∑

t=1

at,w (Yt − Ȳw ,T ) where

at,w :=
1

1+λ

(
λ

1+λ

)NWt ,t−1

I{Wt =w},

where Nw ,t is the number of times arm w was selected up to
period t , Ȳw ,T is the sample average of its rewards at T , and
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Fig. 4. Estimates of the bad-arm value Q(1) and good-arm value Q(3) at T = 105. Error bars are 95% CIs around averages across 105 replications.

λ is a tuning parameter. We include a numerical evaluation of
W-decorrelation in SI Appendix, section A, finding it to produce
arm-value estimates with high variance.

Discussion

Adaptive experiments such as multiarmed bandits are often a
more efficient way of collecting data than traditional randomized
controlled trials. However, they bring about several new chal-
lenges for inference. Is it possible to use bandit-collected data
to estimate parameters that were not targeted by the experi-
ment? Will the resulting estimates have asymptotically normal
distributions, allowing for our usual frequentist CIs? This paper
provided sufficient conditions for these questions to be answered
in the affirmative and proposed an estimator that satisfies these
assumptions by construction. Our approach relies on construct-
ing averaging estimators, where the weights are carefully adapted
so that the resulting asymptotic distribution is normal with low
variance. In empirical applications, we have shown that our
method outperforms existing alternatives, in terms of both mean
squared error and coverage.

We believe this work represents an important step toward a
broader research agenda for policy learning and evaluation in
adaptive experiments. Natural questions left open include the
following.

What other estimators can be used for normal inference with
adaptively collected data? In this paper, we have focused on esti-
mators derived via the adaptively weighted AIPW construction
[6]. However, this is not the only way to obtain normal CIs For
example, in the setting of Theorem 2, one could also consider the
weighted-average estimator

Q̂
h-avg
T (w)=

T∑

t=1

ht(w)
I {Wt =w}

et(w)
Yt

/ T∑

t=1

ht(w)
I {Wt =w}

et(w)
.

[25]

Asymptotic normality of this estimator essentially follows
from Theorem 2 (SI Appendix, section C.4). In our numer-
ical experiments, we found its performance to be essentially
indistinguishable from that of the adaptively weighted esti-
mator defined as in [6]. We’ve focused on [6] because it
readily allows formal study in a more general setting; how-
ever, the simpler estimator [25] is appealing in the special
case of evaluating a single arm. For a more general dis-
cussion of the relationship between augmented estimators

like Q̂h and variants like Q̂h-avg in adaptive experiments,
see ref. 36.

What should an optimality theory look like? Our result in The-
orem 2 provides one recipe for building CIs using an adaptive
data-collection algorithm like Thompson sampling, for which
we know the treatment-assignment probabilities. Here, however,
we have no optimality guarantees on the width of these CIs. It
would be of interest to characterize, e.g., the minimum worst-
case expected width of normal CIs that can be built by using such
data.

How do our results generalize to more complex sampling
designs? In many application areas, there’s a need for meth-
ods for policy evaluation and inference that work with more
general designs, such as contextual bandits, and in settings with
nonstationarity or random stopping.

Data Availability. Algorithms and computer codes have been deposited in

GitHub (https://github.com/gsbDBI/adaptive-confidence-intervals/).
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