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ABSTRACT: When the SU(N) N = 4 super-Yang-Mills (SYM) theory with complexified
gauge coupling 7 is placed on a round four-sphere and deformed by an A/ = 2-preserving
mass parameter m, its free energy F(m, 7, 7T) can be computed exactly using supersymmet-
ric localization. In this work, we derive a new exact relation between the fourth derivative
ot F(m,, 7‘)|m:0 of the sphere free energy and the integrated stress-tensor multiplet four-
point function in the N' = 4 SYM theory. We then apply this exact relation, along with
various other constraints derived in previous work (coming from analytic bootstrap, the

mixed derivative 0,0;0% F(m, T, ?)‘ and type IIB superstring theory scattering ampli-

m=0’
tudes) to determine various perturbative terms in the large N and large 't Hooft coupling
) expansion of the N' = 4 SYM correlator at separated points. In particular, we determine
the leading large-A term in the N' = 4 SYM correlation function at order 1/N®. This is

three orders beyond the planar limit.
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1 Introduction

The four-point functions of stress-tensor multiplet operators in the SU(N) N = 4 super-

Yang-Mills (SYM) theory have received a significant amount of attention over the past

twenty or so years. For small Yang-Mills coupling gy, these correlators can be computed

perturbatively for any N using standard Feynman diagrams (see [1-4] for expressions up

to three loops). At large N and large "t Hooft coupling A = g2V, they can in principle be

computed using Witten diagrams in an expansion around classical type IIB supergravity on

AdS5 x S5 [5-7]. In this limit, 1/) corrections correspond to higher derivative terms in the

effective action that correct the two-derivative supergravity action, while 1/N corrections



correspond, roughly, to loop diagrams.! At leading order in 1/\ and 1/N, i.e. in tree-
level supergravity, the connected stress-tensor multiplet correlators are known from explicit
Witten diagram computations [8-15], but this approach becomes difficult to pursue at loop
level or for higher derivative corrections to supergravity, partly because loop computations
in AdS are complicated, and partly because even the interaction vertices corresponding to
the first higher-derivative correction to supergravity are not fully known (see however [16—
19] for partial results). Recently, this obstacle has been overcome using a combination of
techniques: analytic bootstrap [20, 21],% supersymmetric localization [39-42], the flat space
limit [43-49], and unitarity methods [50-61], which do not require detailed knowledge of
the bulk action.

In this work, we will derive a new relation between the integrated stress-tensor multi-
plet correlator and four mass derivatives

84F(m, T,7T)

Fu(r,7) = S

(1.1)

m=0

of the free energy F(m,,7) of the N’ = 2* theory placed on a round four-sphere. (The
N = 2* theory is a mass deformation of the N' = 4 SYM theory that preserves N' = 2
supersymmetry. It depends on the mass parameter m as well as the complexified gauge cou-

pling 7 = % + 942” and its conjugate 7.) The relation we derive is an extension of a similar
YM

relation between the stress-tensor multiplet correlator and the mixed fourth derivative

O*F(m,T,7)
ororom? |,

f2(77 77_) (12)

that was previously studied in [40]. Since F'(m, 7, T) can be computed using supersymmetric
localization [39], both the relation derived here and that of [40] impose non-perturbative
constraints on the stress-tensor multiplet correlator for any N and (7, 7). As an application,
we will use these constraints to derive new terms in the perturbative 1/N and 1/X expansion
of the stress tensor correlator, as we will describe shortly.

In more detail, the stress tensor multiplet of the A" = 4 SYM theory contains 42 real
scalar operators: 20 of them, which we collectively denote by S, have scaling dimension 2,
transform as the 20’ of the SU(4)zg R-symmetry, and in the Lagrangian description are
single trace scalar bilinears; another 20 operators, grouped in the complex combinations
P and P, have scaling dimension 3, transform in the 10 and 10, respectively, of SU(4)g,
and in the Lagrangian description are single trace fermion bilinears; and lastly 2 operators
have dimension 4 that will not be important in this paper. Four-point correlation functions
of all these operators, as well as of other operators belonging to the A/ = 4 stress tensor
multiplet, are related to one another by Ward identities, and can all be expressed in terms
of a single function 7 (U, V') of the conformally-invariant cross-ratios U and V' [62].

Coming back to the derivatives Fy(7,7) and Fa(7, ) of the S* free energy, these quanti-
ties can be related to 7T (U, V') because each derivative w.r.t. m corresponds to the insertion

!More precisely, at subleading orders in 1/N there are both contributions from loop diagrams and from
tree-level diagrams. Some of the tree-level contributions can be separated out from the loop contributions
because they have a different scaling in 1/A. We will provide examples in the next section.

2See [22—-38] for other applications of these methods to holographic correlators in various dimensions.



of a specific linear combination of S, P, and P integrated over the four-sphere, while a
derivative w.r.t. 7 (or 7) corresponds [63—65] to an insertion of a specific component of S at
the north (or south) pole of the sphere. Thus, Fa(7,T) can be written in terms of (SSSS)
and (SSPP), where two of the S operators in the first correlator as well as the P and P
operators in the second correlator are integrated. Writing these integrated correlators in
terms of integrals of 7T (U, V') was achieved in [40], following a similar calculation in the 3d
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [66] described in [32]. In this paper,
we will perform the same task for Fy(7,7), which can be written as a linear combination
of (§5SS), (SSPP), and (PPPP), where now all four operators are integrated over the
sphere. This calculation has two challenges. The first is to write (SSPP) and (PPPP) in
terms of T (U, V) using the Ward identities, which we do following the component method
also used in [40, 62].> The second challenge is to perform the integrals over the sphere,
where, unlike in the case of Fa(7,7), one now encounters additional divergences that need
to be regularized while preserving supersymmetry.

To use the relation between F4 and 7 (U,V) in the holographic regime, we should
derive an expansion of Fy(7,7) at large N and large \. Using ref. [39] as a starting point,
one can write down F4(7,7) as an expectation value of an operator in the free Gaussian
matrix model at m = 0. As in [41], this expectation value can then be computed to any
order in 1/N at finite A using topological recursion [68, 69], and also at finite N and A (if
we ignore non-perturbative instantons in the Nekrasov partition function) using orthogonal
polynomials [70].

The expansion of F4 in 1/N and 1/, combined with various other constraints studied
in previous work, can be used to fully determine the function 7 (U, V') to higher orders
in the double expansion in 1/N and 1/\ than was previously possible. In particular, we
determine that the Mellin transform® [47, 71] of the function 7 (U, V), which we denote by
M(s,t), takes the form

1 8 120¢(3) | 630¢(5) 12, 2, o
M) =2 | yi—gm=g T 5t [s2+ 82 +u? - 3]
4 2 1
5040¢(3)” [stu B B 4} 4 O(A—?’)}
A3 4
1[5V saisa | 16 3
r 3
LITA2 19 o o
+ 5 B [s2+ 12 +u —3}+O()\)]
PN L oo o 2 2 -5
+Cj_221184 [stu—4(s +t +u)—4}+0()\2) +0(c?),

where u = 4 — s — t, and where ¢ = (N? — 1)/4 is the ¢ anomaly coefficient, which is
the natural expansion for holographic correlators since it is simply related to the effec-

3The (SSPP) Ward identity was already derived in [40]. The solution to the Ward identities relating
(SSPP) and (PPPP) to {SSSS) can in principle also be read off from [67], where a super-space expression
of the stress tensor multiplet correlators in terms of the function 7 (U, V) was given.

4The precise definition of the Mellin transform is given in eq. (2.3) below.



tive 5d Newton’s constant. In string theory language, the terms at order 1/c9™! corre-
spond to genus < g string worldsheets, so the expansion (1.3) contains contributions up to
genus three.

The expression (1.3) was determined as follows:

e Crossing symmetry and the analytic structure of Witten diagrams in Mellin space [46,
47, 71, 72] determine the s,t dependence of each term in the 1/c and 1/ expansion
in eq. (1.3) up to undetermined coefficients. In particular, the polynomial terms in s,
t, u correspond to contact Witten diagrams, where for a polynomial of degree n, the
interaction vertex is schematically of the form D?"R*; the first term at order 1/c cor-
responds to the tree-level supergravity amplitude; and the MSGISG term corresponds
to the one-loop supergravity amplitude, which is a non-analytic in s, ¢, u, and was
determined in [51, 52, 56] using unitarity, up to an additive constant.

e The coefficient of the supergravity term is fixed by the requirement that, when ex-
panding the full correlator in conformal blocks, there are no operators of dimension
precisely two [21].

e At each order in the 1/c and 1/ expansion, one can determine the coefficient of the
leading term at large s, ¢, u from knowledge of the flat space scattering amplitude in
type IIB superstring theory. This was originally done in [49] to fully determine the
term of order ¢=*A\7%/2 (i.e. the genus zero R* term).

e At each order in 1/c¢ and 1/, one can determine two coefficients, namely one from
Fy and one from F», when these quantities are also expanded in 1/c¢ and 1/A. In
particular, in [40] the Fy constraint was used to fully determine the term of order
¢ IA\73/2 (genus zero R*), and to also determine the remaining coefficient in the
¢ TA7%2 term (genus zero D*R*) that remained undetermined after using the flat
space limit. In [41], the quantity F» was computed to any order in 1/N and 1/, and
used to also fix the ¢ 22, ¢=3X\3/2 and ¢ 29 terms. The rest of the coefficients

in (1.3) are determined in this paper.

Note that the coefficients corresponding to R* and D*R* can be fully fixed using only
the two supersymmetric localization constraints, and they do agree, in the flat space limit,
with the scattering amplitude in type IIB superstring theory. They appear at genus zero
and genus one in the case of R, and at genus zero and genus two for D*R*. The match
between supersymmetric localization and type IIB scattering amplitudes represents a non-
trivial precision test of AdS/CFT at these orders.” The terms of order 1/c* in (1.3) were
obtained by combining the supersymmetric localization and flat space limit constraints, and
they represent, to our knowledge, the first known contributions to a holographic correlator
at genus three.

®The R* and D*R* coefficients were also fixed in [32] for the ABJM holographic correlator, which is
dual to M-theory on AdS, x S7, using similar localization constraints. In that case, however, while the R*
coefficient is non-zero, the D*R* coefficient vanishes.



The rest of this paper is organized as follows. In section 2, we discuss the stress
tensor multiplet four-point function in the strong coupling limit, and fix the higher order
in 1/N and 1/ terms using the flat space limit, the old F3 constraint, and the new Fj
constraint. In section 3, we derive this new integrated constraint. In the appendices we
include many details of the calculation, including the localization calculation of F4 from
topological recursion or orthogonal polynomials. We end with a discussion of our results
and future directions in section 4. Several complicated explicit results are given in the
supplementary material.

2 N = 4 stress-tensor four-point function

The main object of study in this work is the stress tensor multiplet four-point function. We
begin by discussing general constraints on these correlators coming from invariance under
the NV = 4 superconformal algebra. We then discuss the large N strong coupling expansion
in Mellin space for the N'= 4 SYM theory. Finally, we discuss how to constrain the terms
in this expansion from the known Type IIB S-matrix in the flat space limit, as well as using
the Fy(7,7) and Fao(7,7) introduced in egs. (1.1) and (1.2) in the Introduction.

2.1 Setup

As mentioned in the Introduction, we denote the bottom component of the stress tensor
multiplet by S. This operator is a dimension 2 scalar in the 20’ of the SU(4)r = SO(6)r,
and can thus be represented as a rank-two traceless symmetric tensor Sy;(Z), with indices
I,J = 1,...,6. However, in order to avoid a proliferation of indices, it is customary
to contract them with null polarization vectors Y, with Y - Y = 0. Superconformal
symmetry [62] implies that the four-point function of S(#,Y) = Sr;(Z)Y 'Y takes the form

1 g — — — —
(S(#1,Y1)---S(Z4,Ya)) = oy =S - B, S = Spee + ST, (2.1)
L12T34
where Z;; = ¥; — 7, and where
Suw= (107 12 22 10 10).
E(VUVUU(U—V—l)l—U—VV(V—U—l)), (2.2)

S
B <Y122YE;24 Y3YE YAYE Yi3Y14Yo3Yay Yi9Y14Yo3Y3y Y12Y131/§45/34> .

Here, as before, ¢ is the conformal anomaly coefficient, which for an SU(N) gauge group

22 22 72 22

equals ¢ = (N? — 1)/4; the quantities U = ;%29534 and V = 254:;%3 are the usual conformal
13724 13724

invariant cross-ratios; and Yj; = Y; - Y, are SO(6)r invariants. Importantly, the only

non-trivial information in the correlator (2.1) is encoded in the single function 7 (U, V).

2.2 Strong coupling expansion

We now restrict our discussion to the case of the SU(N) N =4 SYM theory, and discuss
the strong coupling 't Hooft limit, where we take N — oo (or ¢ — c0) with A = g3 (N



fixed. If we further take A — oo, the holographic correlator can be computed from Witten
diagrams in an expansion around AdSs x S° supergravity. In the strong coupling limit, it
is convenient to work with the Mellin transform M of T via®

100 g d
TW,V) = /_ e

UsvEIr [2—;rr[z—;rr[%ng(s,w, (2.3)

where u =4 — s —t.

Crossing symmetry M(s,t) = M(t,s) = M(s,u) and the analytic properties of the
Mellin amplitude (for a detailed description, see [41]) then restrict M(s,t) to have a 1/¢
and 1/\ expansion of the form

M :% [SM5C £ A2 BIM® + 273 | BIM? + BIM'|
+A73 [BIM® + BIM? + BIM| + O(A %))

—SGISG

1 —5 1
+ 5 [NBIMO + [MIOBE L BEPEMO] o] + [Ai 3MZ+ 0

+ Ci4 [/\3 @M?’ + BIM? + BS’MO] + 0(A3)} O, (2.4)

which can be transformed to position space using (2.3) to get

T :% [STSG FA2BITO+ A3 [B%Tz + Bgﬂ}
+ A7 [BIT® + B3T? + BiT®| + O(\3)]

+ C% (NTBYTO + [T59¢ 4+ BREPOT0] o )] + i {Aggﬂ + O(Al)} 29

o |V BT BT 4 BYTY) + 00| + o).
Here, the B’s are numerical coefficients that cannot be fixed from symmetry alone. As
mentioned in the Introduction, terms at order 1/c9*! correspond in the flat space limit
to genus-g corrections to the Type IIB S-matrix. On AdSs x S°, these terms receive

contributions from I-loop Witten diagrams with [ < g. The leading order term is tree-level
supergravity, whose expression in Mellin and position space is [49, 74]

1

SG _
M C(s=2)(t—2)(u—2)’

1 .-
T5¢ = —§U2D2,4,2,2(U> V), (2.6)

where the position space expression is written in terms of the functions Dy, ,y s 15 (U, V) de-
fined in [8]. The coefficient of M5 is fixed by requiring that the unprotected R-symmetry
singlet of dimension two that appears in the conformal block decomposition of the free
part Skee is not present in the full correlator [21]. In our conventions [40], this amounts to
setting the coefficient of M5% to 8/c. To the order considered in (2.5), the only loop term

is 75GISG | which arises from a loop Witten diagram with two supergravity vertices and

5The Mellin transform can also be defined away from the strong coupling limit. For recent work on this
topic, see [73].



so scales like 1/c%. This term was determined in [52, 56, 58] using unitarity methods up
to a contact term ambiguity, which was further fixed in [41]. Our convention for MSGISG
follows [41], which is the Mellin transform of 75GISG in [52], although we will not make use
of the explicit forms of these quantities.

The remaining terms in (2.5) arise from contact Witten diagrams whose vertices are
higher derivative corrections to tree-level supergravity. In particular, the functions M"
and 7" correspond to vertices of the form D?"R* and their expressions in Mellin and
position space are [28]

M0 =1, T°=U?Dysa4,
M? =2+ 2 442, T2 = 4U? ((1 +U+V)Dss555 — 41—74,4,4,4) , (2.7)
M3 = stu, 7-3 = —8U2 <D5’5’5’7 + (1 +U + V)D5’5’5’5 — 8[)4’4’4’4) .

We will now fix the various B’s in (2.5) using type IIB string theory and/or the localization
constraints.

2.3 Constraints from flat space type 1IB string theory

Following the general approach of [47], one can relate the holographic correlator (SSSS)
on AdSs x S5 as written in terms of the Mellin amplitude M(s,t) in (2.3) to the type IIB
S-matrix. The scattering amplitude of four gravitons (or superpartners) in type IIB string
theory takes the form

A= Asaf(s,t), (2.8)

where Agq is the tree-level supergravity amplitude, and s, t,u = —s—t are the Mandelstam
invariants. The full amplitude as well as the tree-level supergravity amplitude in (2.8)
depend on the momenta and polarizations of the scattered particles, which is information
that we suppress in writing down (2.8). The function f(s,t) has been computed in a small
g2 expansion to genus-two for finite 5 [75, 76], and to genus-three [77] to the lowest few
orders in £;. We will consider the following terms in the small g, and ¢4 expansion:

—~

Flst) = [(1+ €
+9: (fgf R
+g1 (£ /%
+92 (€23

5,8) + 0 s (5,8) + 02 fRo g + O(631))

5,8) + 65 faisa(5:8) + 0 Phaga(5,1) + 032 fo g + O(4Y))
5,8) + 000 fhapa + 082 fhoa + O(3Y))

5,8) + 00 g + 02 fbop + O(01) + O(ed)] -

(2.9)

o~ o~ o~

Higher orders in ¢; can come from contact terms of higher derivative correction to super-
gravity, which are analytic in s,%,u and have an expansion in g, as well as loops, which
are non-analytic in s,t,u. The first few higher derivative terms are R*, D*R*, and DSR*.
These are the only protected terms. They receive corrections at genus-zero for R?*, genus



two for D*R*, and up to genus three for D®R*. These take the form

foi = C?()g)stu, frips = C2(150)stu(82 + 2 4+ u?), fept = Cé?f (stu)?,
fre = 79T;stu, fhigs =0, fhops = 7;2.(2(5)1) (stu)?,
fai=0, fhips = 297'ri353tu(s2 + 2 +u?), fhogs = ;;(stuf,
fha=0, fhigi =0, fhops = 85()75#? 510 (stu)?

(2.10)

The only loop term shown in (2.9) is the one-loop term with two supergravity vertices,
which can be computed from the genus-zero supergravity term using unitarity cuts [78].

The Mellin amplitude M(s,t) is then related to the function f(s,t) according to the
flat space limit formula [30, 32, 40, 46, 47):

stu K+i00 doy L2 12
)= — L14/ O paq =M | s, 2t ), 2.11
1(s,1) 204872208 Lj6usoo " Jr—ivo 2mi 20" 2a (2.11)

where the momenta of the flat space S-matrix are restricted to lie within five of the ten
dimensions. (When taking this limit, one uses the AdS/CFT dictionary”

L 2 ey
S

to first write the correlation function in terms of gs, ¢, and L, and then one takes L/l to
infinity as in (2.11).) We can then use the known terms in (2.10) for the type IIB S-matrix
to fix the leading s,¢ terms B in the AdSs x S° correlator:

Constraints from flat space limit:

R*:  BY=120¢(3), BY= g,
D'R': B2 B 219
: 2 =630¢(5), 3= 273
= 1
DSR':  B§=5040¢(3)*, Bj=

where the constraints on the R* and D*R* coefficients were already derived in this way
in [49]. Note that the R* term is thus entirely fixed from the flat space limit alone.

2.4 Constraints from supersymmetric localization

As mentioned in the Introduction, we can also constrain (SSSS) just from the mass-
deformed sphere free energy F(m,7,7), which ref. [39] expressed as an N-dimensional
matrix model integral using supersymmetric localization. We have two such constraints,

"In the strong coupling limit we consider in this paper, the 6 angle does not appear.



one coming from Fo (7, 7) = 0,0-02,F|n—o and one from Fy(r,7) = 0% F(m, 7, 7) |,—o- The

first one was shown in [40] to take the form®

Fo(1,7) 32 / —1—2r2logr T(1 +r%—2rcosf,r?)
= dr df 3 9 2.14
0.0-F rdfr”sin (r2 —1)2 (1+ 172 —2rcosf)? (2.14)
As we will show in the next section, we can simplify this expression using crossing symmetry,
obtaining
Fo(r,7) / 73 sin? 0
= 8cl. ) I =—— [ drdf TU,V
BTafF ¢ 2[7—] 2[ U? ( ) U=1+41r2 —2rcosc9 (215)

V=r2
The second constraint, whose detailed derivation we postpone until section 3, takes the form

Fi = —48C¢(3)c — AL4[T],

2.16
[ﬂ——/drd@r sz UV o) (2.16)

U?

U= 1+7"2—2r cos¢9
V=r2

The right-hand sides of egs. (2.15)—(2.16) involve the integrals I3[G(U,V)| and
Li[G(U, V)], respectively, which, when evaluated on the functions of position defined
n (2.6)—(2.7) are

BITS) = o BT =-. BIT=-o, BT =-5,
LT =3-6C3), LIT=7. LITPl="2, LT=27. @)

The I5[T5C], Io[TP], and I1[T?] integrals were first computed numerically in [40] using
the position space expressions (2.7). In appendix B, we confirm these results analytically
using the simplified version (2.15) of the constraint (2.14), and we also compute analyti-
cally the new integral I[7?]. The integrals for I4[G] quoted in (2.17) were all computed
numerically to high precision. It would be interesting to develop an analytical method for
computing them.

The Lh.s. of (2.15) was computed to leading order in the 't Hooft limit in [79], and used
along with the flat space limit in [40] to fix the coefficients of both R* and D*R* at genus
zero. In [41], this computation was extended to O(N~%) and finite A using topological
recursion. As reviewed in appendix A, the finite A result takes the form of a single Fourier
integral, which can then be expanded analytically to any order in 1/ following appendix D
of [40]. This can be used to fix the remaining non-zero genus terms in R* and D*R?, as
well as the one-loop ambiguity term MO, giving

Constraints from Fs:

— 5
R*:  BJ=120((3), g:§,
—sesc _ 15 (2.18)
SGISG: B, T
D*R':  16B} +7B% = —3150((5),  16B3+4 7B} = ~3075 "
8Note that for the SU(N) N = 4 SYM theory, we have 9,0:F = —32?21,2 = _32772634:-1)'



In appendix A, we similarly use topological recursion to compute the Lh.s. of (2.16)
to O(N~°) for finite A\.° The result now involves two Fourier integrals, which cannot be
analytically expanded in 1/ as in appendix D of [40] unless the Fourier integrals factorize.
Instead, we had to resort to a numerical large A expansion, which we show in (A.33).
Without using the flat space limit, the two integrated constraints can then be used to
fix more coefficients beyond those in (2.18), namely we completely determine the D*R*
coefficients and determine relations between the DSR?* ones:

Constraints from Fy and Fo:

= = 7
D*R*:  Bj=-3B3=-1890((5),  B}=-3DB}= ~ 1031’
DSR*:  630¢(3)% = 3—20 + B3, B =-1260¢(3)?,
T ST S——
1769472 32 37 2 884736

In addition, we can check that the constraint coming from F; by itself is sufficient to
determine the R* coefficients constrained using F» in (2.18). We cannot perform a similar
check for §§G|SG because we have not expanded F4 to this order. Note that the localization
constraints completely fix the D*R* terms, which matches what we found from type IIB
string theory in (2.13). This is a nontrivial check of AdS/CFT at this order.

2.5 (SSSS) to order 1/N8

By combining the string theory and localization constraints we can fix all the terms in (2.4)

to get
1 8 120¢(3) | 630C(5) 2 .2 2
G- t-2w—2 " N & w3
4 2 1
5040¢(3)° [stu — (st u?) — 4} + O()\_?))]
A3 4
1[5V sGlsG 19 -3
o |2+ MEESE L 2 o) (2.20)
r 3
1| 7\2 9 9 9
+ 3 |5om [s2+ 2 +u? - 3] +O()\)]
o ,
LN {stu ey 4} + 00| +0()
ct 221184 4 ’

which is one of our main results, and which we also quoted in the Introduction. In partic-
ular, we have fixed the genus-zero and genus-three terms in D®R*, where the latter scales
as A3/N® and is the first result in N’ = 4 SYM at three orders beyond the planar limit!

9We also use the method of orthogonal polynomials in appendix A to compute the non-instanton terms
in F4(r,7) for finite N and A, following a similar calculation in [41] for Fa(7, 7). While this result is not
directly applicable to the strong coupling expansion considered here, it can be used to check the topological
recursion expression for large N.

~10 -



Note that we cannot yet fix the genus-one and genus-two terms in DSR*, since we have
been unable to accurately expand the localization constraint at large A to the required
orders yet.

Now that (SSSS) has been fixed to the order shown in (2.20), we can use it to extract
any CFT data to this order that we like. For instance, we find the anomalous dimensions
7; of the unique lowest twist even spin j double trace operators [Sd,, ...d,,S] to be

1 24 4320¢(3) ¢(5) [ 201600 }
=" - 8j0 — 306005, + ———35;
Ve [ G+DG+6) 7 a3 CRE TR
¢(3)2 3628800 1
¥ o1 et ol 2>]
1| 4V 24 (751 + 7457 — 55357 — 49047 — 3444) 135 (2:21)
2 VA (G =DE+ 1P +6)3 +8) 7 0
1 3 [ 85 35 1 [ 5)3 .
T3 {—/\2 [76853',0 + 528%‘,2} + O(A)] + 3 [168966]-,2 + O(A)] +0(c7?),

where the three O(c™!) terms were computed in [80, 81], [49], and [40], respectively, while
the one-loop supergravity term was computed in [41, 52]. Contact terms with n-derivatives
only contribute to operators up to spin n/2 —4, as explained in [20]. For higher twist there
are many degenerate double trace operators, so one would need to compute many different
half-BPS correlators to determine their anomalous dimensions [51, 52].

3 Constraints from the sphere partition function

In this section, let us complete our discussion by relating 7 (U, V') defined in (2.1) to the
derivatives of the S* partition function of the mass-deformed N' = 4 SYM theory that were
introduced in Eqgs (1.1)—(1.2). Both quantities involve special types of supersymmetric op-
erators on S* that were considered in [40]. The first type are specific components of Sr;
that are Coulomb branch operators from an N = 2 point of view, and that are placed at the
poles of $4. Adding them to the action is equivalent to changing the gauge coupling [63-65].
The second type of supersymmetric operators considered in [40] are integrated operators
that couple to an N/ = 2-preserving real-mass deformation. As mentioned in the Introduc-
tion, ref. [40] considered only the quantity Fo(r,7) = 0,0:0% F |,,—o (defined in eq. (1.2))
that equals the four-point function of two operators of the first type mentioned above and
two operators of the second type. This quantity gave the constraint on 7 given in (2.14).
In this section we consider the constraint coming from the quantity Fy(7,7) = 0p F ’m:O
(defined in eq. (1.1)). This quantity corresponds to four integrated insertions, and, for
reasons that will become clear, this integrated correlator is more difficult to analyze than
the correlator that led to (2.14).

3.1 Correlators in N =4 SYM

Each integrated insertion is a linear combination of specific components of S;; and specific
components of the A = 3 operators Pap and their conjugates PAP transforming in the
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10 and 10 of SU(4)g, respectively. Here, the indices A, B =1,...,4 are placed in a lower
(upper) position when they correspond to the 4 (4) of SU(4)g. Since the 10 and 10 are

rank-two symmetric products of 4 and 4, respectively, the operators P4p and PAP are
symmetric tensors. For concreteness, we normalize S and P such that
- q Y- Y2)? e Xq - Xo)2
(S(#1,Y1)S(Z2,Y2)) = (’1_,;), (P(21, X1)P(Z2, X)) = (’1_,’62)7 (3.1)
12 12

where we wrote P(Z, X) = Pyp(Z)X4XP and P(%, X) = PAB (%) X, Xp using polarization
vectors X and X, respectively. The dot product in (3.1) and in subsequent equations
stands for contraction using the Kronecker delta symbol. Before discussing in detail which
components of S, P, and P participate in the mass deformation, let us point out that the
four-point function (PPPP) is restricted by conformal symmetry and R-symmetry to take
the form

(P(#h, X1) P(Fa, Xo) P(&s, Xa) P(#4, X1)) = —

= ﬁﬁ(& V) gP, 3.2
|I‘12|6 |$34|6 ( )

where a basis for the three distinct SU(4) g invariants can be taken to be

ng ((Xl . XQ)Q(X?, . X4)2 (Xl . X4)2(X3 : X2)2 (Xl . XQ)(X?, : X4)(X1 : X4)(X3 : Xz)) .
(3.3)

Thus, the (PPPP) correlator involves three functions P;(U, V), with i = 1,2,3. We will
also need the mixed correlator (SSPP), which also involves three functions that we denote
by R;(U, V), with i =1,2,3:

(S(&1,Y1)S (&2, Y2) P(i3, X3) P(f1, Xa)) =

= ﬁﬁ(a V) - gSP, 3.4
|CC12|4 ’51734’6 ( )

where, in this case, the basis of SU(4)g invariants can be taken to be
Bsp = ((Yl Y2)? (X3 - Xu)? (Y1 - Y2){ Xy, X3,Y1, Yo} {X47X3,Y1,Y2}2) : (3.5)

Here {X, X,Y1,Y>} is an SU(4)g invariant that can be formed in the product 10 ® 10 ®
20’ ® 20’ defined in eq. (A.8) of [40].

The coefficients P;(U, V) and R;(U, V') are related by the supersymmetric Ward iden-
tity to the function 7 (U,V') appearing in the (SSSS) correlator. These relations are
tedious to derive and quite complicated, so they are relegated to appendix C. Separating
out the contribution from the free theory as in eq. (2.1), these relations take the form

ﬁ(U, V) = 73‘free(Uva V) + f)(U7 V, 8U7 8V)T(U7 V) )

- - o (3.6
R(U,V) = Riee (U, V) + R(U, V, 0y, 0v)T (U, V), )

where the free theory contributions are
Pree(U, V) = (1 &5 YOZUZVY 0 Ryeo(U, V) = (100) (3.7)

and the differential operators R and P are given in (C.1) and (C.5)—(C.7), respectively.
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3.2 N = 2-preserving mass deformation

Let us now discuss the mass deformation on S* in more detail. It is customary to describe
the ' = 4 SYM theory as an A/ = 1 gauge theory with three adjoint chiral multiplets with
scalar and fermionic components that we will denote by Z; and y;, respectively, where
i = 1,2,3, and with canonical kinetic terms. In the decomposition of the N' = 4 vector
multiplet into an N/ = 2 vector multiplet and hypermultiplet, we can consider the Z; and
xi with ¢ = 1,2 as forming the hypermultiplet, and Z3 and Y3 as part of the N' = 2
vector multiplet. The mass deformation we consider corresponds to giving a mass to the
hypermultiplet fields. On S*, this mass deformation takes the form

S = /d4f\/§ [m (iJ + K) + mZL] , (3.8)

where we assumed that the radius of S? is set to one, and where the operators J, K, and
L are given by

2 ) 12
> Tr (Z§+Zi2) ;Ko=) Tr(xoex + Xio2Xi)
i=1

J =
23 (3.9)

DN |

L="Tr||Z:* + 2] -

While the operators K and L multiplying m and m?, respectively, are familiar from a flat-
space mass deformation, the operator J (with its coefficient being inversely proportional
to the radius of S4) is present here in order to preserve N’ = 2 supersymmetry on S*.
The operators appearing in (3.9) can be written in terms of specific components of
operators with well-defined transformation properties under the SU(4)r symmetry. In
particular, J can be written in terms of S;; and K can be written in terms of Pup

and PAB.

J = Nj[S11+ Sog — Syq — S55] ,

_ _ 3.10
K = Nk {P11+P22+P11+P22} , (3.10

up to some normalization constants that we denoted by Ny and Ng. (We will not need a
similar expression for L in what follows.) One can determine the normalization constants
in (3.10) by computing the two-point functions of J and K using the explicit descrip-
tion (3.9) and the fact that supersymmetry implies that these two-point functions are
protected. One finds [40]

N7 =8N? = — (3.11)
where, as before, the anomaly coefficient equals ¢ = (N? — 1)/4.

3.3 Four mass derivatives

The four-point function contribution to the fourth mass derivative of the free energy is

4
—Fy = <</ d*z /g (iJ + K)) > + (2- and 3-pt function contributions), (3.12)
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where the 2- and 3-point function contributions we did not write down explicitly involve
the operator L.!° Using (3.10) as well as the general form of the four-point functions
n (3.2), (3.4), and (2.1), we find

—Fy =NJI35 (16 (S1 + So + S3) + 4(Sa + S5+ Sg)] — NINjI3 5 [96R1 + 288Rs]

3.13
+ Nf‘([?‘iS [24(P1 + P2) + 12P5] + (2- and 3-pt function contributions), (3.13)

where IiA’ A,G] denotes the integrated correlator on S? of four operators of dimensions
(Aa, A4, Ap,Ap), which was studied in detail in [32]. To write it down explicitly, first
note that on R%, such a correlation function takes the form G(U,V)/(|Z12|*24 |Zs4|*2 7).
On a round S¢ of unit radius parameterized in stereographic coordinates such that the line
element is ds? = Q(&)%d?, the analogous correlator is

[QF1)QF)] 5 [F) ()]~ 22 1

GU,V), Q@) =—. 3.14
R Ea OV @)= B

| 712

The integrated correlator on S? is then

4 S V()2 (50 ()28
IR,0,19] = / (H ddfi) [Q(ajl)ﬂ(w{)] 2A4 [2(4‘;12( )] Ggu,v). (3.15)
i=1 z

| 712

The quantity (3.15) was evaluated in [32], where, for d = 4, it was found that

I4 [g] B 21772AA72AB,/T7F(6 _ AA _ AB)
AT 3T (4 — A )T (4 — Ap)?

/drd@r sin 0{D4 Aad—AyA-Apa—nrg (U V)

G, v)
UAa U=1+r%2—2rcosf '
V=r?
(3.16)

Here, the Dy, ;, r,r, function is related to a contact Witten diagram in AdSy of four scalar
fields dual to operators of dimensions r1, 71, 2, r2o. While one can write explicit position-
space expressions for the D functions we need, for our purposes, however, the most useful
definition the D function is through the Mellin transform:

DT1,T1,T2,T2 U V)

_ [ dsdt UVAT (_s—|—2(r1 —r2)> r (_S) . <—t>2r <s+t+2r1) ‘ (3.17)
47rz 2 2 2 2
Note that directly plugging (3.16) into (3.13) is problematic, because IiA7AB [G] contains a
factor of I'(6 — A4 — Ap), which diverges for the I§{3 terms from the second line of (3.13).
We will thus have to find a way to regularize this divergence.

The expression (3.13) can be split into two parts: one that is independent of T (U, V)
corresponding to the free theory, and one that is linear in 7 (U, V') and its derivatives:

—F4= _(8;4;F>free’m:0 - (8;4;1F)T’m:0 : (318)

They are 12 ( ([ d'% /(i + K))* ([ d'# L) ) +12{(J d'7 ygL)").
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1:he ﬁfst term, — (9 F )free’m:() can be calculated by plugging S = S_';ree, R = ﬁfree,
P = Phee defined in (2.2) and (3.7) into (3.13). When performing this calculation, there
are various divergences that arise and one has to be careful to regularize them properly. We
will not do that here, and instead calculate — (9% F )free|mzo using a different method that
avoids some of these complications. This alternative method relies on the observation that

— (O F)tree|, o = —4c O, Fpr(m)| (3.19)

m=0"

where Fy(m) is the S* free energy of a hypermultiplet of mass m. The relation (3.19)
holds true because in the zero coupling limit, the SU(N) SYM theory of central charge
c¢=(N?—1)/4 has N?> — 1 = 4c¢ such hypermultiplets of mass m.

The massive hypermultiplet free energy Fz(m) can be determined as follows. We start
by writing down the theory of a single hypermultiplet with scalar and fermionic components
(Zi, xi), as in (3.8). The action is

Stee =3 [ o V10,2 + 5 [(20° + (20] + 2+ m?) |

2

(3.20)

— X 026" Dyxi — = (Xio2Xi + Xio2Xs)

The path integral Zy(m) = [ DXe %re[X] where X denotes collectively the hypermulti-
plet fields, is a Gaussian integral that can be evaluated as a ratio of a fermionic determinant

to a bosonic one. Up to an overall m-independent normalization, this ratio is'!
00 2 271 (n+1)(n+2)(n+3)/3
Zi(m) = [z [(n +2)" + m’] e (3.21)
[0 [((n+ 1)2 4 m2) (0 4 2)2 + ma)| D2
This expression can be simplified and then regularized:
Zi(m) = ! - H(m) = e~ (1 4 im)G(1 — im)
nq(n?4+m?)z  H(m)’ ’
(3.22)

where G is the Barnes G-function and + is the Euler-Mascheroni constant. The normaliza-
tion of Zp(m) in (3.22) was chosen such that Zy(0) = 1. The function H(m) appeared in
the supersymmetric localization computation of [39], and indeed, the result (3.22) can be
also read off from [39]. The equation (3.22) is imprecise, however, partly because the regu-
larization of (3.22) possesses ambiguities, and partly because we dropped an unambiguous
overall coefficient that depends on the radius of the sphere, as required by the conformal
anomaly. The ambiguity in the free energy Fy = —log Zp consists of additive terms of
the form A + Bm? where both A and B are sums of holomorphic and anti-holomorphic
functions of the complexified coupling 7.'2 Such ambiguities, as well as the unambiguous

" The eigenvalues of the bosonic operator are (n + 1+ im)(n + 2 — im) and (n + 1 — im)(n + 2 4 im),
with n =0,1,2,..., each with degeneracy D,, = %(n+ 1)(n+ 2)(2n + 3). The eigenvalues of the fermionic
operator are n + 2 4 4m n + 2 — im, each with degeneracy D,, = :(n+1)(n+2)(n+3).

12 A sign that such an ambiguity is present is the appearance of the Euler-Mascheroni constant + in (3.22),
which suggests that this expression was derived in a particular regularization scheme.
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overall coefficient, drop out from the fourth mass derivative of Fly that we consider here.
Note that although the overall factor e~ (Hm? i (3.22) can be removed by a change of
regularization scheme, we will nevertheless keep it for later convenience. Using (3.19) and
the expression for Zg(m) = e~ ¥#(™) in (3.22), we find

— (O F)gree|,,_y = 48¢((3) . (3.23)

What remains to be done is to evaluate the T-dependent contribution — (9 F)r
in (3.18). From (3.12), it can be written as

? 12¢?
_@ngmﬂ:jagggﬂy+U+vyﬂ4~?;§ﬂmpy+ﬂ5+Pgﬂ
12¢2
— Tg[g,g [(R1 4+ 3R3)T] + (2- and 3-pt function contributions),
(3.24)

where the 2-point and 3-point function contributions here are the subset of the ones
from (3.12) that were not accounted for in 4c copies of the free theory. We will not
write them in detail because, as we will discuss, we believe that the boundary terms from
the integration by parts we will be performing shortly precisely cancels them. Such a
phenomenon was observed also in [32] in 3d.

Let us study the first three terms in (3.24) separately, and let us aim to write them in
the “canonical form”

1+ U +V)T(U,V)

FlQ| = /drd9r3sin20

2
ds dt s t S t u (325)
U2var? (-2 F2<—>F2(—) t
% / (47['1)2 Ve ( 2) 2 2 Q(S7 7U) U:l—l—?"Q—grcosé‘7
where u = —2 — s — t, where each term will have a different function Q(s,t,u). The

expression (3.25) is designed such that when @ = 1, the second line equals Di 111(U, V),
as can be seen from (3.17).

For the first term in (3.24), we combine (3.16) with (3.17) and shift the integration
variables as appropriate to obtain

4 2 12877 2 2 2
Iy [(1 +U+V) T] = FlQssss] ; Qssss = T(S +t2 +u?). (3.26)

For the second term, we plug (C.2) into (3.16), and then we integrate by parts to put all
the derivatives on the D2,271,1 function. We obtain
32 .

—75{3 [(R1+3R3)T] = 37 /dr df r®sin® 0

VIA+U+V)
U2
x [U20} + 400y + U(U +V = 1)dudy + UV}

+ (3U +V - 1)8\/ + 2} D272’1,1(U, V)

U=1+r%2—2rcosf ’

V=r2
(3.27)
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Then, using the expression (3.17) for the D2727171 function in Mellin space, we can
write (3.27) in the canonical form (3.25):
87

Iy 3[(R1 + 3R3)T] = FlQsspr), Qsspp = —TtU- (3.28)

For the third term in (3.24), we should follow a similar procedure. Since the prefactor
in (3.16) diverges when Ay = Ap = 3, we should evaluate this quantity in a way that
avoids this divergence. This can be done by first considering Ay = 3 and A = 3 — ¢,
both in the prefactor and in the expression for the D function in (3.16).'3 We then use
the Ward identity (C.8) (which, as will be justified shortly, should also hold for non-zero
€), integrate by parts, and then take e — 0. This procedure gives

2m7

I?Af,?, [(2P1 + 2P + P3)T] = F[Qpprrp], Qrppp = TU(U —2). (3.29)

The fact that we can use the same Ward identity (C.8) when € # 0 can be justified
as follows. Instead of considering the four-point functions of operators from the stress
tensor multiplet, we can consider four-point functions where the first two operators are
from the stress-tensor multiplet and the last two are from other half-BPS multiplets whose
superconformal primaries S, transform in the [0p0] irrep of SU(4)r and have dimension
A, = p. (The stress tensor multiplet corresponds to p = 2.) This multiplet contains
generalizations P, and P, of the P and P operators, respectively, which transform in the
[2(p—2)0] and [0(p—2)2] of SU(4) g, respectively, and have scaling dimensions A, +1. The
form of any of the mixed correlation functions with two operators from the p = 2 multiplet
and two operators from a p # 2 multiplet is precisely the same as when p = 2, except that
there is an additional factor of (Y3 -Y;)P~2. Moreover, the Ward identity relations relating
(PPP,P,) to (5S55,S,) is independent of p. Analytically continuing (PPP,P,) in p to
p=2—¢cleads to Ap = 3 — € as above.
Combining the above results, we have

2
—(331F)T|m:0 = 15?}— [Qssss +192(Qppprp — Qsspp)] - (3.30)

3.4 Simplification using crossing symmetry and final formula

One can simplify the formula (3.30) using crossing symmetry. Crossing symmetry relies
on the observation that under a simultaneous relabeling of the pairs (Z;,Y;) in (2.1), the
four-point function should remain unchanged. There are 24 orderings of these four pairs,
but some of them leave (2.1) manifestly invariant. There are six that do not, and the
impose the following crossing constraints on the function 7

T(U 1>:T<V 1>:V27’(U,V), 7’(1 V):T(U,V),

11/ Z U'u o U'u (3.31)

13We are grateful to Thomas Dumitrescu for extensive discussions about this issue.

17 -



Thus, we write (3.25) in five other equivalent ways by simply sending (U, V) to either
U 1 Vo1 1V 1 U . . .

(77 V)? (U? U)? (U? U)? (V? 7), or (V,U) (along with corresponding changes in (r,7)),

and then using the relations in (3.31). Averaging over these six possibilities (the original

expression (3.25) as well as the five expressions obtained as above), one obtains a similar

expression to (3.25), with the only difference being that the factor U 5V3 s symmetrized

in s, t, and u:

syt ) j—— ti,8 ti u )
U%V%—)UQVQ_‘_UQVQ +U2V2—€|}-U2V2 +Uz2V>2 U2V2’ (3‘32)
where u = —2 — s — t. One can then rename s, ¢, and u to rewrite (3.25) such that Q(s,t)

is replaced by the symmetrized expression

Qs AN+ QN+ QDT QA + QLD TR (53

After this symmetrization, egs. (3.26), (3.28), and (3.29) imply that we can replace Qsgss,
Qsspp, and Qpppp by

12877
Qssss = —— (s + 12 +u?),

3
8 7 477
Qsspp = —%(st +su+ tu) = %(32 + 2+ —4), (3.34)
92 7
Qprprp = %(82 +1% +u? 4 4).

Plugging (3.34) into (3.30), we see quite nicely that the dependence on s, ¢, and u inside
the argument of F disappears, and we simply have

_ 32¢2

m=0 " o

~(OLF)r g (3.35)
Recalling that evaluating F at ) = 1 means replacing the second line of (3.25) with
D1111(U, V), we then conclude that

— (O F)7|, = LT], (3.36)

with I4[7] defined in (2.16). Combining this expression with (3.23), we immediately ob-
tain (2.16). This is our final formula for Fy(7, 7).

There are two loose ends to be tied up. The first concerns the 2- and 3-point function
contributions in (3.24). We note that the mass parameter m has dimension 1, so m must
couple to an operator of dimension precisely 3 and m? must couple to an operator of
dimension precisely 2. Away from zero coupling, the only such operators present are
operators in the SU(N) N = 4 stress tensor multiplet, whose canonically-normalized 2-
and 3-point functions are proportional to ¢. Thus, the entire 2- and 3-point function
contribution to (3.12) must be proportional to ¢ as well, so any such contribution that
we did not take into account would simply modify the first term in (2.16). However, we
did check that with the formula (2.16) as written, there is agreement between the leading
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large ¢ supersymmetric localization result for F4 and the explicit evaluation of the r.h.s.
of (2.16) using the known supergravity amplitude (2.6). This is a strong check that the
coefficient of the term proportional to ¢ in (2.16) is as written.

The second loose end concerns the simplified formula (2.15) for the mixed derivative
Fo(7,7). As mentioned before, ref. [40] derived the relation (2.14) between the mixed
derivatives of the N' = 2* partition function and an integral of 7 (U, V). One can simplify
this formula using crossing symmetry, namely by taking the average between (2.14) and the
expression obtained after replacing (U, V) in (2.14) by (%, %), (%, %), (%, %), (%, %),
or (V,U), and after using (3.31) to write everything in terms of 7 (U, V). This procedure
gives (2.15).

As a final comment, let us note that the integrated relations (2.15) and (2.16) do
not apply only to the N/ = 4 SYM theory with gauge group SU(N). These expressions
apply equally well to N'=4 SYM with some other semi-simple gauge group G, for which
¢ = (dim G)/4, where dim G denotes the dimension of G.

4 Discussion

The main result of this work was a new exact relation between four derivatives of the mass

deformed sphere free energy, Fu(7,7) = 04, F(m,7,7)| and an integral of the four point

function (SSSS) of the superconformal primary S ofn‘éhg stress tensor multiplet in N' = 4
SYM theory. For gauge group SU(V), we applied this constraint in the strong coupling 't
Hooft limit at large ¢ ~ N? and large )\, where the N' = 4 SYM theory is holographically
dual to type IIB string theory on AdSs x S°. In combination with the constraint coming
from Fo(1,7) = 0;0-02,F(m, T, 7)|,,—o derived in [40], the F4(7,T) constraint allowed us to
completely fix the D*R* contributions to the (SSSS) correlation function. (This contact
interaction vertex contributes non-trivially at genus zero and genus two.) In the flat space
limit, we matched these contributions to the known D*R?* terms in the Type IIB S-matrix.
Using the constraint on (SSSS) from the known flat space S-matrix combined with the
two constraints from F» and JFj, we were able to further fix the genus-zero and genus-three
DPR* term in (SSSS), where the latter scales as A>c™* and is the first known contribution
to (S9SS) that has been computed at order 1/ct.

Looking ahead, it would be useful to develop an analytic large A expansion of Fy(7,7),
as was achieved for Fo(7,7) in [41]. In the latter case, the large N and finite \ expressions
obtained by topological recursion were given in terms of a single Fourier integral, which
could then be analytically expanded to any order in A using the method described in
appendix D of [40]. For Fy(7,T), however, the large N and finite A expressions that we
derived in this work are given in terms of two Fourier integrals, which were not amenable
to the method of appendix D of [40] unless the Fourier integrals factorized. Instead, we had
to resort to a numerical large A expansion, which only gave precise results at low orders in
A. In particular, we were unable to compute the NOXO, N 0)\7%, and N2\ contributions
to F4(7,7). The first term could be used to confirm the derivation of the one-loop constant
ambiguity ESG‘SG that was previously fixed in [41] using Fa(7, 7). The NOA~2 and N2\
terms could be used to derive the genus one and two contributions, respectively, to DSR4
in (S5SS), which would complete the derivation of the DS R* term begun in this work.
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While in this work we considered the strong coupling 't Hooft limit, one could also

consider the holographic limit where N — oo and 7 = % + 942“" is finite. In the flat-space

limit, this strong coupling limit of the (SSSS) correlator shgﬁld match the small ¢4 and
finite 75 = xs +ig; ' expansion of the type IIB S-matrix, where x is the expectation value
of the type IIB axion. The coefficients of the various powers of 1/c¢ in (SSSS) for each
expansion must be SL(2,Z) invariants of 7 and 7. In the flat space limit, the coefficients
of 1/¢7/*, 1/¢%*, and 1/¢°/? correspond to the protected R*, D*R*, and DSR* contact
amplitudes that were derived in [82-86]. In [42], the mixed mass derivative Fa(7,7) was
studied in this limit, and combining the integrated constraints with the flat space limit, it
was possible to completely determine the (SSSS) correlator at orders 1/¢7/* and 1/¢%%. Tt
would be very interesting, but much harder, to extend this analysis to F4(7, 7). We leave
this topic for future work [87].

In addition to the constraints on the (SSSS) correlator considered here, one could
also consider new integrated constraints that come from derivatives in terms of the squash-
ing parameter b for the free energy F(b,m,T,7) on the squashed sphere, which was also
computed in terms of a matrix model using localization in [88]. Of the three possible
constraints:

O F(b,0,7

02 F(bym, T 0:0:05 F(b,0,7)],_, , (4.1)

)’b:1 ’ )‘bzl,m:O’

we expect that only one of the first two constraints to be linearly independent from the two
already considered, which is exactly enough constraints to fix the D®R* term in (SSSS)
purely from CFT. These three localization constraints could also be combined with the
known type IIB S-matrix in the flat space limit to fix the four ambiguities in the one-
loop term MSG|R§‘6"HS>0 with one supergravity vertex and one genus-zero R* vertex [55, 56],
which scales like A"2 N~%. One could similarly fix the D®R?* contact term to genus two.

Lastly, while the application of integrated constraints and localization to holographic
correlators has been to the large N expansion in this paper and previous work [40-42], these
relations are in fact non-perturbative, and so could be applied to the numerical bootstrap
for N'=4 SYM [89, 90]. For this purpose, the finite N formula for the perturbative part of
the mass deformed free energy, as derived using orthogonal polynomials in appendix A.3,
will be especially useful, especially if one could augment it with a similar formula for the
contribution from the Nekrasov partition function. These constraints could allow one to
impose the values of 7 and 7 in the numerical bootstrap for finite IV, just as N was imposed
in the original studies [89, 90] using the conformal anomaly ¢, and thereby solve N' = 4
SYM numerically for all 7, 7 and N.

Acknowledgments

We thank Thomas Dumitrescu and Ofer Aharony for useful discussions, as well as Damon
Binder, Michael Green, Yifan Wang, and Congkao Wen for useful discussions and collabo-
ration on related work. SMC is supported by the Zuckerman STEM Leadership Fellowship.
The work of SSP was supported in part by the US NSF under Grant No. PHY-1820651

—90 —



and by the Simons Foundation Grant No. 488653. We thank the organizers of the work-
shops “Bootstrap 2019” and “Scattering amplitudes and the conformal bootstrap” which
took place at the Perimeter Institute for Theoretical Physics and at the Aspen Center for
Physics (ACP), respectively, for hospitality while this work was in progress. The ACP is
supported by National Science Foundation Grant No. PHY-1607611.

A Fy(r,T) from supersymmetric localization

In this appendix, we show how F, (7, 7) can be computed from the supersymmetric localiza-
tion result of [39], following a similar calculation for F5(7, 7) in [41]. We will start by writing
F4(1,7) as an expectation value of an operator in a Gaussian matrix model. We then eval-
uate this expectation value to any order in 1/N? using topological recursion [68, 69], or for

finite N and \ = % (ignoring instantons) using orthogonal polynomials [70].

A.1 Matrix model expectation value

As shown by Pestun [39], the S* partition function Z = exp(—F) of the SU(N) N = 2* is
given by

2 i a2 H? (g
Z(m,T,%):/dNa(;(Zai)eg ANZia?’Zinst(m,TMQ H<] ij ( j)

H(m)N—1 [Tz H(az; +m)’
(A.1)

where we denoted a;; = a; —a;, and where the delta function enforces the SU(NN) constraint
that the eigenvalues sum to zero. The function H(m) appearing in (A.1) was already de-
fined in the main text in eq. (3.22). The quantity |Zins (m,7)|? represents the contribution
to the localized partition function coming from instantons located at the North and South
poles of S* [91-94], and can be ignored in the 't Hooft limit because it is non-perturbative
when gym — 0.

The Lh.s. of the perturbative part of the integrated constraint (3.36) is then

— O FP o = = 12¢(3) + D (K" (as))

i?j
(A.2)
+3 ) [(K'(ayg) K (aw)) — (K (aig) (K ()] |
i7j7k7l
where K(z) = —I;I,((ZZ)), and where the expectation values are taken in the Gaussian matrix

model

Z = /dNa5 (Z ai> e TR 2 Ha?j. (A.3)

i<j

The function K'(z) can be simply expressed using its Fourier transform [79]

K'(z) = — /0 ~ dw Qw[c‘;sir(iﬁzg — 1 (A.4)

To calculate (A.2), we should then first compute the 2-body expectation value

T(w) = ) (cos(2wayy)) = Y (¥ (A.5)

1,J 1,]
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and the 4-body expectation value
J(w,w) = Z [(cos(2way;) cos(2way)) — (cos(2waj))(cos(2wagy))]
6,4kl

= Z |:<62iwaij62iwakl> _ <e2¢waij><e2makl>} ,

Z’7j7k7l

(A.6)

in terms of which we can write (A.2) as

o) 3
QL FPert| o= —12¢(3) + / 2T / / g 2w T @, w) oy )
0

sinh? w sinh? wsinh? w

The 2-body term Z(w) also occurs in the matrix model computation of the Lh.s. of (2.15),
whose non-instanton part can be written as [41]

2 _ rpert 00
¢ 05,0:0:F 1 3 1/0 wZ(w) . (A.8)

8  0,0-F T e v sinh? w

This quantity was actually already computed in [41] to all orders in 1/N? in the *t Hooft
limit for finite A (and to any order in 1/\) using topological recursion [68, 69], and for
finite N, A (ignoring instantons) using orthogonal polynomials [70]. We will apply these
methods to the 4-body term J(w,w), and then combine with the known results for Z(w)
to compute (A.7).

A.2 1/N? expansion from topological recursion

Following [41], we will relate the expectation values in (A.5) and (A.6) to expectation
values of product of resolvents. Let us define the n-point correlator as

Rn(yl,...,yn)EN”*2 <Z 1 Zl> 7 (A.9)

Y1 — G4 — Yn — A4,
1 in

where the expectation value is taken in the Gaussian matrix model (A.3). We can then
write the expectation values in (A.5) and (A.6) in terms of inverse Laplace transforms of
resolvents. Defining the inverse Laplace transform of a function f by

i +100
[H /j dyz'ebiy"] - ym), (A.10)

f(bl,...,

i — 100

with +; chosen so that the contour lies to the right of all singularities in the integrand, we
then have

I(w) = R*(2liw, —2iw)

_ _ N A1l
J(w) = RY2iw, —2iw, 2iw, —2iw) — R?(2iw, —2iw) R (2w, —2iw) . (A-11)

To compute the 2-point and 4-point functions appearing in (A.11), we first use the fact
that these quantities are equal to the analogous quantities defined in the U(N) matrix model

87r N
/dNae 29 [T a2, (A.12)

1<j
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which differs from (A.3) only in that it does not have the delta function factor in the

integrand. Indeed, the expectation value of an operator O(a;;) that is invariant under

a; — a; + ic, for some constant «, is the same in the U(N) and SU(NN) matrix models,
2

as can be easily shown by considering the expression for e~ e Zyny(Olai))uny =

_87'r2a2 _
e~ [dVae

«. In the formalism involving resolvents, a similar computation shows that the inverse

87r2N Z a_2 2 . . . .
b % [ Tie aij(’)(aij), sending a; — a; + i, and integrating over real

Laplace transforms of an n-point function of resolvents in the SU(N) and U(N) matrix
models are related by
-~ ~ 2
R Bt ba) = By (b . b )emeowz (2ib) (A.13)

Thus, as long as the arguments of R™ sum to zero, as is the case in (A.11), there is no
difference between the U(N) and SU(V) theories, so we will drop the subscript U(N) in
what follows.

The correlators of resolvents obey various relations similar to Ward identities in QFT.
In particular, the change of variables a; — a; + €da; with da; = 1/(z — a;), with € infinites-

imal, leads at first order in € to the relation

1672
R*(z,2) = TWNQ(le(z) -1). (A.14)
The more complicated change of variables corresponding to da; = ﬁ fj?: . Zz‘j wpia_.
leads to j
_~ ppt2 ) p 5 j—15 2, Wj+1, , Wy
N2R (Z,Z,U}L wp)+2::1(9w] w =
1672
= Tﬂ- (ZRP‘H(z’ Wiy .-, wp) — N2Rp(w1’ o 7wp)) ) (A.15)

Egs. (A.14)—(A.15), combined with large N factorization properties, lead to recursion re-
lations that allows one to determine RP recursively in p and in 1/N. It is customary to
write down these recursion relations in terms of the connected correlators

1 1
W™ (Y1, yn) = R* (Y1, - Yn)conn = N2 <21: — Zn: yn_%>mnn . (A.16)
In terms of the inverse Laplace transforms of W", we have |
I(w) = N*WH(2iw) W (—2iw) + W2 (2w, —2iw) , (A.17)
and
T(w,w) =N2T%w,w) + T Hw,w) + N 2T?*(w,w), (A.18)

where we define
T (w,w) =W (2iw) W (2iw) W (—2iw, —2iw)
+ W (2iw) W (=2iw) W2(—2iw, 2iw)
+ W(=2iw) W (2iw) W2 (2iw, —2iw)

o~ o~

+ WH(=2iw) W(=2iw) W?(2iw, 2iw) , (A.19)



TN w, w) = W2 (2w, 2iw) W2(—2iw, —2iw)

+ W2 (2iw, —2iw) W (—2iw, 2iw)

+ W (2iw) W3(—2iw, —2iw, 2iw)

+ W (=2iw) W3(2iw, —2iw, 2iw)

+ W (2iw) W3 (—2iw, —2iw, 2iw)

+ WH=2iw) W3 (2iw, —2iw, 2iw) (A.20)
T (w,w) = W(2iw, —2iw, 2iw, —2iw) . (A.21)

The resolvents can then be expanded in 1/N? as
<]

W™h(y1,. .y yn) = Z ]\mmI/VnT;(yl7 ceyUn) (A.22)

m=0

and each genus-m term W can be computed for finite A\ using a recursion formula in
n,m [68, 69] starting with the base case W4, as described e.g. in [41]. We use resolvents
up to n+m < 5, which we give in the supplementary material.'* We then take the inverse
Laplace transform in (A.19) to get the 1/N? expansion at finite A for J(w,w) in terms of
integrals over the Fourier variables w,w from (A.4). For instance, at leading order in 1/N?
we need only consider the genus-zero resolvents in J°(w,w), which give

T (Vw wv/A w w w w
Pl =D [y (2 5 (280) o (422) (=)

(A.23)

We can then plug this expression, along with the leading order term in Z(w) as given in
appendix B of [41], into (A.2) to get the leading order in N? result at finite \:

32w7r2J1(@)2
Asinh? w
oo roo 9wy (YA gy ()
+/ dw/ dw 5 5 T
0 0 sinh? w sinh? wv/A\(w? — w?) (A.24)

po ()2 (57) e () 2 ()]

+ O(NY).

%ﬁwmmo—Nﬂ/ dw
0

In the supplementary material, we give explicit formulae for J(w,w) to order O(N—%),
which similarly take the form of four Bessel functions, while the expressions for Z(w) were
already given in appendix B of [41] and consist of two Bessel functions.

We would also like to take the large A expansion of these results, so that we can apply
them to the strong coupling expansion of the integrated correlator. For the first term

1Some of these resolvents were already shown in appendix B of [41].
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in (A.7), which depends on Z(w), the large A expansion can be performed just as in [41],
and yields

o0 3 2 2 2
/ oo &t] IQ(w) N2 [1671' 327 24w((3)
0 sinh” w

| +O(/\_2)]

472/ 1372 75m2¢(3
+|:7Tf_ T B WC<)+O()\_;):|
15 16M\3/2  32)\5/2
1 1372\ 153372 5
N—2 o 2)\3/2 O )\—7 :|
* { 504" + 020 T sromez T OA?)
T2N5/2 25m20\3/2 511wV 3

+N‘4{ - +O(A z)] +O(N79).

38400 + 129024 327680
(A.25)

Note that none of these terms have the right powers of @ compared to the holographic
correlator, so all of them must be cancelled against corresponding terms in the second
term in (A.7). For these terms, which depend on J (w, w), every W except W@ factorizes
in terms of their argument y;, so the inverse Laplace transform can be easily taken and
gives products of four Bessel functions of the form

Wi T, (@“) iy (@“) T (6“’) s <€w> (A.26)

for various integers a,b,n;. As described in appendix D of [40], we can take the large A

limit of these Bessel functions using the Mellin-Barnes form

)u+u+25

Ju(@) () = (A.27)

T 2mi

1 petooi D(=s)I'2s+pu+v+1) (%x
s )
/c—ooi Mis+p+)I(s+v+DI(s+p+v+1)

where the integrals over w,w can be separately done with factors csch?w, csch?w from (A.4)
by twice using the identity

0 w?® 1 A
dw ——— = ——I'(a+1)((a), .28
| e = = ST+ 1) (A.25)
and then the contours can be closed to the left to get an expansion in 1/A. For these
factorizable terms, using the finite A expressions for 7 in the supplementary material, we
get,

[eS) S fac
/ dw/ dw12wwj (w,w) :|:_ % @ + i + O()\_l):|
0 0

_|_
sinh? w sinh? w 6 12 8/

2332 19\ 125V/\
N2 - O\ }
+ { 5760 384 | 3072 (A
\7/2 833 59N\5/2
N4 O(\? }
+ {552960 * 20736000 T 3440640 (X%
+ O(N7%), (A.29)
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where we have only showed the terms that we will use, and recall that there is no leading
order factorizable term.

The only exception to factorizability is the genus-zero 2-body resolvent W& (y1, y2),*
which takes the form

a1y 1 — Ar?y? 1 An2ys
W5 (y1,2) = — \/ \/ (A.30)

2y — ) 2y 4 1\/47r2 |

and whose inverse Laplace transform for distinct imaginary arguments is

W2(2iw,2iw) = —Q;IEZ\fw) lJ()(\/iw)Jl <\/§w> + Jo <\/§M>J1 (6“))1 . (A.31)

This term shows up in both J°(w,w) and J'(w,w), and so appears at every order in the

large N2 expansion of J(w,w). We do not know how to take the large A expansions of such
terms, since the w,w dependence does not factorize due to the (w+w) in the denominator
of (A.31). For these terms, we instead performed the large A expansion numerically by
evaluating the w, w integrals at many value of A at high precision and fitting a curve. Using
the expressions in the Mathematica file, we get

00 00 non-fac
/ o / dw 12wwT (w,w)
0 0

sinh? w sinh? w

96¢(3)  288¢(5) 144( 167r 3272 2472((3) E
_ N2
25  4rx? 0 119
+K6_15>\F+OA ] K 504 _5760>)\ +O(A)]
\7/2 178123 N
N7 - - 2 A.32
- { 552960 145152000 T O } (A.32)

We can now combine (A.25), (A.29), and (A.32) to get the final result

2 7
i = o B B 05
2VA + O(\° M o] - v oo 1o
+[ +O( )}_ @-ﬁ- (N 120960+ M|+ 0o ).
(A.33)

This 1/N? expansion can then be converted to a 1/c = 4/(N? — 1) expansion when com-
paring to the holographic correlator. Note that for the leading N? term we were able to
do the numerical large A expansion to many orders, but for subleading terms in 1/N? we
were only able to accurately read off a couple orders in large A sufficient to get the terms
shown here.

5Note that W§ (y1,ye) also appears in Z(w), but in this case there is only one Fourier variable w so the
integral was always of the form (A.28).
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A.3 Finite N from orthogonal polynomials

We can also compute J(w,w) at finite N and A in terms of four finite sums using the
method of orthogonal polynomials [70], as was already done for Z(w) in [41]. We start by
writing Z(w) and J(w,w) as

Z(w,w) = N(N — 1){cos(2w(a; — a2))) + N,

j(w, w) = 2N(N — 1)31212 =+ 4N(N — 1)(N — 2)31231 + N(N — 1)(N — 2)(N — 3)31234

— (Z(w) = N)(Z(w) = N),
2w(a; — aj)) cos(2w(ay — a;))) — (cos(2w(a; — aj))){cos(2w(ar — a;))) -
(A.34)

o
S
z
Il
—
o
o
w0
—~

We then introduce a family of polynomials p,(a) using the Hermite polynomials H,,(x):

pu(a) = <32?2N> i, (“\/\g“) , (A.35)

which are orthogonal with respect to the Gaussian measure

ﬂ_2 )\ n )\
/dapm(a)pn(a)e*¥a2 =nl (167?2N> \/ 877N5mn = hpOmm - (A.36)

As shown in [41], these orthogonal polynomials can be used to write the expectation value

of an n-body operator as an n-dimensional integral:

(On(a)) = % S Y (i / <ﬁ daipd(i)l(ai)pH(U(i))l(ai)eS’TiNaf> Ou(a).
=1

" 0ESN HESK h"(i)*l

(A.37)

For the n-body operators in (A.34) with n = 2,3, 4, we can perform the integrals in (A.37)
using the identity

o0 2
| e @) o) = €52 Rty L (—2) (A.38)
— o0

and the sums over permutations can be simplified to sums from 1 to N. For instance, Z(w)
was computed in this way in [41] and yields

—w?A w2)\ 2 N P R wz)\ — wQ)\
T [1 2 : i=Jr 7 [z
( ) me [ [ N-1 (4/12]V>‘| N (_1) ! z 1 A2 N jjl Am2 N

1,7=1

+N,

(A.39)

where L%(z) are generalized Laguerre polynomials. The expression for J(w,w) similarly
involves sums over Lg(m), but takes a rather complicated form that we give in the sup-
plementary material. After plugging these terms into (A.7) we can perform the sums and
Fourier integrals for any finite N and compare to the topological recursion results (as given
in the supplementary material). We find that they match even down to N = 2 for a large
range of \, which is a nontrivial check.
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B Evaluating I, analytically

In this appendix, we describe how to compute I3[G(U,V')] using the Mellin transform
defined in (2.3). We begin by writing Io[G(U, V)] in (2.15) as an integral over M (s,t):

LIGU, V)] = —i/_o:o (Zig’; (r [2 . ;rr [2 - ;]ZF [S;Ltr/\/l(s,t) (B.1)

X/ dr/ dﬁsin26(1+r2_QTCO59)§—2rt—1> _
0 0

The integrals over r, # are standard one-loop integrals in four dimension, which can be done
explicitly to get

LIGU, V)] = —é _O:o éfrj)t?r [2— ;] r B] T [2— H T m .
XF{;;wLQ}F[S;t]M(S,t). |

The integrals over s,t can be done for polynomial M(s,t) (or M5 (s,t)) by twice applying
the Barnes lemma:

/ioo ds Fa+)l'(b+ b+ c)I'(b+ d)

—TI'(a+s)I'(b+ s)I'(c—s)'(d—s) = T(atbtctd , (B.3)

which holds for contours for which the poles of each Gamma function lie either to the left
or to the right of the contour. Applying this to (2.6) and (2.7) we get the first line in (2.17).

C Ward identities

C.1 Ward identity for (SSPP)

As mentioned in the main text, conformal and R-symmetry invariance implies that the
four-point function (SSPP) takes the form given in (3.4). The non-trivial information
is encoded in the functions R;(U, V'), which are related by SUSY Ward identities to the
functions S;(U, V') defined in (2.1). The relations are given in eq. (B.6) of [40].

Since the (SSSS) correlator is split into a free part and a part depending on a single
function T (U, V), one can also write R;(U, V') reflecting this split, as we did in (3.6). The
non-free part of R;(U, V') is thus encoded in three differential operators R;(U,V, dy, dyv)
that act on the function 7(U,V) from the (SSSS) correlator. From (B.6) of [40], we
deduce that these differential operators are:

R, (U,V,dy,0v) = % 20(U =V = 3)duV + UV (2= U+ 2V)3}V
+U(U—-2-2V)0%V — (4V2 -4+ U1+ U - 5V])oyV
~UU —2=2V)(U+V = 1)3auV +8V],

R,(U,V, 0y, 0y) = i [(4V $2UV —2-2V2)ayV + UV(V — 1)V (C.1)
YU+ U=V)ouV + UV - 1)U +V — 1)y V
+UA(V - 1)V,
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s XX PP | j F.,F v, v T A .0

A 2 s 3 3 3 z 4 z 4

Spin [5,5] | [0,0] | [3,00,00,5] | 0,0 | [53] | [1,0],0,1] | [1,3],[5.1] | [1,2] | [5.0],[0,3] | [0,0]
SUM4)r | 20/ 20,20 | 10,10 | 15 6 4,4 1 4,4 1

U(l)s 0 i1 1,-1 0 1,-1 i,-1 0 3-3 2,2

Table 1. Operators in the N = 4 stress energy tensor multiplet and their scaling dimensions A,
spins [4, j'] of the Euclidean Lorentz group SO(4) = SU(2) x SU(2), irreps of the R-symmetry group
SU(4)g, and charges of the bonus symmetry group U(1)p.

R;(U,V,0y,0y) = é U +U=V)oyV +UVRY
HUA(U+V —1)0voyV + U%%}V} .

Note that the differential operator R; 4+ 3R3 takes the form

3

U
Ry +3Rs = - [2 + (14U +3V)dy +4Vay + UV} ©2)
1+U+V :
+V(=14+U+V)ydy + V3263 Ly

U2
C.2 Ward identity for (PPPP)

Let us now move on to discussing (PPPP). As mentioned in the main text, conformal
symmetry and R-symmetry imply that this correlation function can be written as in (3.2)
in terms of three functions P;(U, V). These functions must be related by Ward identities
to the functions appearing in the (SSSS) correlator. To derive these relations, we use the
component field method of [32, 40, 62]. This method was already discussed in a closely
related context in [40], so we will only present an outline of the derivation here.

In general, we can derive these Ward identities by first determining the most gen-
eral forms of the four-point functions that are consistent with conformal symmetry and
R-symmetry, and then imposing invariance only under the Poincaré supercharges. For
(PPPP), the relevant Ward identity takes the schematic form

0 = 6(PPPY) = (PPPP) + (0xPPX) + (PPOxX) + (PPPF) + (PPP)), (C.3)

where § denotes the action of the supercharge, and the other operators in the stress tensor
multiplet are summarized in table 1. This Ward identity will give (PPPP) in terms of
powers and derivatives of U,V of (xPPY), which must be related to other correlators in a
chain that will eventually reach (SSSS). These variations are

5(SSSx) = (xSSxX) + (SXSX) + (SSxx) + (SSS7) + (SSS98S),
§(SSPX) = (XSPX) + (SYPX) + (SS0xX) + (SSPP) + (SSPF), (C.4)
§(SPPx) = (XPPX) + (SAPX) + (SPOxx) + (SPPj) + (SPPIS) ,

0
0
0

where the first two were already considered in [40]. Finally, we write (SSSS) in terms of
T(U,V) using (2.1) to obtain the split of the quantities P;(U, V) into a free part and an
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interacting part dependent on 7 (U, V') as in (3.6). Following the procedure outlined above,
we find that the differential operators P;(U, V, dy, dv) appearing in (3.6) are

P, = % UW2020% + U V203 0y + UW20 + U7 + 3UV ok oy + 3UV o},
+2U3V30u 0y + AUPV30E 0% + 2U3 V39 0y + 12U° V2008
+ 15U3V20} 0y — 2U3V20}0% + 3UBV20}, — 2U3V20} 0y + 2U30y
+ 14U3V Oy dy + TUSV O — 2U30% — 6U3VoEdy — 3UBV P + UVAal
+2UVA0y 0% + UPVA0E0% + 9UV303, + 9UV30y 0% — 2U02V30p 03
—2UPV30R0% + 19UV20% + 2UV20y 0y — OUV20y0 — 2U° V203
— 3UPV2030y + UV2030% +4V (2U% — AUV +3U +2V2 =5V +3) dy
— AUV oy + U0y — UV Oy dy + 3UV IR + U?0% + 3UV O30y
—3UV493 — 3UVA0,0% + 4V40Z — 1TUV30% 4+ 3UV303
—4UV39ydy + 6UV30y 08 — 8V30% + 15UV?0% + 2UV?0y + 13UV 0y
— 3UV20y 0} + AV20} — UV Ay — 3Udy — 9UVaudy +4|, (C.5)
P, = %U{ (202 -4UV+U+2V2 =3V +1) 0y + V (100240 (3-5V)+(V-1)?) 8
+ U (U0 0v + USVORO} + USD} + 20V a0y + UV, + 20°V20y05
+AUV20}0% + 2UV203 0y + AU 00y + 8UV 9y 0% + 3U203
+ 13UV 98y — 2U%0%0y — 2UV040% + 5UV ol — U%0}
— UV ROy + UV3OL 4+ 2U0V30u0% + UV30Z0% — V3o 0%
+11UV?0y 0% — 2UV20y0y + AUV2030v — 2UV2030% — 2V 20y 0y
+V2(TU =V 4+ 1)8} + 2V20y 0% + 10UV Oy dy — 3Udydyv — TUV 9y ol
+3UV O — UdE — 5UVIEOy + UdEov + UVIEOy + 3Vaydy
— dudy — Voud} )|, (C.6)
P, = i [(—20% = (@V + )U? = (<14V2 49V + 1) U = 4(V = 122V — 1)) Oy
~U(U'R oy + VORRU" + U9 + 2VU 90y + VU0,
+ 40300y + 8VU 0y 0% + 2V2U30y3 + AU30% + 16V U305 0y
— 3U30% 0y + 5V2U303 0% — 3VU3030% + 8VU30E — 2U303
+AVAURO Oy — AVUBO oy + VEUROL — VU3 + 200y
+ 24V U200y — 5U20ydy + 23V2U20,0% — 13VU%0,0% + 4V3U20,0%
—4AV2IU?0p 8y + 10VU207 — 3U20% + 19V2U207 0y — 18V U0} 0y
+ 3U2020y + 5V3U20%0% — 8V2U2030% + 3VU2030% + 3V2U?0}
—AVU?0} + U203 4 2V3U?03.0v — AV2U2030v + VU203 0y
+V3U+V = 1)UB, —4VUIy + Udy + 2VUOydy — 2Udydv
+8V3U 0% — 10V2Uy 0% + 2VU Ay 0% + 2VAU Oy o3, — 4V3Udy 6,

— 30 —



+ 2V2U Oy 0% — 2V2U O} + 3VUO? — Ud — VAU Oy + 2VU 0y

— U040y + VIUOROE — 3V3UO}EOE + 3V2UO 0% — VU 0%

+2V20y = 3V oy + 0y + V2 (TU + 8V — U = 3(V — 1)?) 9},

— 4V30y 0y + 11V20ydy — 10Vydy + 30y0y — 3V*Ay 0% + V20,08

— 9V20u 0% +3VOud}) + V(1 - 14V)U? + (16V2 = 21V + 5)U — 10U°

—4(v = 1)} ]. (C.7)
Note that the differential operators 2P +2P9 + P3 appearing in (3.24) can be simplified to

2P + 2Py + Py
4
=3 U3V + U (U2 + U9V = 2) + 10V2 = 11V + 1) Oy

+ (6U% + U 36V = 7) + 6V2 = 7V + 1) 9pdy + U*(U + 9V — 1)35;

+ V(U +V = )00y + UV (U2 + UMV = 2) + (V — 1)) 330}

+V (1002 + U9V = 11) + (V = 1)%) 9y + UV},

+2UVEHU +V — 1)0ydy + VAU +V — 1)8% + 2U(3U 4 9V — 2)0%

1+U+V
U2 '
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+ (6U + 6V — 2)dy + 2V (9U + 3V — 2)0% + (6U + 6V — 2)ay |
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