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ric localization. In this work, we derive a new exact relation between the fourth derivative
∂4
mF (m, τ, τ̄)

∣∣
m=0 of the sphere free energy and the integrated stress-tensor multiplet four-

point function in the N = 4 SYM theory. We then apply this exact relation, along with
various other constraints derived in previous work (coming from analytic bootstrap, the
mixed derivative ∂τ∂τ̄∂2

mF (m, τ, τ̄)
∣∣
m=0, and type IIB superstring theory scattering ampli-

tudes) to determine various perturbative terms in the large N and large ’t Hooft coupling
λ expansion of the N = 4 SYM correlator at separated points. In particular, we determine
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1 Introduction

The four-point functions of stress-tensor multiplet operators in the SU(N) N = 4 super-
Yang-Mills (SYM) theory have received a significant amount of attention over the past
twenty or so years. For small Yang-Mills coupling gYM, these correlators can be computed
perturbatively for any N using standard Feynman diagrams (see [1–4] for expressions up
to three loops). At large N and large ’t Hooft coupling λ ≡ g2

YMN , they can in principle be
computed using Witten diagrams in an expansion around classical type IIB supergravity on
AdS5×S5 [5–7]. In this limit, 1/λ corrections correspond to higher derivative terms in the
effective action that correct the two-derivative supergravity action, while 1/N corrections
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correspond, roughly, to loop diagrams.1 At leading order in 1/λ and 1/N , i.e. in tree-
level supergravity, the connected stress-tensor multiplet correlators are known from explicit
Witten diagram computations [8–15], but this approach becomes difficult to pursue at loop
level or for higher derivative corrections to supergravity, partly because loop computations
in AdS are complicated, and partly because even the interaction vertices corresponding to
the first higher-derivative correction to supergravity are not fully known (see however [16–
19] for partial results). Recently, this obstacle has been overcome using a combination of
techniques: analytic bootstrap [20, 21],2 supersymmetric localization [39–42], the flat space
limit [43–49], and unitarity methods [50–61], which do not require detailed knowledge of
the bulk action.

In this work, we will derive a new relation between the integrated stress-tensor multi-
plet correlator and four mass derivatives

F4(τ, τ̄) ≡ ∂4F (m, τ, τ̄)
∂m4

∣∣∣∣
m=0

(1.1)

of the free energy F (m, τ, τ̄) of the N = 2∗ theory placed on a round four-sphere. (The
N = 2∗ theory is a mass deformation of the N = 4 SYM theory that preserves N = 2
supersymmetry. It depends on the mass parameter m as well as the complexified gauge cou-
pling τ ≡ θ

2π + 4πi
g2

YM
and its conjugate τ̄ .) The relation we derive is an extension of a similar

relation between the stress-tensor multiplet correlator and the mixed fourth derivative

F2(τ, τ̄) ≡ ∂4F (m, τ, τ̄)
∂τ∂τ̄∂m2

∣∣∣∣
m=0

(1.2)

that was previously studied in [40]. Since F (m, τ, τ̄) can be computed using supersymmetric
localization [39], both the relation derived here and that of [40] impose non-perturbative
constraints on the stress-tensor multiplet correlator for any N and (τ, τ̄). As an application,
we will use these constraints to derive new terms in the perturbative 1/N and 1/λ expansion
of the stress tensor correlator, as we will describe shortly.

In more detail, the stress tensor multiplet of the N = 4 SYM theory contains 42 real
scalar operators: 20 of them, which we collectively denote by S, have scaling dimension 2,
transform as the 20′ of the SU(4)R R-symmetry, and in the Lagrangian description are
single trace scalar bilinears; another 20 operators, grouped in the complex combinations
P and P , have scaling dimension 3, transform in the 10 and 10, respectively, of SU(4)R,
and in the Lagrangian description are single trace fermion bilinears; and lastly 2 operators
have dimension 4 that will not be important in this paper. Four-point correlation functions
of all these operators, as well as of other operators belonging to the N = 4 stress tensor
multiplet, are related to one another by Ward identities, and can all be expressed in terms
of a single function T (U, V ) of the conformally-invariant cross-ratios U and V [62].

Coming back to the derivatives F4(τ, τ̄) and F2(τ, τ̄) of the S4 free energy, these quanti-
ties can be related to T (U, V ) because each derivative w.r.t. m corresponds to the insertion

1More precisely, at subleading orders in 1/N there are both contributions from loop diagrams and from
tree-level diagrams. Some of the tree-level contributions can be separated out from the loop contributions
because they have a different scaling in 1/λ. We will provide examples in the next section.

2See [22–38] for other applications of these methods to holographic correlators in various dimensions.
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of a specific linear combination of S, P , and P integrated over the four-sphere, while a
derivative w.r.t. τ (or τ̄) corresponds [63–65] to an insertion of a specific component of S at
the north (or south) pole of the sphere. Thus, F2(τ, τ̄) can be written in terms of 〈SSSS〉
and 〈SSPP 〉, where two of the S operators in the first correlator as well as the P and P
operators in the second correlator are integrated. Writing these integrated correlators in
terms of integrals of T (U, V ) was achieved in [40], following a similar calculation in the 3d
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [66] described in [32]. In this paper,
we will perform the same task for F4(τ, τ̄), which can be written as a linear combination
of 〈SSSS〉, 〈SSPP 〉, and 〈PPPP 〉, where now all four operators are integrated over the
sphere. This calculation has two challenges. The first is to write 〈SSPP 〉 and 〈PPPP 〉 in
terms of T (U, V ) using the Ward identities, which we do following the component method
also used in [40, 62].3 The second challenge is to perform the integrals over the sphere,
where, unlike in the case of F2(τ, τ̄), one now encounters additional divergences that need
to be regularized while preserving supersymmetry.

To use the relation between F4 and T (U, V ) in the holographic regime, we should
derive an expansion of F4(τ, τ̄) at large N and large λ. Using ref. [39] as a starting point,
one can write down F4(τ, τ̄) as an expectation value of an operator in the free Gaussian
matrix model at m = 0. As in [41], this expectation value can then be computed to any
order in 1/N at finite λ using topological recursion [68, 69], and also at finite N and λ (if
we ignore non-perturbative instantons in the Nekrasov partition function) using orthogonal
polynomials [70].

The expansion of F4 in 1/N and 1/λ, combined with various other constraints studied
in previous work, can be used to fully determine the function T (U, V ) to higher orders
in the double expansion in 1/N and 1/λ than was previously possible. In particular, we
determine that the Mellin transform4 [47, 71] of the function T (U, V ), which we denote by
M(s, t), takes the form

M(s, t) = 1
c

[ 8
(s− 2)(t− 2)(u− 2) + 120ζ(3)

λ
3
2

+ 630ζ(5)
λ

5
2

[
s2 + t2 + u2 − 3

]
+ 5040ζ(3)2

λ3

[
stu− 1

4(s2 + t2 + u2)− 4
]

+O(λ−3)
]

+ 1
c2

[
5
√
λ

8 +MSG|SG + 15
4 +O(λ−

3
2 )
]

+ 1
c3

[
7λ

3
2

3072
[
s2 + t2 + u2 − 3

]
+O(λ)

]

+ 1
c4

[
λ3

221184

[
stu− 1

4(s2 + t2 + u2)− 4
]

+O(λ
5
2 )
]

+O(c−5) ,

(1.3)

where u ≡ 4 − s − t, and where c = (N2 − 1)/4 is the c anomaly coefficient, which is
the natural expansion for holographic correlators since it is simply related to the effec-

3The 〈SSPP 〉 Ward identity was already derived in [40]. The solution to the Ward identities relating
〈SSPP 〉 and 〈PPPP 〉 to 〈SSSS〉 can in principle also be read off from [67], where a super-space expression
of the stress tensor multiplet correlators in terms of the function T (U, V ) was given.

4The precise definition of the Mellin transform is given in eq. (2.3) below.
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tive 5d Newton’s constant. In string theory language, the terms at order 1/cg+1 corre-
spond to genus ≤ g string worldsheets, so the expansion (1.3) contains contributions up to
genus three.

The expression (1.3) was determined as follows:

• Crossing symmetry and the analytic structure of Witten diagrams in Mellin space [46,
47, 71, 72] determine the s, t dependence of each term in the 1/c and 1/λ expansion
in eq. (1.3) up to undetermined coefficients. In particular, the polynomial terms in s,
t, u correspond to contact Witten diagrams, where for a polynomial of degree n, the
interaction vertex is schematically of the form D2nR4; the first term at order 1/c cor-
responds to the tree-level supergravity amplitude; and theMSG|SG term corresponds
to the one-loop supergravity amplitude, which is a non-analytic in s, t, u, and was
determined in [51, 52, 56] using unitarity, up to an additive constant.

• The coefficient of the supergravity term is fixed by the requirement that, when ex-
panding the full correlator in conformal blocks, there are no operators of dimension
precisely two [21].

• At each order in the 1/c and 1/λ expansion, one can determine the coefficient of the
leading term at large s, t, u from knowledge of the flat space scattering amplitude in
type IIB superstring theory. This was originally done in [49] to fully determine the
term of order c−1λ−3/2 (i.e. the genus zero R4 term).

• At each order in 1/c and 1/λ, one can determine two coefficients, namely one from
F4 and one from F2, when these quantities are also expanded in 1/c and 1/λ. In
particular, in [40] the F2 constraint was used to fully determine the term of order
c−1λ−3/2 (genus zero R4), and to also determine the remaining coefficient in the
c−1λ−5/2 term (genus zero D4R4) that remained undetermined after using the flat
space limit. In [41], the quantity F2 was computed to any order in 1/N and 1/λ, and
used to also fix the c−2λ1/2, c−3λ3/2, and c−2λ0 terms. The rest of the coefficients
in (1.3) are determined in this paper.

Note that the coefficients corresponding to R4 and D4R4 can be fully fixed using only
the two supersymmetric localization constraints, and they do agree, in the flat space limit,
with the scattering amplitude in type IIB superstring theory. They appear at genus zero
and genus one in the case of R4, and at genus zero and genus two for D4R4. The match
between supersymmetric localization and type IIB scattering amplitudes represents a non-
trivial precision test of AdS/CFT at these orders.5 The terms of order 1/c4 in (1.3) were
obtained by combining the supersymmetric localization and flat space limit constraints, and
they represent, to our knowledge, the first known contributions to a holographic correlator
at genus three.

5The R4 and D4R4 coefficients were also fixed in [32] for the ABJM holographic correlator, which is
dual to M-theory on AdS4 × S7, using similar localization constraints. In that case, however, while the R4

coefficient is non-zero, the D4R4 coefficient vanishes.
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The rest of this paper is organized as follows. In section 2, we discuss the stress
tensor multiplet four-point function in the strong coupling limit, and fix the higher order
in 1/N and 1/λ terms using the flat space limit, the old F2 constraint, and the new F4
constraint. In section 3, we derive this new integrated constraint. In the appendices we
include many details of the calculation, including the localization calculation of F4 from
topological recursion or orthogonal polynomials. We end with a discussion of our results
and future directions in section 4. Several complicated explicit results are given in the
supplementary material.

2 N = 4 stress-tensor four-point function

The main object of study in this work is the stress tensor multiplet four-point function. We
begin by discussing general constraints on these correlators coming from invariance under
the N = 4 superconformal algebra. We then discuss the large N strong coupling expansion
in Mellin space for the N = 4 SYM theory. Finally, we discuss how to constrain the terms
in this expansion from the known Type IIB S-matrix in the flat space limit, as well as using
the F4(τ, τ̄) and F2(τ, τ̄) introduced in eqs. (1.1) and (1.2) in the Introduction.

2.1 Setup

As mentioned in the Introduction, we denote the bottom component of the stress tensor
multiplet by S. This operator is a dimension 2 scalar in the 20′ of the SU(4)R ∼= SO(6)R,
and can thus be represented as a rank-two traceless symmetric tensor SIJ(~x), with indices
I, J = 1, . . . , 6. However, in order to avoid a proliferation of indices, it is customary
to contract them with null polarization vectors Y I , with Y · Y = 0. Superconformal
symmetry [62] implies that the four-point function of S(~x, Y ) ≡ SIJ(~x)Y IY J takes the form

〈S(~x1, Y1) · · ·S(~x4, Y4)〉 = 1
~x4

12~x
4
34
~S · ~B , ~S ≡ ~Sfree + ~ST , (2.1)

where ~xij ≡ ~xi − ~xj , and where

~Sfree ≡
(
1 U2 U2

V 2
1
c
U2

V
1
c
U
V

1
cU
)
,

~S ≡
(
V UV U U(U − V − 1) 1− U − V V (V − U − 1)

)
,

B =
(
Y 2

12Y
2

34 Y
2

13Y
2

24 Y
2

14Y
2

23 Y13Y14Y23Y24 Y12Y14Y23Y34 Y12Y13Y24Y34
)
.

(2.2)

Here, as before, c is the conformal anomaly coefficient, which for an SU(N) gauge group
equals c = (N2 − 1)/4; the quantities U ≡ ~x2

12~x
2
34

~x2
13~x

2
24

and V ≡ ~x2
14~x

2
23

~x2
13~x

2
24

are the usual conformal
invariant cross-ratios; and Yij ≡ Yi · Yj are SO(6)R invariants. Importantly, the only
non-trivial information in the correlator (2.1) is encoded in the single function T (U, V ).

2.2 Strong coupling expansion

We now restrict our discussion to the case of the SU(N) N = 4 SYM theory, and discuss
the strong coupling ’t Hooft limit, where we take N → ∞ (or c → ∞) with λ ≡ g2

YMN
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fixed. If we further take λ→∞, the holographic correlator can be computed from Witten
diagrams in an expansion around AdS5 × S5 supergravity. In the strong coupling limit, it
is convenient to work with the Mellin transformM of T via6

T (U, V ) =
∫ i∞

−i∞

ds dt

(4πi)2U
s
2V

t
2−2Γ

[
2− s

2

]2
Γ
[
2− t

2

]2
Γ
[
2− u

2

]2
M(s, t) , (2.3)

where u ≡ 4− s− t.
Crossing symmetry M(s, t) = M(t, s) = M(s, u) and the analytic properties of the

Mellin amplitude (for a detailed description, see [41]) then restrict M(s, t) to have a 1/c
and 1/λ expansion of the form

M =1
c

[
8MSG + λ−

3
2B0

0M0 + λ−
5
2
[
B2

2M2 +B2
0M0

]
+ λ−3

[
B3

3M3 +B3
2M2 +B3

0M0
]

+O(λ−
7
2 )
]

+ 1
c2

[
λ

1
2B0

0M
0 +

[
MSG|SG +B

SG|SG
0 M0

]
+O(λ−1)

]
+ 1
c3

[
λ

3
2B2

2M
2 +O(λ1)

]
+ 1
c4

[
λ3
[
B3

3M
3 +B3

2M
2 +B3

0M
0
]

+O(λ
5
2 )
]

+O(c−5) , (2.4)

which can be transformed to position space using (2.3) to get

T =1
c

[
8T SG + λ−

3
2B0

0T 0 + λ−
5
2
[
B2

2T 2 +B2
0T 0

]
+ λ−3

[
B3

3T 3 +B3
2T 2 +B3

0T 0
]

+O(λ−
7
2 )
]

+ 1
c2

[
λ

1
2B0

0T
0 +

[
T SG|SG +B

SG|SG
0 T 0

]
+O(λ−1)

]
+ 1
c3

[
λ

3
2B2

2T
2 +O(λ1)

]
+ 1
c4

[
λ3
[
B3

3T
3 +B3

2T
2 +B3

0T
0
]

+O(λ
5
2 )
]

+O(c−5) .

(2.5)

Here, the B’s are numerical coefficients that cannot be fixed from symmetry alone. As
mentioned in the Introduction, terms at order 1/cg+1 correspond in the flat space limit
to genus-g corrections to the Type IIB S-matrix. On AdS5 × S5, these terms receive
contributions from l-loop Witten diagrams with l ≤ g. The leading order term is tree-level
supergravity, whose expression in Mellin and position space is [49, 74]

MSG = 1
(s− 2)(t− 2)(u− 2) , T SG = −1

8U
2D̄2,4,2,2(U, V ) , (2.6)

where the position space expression is written in terms of the functions D̄r1,r2,r3,r3(U, V ) de-
fined in [8]. The coefficient ofMSG is fixed by requiring that the unprotected R-symmetry
singlet of dimension two that appears in the conformal block decomposition of the free
part ~Sfree is not present in the full correlator [21]. In our conventions [40], this amounts to
setting the coefficient ofMSG to 8/c. To the order considered in (2.5), the only loop term
is T SG|SG, which arises from a loop Witten diagram with two supergravity vertices and

6The Mellin transform can also be defined away from the strong coupling limit. For recent work on this
topic, see [73].
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so scales like 1/c2. This term was determined in [52, 56, 58] using unitarity methods up
to a contact term ambiguity, which was further fixed in [41]. Our convention for MSG|SG

follows [41], which is the Mellin transform of T SG|SG in [52], although we will not make use
of the explicit forms of these quantities.

The remaining terms in (2.5) arise from contact Witten diagrams whose vertices are
higher derivative corrections to tree-level supergravity. In particular, the functions Mn

and T n correspond to vertices of the form D2nR4, and their expressions in Mellin and
position space are [28]

M0 = 1 , T 0 = U2D̄4,4,4,4 ,

M2 = s2 + t2 + u2 , T 2 = 4U2
(
(1 + U + V )D̄5,5,5,5 − 4D̄4,4,4,4

)
,

M3 = stu , T 3 = −8U2
(
D̄5,5,5,7 + (1 + U + V )D̄5,5,5,5 − 8D̄4,4,4,4

)
.

(2.7)

We will now fix the various B’s in (2.5) using type IIB string theory and/or the localization
constraints.

2.3 Constraints from flat space type IIB string theory

Following the general approach of [47], one can relate the holographic correlator 〈SSSS〉
on AdS5 × S5 as written in terms of the Mellin amplitudeM(s, t) in (2.3) to the type IIB
S-matrix. The scattering amplitude of four gravitons (or superpartners) in type IIB string
theory takes the form

A = ASGf(s, t) , (2.8)

where ASG is the tree-level supergravity amplitude, and s, t, u = −s−t are the Mandelstam
invariants. The full amplitude as well as the tree-level supergravity amplitude in (2.8)
depend on the momenta and polarizations of the scattered particles, which is information
that we suppress in writing down (2.8). The function f(s, t) has been computed in a small
g2
s expansion to genus-two for finite `s [75, 76], and to genus-three [77] to the lowest few
orders in `s. We will consider the following terms in the small gs and `s expansion:

f(s, t) =
[(

1 + `6sf
0
R4(s, t) + `10

s f
0
D4R4(s, t) + `12

s f
2
D6R4 +O(`14

s )
)

+g2
s

(
`6sf

1
R4(s, t) + `8sf

1
SG|SG(s, t) + `10

s f
1
D4R4(s, t) + `12

s f
2
D6R4 +O(`14

s )
)

+g4
s

(
`6sf

2
R4(s, t) + `10

s f
2
D4R4 + `12

s f
2
D6R4 +O(`14

s )
)

+g6
s

(
`6sf

3
R4(s, t) + `10

s f
3
D4R4 + `12

s f
3
D6R4 +O(`14

s )
)

+O(g8
s)
]
.

(2.9)

Higher orders in `s can come from contact terms of higher derivative correction to super-
gravity, which are analytic in s, t, u and have an expansion in gs, as well as loops, which
are non-analytic in s, t, u. The first few higher derivative terms are R4, D4R4, and D6R4.
These are the only protected terms. They receive corrections at genus-zero for R4, genus
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two for D4R4, and up to genus three for D6R4. These take the form

f0
R4 = ζ(3)

32 stu , f0
D4R4 = ζ(5)

210 stu(s2 + t2 + u2) , f0
D6R4 = ζ(3)2

211 (stu)2 ,

f1
R4 = π2

96stu , f1
D4R4 = 0 , f1

D6R4 = π2ζ(3)
3 · 211 (stu)2 ,

f2
R4 = 0 , f2

D4R4 = π4

29 · 135stu(s2 + t2 + u2) , f2
D6R4 = π4

15 · 211 (stu)2 ,

f3
R4 = 0 , f3

D4R4 = 0 , f3
D6R4 = π6

8505 · 210 (stu)2 .

(2.10)

The only loop term shown in (2.9) is the one-loop term with two supergravity vertices,
which can be computed from the genus-zero supergravity term using unitarity cuts [78].

The Mellin amplitude M(s, t) is then related to the function f(s, t) according to the
flat space limit formula [30, 32, 40, 46, 47]:

f(s, t) = stu

2048π2g2
s`

8
s

lim
L/`s→∞

L14
∫ κ+i∞

κ−i∞

dα

2πi e
αα−6M

(
L2

2αs,
L2

2αt
)
, (2.11)

where the momenta of the flat space S-matrix are restricted to lie within five of the ten
dimensions. (When taking this limit, one uses the AdS/CFT dictionary7

L4

`4s
= λ = g2

YMN , gs = g2
YM
4π

(2.12)

to first write the correlation function in terms of gs, `s, and L, and then one takes L/`s to
infinity as in (2.11).) We can then use the known terms in (2.10) for the type IIB S-matrix
to fix the leading s, t terms Bm

m in the AdS5 × S5 correlator:

Constraints from flat space limit:

R4 : B0
0 = 120ζ(3) , B0

0 = 5
8 ,

D4R4 : B2
2 = 630ζ(5) , B2

2 = 7
3072 ,

D6R4 : B3
3 = 5040ζ(3)2 , B3

3 = 1
221184 ,

(2.13)

where the constraints on the R4 and D4R4 coefficients were already derived in this way
in [49]. Note that the R4 term is thus entirely fixed from the flat space limit alone.

2.4 Constraints from supersymmetric localization

As mentioned in the Introduction, we can also constrain 〈SSSS〉 just from the mass-
deformed sphere free energy F (m, τ, τ̄), which ref. [39] expressed as an N -dimensional
matrix model integral using supersymmetric localization. We have two such constraints,

7In the strong coupling limit we consider in this paper, the θ angle does not appear.
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one coming from F2(τ, τ̄) ≡ ∂τ∂τ̄∂2
mF |m=0 and one from F4(τ, τ̄) ≡ ∂4

mF (m, τ, τ̄)
∣∣
m=0. The

first one was shown in [40] to take the form8

F2(τ, τ̄)
∂τ∂τ̄F

= 32c
π

∫
dr dθ r3 sin2 θ

r2 − 1− 2r2 log r
(r2 − 1)2

T (1 + r2 − 2r cos θ, r2)
(1 + r2 − 2r cos θ)2 . (2.14)

As we will show in the next section, we can simplify this expression using crossing symmetry,
obtaining
F2(τ, τ̄)
∂τ∂τ̄F

= 8cI2[T ] , I2[T ] ≡ − 2
π

∫
drdθ

r3 sin2 θ

U2 T (U, V )
∣∣∣∣
U=1+r2−2r cos θ

V=r2

. (2.15)

The second constraint, whose detailed derivation we postpone until section 3, takes the form

F4 = −48ζ(3)c− c2I4[T ] ,

I4[T ] ≡ 32
π

∫
dr dθ r3 sin2 θ

1 + U + V

U2 D̄1,1,1,1(U, V )T (U, V )
∣∣∣∣
U=1+r2−2r cos θ

V=r2

.
(2.16)

The right-hand sides of eqs. (2.15)–(2.16) involve the integrals I2[G(U, V )] and
I4[G(U, V )], respectively, which, when evaluated on the functions of position defined
in (2.6)–(2.7) are

I2[T SG] = 1
32 , I2[T 0] = − 1

40 , I2[T 2] = − 2
35 , I2[T 3] = − 4

35 ,

I4[T SG] = 3− 6ζ(3) , I4[T 0] = 16
5 , I4[T 2] = 272

35 , I4[T 3] = 512
35 . (2.17)

The I2[T SG], I2[T 0], and I2[T 2] integrals were first computed numerically in [40] using
the position space expressions (2.7). In appendix B, we confirm these results analytically
using the simplified version (2.15) of the constraint (2.14), and we also compute analyti-
cally the new integral I2[T 3]. The integrals for I4[G] quoted in (2.17) were all computed
numerically to high precision. It would be interesting to develop an analytical method for
computing them.

The l.h.s. of (2.15) was computed to leading order in the ’t Hooft limit in [79], and used
along with the flat space limit in [40] to fix the coefficients of both R4 and D4R4 at genus
zero. In [41], this computation was extended to O(N−6) and finite λ using topological
recursion. As reviewed in appendix A, the finite λ result takes the form of a single Fourier
integral, which can then be expanded analytically to any order in 1/λ following appendix D
of [40]. This can be used to fix the remaining non-zero genus terms in R4 and D4R4, as
well as the one-loop ambiguity termM0, giving

Constraints from F2:

R4 : B0
0 = 120ζ(3) , B0

0 = 5
8 ,

SG|SG : B
SG|SG
0 = 15

4 ,

D4R4 : 16B2
2 + 7B2

0 = −3150ζ(5) , 16B2
2 + 7B2

0 = − 35
3072 .

(2.18)

8Note that for the SU(N) N = 4 SYM theory, we have ∂τ∂τ̄F = − cλ2

32π2N2 = − cλ2

32π2(4c+1) .
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In appendix A, we similarly use topological recursion to compute the l.h.s. of (2.16)
to O(N−6) for finite λ.9 The result now involves two Fourier integrals, which cannot be
analytically expanded in 1/λ as in appendix D of [40] unless the Fourier integrals factorize.
Instead, we had to resort to a numerical large λ expansion, which we show in (A.33).
Without using the flat space limit, the two integrated constraints can then be used to
fix more coefficients beyond those in (2.18), namely we completely determine the D4R4

coefficients and determine relations between the D6R4 ones:

Constraints from F4 and F2:

D4R4 : B2
0 = −3B2

2 = −1890ζ(5) , B2
0 = −3B2

2 = − 7
1024 ,

D6R4 : 630ζ(3)2 = 7B3
0

32 +B3
3 , B3

2 = −1260ζ(3)2 ,

1
1769472 = 7B3

0
32 +B3

3 , B3
2 = − 1

884736 .

(2.19)

In addition, we can check that the constraint coming from F4 by itself is sufficient to
determine the R4 coefficients constrained using F2 in (2.18). We cannot perform a similar
check for BSG|SG

0 because we have not expanded F4 to this order. Note that the localization
constraints completely fix the D4R4 terms, which matches what we found from type IIB
string theory in (2.13). This is a nontrivial check of AdS/CFT at this order.

2.5 〈SSSS〉 to order 1/N8

By combining the string theory and localization constraints we can fix all the terms in (2.4)
to get

M =1
c

[ 8
(s− 2)(t− 2)(u− 2) + 120ζ(3)

λ
3
2

+ 630ζ(5)
λ

5
2

[
s2 + t2 + u2 − 3

]
+ 5040ζ(3)2

λ3

[
stu− 1

4(s2 + t2 + u2)− 4
]

+O(λ−3)
]

+ 1
c2

[
5
√
λ

8 +MSG|SG + 15
4 +O(λ−

3
2 )
]

+ 1
c3

[
7λ

3
2

3072
[
s2 + t2 + u2 − 3

]
+O(λ)

]

+ 1
c4

[
λ3

221184

[
stu− 1

4(s2 + t2 + u2)− 4
]

+O(λ
5
2 )
]

+O(c−5) ,

(2.20)

which is one of our main results, and which we also quoted in the Introduction. In partic-
ular, we have fixed the genus-zero and genus-three terms in D6R4, where the latter scales
as λ3/N8 and is the first result in N = 4 SYM at three orders beyond the planar limit!

9We also use the method of orthogonal polynomials in appendix A to compute the non-instanton terms
in F4(τ, τ̄) for finite N and λ, following a similar calculation in [41] for F2(τ, τ̄). While this result is not
directly applicable to the strong coupling expansion considered here, it can be used to check the topological
recursion expression for large N .
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Note that we cannot yet fix the genus-one and genus-two terms in D6R4, since we have
been unable to accurately expand the localization constraint at large λ to the required
orders yet.

Now that 〈SSSS〉 has been fixed to the order shown in (2.20), we can use it to extract
any CFT data to this order that we like. For instance, we find the anomalous dimensions
γj of the unique lowest twist even spin j double trace operators [S∂µ1 . . . ∂µjS] to be

γj = 1
c

[
− 24

(j + 1)(j + 6) −
4320ζ(3)

7λ
3
2

δj,0 −
ζ(5)
λ

5
2

[
30600δj,0 + 201600

11 δj,2

]
+ ζ(3)2

λ3
3628800

11 δj,2 +O(λ−
7
2 )
]

+ 1
c2

[
−45
√
λ

14 δj,0 + 24
(
7j4 + 74j3 − 553j2 − 4904j − 3444

)
(j − 1)(j + 1)3(j + 6)3(j + 8) − 135

7 δj,0

]

+ 1
c3

[
−λ

3
2

[ 85
768δj,0 + 35

528δj,2
]

+O(λ)
]

+ 1
c4

[
5λ3

16896δj,2 +O(λ)
]

+O(c−5) ,

(2.21)

where the three O(c−1) terms were computed in [80, 81], [49], and [40], respectively, while
the one-loop supergravity term was computed in [41, 52]. Contact terms with n-derivatives
only contribute to operators up to spin n/2−4, as explained in [20]. For higher twist there
are many degenerate double trace operators, so one would need to compute many different
half-BPS correlators to determine their anomalous dimensions [51, 52].

3 Constraints from the sphere partition function

In this section, let us complete our discussion by relating T (U, V ) defined in (2.1) to the
derivatives of the S4 partition function of the mass-deformed N = 4 SYM theory that were
introduced in Eqs (1.1)–(1.2). Both quantities involve special types of supersymmetric op-
erators on S4 that were considered in [40]. The first type are specific components of SIJ
that are Coulomb branch operators from an N = 2 point of view, and that are placed at the
poles of S4. Adding them to the action is equivalent to changing the gauge coupling [63–65].
The second type of supersymmetric operators considered in [40] are integrated operators
that couple to an N = 2-preserving real-mass deformation. As mentioned in the Introduc-
tion, ref. [40] considered only the quantity F2(τ, τ̄) = ∂τ∂τ̄∂

2
mF

∣∣
m=0 (defined in eq. (1.2))

that equals the four-point function of two operators of the first type mentioned above and
two operators of the second type. This quantity gave the constraint on T given in (2.14).
In this section we consider the constraint coming from the quantity F4(τ, τ̄) ≡ ∂4

mF
∣∣
m=0

(defined in eq. (1.1)). This quantity corresponds to four integrated insertions, and, for
reasons that will become clear, this integrated correlator is more difficult to analyze than
the correlator that led to (2.14).

3.1 Correlators in N = 4 SYM

Each integrated insertion is a linear combination of specific components of SIJ and specific
components of the ∆ = 3 operators PAB and their conjugates P̄AB transforming in the
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10 and 10 of SU(4)R, respectively. Here, the indices A,B = 1, . . . , 4 are placed in a lower
(upper) position when they correspond to the 4 (4) of SU(4)R. Since the 10 and 10 are
rank-two symmetric products of 4 and 4, respectively, the operators PAB and P̄AB are
symmetric tensors. For concreteness, we normalize S and P such that

〈S(~x1, Y1)S(~x2, Y2)〉 = (Y1 · Y2)2

|~x12|4
, 〈P (~x1, X̄1)P̄ (~x2, X2)〉 = (X̄1 ·X2)2

|~x12|6
, (3.1)

where we wrote P (~x,X) = PAB(~x)X̄AX̄B and P̄ (~x, X̄) = P̄AB(~x)XAXB using polarization
vectors X̄ and X, respectively. The dot product in (3.1) and in subsequent equations
stands for contraction using the Kronecker delta symbol. Before discussing in detail which
components of S, P , and P̄ participate in the mass deformation, let us point out that the
four-point function 〈PP̄P P̄ 〉 is restricted by conformal symmetry and R-symmetry to take
the form

〈P (~x1, X̄1)P̄ (~x2, X2)P (~x3, X̄3)P̄ (~x4, X4)〉 = 1
|~x12|6 |~x34|6

~P(U, V ) · ~BP , (3.2)

where a basis for the three distinct SU(4)R invariants can be taken to be

~BP ≡
(
(X̄1 ·X2)2(X̄3 ·X4)2 (X̄1 ·X4)2(X̄3 ·X2)2 (X̄1 ·X2)(X̄3 ·X4)(X̄1 ·X4)(X̄3 ·X2)

)
.

(3.3)

Thus, the 〈PP̄P P̄ 〉 correlator involves three functions Pi(U, V ), with i = 1, 2, 3. We will
also need the mixed correlator 〈SSP̄P 〉, which also involves three functions that we denote
by Ri(U, V ), with i = 1, 2, 3:

〈S(~x1, Y1)S(~x2, Y2)P̄ (~x3, X3)P (~x4, X̄4)〉 = 1
|~x12|4 |~x34|6

~R(U, V ) · ~BSP , (3.4)

where, in this case, the basis of SU(4)R invariants can be taken to be

~BSP ≡
(
(Y1 · Y2)2(X3 · X̄4)2 (Y1 · Y2){X̄4, X3, Y1, Y2} {X̄4, X3, Y1, Y2}2

)
. (3.5)

Here {X̄,X, Y1, Y2} is an SU(4)R invariant that can be formed in the product 10 ⊗ 10 ⊗
20′ ⊗ 20′ defined in eq. (A.8) of [40].

The coefficients Pi(U, V ) and Ri(U, V ) are related by the supersymmetric Ward iden-
tity to the function T (U, V ) appearing in the 〈SSSS〉 correlator. These relations are
tedious to derive and quite complicated, so they are relegated to appendix C. Separating
out the contribution from the free theory as in eq. (2.1), these relations take the form

~P(U, V ) = ~Pfree(U, V ) + ~P(U, V, ∂U , ∂V )T (U, V ) ,
~R(U, V ) = ~Rfree(U, V ) + ~R(U, V, ∂U , ∂V )T (U, V ) ,

(3.6)

where the free theory contributions are

~Pfree(U, V ) =
(
1 U3

V 3
U(1−U−V )

4cV 2

)
, ~Rfree(U, V ) =

(
1 0 0

)
, (3.7)

and the differential operators ~R and ~P are given in (C.1) and (C.5)–(C.7), respectively.
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3.2 N = 2-preserving mass deformation

Let us now discuss the mass deformation on S4 in more detail. It is customary to describe
the N = 4 SYM theory as an N = 1 gauge theory with three adjoint chiral multiplets with
scalar and fermionic components that we will denote by Zi and χi, respectively, where
i = 1, 2, 3, and with canonical kinetic terms. In the decomposition of the N = 4 vector
multiplet into an N = 2 vector multiplet and hypermultiplet, we can consider the Zi and
χi with i = 1, 2 as forming the hypermultiplet, and Z3 and χ3 as part of the N = 2
vector multiplet. The mass deformation we consider corresponds to giving a mass to the
hypermultiplet fields. On S4, this mass deformation takes the form

Sm =
∫
d4~x
√
g
[
m (iJ +K) +m2L

]
, (3.8)

where we assumed that the radius of S4 is set to one, and where the operators J , K, and
L are given by

J ≡ 1
2

2∑
i=1

Tr
(
Z2
i + Z̄2

i

)
, K ≡ −1

2

2∑
i=1

Tr(χiσ2χi + χ̃iσ2χ̃i) ,

L ≡ Tr
[
|Z1|2 + |Z2|2

]
.

(3.9)

While the operators K and L multiplying m and m2, respectively, are familiar from a flat-
space mass deformation, the operator J (with its coefficient being inversely proportional
to the radius of S4) is present here in order to preserve N = 2 supersymmetry on S4.

The operators appearing in (3.9) can be written in terms of specific components of
operators with well-defined transformation properties under the SU(4)R symmetry. In
particular, J can be written in terms of SIJ and K can be written in terms of PAB
and P̄AB:

J = NJ [S11 + S22 − S44 − S55] ,

K = NK

[
P11 + P22 + P̄ 11 + P̄ 22

]
,

(3.10)

up to some normalization constants that we denoted by NJ and NK . (We will not need a
similar expression for L in what follows.) One can determine the normalization constants
in (3.10) by computing the two-point functions of J and K using the explicit descrip-
tion (3.9) and the fact that supersymmetry implies that these two-point functions are
protected. One finds [40]

N2
K = 8N2

J = c

π4 , (3.11)

where, as before, the anomaly coefficient equals c = (N2 − 1)/4.

3.3 Four mass derivatives

The four-point function contribution to the fourth mass derivative of the free energy is

−F4 =
〈(∫

d4~x
√
g (iJ +K)

)4
〉

+ (2- and 3-pt function contributions) , (3.12)
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where the 2- and 3-point function contributions we did not write down explicitly involve
the operator L.10 Using (3.10) as well as the general form of the four-point functions
in (3.2), (3.4), and (2.1), we find

−F4 =N4
JI

4
2,2 [16 (S1 + S2 + S3) + 4(S4 + S5 + S6)]−N2

JN
2
KI

4
2,3 [96R1 + 288R3]

+N4
KI

4
3,3 [24(P1 + P2) + 12P3] + (2- and 3-pt function contributions) ,

(3.13)

where Id∆A,∆B
[G] denotes the integrated correlator on Sd of four operators of dimensions

(∆A,∆A,∆B,∆B), which was studied in detail in [32]. To write it down explicitly, first
note that on Rd, such a correlation function takes the form G(U, V )/(|~x12|2∆A |~x34|2∆B ).
On a round Sd of unit radius parameterized in stereographic coordinates such that the line
element is ds2 = Ω(~x)2d~x2, the analogous correlator is

[Ω(~x1)Ω(~x2)]−∆A [Ω(~x3)Ω(~x4)]−∆B

|~x12|2∆A |~x34|2∆B
G(U, V ) , Ω(~x) = 1

1 + ~x2

4
. (3.14)

The integrated correlator on Sd is then

Id∆A,∆B
[G] ≡

∫ ( 4∏
i=1

dd~xi

)
[Ω(~x1)Ω(~x2)]d−∆A [Ω(~x3)Ω(~x4)]d−∆B

|~x12|2∆A |~x34|2∆B
G(U, V ) . (3.15)

The quantity (3.15) was evaluated in [32], where, for d = 4, it was found that

I4
∆A,∆B

[G] = 217−2∆A−2∆Bπ7Γ(6−∆A −∆B)
3Γ(4−∆A)2Γ(4−∆B)2

×
∫
dr dθ r3 sin2 θ

[
D̄4−∆A,4−∆A,4−∆B ,4−∆B

(U, V )G(U, V )
U∆A

]
U=1+r2−2r cos θ

V=r2

.

(3.16)

Here, the D̄r1,r1,r2,r2 function is related to a contact Witten diagram in AdS4 of four scalar
fields dual to operators of dimensions r1, r1, r2, r2. While one can write explicit position-
space expressions for the D̄ functions we need, for our purposes, however, the most useful
definition the D̄ function is through the Mellin transform:

D̄r1,r1,r2,r2(U, V )

≡
∫

ds dt

(4πi)2U
s
2V

t
2 Γ
(
−s+ 2(r1 − r2)

2

)
Γ
(
−s2

)
Γ
(
− t2

)2
Γ
(
s+ t+ 2r1

2

)
.

(3.17)

Note that directly plugging (3.16) into (3.13) is problematic, because I4
∆A,∆B

[G] contains a
factor of Γ(6−∆A−∆B), which diverges for the I4

3,3 terms from the second line of (3.13).
We will thus have to find a way to regularize this divergence.

The expression (3.13) can be split into two parts: one that is independent of T (U, V )
corresponding to the free theory, and one that is linear in T (U, V ) and its derivatives:

−F4 = −(∂4
mF )free

∣∣
m=0 − (∂4

mF )T
∣∣
m=0 . (3.18)

10They are −12
〈(∫

d4~x
√
g (iJ +K)

)2 (∫
d4~x
√
gL
)〉

+ 12
〈(∫

d4~x
√
gL
)2〉.
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The first term, −(∂4
mF )free

∣∣
m=0 can be calculated by plugging ~S = ~Sfree, ~R = ~Rfree,

~P = ~Pfree defined in (2.2) and (3.7) into (3.13). When performing this calculation, there
are various divergences that arise and one has to be careful to regularize them properly. We
will not do that here, and instead calculate −(∂4

mF )free
∣∣
m=0 using a different method that

avoids some of these complications. This alternative method relies on the observation that

−(∂4
mF )free

∣∣
m=0 = −4c ∂4

mFH(m)
∣∣
m=0 , (3.19)

where FH(m) is the S4 free energy of a hypermultiplet of mass m. The relation (3.19)
holds true because in the zero coupling limit, the SU(N) SYM theory of central charge
c = (N2 − 1)/4 has N2 − 1 = 4c such hypermultiplets of mass m.

The massive hypermultiplet free energy FH(m) can be determined as follows. We start
by writing down the theory of a single hypermultiplet with scalar and fermionic components
(Zi, χi), as in (3.8). The action is

Sfree =
∑
i

∫
d4x
√
g

[
|∂µZi|2 + im

2
[
(Zi)2 + (Z̄i)2

]
+ (2 +m2) |Zi|2

− χ̃Ti σ2σ̄
µDµχi −

m

2 (χiσ2χi + χ̃iσ2χ̃i)
]
.

(3.20)

The path integral ZH(m) =
∫
DXe−Sfree[X], where X denotes collectively the hypermulti-

plet fields, is a Gaussian integral that can be evaluated as a ratio of a fermionic determinant
to a bosonic one. Up to an overall m-independent normalization, this ratio is11

ZH(m) =
∏∞
n=0

[
(n+ 2)2 +m2](n+1)(n+2)(n+3)/3∏∞

n=0 [((n+ 1)2 +m2) ((n+ 2)2 +m2)](n+1)(n+2)(2n+3)/12 . (3.21)

This expression can be simplified and then regularized:

ZH(m) = 1∏∞
n=1(n2 +m2)

n
2

= 1
H(m) , H(m) ≡ e−(1+γ)m2

G(1 + im)G(1− im) ,

(3.22)

where G is the Barnes G-function and γ is the Euler-Mascheroni constant. The normaliza-
tion of ZH(m) in (3.22) was chosen such that ZH(0) = 1. The function H(m) appeared in
the supersymmetric localization computation of [39], and indeed, the result (3.22) can be
also read off from [39]. The equation (3.22) is imprecise, however, partly because the regu-
larization of (3.22) possesses ambiguities, and partly because we dropped an unambiguous
overall coefficient that depends on the radius of the sphere, as required by the conformal
anomaly. The ambiguity in the free energy FH = − logZH consists of additive terms of
the form A + Bm2 where both A and B are sums of holomorphic and anti-holomorphic
functions of the complexified coupling τ .12 Such ambiguities, as well as the unambiguous

11The eigenvalues of the bosonic operator are (n + 1 + im)(n + 2 − im) and (n + 1 − im)(n + 2 + im),
with n = 0, 1, 2, . . ., each with degeneracy Dn = 1

6 (n+ 1)(n+ 2)(2n+ 3). The eigenvalues of the fermionic
operator are n+ 2 + im n+ 2− im, each with degeneracy D̃n = 1

3 (n+ 1)(n+ 2)(n+ 3).
12A sign that such an ambiguity is present is the appearance of the Euler-Mascheroni constant γ in (3.22),

which suggests that this expression was derived in a particular regularization scheme.
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overall coefficient, drop out from the fourth mass derivative of FH that we consider here.
Note that although the overall factor e−(1+γ)m2 in (3.22) can be removed by a change of
regularization scheme, we will nevertheless keep it for later convenience. Using (3.19) and
the expression for ZH(m) = e−FH(m) in (3.22), we find

−(∂4
mF )free

∣∣
m=0 = 48c ζ(3) . (3.23)

What remains to be done is to evaluate the T -dependent contribution −(∂4
mF )T

in (3.18). From (3.12), it can be written as

−(∂4
mF )T

∣∣
m=0 = c2

16π8 I
4
2,2

[
(1 + U + V )2T

]
+ 12c2

π8 I4
3,3 [(2P1 + 2P2 + P3)T ]

− 12c2

π8 I4
2,3 [(R1 + 3R3)T ] + (2- and 3-pt function contributions) ,

(3.24)

where the 2-point and 3-point function contributions here are the subset of the ones
from (3.12) that were not accounted for in 4c copies of the free theory. We will not
write them in detail because, as we will discuss, we believe that the boundary terms from
the integration by parts we will be performing shortly precisely cancels them. Such a
phenomenon was observed also in [32] in 3d.

Let us study the first three terms in (3.24) separately, and let us aim to write them in
the “canonical form”

F [Q] =
∫
dr dθ r3 sin2 θ

(1 + U + V )T (U, V )
U2

×
∫

ds dt

(4πi)2U
s
2V

t
2 Γ2

(
−s2

)
Γ2
(
− t2

)
Γ2
(
−u2

)
Q(s, t, u)

∣∣∣∣
U=1+r2−2r cos θ

V=r2

,
(3.25)

where u = −2 − s − t, where each term will have a different function Q(s, t, u). The
expression (3.25) is designed such that when Q = 1, the second line equals D̄1,1,1,1(U, V ),
as can be seen from (3.17).

For the first term in (3.24), we combine (3.16) with (3.17) and shift the integration
variables as appropriate to obtain

I4
2,2

[
(1 + U + V )2T

]
= F [QSSSS ] , QSSSS = 128π7

3 (s2 + t2 + u2) . (3.26)

For the second term, we plug (C.2) into (3.16), and then we integrate by parts to put all
the derivatives on the D̄2,2,1,1 function. We obtain

I4
2,3 [(R1 + 3R3)T ] = 32

3 π
7
∫
dr dθ r3 sin2 θ

V (1 + U + V )
U2

×
[
U2∂2

U + 4U∂U + U(U + V − 1)∂U∂V + UV ∂2
V

+ (3U + V − 1)∂V + 2
]
D̄2,2,1,1(U, V )

∣∣∣∣
U=1+r2−2r cos θ

V=r2

.

(3.27)
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Then, using the expression (3.17) for the D̄2,2,1,1 function in Mellin space, we can
write (3.27) in the canonical form (3.25):

I4
2,3 [(R1 + 3R3)T ] = F [QSSPP ] , QSSPP = −8π7

3 tu . (3.28)

For the third term in (3.24), we should follow a similar procedure. Since the prefactor
in (3.16) diverges when ∆A = ∆B = 3, we should evaluate this quantity in a way that
avoids this divergence. This can be done by first considering ∆A = 3 and ∆B = 3 − ε,
both in the prefactor and in the expression for the D̄ function in (3.16).13 We then use
the Ward identity (C.8) (which, as will be justified shortly, should also hold for non-zero
ε), integrate by parts, and then take ε→ 0. This procedure gives

I4
3,3 [(2P1 + 2P2 + P3)T ] = F [QPPPP ] , QPPPP = 2π7

3 u(u− 2) . (3.29)

The fact that we can use the same Ward identity (C.8) when ε 6= 0 can be justified
as follows. Instead of considering the four-point functions of operators from the stress
tensor multiplet, we can consider four-point functions where the first two operators are
from the stress-tensor multiplet and the last two are from other half-BPS multiplets whose
superconformal primaries Sp transform in the [0p0] irrep of SU(4)R and have dimension
∆p = p. (The stress tensor multiplet corresponds to p = 2.) This multiplet contains
generalizations Pp and P̄p of the P and P̄ operators, respectively, which transform in the
[2(p−2)0] and [0(p−2)2] of SU(4)R, respectively, and have scaling dimensions ∆p+1. The
form of any of the mixed correlation functions with two operators from the p = 2 multiplet
and two operators from a p 6= 2 multiplet is precisely the same as when p = 2, except that
there is an additional factor of (Y3 · Y4)p−2. Moreover, the Ward identity relations relating
〈PP̄PpP̄p〉 to 〈SSSpSp〉 is independent of p. Analytically continuing 〈PP̄PpP̄p〉 in p to
p = 2− ε leads to ∆B = 3− ε as above.

Combining the above results, we have

−(∂4
mF )T

∣∣
m=0 = c2

16π8F [QSSSS + 192(QPPPP −QSSPP )] . (3.30)

3.4 Simplification using crossing symmetry and final formula

One can simplify the formula (3.30) using crossing symmetry. Crossing symmetry relies
on the observation that under a simultaneous relabeling of the pairs (~xi, Yi) in (2.1), the
four-point function should remain unchanged. There are 24 orderings of these four pairs,
but some of them leave (2.1) manifestly invariant. There are six that do not, and the
impose the following crossing constraints on the function T :

T
(
U

V
,

1
V

)
= T

(
V

U
,

1
U

)
= V 2T (U, V ) , T

( 1
U
,
V

U

)
= T (U, V ) ,

T
( 1
V
,
U

V

)
= T (V,U) = V 2

U2T (U, V ) .
(3.31)

13We are grateful to Thomas Dumitrescu for extensive discussions about this issue.
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Thus, we write (3.25) in five other equivalent ways by simply sending (U, V ) to either(
U
V ,

1
V

)
,
(
V
U ,

1
U

)
,
(

1
U ,

V
U

)
,
(

1
V ,

U
V

)
, or (V,U) (along with corresponding changes in (r, η)),

and then using the relations in (3.31). Averaging over these six possibilities (the original
expression (3.25) as well as the five expressions obtained as above), one obtains a similar
expression to (3.25), with the only difference being that the factor U

s
2V

t
2 is symmetrized

in s, t, and u:

U
s
2V

t
2 → U

s
2V

t
2 + U

s
2V

u
2 + U

u
2 V

t
2 + U

t
2V

s
2 + U

t
2V

u
2 + U

s
2V

u
2

6 , (3.32)

where u = −2− s− t. One can then rename s, t, and u to rewrite (3.25) such that Q(s, t)
is replaced by the symmetrized expression

Q(s, t)→ Q(s, t) +Q(s, u) +Q(u, t) +Q(t, s) +Q(t, u) +Q(s, u)
6 . (3.33)

After this symmetrization, eqs. (3.26), (3.28), and (3.29) imply that we can replace QSSSS ,
QSSPP , and QPPPP by

QSSSS = 128π7

3 (s2 + t2 + u2) ,

QSSPP = −8π7

9 (st+ su+ tu) = 4π7

9 (s2 + t2 + u2 − 4) ,

QPPPP = 2π7

9 (s2 + t2 + u2 + 4) .

(3.34)

Plugging (3.34) into (3.30), we see quite nicely that the dependence on s, t, and u inside
the argument of F disappears, and we simply have

−(∂4
mF )T

∣∣
m=0 = 32c2

π
F [1] . (3.35)

Recalling that evaluating F at Q = 1 means replacing the second line of (3.25) with
D̄1,1,1,1(U, V ), we then conclude that

−(∂4
mF )T

∣∣
m=0 = c2I4[T ] , (3.36)

with I4[T ] defined in (2.16). Combining this expression with (3.23), we immediately ob-
tain (2.16). This is our final formula for F4(τ, τ̄).

There are two loose ends to be tied up. The first concerns the 2- and 3-point function
contributions in (3.24). We note that the mass parameter m has dimension 1, so m must
couple to an operator of dimension precisely 3 and m2 must couple to an operator of
dimension precisely 2. Away from zero coupling, the only such operators present are
operators in the SU(N) N = 4 stress tensor multiplet, whose canonically-normalized 2-
and 3-point functions are proportional to c. Thus, the entire 2- and 3-point function
contribution to (3.12) must be proportional to c as well, so any such contribution that
we did not take into account would simply modify the first term in (2.16). However, we
did check that with the formula (2.16) as written, there is agreement between the leading
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large c supersymmetric localization result for F4 and the explicit evaluation of the r.h.s.
of (2.16) using the known supergravity amplitude (2.6). This is a strong check that the
coefficient of the term proportional to c in (2.16) is as written.

The second loose end concerns the simplified formula (2.15) for the mixed derivative
F2(τ, τ̄). As mentioned before, ref. [40] derived the relation (2.14) between the mixed
derivatives of the N = 2∗ partition function and an integral of T (U, V ). One can simplify
this formula using crossing symmetry, namely by taking the average between (2.14) and the
expression obtained after replacing (U, V ) in (2.14) by

(
U
V ,

1
V

)
,
(
V
U ,

1
U

)
,
(

1
U ,

V
U

)
,
(

1
V ,

U
V

)
,

or (V,U), and after using (3.31) to write everything in terms of T (U, V ). This procedure
gives (2.15).

As a final comment, let us note that the integrated relations (2.15) and (2.16) do
not apply only to the N = 4 SYM theory with gauge group SU(N). These expressions
apply equally well to N = 4 SYM with some other semi-simple gauge group G, for which
c = (dimG)/4, where dimG denotes the dimension of G.

4 Discussion

The main result of this work was a new exact relation between four derivatives of the mass
deformed sphere free energy, F4(τ, τ̄) ≡ ∂4

mF (m, τ, τ̄)
∣∣
m=0, and an integral of the four point

function 〈SSSS〉 of the superconformal primary S of the stress tensor multiplet in N = 4
SYM theory. For gauge group SU(N), we applied this constraint in the strong coupling ’t
Hooft limit at large c ∼ N2 and large λ, where the N = 4 SYM theory is holographically
dual to type IIB string theory on AdS5 × S5. In combination with the constraint coming
from F2(τ, τ̄) = ∂τ∂τ̄∂

2
mF (m, τ, τ̄)

∣∣
m=0 derived in [40], the F4(τ, τ̄) constraint allowed us to

completely fix the D4R4 contributions to the 〈SSSS〉 correlation function. (This contact
interaction vertex contributes non-trivially at genus zero and genus two.) In the flat space
limit, we matched these contributions to the known D4R4 terms in the Type IIB S-matrix.
Using the constraint on 〈SSSS〉 from the known flat space S-matrix combined with the
two constraints from F2 and F2, we were able to further fix the genus-zero and genus-three
D6R4 term in 〈SSSS〉, where the latter scales as λ3c−4 and is the first known contribution
to 〈SSSS〉 that has been computed at order 1/c4.

Looking ahead, it would be useful to develop an analytic large λ expansion of F4(τ, τ̄),
as was achieved for F2(τ, τ̄) in [41]. In the latter case, the large N and finite λ expressions
obtained by topological recursion were given in terms of a single Fourier integral, which
could then be analytically expanded to any order in λ using the method described in
appendix D of [40]. For F4(τ, τ̄), however, the large N and finite λ expressions that we
derived in this work are given in terms of two Fourier integrals, which were not amenable
to the method of appendix D of [40] unless the Fourier integrals factorized. Instead, we had
to resort to a numerical large λ expansion, which only gave precise results at low orders in
λ. In particular, we were unable to compute the N0λ0, N0λ−

1
2 , and N−2λ contributions

to F4(τ, τ̄). The first term could be used to confirm the derivation of the one-loop constant
ambiguity BSG|SG

0 that was previously fixed in [41] using F2(τ, τ̄). The N0λ−
1
2 and N−2λ

terms could be used to derive the genus one and two contributions, respectively, to D6R4

in 〈SSSS〉, which would complete the derivation of the D6R4 term begun in this work.
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While in this work we considered the strong coupling ’t Hooft limit, one could also
consider the holographic limit where N →∞ and τ = θ

2π + 4πi
g2

YM
is finite. In the flat-space

limit, this strong coupling limit of the 〈SSSS〉 correlator should match the small `s and
finite τs = χs + ig−1

s expansion of the type IIB S-matrix, where χs is the expectation value
of the type IIB axion. The coefficients of the various powers of 1/c in 〈SSSS〉 for each
expansion must be SL(2,Z) invariants of τ and τ̄ . In the flat space limit, the coefficients
of 1/c7/4, 1/c9/4, and 1/c5/2 correspond to the protected R4, D4R4, and D6R4 contact
amplitudes that were derived in [82–86]. In [42], the mixed mass derivative F2(τ, τ̄) was
studied in this limit, and combining the integrated constraints with the flat space limit, it
was possible to completely determine the 〈SSSS〉 correlator at orders 1/c7/4 and 1/c9/4. It
would be very interesting, but much harder, to extend this analysis to F4(τ, τ̄). We leave
this topic for future work [87].

In addition to the constraints on the 〈SSSS〉 correlator considered here, one could
also consider new integrated constraints that come from derivatives in terms of the squash-
ing parameter b for the free energy F (b,m, τ, τ̄) on the squashed sphere, which was also
computed in terms of a matrix model using localization in [88]. Of the three possible
constraints:

∂4
bF (b, 0, τ)

∣∣
b=1 , ∂2

b∂
2
mF (b,m, τ)

∣∣
b=1,m=0 , ∂τ∂τ̄∂

2
bF (b, 0, τ)

∣∣
b=1 , (4.1)

we expect that only one of the first two constraints to be linearly independent from the two
already considered, which is exactly enough constraints to fix the D6R4 term in 〈SSSS〉
purely from CFT. These three localization constraints could also be combined with the
known type IIB S-matrix in the flat space limit to fix the four ambiguities in the one-
loop termMSG|R4

genus-0 with one supergravity vertex and one genus-zero R4 vertex [55, 56],
which scales like λ−

3
2N−4. One could similarly fix the D8R4 contact term to genus two.

Lastly, while the application of integrated constraints and localization to holographic
correlators has been to the large N expansion in this paper and previous work [40–42], these
relations are in fact non-perturbative, and so could be applied to the numerical bootstrap
for N = 4 SYM [89, 90]. For this purpose, the finite N formula for the perturbative part of
the mass deformed free energy, as derived using orthogonal polynomials in appendix A.3,
will be especially useful, especially if one could augment it with a similar formula for the
contribution from the Nekrasov partition function. These constraints could allow one to
impose the values of τ and τ̄ in the numerical bootstrap for finite N , just as N was imposed
in the original studies [89, 90] using the conformal anomaly c, and thereby solve N = 4
SYM numerically for all τ , τ̄ and N .
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A F4(τ, τ̄ ) from supersymmetric localization

In this appendix, we show how F4(τ, τ̄) can be computed from the supersymmetric localiza-
tion result of [39], following a similar calculation for F2(τ, τ̄) in [41]. We will start by writing
F4(τ, τ̄) as an expectation value of an operator in a Gaussian matrix model. We then eval-
uate this expectation value to any order in 1/N2 using topological recursion [68, 69], or for
finite N and λ = 4πN

=τ (ignoring instantons) using orthogonal polynomials [70].

A.1 Matrix model expectation value

As shown by Pestun [39], the S4 partition function Z = exp(−F ) of the SU(N) N = 2∗ is
given by

Z(m, τ, τ̄) =
∫
dNa δ

(∑
i

ai

)
e−

8π2N
λ

∑
i
a2
i |Zinst(m, τ)|2

∏
i<j a

2
ijH

2(aij)
H(m)N−1∏

i 6=j H(aij +m) ,

(A.1)

where we denoted aij ≡ ai−aj , and where the delta function enforces the SU(N) constraint
that the eigenvalues sum to zero. The function H(m) appearing in (A.1) was already de-
fined in the main text in eq. (3.22). The quantity |Zinst(m, τ)|2 represents the contribution
to the localized partition function coming from instantons located at the North and South
poles of S4 [91–94], and can be ignored in the ’t Hooft limit because it is non-perturbative
when gYM → 0.

The l.h.s. of the perturbative part of the integrated constraint (3.36) is then

−∂4
mF

pert|m=0 = − 12ζ(3) +
∑
i,j

〈K ′′′(aij)〉

+ 3
∑
i,j,k,l

[
〈K ′(aij)K ′(akl)〉 − 〈K ′(aij)〉〈K ′(akl)〉

]
,

(A.2)

where K(z) ≡ −H′(z)
H(z) , and where the expectation values are taken in the Gaussian matrix

model

Z =
∫
dNa δ

(∑
i

ai

)
e−

8π2N
λ

∑
i
a2
i

∏
i<j

a2
ij . (A.3)

The function K ′(z) can be simply expressed using its Fourier transform [79]

K ′(z) = −
∫ ∞

0
dω

2ω[cos(2ωz)− 1]
sinh2 ω

. (A.4)

To calculate (A.2), we should then first compute the 2-body expectation value

I(ω) ≡
∑
i,j

〈cos(2ωaij)〉 =
∑
i,j

〈e2iωaij 〉 , (A.5)
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and the 4-body expectation value

J (ω,w) ≡
∑
i,j,k,l

[〈cos(2ωaij) cos(2wakl)〉 − 〈cos(2ωaij)〉〈cos(2wakl)〉]

=
∑
i,j,k,l

[
〈e2iωaije2iwakl〉 − 〈e2iωaij 〉〈e2iwakl〉

]
,

(A.6)

in terms of which we can write (A.2) as

−∂4
mF

pert|m=0 =− 12ζ(3) +
∫ ∞

0
dω

8ω3I(ω)
sinh2 ω

+
∫ ∞

0
dω

∫ ∞
0

dw
12wωJ (ω,w)
sinh2w sinh2 ω

. (A.7)

The 2-body term I(ω) also occurs in the matrix model computation of the l.h.s. of (2.15),
whose non-instanton part can be written as [41]

c

8
∂2
m∂τ∂τ̄F

pert

∂τ∂τ̄F
= − 1

8λ2∂
2
λ−1

∫ ∞
0

dω
ωI(ω)
sinh2 ω

. (A.8)

This quantity was actually already computed in [41] to all orders in 1/N2 in the ’t Hooft
limit for finite λ (and to any order in 1/λ) using topological recursion [68, 69], and for
finite N,λ (ignoring instantons) using orthogonal polynomials [70]. We will apply these
methods to the 4-body term J (ω,w), and then combine with the known results for I(ω)
to compute (A.7).

A.2 1/N2 expansion from topological recursion

Following [41], we will relate the expectation values in (A.5) and (A.6) to expectation
values of product of resolvents. Let us define the n-point correlator as

Rn(y1, . . . , yn) ≡ Nn−2
〈∑

i1

1
y1 − ai1

· · ·
∑
in

1
yn − ain

〉
, (A.9)

where the expectation value is taken in the Gaussian matrix model (A.3). We can then
write the expectation values in (A.5) and (A.6) in terms of inverse Laplace transforms of
resolvents. Defining the inverse Laplace transform of a function f by

f̂(b1, . . . , bn) ≡ 1
(2πi)n

[
n∏
i=1

∫ γi+i∞

γi−i∞
dyie

biyi

]
f(y1, . . . , yn) , (A.10)

with γi chosen so that the contour lies to the right of all singularities in the integrand, we
then have

I(ω) = R̂2(2iω,−2iω) ,
J (ω) = R̂4(2iω,−2iω, 2iw,−2iw)− R̂2(2iω,−2iω)R̂2(2iw,−2iw) .

(A.11)

To compute the 2-point and 4-point functions appearing in (A.11), we first use the fact
that these quantities are equal to the analogous quantities defined in the U(N) matrix model

ZU(N) =
∫
dNa e−

8π2N
λ

∑
i
a2
i

∏
i<j

a2
ij , (A.12)
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which differs from (A.3) only in that it does not have the delta function factor in the
integrand. Indeed, the expectation value of an operator O(aij) that is invariant under
ai → ai + iα, for some constant α, is the same in the U(N) and SU(N) matrix models,
as can be easily shown by considering the expression for e−

8π2α2
λ ZU(N)〈O(aij)〉U(N) =

e−
8π2α2
λ

∫
dNa e−

8π2N
λ

∑
i
a2
i
∏
i<j a

2
ijO(aij), sending ai → ai + iα, and integrating over real

α. In the formalism involving resolvents, a similar computation shows that the inverse
Laplace transforms of an n-point function of resolvents in the SU(N) and U(N) matrix
models are related by

R̂nSU(N)(b1, . . . , bn) = R̂nU(N)(b1, . . . , bn)e
λ

32π2N2 (
∑

i
bi)2

. (A.13)

Thus, as long as the arguments of R̂n sum to zero, as is the case in (A.11), there is no
difference between the U(N) and SU(N) theories, so we will drop the subscript U(N) in
what follows.

The correlators of resolvents obey various relations similar to Ward identities in QFT.
In particular, the change of variables ai → ai + εδai with δai = 1/(z− ai), with ε infinites-
imal, leads at first order in ε to the relation

R2(z, z) = 16π2

λ
N2(zR1(z)− 1) . (A.14)

The more complicated change of variables corresponding to δai = 1
z−ai

∏p
j=1

∑
ij

1
wp−aij

leads to
1
N2R

p+2(z, z, w1, . . . wp) +
p∑
j=1

∂

∂wj

Rp(w1, . . . wp)−Rp(w1, . . . wj−1, z, wj+1, . . . , wp)
wj − z

= 16π2

λ

(
zRp+1(z, w1, . . . , wp)−N2Rp(w1, . . . , wp)

)
. (A.15)

Eqs. (A.14)–(A.15), combined with large N factorization properties, lead to recursion re-
lations that allows one to determine Rp recursively in p and in 1/N . It is customary to
write down these recursion relations in terms of the connected correlators

Wn(y1, . . . , yn) ≡ Rn(y1, . . . , yn)conn = Nn−2
〈∑

i1

1
y1 − ai1

· · ·
∑
in

1
yn − ain

〉
conn.

. (A.16)

In terms of the inverse Laplace transforms of Wn, we have

I(ω) = N2Ŵ 1(2iω) Ŵ 1(−2iω) + Ŵ 2(2iω,−2iω) , (A.17)

and

J (ω,w) =N2J 0(ω,w) + J 1(ω,w) +N−2J 2(ω,w) , (A.18)

where we define

J 0(ω,w) ≡ Ŵ 1(2iω) Ŵ 1(2iw) Ŵ 2(−2iω,−2iw)

+ Ŵ 1(2iω) Ŵ 1(−2iw) Ŵ 2(−2iω, 2iw)

+ Ŵ 1(−2iω) Ŵ 1(2iw) Ŵ 2(2iω,−2iw)

+ Ŵ 1(−2iω) Ŵ 1(−2iw) Ŵ 2(2iω, 2iw) , (A.19)
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J 1(ω,w) ≡ Ŵ 2(2iω, 2iw) Ŵ 2(−2iω,−2iw)

+ Ŵ 2(2iω,−2iw) Ŵ 2(−2iω, 2iw)

+ Ŵ 1(2iω) Ŵ 3(−2iω,−2iw, 2iw)

+ Ŵ 1(−2iω) Ŵ 3(2iω,−2iw, 2iw)

+ Ŵ 1(2iw) Ŵ 3(−2iω,−2iw, 2iω)

+ Ŵ 1(−2iw) Ŵ 3(2iω,−2iω, 2iw) , (A.20)

J 2(ω,w) ≡ Ŵ 4(2iω,−2iω, 2iw,−2iw) . (A.21)

The resolvents can then be expanded in 1/N2 as

Wn(y1, . . . , yn) ≡
∞∑
m=0

1
N2mW

n
m(y1, . . . , yn) , (A.22)

and each genus-m term Wn
m can be computed for finite λ using a recursion formula in

n,m [68, 69] starting with the base case W 1
0 , as described e.g. in [41]. We use resolvents

up to n+m ≤ 5, which we give in the supplementary material.14 We then take the inverse
Laplace transform in (A.19) to get the 1/N2 expansion at finite λ for J (ω,w) in terms of
integrals over the Fourier variables w,ω from (A.4). For instance, at leading order in 1/N2

we need only consider the genus-zero resolvents in J 0(ω,w), which give

J 0(ω,w)
∣∣
N2 =

8πJ1(
√
λω
π )J1(w

√
λ

π )√
λ(w2 − ω2)

[
ωJ0

(√
λω

π

)
J1

(
w
√
λ

π

)
−wJ1

(√
λω

π

)
J0

(
w
√
λ

π

)]
.

(A.23)

We can then plug this expression, along with the leading order term in I(ω) as given in
appendix B of [41], into (A.2) to get the leading order in N2 result at finite λ:

−∂4
mF

pert|m=0 =N2
[ ∫ ∞

0
dω

32ωπ2J1(
√
λω
π )2

λ sinh2 ω

+
∫ ∞

0
dω

∫ ∞
0

dw
96wωπJ1(

√
λω
π )J1(w

√
λ

π )
sinh2w sinh2 ω

√
λ(w2 − ω2)

×
[
ωJ0

(√
λω

π

)
J1

(
w
√
λ

π

)
− wJ1

(√
λω

π

)
J0

(
w
√
λ

π

)]]
+O(N0) .

(A.24)

In the supplementary material, we give explicit formulae for J (ω,w) to order O(N−4),
which similarly take the form of four Bessel functions, while the expressions for I(ω) were
already given in appendix B of [41] and consist of two Bessel functions.

We would also like to take the large λ expansion of these results, so that we can apply
them to the strong coupling expansion of the integrated correlator. For the first term

14Some of these resolvents were already shown in appendix B of [41].
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in (A.7), which depends on I(ω), the large λ expansion can be performed just as in [41],
and yields∫ ∞

0
dω

8ω3I(ω)
sinh2 ω

=N2
[16π2

λ
− 32π2

λ3/2 + 24π2ζ(3)
λ5/2 +O(λ−

7
2 )
]

+
[4π2√λ

15 − 13π2

16λ3/2 −
75π2ζ(3)
32λ5/2 +O(λ−

7
2 )
]

+N−2
[
− 1

504π
2λ3/2 + 13π2√λ

1920 + 1533π2

8192λ3/2 +O(λ−
5
2 )
]

+N−4
[
− π2λ5/2

38400 + 25π2λ3/2

129024 −
511π2√λ
327680 +O(λ−

3
2 )
]

+O(N−6) .

(A.25)

Note that none of these terms have the right powers of π compared to the holographic
correlator, so all of them must be cancelled against corresponding terms in the second
term in (A.7). For these terms, which depend on J (ω,w), every Wn

m except W 2
0 factorizes

in terms of their argument yi, so the inverse Laplace transform can be easily taken and
gives products of four Bessel functions of the form

waωbJn1

(√
λω

π

)
Jn2

(√
λω

π

)
Jn3

(√
λw

π

)
Jn4

(√
λw

π

)
(A.26)

for various integers a, b, ni. As described in appendix D of [40], we can take the large λ
limit of these Bessel functions using the Mellin-Barnes form

Jµ(x)Jν(x) = 1
2πi

∫ c+∞i

c−∞i
ds

Γ(−s)Γ(2s+ µ+ ν + 1)
(

1
2x
)µ+ν+2s

Γ(s+ µ+ 1)Γ(s+ ν + 1)Γ(s+ µ+ ν + 1) ,
(A.27)

where the integrals over w,ω can be separately done with factors csch2w, csch2ω from (A.4)
by twice using the identity∫ ∞

0
dω

ωa

sinh2 ω
= 1

2a−1 Γ(a+ 1)ζ(a) , (A.28)

and then the contours can be closed to the left to get an expansion in 1/λ. For these
factorizable terms, using the finite λ expressions for J in the supplementary material, we
get ∫ ∞

0
dω

∫ ∞
0

dw
12wωJ fac(ω,w)
sinh2w sinh2 ω

=
[
− 13

√
λ

6 + 55
12 + 3

8
√
λ

+O(λ−1)
]

+N−2
[23λ3/2

5760 −
19λ
384 + 125

√
λ

3072 +O(λ0)
]

+N−4
[
λ7/2

552960 + 83λ3

20736000 + 59λ5/2

3440640 +O(λ2)
]

+O(N−6) , (A.29)

– 25 –



J
H
E
P
0
1
(
2
0
2
1
)
1
0
3

where we have only showed the terms that we will use, and recall that there is no leading
order factorizable term.

The only exception to factorizability is the genus-zero 2-body resolvent W 2
0 (y1, y2),15

which takes the form

W 2
0 (y1, y2) =

4π2y1y2
λ − 1−

√
4π2y2

1
λ − 1

√
4π2y2

2
λ − 1

2 (y1 − y2) 2
√

4π2y2
1

λ − 1
√

4π2y2
2

λ − 1
, (A.30)

and whose inverse Laplace transform for distinct imaginary arguments is

Ŵ 2(2iω, 2iw) = − wω
√
λ

2π(w + ω)

[
J0

(√
λω

π

)
J1

(√
λw

π

)
+ J0

(√
λw

π

)
J1

(√
λω

π

)]
. (A.31)

This term shows up in both J 0(ω,w) and J 1(ω,w), and so appears at every order in the
large N2 expansion of J (ω,w). We do not know how to take the large λ expansions of such
terms, since the w,ω dependence does not factorize due to the (w+ω) in the denominator
of (A.31). For these terms, we instead performed the large λ expansion numerically by
evaluating the w,ω integrals at many value of λ at high precision and fitting a curve. Using
the expressions in the Mathematica file, we get∫ ∞

0
dω

∫ ∞
0

dw
12wωJ non-fac(ω,w)

sinh2w sinh2 ω

=N2
[
6 + 96ζ(3)

λ3/2 −
288ζ(5)
λ5/2 − 144ζ(3)2

λ3 −
(16π2

λ
− 32π2

λ3/2 + 24π2ζ(3)
λ5/2

)
+O(λ−

7
2 )
]

+
[(25

6 −
4π2

15

)√
λ+O(λ0)

]
+N−2

[(
π2

504 −
119
5760

)
λ

3
2 +O(λ)

]
+N−4

[
− λ7/2

552960 −
1781λ3

145152000 +O(λ
5
2 )
]

+O(N−6) . (A.32)

We can now combine (A.25), (A.29), and (A.32) to get the final result

−F4(τ, τ̄) = N2
[
6 + 96ζ(3)

λ3/2 −
288ζ(5)
λ5/2 − 144ζ(3)2

λ3 +O(λ−
7
2 )
]

+
[
2
√
λ+O(λ0)

]
−N−2

[
λ

3
2

60 +O(λ)
]
−N−4

[
λ3

120960 +O(λ
5
2 )
]

+O(N−6) .

(A.33)

This 1/N2 expansion can then be converted to a 1/c = 4/(N2 − 1) expansion when com-
paring to the holographic correlator. Note that for the leading N2 term we were able to
do the numerical large λ expansion to many orders, but for subleading terms in 1/N2 we
were only able to accurately read off a couple orders in large λ sufficient to get the terms
shown here.

15Note that W 2
0 (y1, y2) also appears in I(ω), but in this case there is only one Fourier variable w so the

integral was always of the form (A.28).

– 26 –



J
H
E
P
0
1
(
2
0
2
1
)
1
0
3

A.3 Finite N from orthogonal polynomials

We can also compute J (ω,w) at finite N and λ in terms of four finite sums using the
method of orthogonal polynomials [70], as was already done for I(ω) in [41]. We start by
writing I(ω) and J (ω,w) as

I(ω,w) = N(N − 1)〈cos(2ω(a1 − a2))〉+N ,

J (ω,w) = 2N(N − 1)J1212 + 4N(N − 1)(N − 2)J1231 +N(N − 1)(N − 2)(N − 3)J1234

− (I(w)−N)(I(ω)−N) ,
Jijkl ≡ 〈cos(2ω(ai − aj)) cos(2w(ak − al))〉 − 〈cos(2ω(ai − aj))〉〈cos(2w(ak − al))〉 .

(A.34)

We then introduce a family of polynomials pn(a) using the Hermite polynomials Hn(x):

pn(a) ≡
(

λ

32π2N

)n
2
Hn

(
4π
√
Na√

2λ

)
, (A.35)

which are orthogonal with respect to the Gaussian measure
∫
da pm(a)pn(a)e−

8π2N
λ

a2 = n!
(

λ

16π2N

)n√ λ

8πN δmn ≡ hnδmn . (A.36)

As shown in [41], these orthogonal polynomials can be used to write the expectation value
of an n-body operator as an n-dimensional integral:

〈On(a)〉 = 1
N !

∑
σ∈SN

∑
µ∈Sn

(−1)|µ|
∫ ( n∏

i=1
dai

pσ(i)−1(ai)pµ(σ(i))−1(ai)
hσ(i)−1

e−
8π2N
λ

a2
i

)
On(a) .

(A.37)

For the n-body operators in (A.34) with n = 2, 3, 4, we can perform the integrals in (A.37)
using the identity∫ ∞

−∞
e−x

2+yxHm(x)Hn(x) = e
y2
4 2m
√
πm!yn−mLn−mm (−y2/2) , (A.38)

and the sums over permutations can be simplified to sums from 1 to N . For instance, I(ω)
was computed in this way in [41] and yields

I(ω) =e
−ω2λ
4π2N

[ [
L1
N−1

(
ω2λ

4π2N

)]2

−
N∑

i,j=1
(−1)i−jLj−ii−1

(
ω2λ

4π2N

)
Li−jj−1

(
ω2λ

4π2N

)]
+N ,

(A.39)

where Lba(x) are generalized Laguerre polynomials. The expression for J (ω,w) similarly
involves sums over Lba(x), but takes a rather complicated form that we give in the sup-
plementary material. After plugging these terms into (A.7) we can perform the sums and
Fourier integrals for any finite N and compare to the topological recursion results (as given
in the supplementary material). We find that they match even down to N = 2 for a large
range of λ, which is a nontrivial check.
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B Evaluating I2 analytically

In this appendix, we describe how to compute I2[G(U, V )] using the Mellin transform
defined in (2.3). We begin by writing I2[G(U, V )] in (2.15) as an integral over M(s, t):

I2[G(U, V )] = − 2
π

∫ i∞

−i∞

ds dt

(4πi)2

(
Γ
[
2− s

2

]2
Γ
[
2− t

2

]2
Γ
[
s+ t

2

]2
M(s, t) (B.1)

×
∫ ∞

0
dr

∫ π

0
dθ sin2 θ(1 + r2 − 2r cos θ)

s
2−2rt−1

)
.

The integrals over r, θ are standard one-loop integrals in four dimension, which can be done
explicitly to get

I2[G(U, V )] = − 1
8

∫ i∞

−i∞

ds dt

(2πi)2 Γ
[
2− s

2

]
Γ
[
s

2

]
Γ
[
2− t

2

]
Γ
[
t

2

]
× Γ

[
−s2 −

t

2 + 2
]

Γ
[
s+ t

2

]
M(s, t) .

(B.2)

The integrals over s, t can be done for polynomialM(s, t) (orMSG(s, t)) by twice applying
the Barnes lemma:∫ i∞

−i∞

ds

2πiΓ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) = Γ(a+ c)Γ(b+ d)Γ(b+ c)Γ(b+ d)
Γ(a+ b+ c+ d) , (B.3)

which holds for contours for which the poles of each Gamma function lie either to the left
or to the right of the contour. Applying this to (2.6) and (2.7) we get the first line in (2.17).

C Ward identities

C.1 Ward identity for 〈SSP̄P 〉

As mentioned in the main text, conformal and R-symmetry invariance implies that the
four-point function 〈SSP̄P 〉 takes the form given in (3.4). The non-trivial information
is encoded in the functions Ri(U, V ), which are related by SUSY Ward identities to the
functions Si(U, V ) defined in (2.1). The relations are given in eq. (B.6) of [40].

Since the 〈SSSS〉 correlator is split into a free part and a part depending on a single
function T (U, V ), one can also write Ri(U, V ) reflecting this split, as we did in (3.6). The
non-free part of Ri(U, V ) is thus encoded in three differential operators Ri(U, V, ∂U , ∂V )
that act on the function T (U, V ) from the 〈SSSS〉 correlator. From (B.6) of [40], we
deduce that these differential operators are:

R1(U, V, ∂U , ∂V ) = 1
8
[
2U(U − V − 3)∂UV + UV (2− U + 2V )∂2

V V

+ U2(U − 2− 2V )∂2
UV − (4V 2 − 4 + U [1 + U − 5V ])∂V V

− U(U − 2− 2V )(U + V − 1)∂V ∂UV + 8V
]
,

R2(U, V, ∂U , ∂V ) = 1
4
[
(4V + 2UV − 2− 2V 2)∂V V + UV (V − 1)∂2

V V (C.1)

+ U(1 + U − V )∂UV + U(V − 1)(U + V − 1)∂V ∂UV

+U2(V − 1)∂2
UV

]
,
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S χ , χ P , P j F , F Ψ ,Ψ T λ , λ Φ ,Φ

∆ 2 5
2 3 3 3 7

2 4 7
2 4

Spin [j, j′] [0, 0] [ 1
2 , 0] , [0, 1

2 ] [0, 0] [ 1
2 ,

1
2 ] [1, 0] , [0, 1] [1, 1

2 ] , [ 1
2 , 1] [1, 1] [ 1

2 , 0] , [0, 1
2 ] [0, 0]

SU(4)R 20′ 20,20 10 ,10 15 6 4, 4̄ 1 4̄,4 1

U(1)B 0 1
2 ,−

1
2 1 ,−1 0 1 ,−1 1

2 ,−
1
2 0 3

2 ,−
3
2 2,−2

Table 1. Operators in the N = 4 stress energy tensor multiplet and their scaling dimensions ∆,
spins [j, j′] of the Euclidean Lorentz group SO(4) ∼= SU(2)×SU(2), irreps of the R-symmetry group
SU(4)R, and charges of the bonus symmetry group U(1)B .

R3(U, V, ∂U , ∂V ) = 1
8
[
U(1 + U − V )∂V V + U2V ∂2

V V

+U2(U + V − 1)∂V ∂UV + U3∂2
UV

]
.

Note that the differential operator R1 + 3R3 takes the form

R1 + 3R3 = U3

4
[
2 + (−1 + U + 3V )∂U + 4V ∂V + UV ∂2

U

+ V (−1 + U + V )∂U∂V + V 2∂2
V

]1 + U + V

U2 .
(C.2)

C.2 Ward identity for 〈PPPP 〉

Let us now move on to discussing 〈PP̄P P̄ 〉. As mentioned in the main text, conformal
symmetry and R-symmetry imply that this correlation function can be written as in (3.2)
in terms of three functions Pi(U, V ). These functions must be related by Ward identities
to the functions appearing in the 〈SSSS〉 correlator. To derive these relations, we use the
component field method of [32, 40, 62]. This method was already discussed in a closely
related context in [40], so we will only present an outline of the derivation here.

In general, we can derive these Ward identities by first determining the most gen-
eral forms of the four-point functions that are consistent with conformal symmetry and
R-symmetry, and then imposing invariance only under the Poincaré supercharges. For
〈PPPP 〉, the relevant Ward identity takes the schematic form

0 = δ̄〈PPPχ〉 = 〈PPPP 〉+ 〈∂χPPχ〉+ 〈PP∂χχ〉+ 〈PPPF 〉+ 〈PPPλ〉 , (C.3)

where δ̄ denotes the action of the supercharge, and the other operators in the stress tensor
multiplet are summarized in table 1. This Ward identity will give 〈PPPP 〉 in terms of
powers and derivatives of U, V of 〈χPPχ〉, which must be related to other correlators in a
chain that will eventually reach 〈SSSS〉. These variations are

0 = δ̄〈SSSχ〉 = 〈χSSχ〉+ 〈SχSχ〉+ 〈SSχχ〉+ 〈SSSj〉+ 〈SSS∂S〉 ,
0 = δ̄〈SSPχ〉 = 〈χSPχ〉+ 〈SχPχ〉+ 〈SS∂χχ〉+ 〈SSPP 〉+ 〈SSPF 〉 ,
0 = δ̄〈SPPχ〉 = 〈χPPχ〉+ 〈SλPχ〉+ 〈SP∂χχ〉+ 〈SPPj〉+ 〈SPP∂S〉 ,

(C.4)

where the first two were already considered in [40]. Finally, we write 〈SSSS〉 in terms of
T (U, V ) using (2.1) to obtain the split of the quantities Pi(U, V ) into a free part and an
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interacting part dependent on T (U, V ) as in (3.6). Following the procedure outlined above,
we find that the differential operators Pi(U, V, ∂U , ∂V ) appearing in (3.6) are

P1 = 1
4
[
U4V 2∂2

U∂
2
V + 2U4V 2∂3

U∂V + U4V 2∂4
U + U4∂2

U + 3U4V ∂2
U∂V + 3U4V ∂3

U

+ 2U3V 3∂U∂
3
V + 4U3V 3∂2

U∂
2
V + 2U3V 3∂3

U∂V + 12U3V 2∂U∂
2
V

+ 15U3V 2∂2
U∂V − 2U3V 2∂2

U∂
2
V + 3U3V 2∂3

U − 2U3V 2∂3
U∂V + 2U3∂U

+ 14U3V ∂U∂V + 7U3V ∂2
U − 2U3∂2

U − 6U3V ∂2
U∂V − 3U3V ∂3

U + U2V 4∂4
V

+ 2U2V 4∂U∂
3
V + U2V 4∂2

U∂
2
V + 9U2V 3∂3

V + 9U2V 3∂U∂
2
V − 2U2V 3∂U∂

3
V

− 2U2V 3∂2
U∂

2
V + 19U2V 2∂2

V + 2U2V 2∂U∂V − 9U2V 2∂U∂
2
V − 2U2V 2∂2

U

− 3U2V 2∂2
U∂V + U2V 2∂2

U∂
2
V + 4V

(
2U2 − 4UV + 3U + 2V 2 − 5V + 3

)
∂V

− 4U2V ∂U + U2∂U − 5U2V ∂U∂V + 3U2V ∂2
U + U2∂2

U + 3U2V ∂2
U∂V

− 3UV 4∂3
V − 3UV 4∂U∂

2
V + 4V 4∂2

V − 17UV 3∂2
V + 3UV 3∂3

V

− 4UV 3∂U∂V + 6UV 3∂U∂
2
V − 8V 3∂2

V + 15UV 2∂2
V + 2UV 2∂U + 13UV 2∂U∂V

− 3UV 2∂U∂
2
V + 4V 2∂2

V − 3UV ∂U − 3U∂U − 9UV ∂U∂V + 4
]
, (C.5)

P2 = 1
4U
[ (

2U2−4UV +U+2V 2−3V +1
)
∂V + V

(
10U2+U(3−5V )+(V −1)2

)
∂2
V

+ U
(
U3∂2

U∂V + U3V ∂2
U∂

2
V + U3∂3

U + 2U3V ∂3
U∂V + U3V ∂4

U + 2U2V 2∂U∂
3
V

+ 4U2V 2∂2
U∂

2
V + 2U2V 2∂3

U∂V + 4U2∂U∂V + 8U2V ∂U∂
2
V + 3U2∂2

U

+ 13U2V ∂2
U∂V − 2U2∂2

U∂V − 2U2V ∂2
U∂

2
V + 5U2V ∂3

U − U2∂3
U

− 2U2V ∂3
U∂V + UV 3∂4

V + 2UV 3∂U∂
3
V + UV 3∂2

U∂
2
V − V 3∂U∂

2
V

+ 11UV 2∂U∂
2
V − 2UV 2∂U∂

3
V + 4UV 2∂2

U∂V − 2UV 2∂2
U∂

2
V − 2V 2∂U∂V

+ V 2(7U − V + 1)∂3
V + 2V 2∂U∂

2
V + 10UV ∂U∂V − 3U∂U∂V − 7UV ∂U∂2

V

+ 3UV ∂2
U − U∂2

U − 5UV ∂2
U∂V + U∂2

U∂V + UV ∂2
U∂

2
V + 3V ∂U∂V

− ∂U∂V − V ∂U∂2
V

)]
, (C.6)

P3 = 1
4
[ (
−2U3 − (4V + 1)U2 −

(
−14V 2 + 9V + 1

)
U − 4(V − 1)2(2V − 1)

)
∂V

− U
(
U4∂2

U∂V + V ∂2
U∂

2
V U

4 + U4∂3
U + 2V U4∂3

U∂V + V U4∂4
U

+ 4U3∂U∂V + 8V U3∂U∂
2
V + 2V 2U3∂U∂

3
V + 4U3∂2

U + 16V U3∂2
U∂V

− 3U3∂2
U∂V + 5V 2U3∂2

U∂
2
V − 3V U3∂2

U∂
2
V + 8V U3∂3

U − 2U3∂3
U

+ 4V 2U3∂3
U∂V − 4V U3∂3

U∂V + V 2U3∂4
U − V U3∂4

U + 2U2∂U

+ 24V U2∂U∂V − 5U2∂U∂V + 23V 2U2∂U∂
2
V − 13V U2∂U∂

2
V + 4V 3U2∂U∂

3
V

− 4V 2U2∂U∂
3
V + 10V U2∂2

U − 3U2∂2
U + 19V 2U2∂2

U∂V − 18V U2∂2
U∂V

+ 3U2∂2
U∂V + 5V 3U2∂2

U∂
2
V − 8V 2U2∂2

U∂
2
V + 3V U2∂2

U∂
2
V + 3V 2U2∂3

U

− 4V U2∂3
U + U2∂3

U + 2V 3U2∂3
U∂V − 4V 2U2∂3

U∂V + 2V U2∂3
U∂V

+ V 3(U + V − 1)U∂4
V − 4V U∂U + U∂U + 2V U∂U∂V − 2U∂U∂V

+ 8V 3U∂U∂
2
V − 10V 2U∂U∂

2
V + 2V U∂U∂2

V + 2V 4U∂U∂
3
V − 4V 3U∂U∂

3
V
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+ 2V 2U∂U∂
3
V − 2V 2U∂2

U + 3V U∂2
U − U∂2

U − V 2U∂2
U∂V + 2V U∂2

U∂V

− U∂2
U∂V + V 4U∂2

U∂
2
V − 3V 3U∂2

U∂
2
V + 3V 2U∂2

U∂
2
V − V U∂2

U∂
2
V

+ 2V 2∂U − 3V ∂U + ∂U + V 2
(
7U2 + (8V − 4)U − 3(V − 1)2

)
∂3
V

− 4V 3∂U∂V + 11V 2∂U∂V − 10V ∂U∂V + 3∂U∂V − 3V 4∂U∂
2
V + 9V 3∂U∂

2
V

− 9V 2∂U∂
2
V + 3V ∂U∂2

V

)
+ V ((1− 14V )U2 + (16V 2 − 21V + 5)U − 10U3

− 4(V − 1)3)∂2
V

]
. (C.7)

Note that the differential operators 2P1 +2P2 +P3 appearing in (3.24) can be simplified to

2P1 + 2P2 + P3

= 4
U3

[
U3V ∂4

U + U
(
U2 + U(19V − 2) + 10V 2 − 11V + 1

)
∂2
U∂V

+
(
6U2 + U(36V − 7) + 6V 2 − 7V + 1

)
∂U∂V + U2(U + 9V − 1)∂3

U

+ 2U2V (U + V − 1)∂3
U∂V + UV

(
U2 + U(4V − 2) + (V − 1)2

)
∂2
U∂

2
V

+ V
(
10U2 + U(19V − 11) + (V − 1)2

)
∂U∂

2
V + UV 3∂4

V

+ 2UV 2(U + V − 1)∂U∂3
V + V 2(9U + V − 1)∂3

V + 2U(3U + 9V − 2)∂2
U

+ (6U + 6V − 2)∂V + 2V (9U + 3V − 2)∂2
V + (6U + 6V − 2)∂U

]1 + U + V

U2 .
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