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1 Introduction

One of the most intriguing features of four-dimensional gauge theories is the possibility
of a mysterious duality that exchanges elementary quarks and magnetic monopoles, while
relating physics at strong and weak gauge couplings. First conjectured by Montonen and
Olive in [1] following the work of Goddard, Nuyts, and Olive (GNO) [2] as a direct gen-
eralization of the electric-magnetic duality in Maxwell theories, it is commonly known as
the Montonen-Olive duality or S-duality. It was soon realized that such a duality is more
likely to hold in a supersymmetric gauge theory rather than in QCD, because supersym-
metry provides more control over the spectrum of solitons [3]. In the case of the maximally
supersymmetric N = 4 super-Yang-Mills (SYM) theory [4], an overwhelming amount of
compelling evidence for S-duality has been provided by analyzing the dyon-monopole bound
states [5], from certain topologically twisted partition functions on four manifolds [6], and
from embedding this model into type IIB string theory.

Under S-duality, the N = 4 SYM theory with gauge group SU(N) and complexified
gauge coupling

τ ≡ τ1 + iτ2 = θ

2π + 4πi
g2

YM

(1.1)

is equivalent to the SYM theory with gauge group SU(N)/ZN and gauge coupling τ∨ = − 1
τ .

While the distinction between the gauge group being SU(N) and SU(N)/ZN is important
for studying non-local operators, it does not affect local operators, which are the subject
of this work. The S-duality transformation combined with the T-transformation τ → τ + 1
from the periodic identification of the θ-angle gives rise to an SL(2,Z) duality that acts on
the complexified coupling as

τ → aτ + b

cτ + d
, (1.2)

with a, b, c, d ∈ Z and ad − bc = 1.1 The Coulomb branch of the SYM theory supports
an infinite tower of massive BPS particles from W-bosons, monopoles, and their bound
states that transform nontrivially under the duality group, while the mass spectrum stays
invariant [5]. Correlation functions of local operators have definite SL(2,Z) transformation
properties, and correlation functions of half-BPS operators are invariant [8, 9].

Embedding the N = 4 SYM theory into string theory provides an elegant picture of
this non-perturbative duality. The SU(N) N = 4 SYM theory is the low energy theory
on a stack of N coincident D3-branes immersed in asymptotically flat ten-dimensional
spacetime. The gauge coupling τ is identified with the axion-dilaton background τs =
χ+ ie−φ (χ being the axion and φ being the dilaton), and the SL(2,Z) duality of the gauge
theory is a direct consequence of the SL(2,Z) duality in type IIB string theory [10].

While the string theory perspective is conceptually useful, it is more satisfying to
directly investigate the S-duality properties of N = 4 SYM using field theory methods, and

1In general, under S-duality, N = 4 SYM with the gauge group G is mapped to N = 4 SYM with
gauge group G∨ given by the GNO dual of G, and the gauge coupling τ is mapped to τ∨ = −1/(nGτ),
where nG = 1 when G is simply-laced, nG = 2 for Br, Cr, F4, and nG = 3 for G2. Consequently, for non-
simply-laced G, the combination of S-duality and T-duality yields dualities by (extensions of) congruence
subgroups of SL(2,Z) [7].
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this will be our approach here. In fact, one may argue that the field theory methods provide
nontrivial support for the duality structures in the quantum gravity theory. Over the past
twenty or so years, there have been steady developments on investigating the S-duality
properties of N = 4 SYM using field theory methods, including numerous sophisticated
checks based on supersymmetric partition functions [6, 11–14], extensions that incorporate
supersymmetric defects [15–20], as well as refinements of the duality by keeping track of
global structures of the gauge group and topological couplings in the theory [21–23].

The goal of this paper is to continue the study began in [24] of the SL(2,Z) duality
properties of certain correlation functions of the SU(N) N = 4 SYM theory in the 1/N
expansion. In particular, we focus on all possible integrated four-point correlation functions
that can be related to fourth derivatives of the partition function Z(b,m, τ, τ̄) of the N = 2-
preserving mass deformation of the N = 4 SYM theory (also known as the N = 2∗ theory)
placed on a squashed four-sphere. Here, m is the mass parameter and b is the squashing
parameter, defined such that (b,m) = (1, 0) corresponds to the (massless) N = 4 SYM
theory on a round sphere. The main reason for focusing on these derivatives of Z(b,m, τ, τ̄)
is that Z(b,m, τ, τ̄) itself can be computed exactly at any N and any coupling (τ, τ̄) using
supersymmetric localization [25, 26] (see also [27–32]). Each of the following combinations
of derivatives, evaluated at (b,m) = (1, 0), provides, in principle, a different SL(2,Z)-
invariant integrated four-point function in N = 4 SYM:2

τ2
2 ∂τ∂τ̄∂

2
m logZ

∣∣∣
m=0
b=1

, τ2
2 ∂τ∂τ̄∂

2
b logZ

∣∣∣
m=0
b=1

, (∂4
b − 15∂2

b ) logZ
∣∣∣
m=0
b=1

,

∂4
m logZ

∣∣∣
m=0
b=1

, ∂2
m∂

2
b logZ

∣∣∣
m=0
b=1

.
(1.3)

Because both m and δb ≡ b − 1 couple in the action to integrated operators that belong
to the N = 4 stress tensor multiplet, it should be possible to express all quantities in (1.3)
in terms of integrated four-point functions of stress tensor multiplet operators. Of course,
it is plausible that not all such integrated correlators are independent, because there may
be relations between them that are implied by the N = 4 superconformal symmetry. In
fact, as we will discuss in section 3, one of our main results is a derivation3 of three linear
relations between the quantities in (1.3), as well as the conformal anomaly c, based on the
supersymmetric localization results of [25, 26].

Taking into account the three linear relations mentioned above, one can take the in-
dependent quantities in (1.3) to be

τ2
2 ∂τ∂τ̄∂

2
m logZ

∣∣∣
m=0
b=1

, ∂4
m logZ

∣∣∣
m=0
b=1

. (1.4)

2As we will discuss, the partition function Z(b,m, τ, τ̄) suffers from scheme-dependent ambiguities, but
the combinations of derivatives in (1.3) are scheme-independent. In particular, the subtraction of 15∂2

bZ

in the third quantity is needed for removing such an ambiguity. We will discuss these scheme-dependent
ambiguities in appendix A.

3For one of these relations, we do not have a full proof, but amass significant evidence in the case where
the gauge group is SU(N). In appendix B, we will make comments about these relations in N = 4 SYM
with a general gauge group.
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The precise relation of these two quantities to integrated correlation functions was explained
in [33] and [24], respectively. In slightly more detail, due to the fact that the stress tensor
multiplet of N = 4 SYM is a 1/2-BPS multiplet, it can be shown that supersymmetry
requires the correlators of any four operators from this multiplet to be algebraically related
to a single function T (U, V ) of the conformally-invariant cross ratios U and V [34]. Thus,
the two independent quantities in (1.4) should be expressible in terms of integrals T (U, V )
with potentially different integration measures. It is these explicit expressions in terms of
integrals of T (U, V ) that were given in [33] and in [24], respectively.

The main question we ask in this work is what modular invariants4 appear in the 1/N
expansion of the quantities in (1.4) for the large N N = 4 SYM? For τ2

2 ∂τ∂τ̄∂
2
m logZ

∣∣∣
m=0
b=1

,

this question was answered in [35], building on the work of [33, 36] where only the pertur-
bative terms in gYM were studied. Ref. [35] found that this quantity has an expansion in
half-integer5 powers of 1/N , and that at each order in the expansion the answer can be
written as a finite sum of non-holomorphic Eisenstein series

E(s, τ, τ̄) =
∑

(m,n) 6=(0,0)

τ s2
|m+ nτ |2s

(1.5)

for various half-integer values of s. The perturbative terms in the second quantity in (1.4)
were studied in [24], and the non-perturbative contributions will be studied here. As we
will show, we find strong evidence that the 1/N expansion of this quantity involves not only
the non-holomorphic Eisenstein series but also another class of modular-invariant functions
that generalize the non-holomorphic Eisenstein series in the following sense. The Eisenstein
series (1.5) satisfies the homogeneous Laplace eigenvalue equation(

4τ2
2 ∂τ∂τ̄ − s(s− 1)

)
E(s, τ, τ̄) = 0 . (1.6)

The new modular functions we encounter are solutions to similar Laplace eigenvalue equa-
tions but with a source term given by a product of two Eisenstein series:6(

4τ2
2 ∂τ∂τ̄ − r(r + 1)

)
E(r, s1, s2, τ, τ̄) = −E(s1, τ, τ̄)E(s2, τ, τ̄) . (1.7)

4We emphasize here that while all correlators of half-BPS operators are SL(2,Z) invariant, the correlators
that involve their superconformal descendants may not be. In particular they would violate the U(1)Y
bonus symmetry for five- and higher-point functions [8, 9]. For four-point functions, it was conjectured
in [8, 9] that the U(1)Y bonus symmetry and consequently SL(2,Z) invariance hold for half-BPS operators
and their descendants. For four-point functions of stress-tensor multiplet operators, which are of interest
here, the U(1)Y invariance follows from the fact that the superconformal Ward identities impose coupling-
independent algebraic relations between any four-point function of stress tensor multiplet operators and the
U(1)Y -invariant four-point function of the half-BPS superconformal primary of this multiplet. Therefore,
while the fourth derivatives in (1.3) and (1.4) are expected to be SL(2,Z) invariant, the modular properties
of the higher derivatives will be more complicated.

5By a half-integer we mean a number in the set Z + 1
2 .

6The Laplace equation (1.7) and SL(2,Z) invariance do not completely fix E(r, s1, s2, τ, τ̄). In particular,
the solution to (1.7) is ambiguous up to a shift by the Eisenstein series E(r+ 1, τ, τ̄). Later we will fix this
ambiguity by specifying the cusp behavior E(r, s1, s2, τ, τ̄) as τ2 →∞. See also appendix C for more details.
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In particular, we find that at half-integer orders in 1/N , the second quantity in (1.4) is still
written in terms of the Eisenstein series (1.5), while at integer orders in 1/N the expansion
is in terms of E(r, s1, s2, τ, τ̄) for various values of r, s1, and s2.7

At low orders in the 1/N expansion, these findings are perhaps not entirely surpris-
ing, because, as we will explain in section 4, at these orders one can establish a precise
connection between the integrated correlators (1.4), expanded in 1/N , and 10d type IIB
superstring scattering amplitudes of gravitons and their superpartners, expanded at low
momentum, as a consequence of the AdS/CFT correspondence [37–39]. At leading or-
ders in the momentum expansion, the latter quantity contains certain supersymmetric
terms that are purely analytic in momentum and whose coefficients are modular functions
such as the ones encountered above. Most notably, the S-matrix contributions from R4,
D4R4, and D6R4 vertices are suppressed relative to the tree-level supergravity contribu-
tion by six, ten, and twelve orders, respectively, in the small momentum expansion, and
they are proportional to the modular functions E( 3

2 , τ, τ̄), E( 5
2 , τ, τ̄), and E(3, 3

2 ,
3
2 , τ, τ̄),

respectively [40–44].8,9
The connection between the superstring scattering amplitudes and the integrated cor-

relators (1.3) is based on two facts. The first is that for CFTs with weakly-coupled holo-
graphic duals, the CFT correlators in Mellin space represent the AdS analogs of scatter-
ing amplitudes, and, moreover, from the asymptotic form of the ‘Mellin amplitudes’ in
the limit of large Mellin space variables one can recover the scattering amplitudes in flat
space [48–53]. Conversely, if the flat space amplitude is known, it can be used to deter-
mine the leading term in the Mellin amplitude. The second fact is that order by order in
the 1/N expansion, analytic bootstrap conditions (meaning analyticity, crossing symmetry,
and supersymmetry) can be used to write the separated point correlation functions of the
stress tensor multiplet operators, encoded in the function T (U, V ) mentioned above, as a
finite sum of specific functions of (U, V ) with a priori arbitrary coefficients [54–74]. The
number of coefficients that are not determined by the bootstrap approach grows with the
order in the expansion. In particular, the Mellin amplitude corresponding to T (U, V ) is

M(s, t) = 8
(s− 2)(t− 2)(u− 2)

1
c

+ α

c7/4 + M1-loop(s, t)
c2

+ β2(s2 + t2 + u2) + β1
c9/4 + γ3stu+ γ2(s2 + t2 + u2) + γ1

c5/2 +O(c−11/4) ,
(1.8)

where s, t are the Mellin space variables with u = 4−s− t, and where we have re-expressed
the 1

N expansion as a 1
c expansion in terms of the conformal anomaly coefficient c = N2−1

4

7In particular, we will see that the order 1
Np−2 contributions to the SYM free energy F = − logZ with

p ∈ Z≥0 + 1
2 are given by the Eisenstein series E(s, τ, τ̄) with s = p, p − 2, . . . , 3

2 . On the other hand, the
order 1

Nq
contributions with q ∈ Z>0 are controlled by the general modular functions E(r, s1, s2, τ, τ̄) for

s1, s2 ∈ Z>0 + 1
2 with s1 + s2 = q + 2, q, . . . .

8See [45] for another perspective on the differential equation (1.7) as coming from constraints of IIB
supersymmetry. Analogous arguments have also been applied to higher-point interactions which violate the
U(1) symmetry [46].

9Functions satisfying (1.7) with various values of s1 and s2 were discussed in [47], where they arose in
the context of higher-order terms in the low energy expansion of flat-space type II superstring amplitudes.
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of the N = 4 SYM theory, which is more natural from the CFT perspective. In (1.8),
the coefficients α, βi, γi depend on (τ, τ̄).10 To determine these coefficients, the approach
proposed in [24, 33, 35]11 was to use the integrated correlators that are calculable from
supersymmetric localization as well as the flat space limit of the Mellin amplitude. In this
case, as we explain in section 4, the constraints coming from the integrated correlators (1.4),
expanded in 1/N , are sufficient to determine all the constants α, βi, γi in (1.8).12 As a
preview, one finds

α = 15
4
√

2π3
E( 3

2 , τ, τ̄) , β1 = −1
3β2 = 315

128
√

2π5
E( 5

2 , τ, τ̄) ,

γ3 = −4γ2 = −1
4γ1 = 315E(3, 3

2 ,
3
2 , τ, τ̄)

64π3 .

(1.9)

We should note that developing the 1/N expansion of the quantities (1.4) is an onerous
task. The supersymmetric localization results of [25, 26] cast (1.4) as (N − 1)-dimensional
integrals over the zero modes of certain scalars in the N = 4 vector multiplet. The integrand
contains a product of two factors coming from fluctuations localized at the poles of the
sphere, where each factor takes the form of a Nekrasov instanton partition function [25,
80, 81]. These factors are the ones responsible for the non-perturbative effects we study in
this work that are crucial for obtaining the modular functions mentioned above.

The rest of the paper is organized as follows. In section 2, we start with a general
discussion of the large N expansion of the integrated correlators and introduce the new
modular functions E(r, s1, s2, τ, τ̄) that generalize the non-holomorphic Eisenstein series.
In section 3, we study in detail the localization constraints coming from (1.4) keeping track
of the instanton effects. We apply these results in section 4 to correlation functions at
separated points. In section 5, we end with a brief summary and discuss future directions.
Various technical details are contained in the appendices. In particular, appendix C con-
tains some details concerning solutions of (1.7) that are important in guiding the analysis
in section 3.

2 Overview of modular invariants and integrated correlators at large N

As mentioned in the Introduction, our interest is in the integrated four-point functions (1.3)
of the N = 4 SYM expanded at large N . Before delving into detailed calculations, let us
provide an overview of these expansions, review previous results, and state our main results.

10HereM1−loop is a meromorphic term that corresponds to the regularized supergravity one-loop ampli-
tude in the holographic dual, and it also contains a coefficient that is not determined from the bootstrap
approach. We will not discuss this term, but we note that the coefficient mentioned above was determined
in [36] from supersymmetric localization.

11See also [75, 76] for similar computations in 3d CFTs. The general method of computing higher
derivative corrections using non-trivial CFT was initiated in [77] in 3d, where a certain OPE coefficient
computed using localization was used to the fix the R4 correction. A similar approach was also taken to
compute R4 in 6d in [78], where the nontrivial OPE coefficient was now computed using the 2d chiral
algebra subsector of [79].

12It is possible that not all relations that reduce the integrated correlators from the list in (1.3) to that
in (1.4) follow from N = 4 supeconformal symmetry, and if this is the case, then one would be able to
determine α, βi, γi purely from the integrated correlators without the need for the flat space limit.

– 5 –
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2.1 Sphere partition function from supersymmetric localization

The partition function of the mass-deformed SU(N) N = 4 SYM theory placed on a
squashed four-sphere parameterized by squashing parameter b is, up to an overall normal-
ization constant that is independent of b and the mass m, given by [25, 26]:13

Z = 1
N !

∫
dN−1a |Zinst(m,τ,b,aij)|2 e−

8π2N
λ

∑
i
a2
i

Υ′b(0)N−1∏
i<j Υb(iaij)Υb(−iaij)

Υb(im+Q
2 )N−1∏

i 6=j Υb(im+Q
2 +iaij)

,

(2.3)
where Q ≡ b + 1

b and aij ≡ ai − aj . The integration is over N real variables ai, i =
1, . . . , N , subject to the constraint ∑i ai = 0.14 In the integrand of (2.3), |Zinst|2 captures
the contribution from instantons localized at opposite poles of S4 that we will come to
shortly [25, 80, 81], and the one-loop determinants of SYM fields are written in terms of
Υb(x) which has the following convenient integral definition [84]

log Υb(x) =
∫ ∞

0

dω

ω

e−2ω
(
Q

2 − x
)2
−

sinh2
(
ω
(
Q
2 − x

))
sinh ω

b sinh(bω)

 . (2.4)

The bare sphere free energy, Fbare = − logZbare, of the deformed N = 4 SYM theory has
logarithmic divergences in addition to power-law divergences, as is the case for all (de-
formed) sphere free energies in even dimensions. Consequently, the regularized expression
in (2.3) has an ambiguity of the form [32, 85]

logZ → logZ + κ1 + κ2m
2 + κ3(b+ b−1)2 , (2.5)

where the coefficients κi(τ, τ̄) satisfying ∂τ∂τ̄κi = 0 depend on the regularization scheme
(see appendix A for details). We must therefore be careful to only consider derivatives of
logZ such that regularization-dependent terms cancel. For instance, the only well-defined
two-derivative term with respect to (b,m, τ, τ̄) is ∂τ∂τ̄ logZ

∣∣
m=0,b=1, and it can be seen

from the supersymmetric localization result [25] quoted above that it equals

∂τ∂τ̄ logZ
∣∣
m=0,b=1 = c

2(=τ)2 , (2.6)

13Note that the factors Υ′b(0) were missing in the localization formula of [26]. They come from the
(regularized) one-loop determinant of the N = 2 vector multiplet associated to each Cartan generator,
namely

Υ′b(0) =
∏

m,n≥0, (m,n) 6=0

(mb+ n/b+Q)(mb+ n/b) , (2.1)

where Υ′b(0) denotes the z-derivative of Υb(z) at z = 0. One can also rewrite Υ′b(0) as

Υ′b(0) = 2π
Γb(Q)2 (2.2)

in terms of the Barnes double Gamma function Γb(x) (see e.g. [82, 83] for properties of these special
functions). We emphasize that these squashing-dependent factors are crucial for producing the correct
CFT correlators by taking derivatives of the SYM partition function with respect to b.

14The constrained integral over the ai can be implemented, for instance, by an integral over N uncon-
strained ai’s with a δ(

∑
i
ai) insertion.
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where c = N2−1
4 is the conformal anomaly for SU(N) SYM. For three derivatives, we have

the non-ambiguous terms

(∂3
b + 3∂2

b ) logZ
∣∣
m=0,b=1 = ∂3

m logZ
∣∣
m=0,b=1 = 0 , (2.7)

which vanish identically. The vanishing of the latter term follows immediately from the
fact that Z is an even function of m, while the vanishing of the former comes from the
invariance of Z under b↔ 1/b (see appendix B for details). At four derivatives, we consider
the nontrivial quantities listed in (1.3), which we argue should satisfy the three relations

0 = (∂τ∂τ̄∂2
m − ∂τ∂τ̄∂2

b ) logZ
∣∣
m=0,b=1 ,

0 = (−6∂2
b∂

2
m + ∂4

m + ∂4
b − 15∂2

b ) logZ
∣∣
m=0,b=1 ,

−16c = (3∂2
b∂

2
m − ∂4

m − 16τ2
2 ∂τ∂τ̄∂

2
m) logZ

∣∣
m=0,b=1 .

(2.8)

We will prove the first two statements, and amass significant evidence for the third.15

These relations imply that the five quantities in (1.3) can all be written in terms of the
two quantities in (1.4).

2.2 Large N expansion of integrated correlators

As mentioned in the Introduction, the first quantity in (1.4) was previously expanded in
1/N in [35]. The expansion took the form:

τ2
2 ∂τ∂τ̄∂

2
m logZ

∣∣
m=0,b=1 = N2

4 −
3
√
N

24π
3
2
E( 3

2 , τ, τ̄)+ 45
28
√
Nπ

5
2
E( 5

2 , τ, τ̄)

+ 1
N

3
2

[
− 39

213π
3
2
E( 3

2 , τ, τ̄)+ 4725
215π

7
2
E( 7

2 , τ, τ̄)
]
+ 1
N

5
2

[
− 1125

216π
5
2
E( 5

2 , τ, τ̄)+ 99225
218π

9
2
E( 9

2 , τ, τ̄)
]

+ 1
N

7
2

[ 4599
222π

3
2
E( 3

2 , τ, τ̄)− 2811375
225π

7
2
E( 7

2 , τ, τ̄)+ 245581875
227π

11
2

E( 11
2 , τ, τ̄)

]
+O(N−

9
2 ) , (2.9)

where the non-holomorphic Eisenstein series E(s, τ, τ̄) were defined in our normalization
in (1.5). In particular, E(s, τ, τ̄) is the unique SL(2,Z)-invariant solution of moderate
growth (i.e. behaving as τa2 , a ∈ R, as τ2 → ∞) of the Laplace eigenvalue equation (1.6).
The differential operator ∆τ ≡ 4τ2

2 ∂τ∂τ̄ = τ2
2 (∂2

τ1 + ∂2
τ2) appearing in this equation is the

hyperbolic Laplacian. As a periodic function of τ1 with unit period, the Eisenstein series
has a Fourier expansion in the form

E(s, τ, τ̄) = 2ζ(2s)τ s2 + 2
√
πτ1−s

2
Γ(s− 1

2)
Γ(s) ζ(2s− 1)

+ 4πs√τ2
Γ(s)

∑
k 6=0
|k|s−

1
2 σ1−2s(|k|)Ks− 1

2
(2πτ2 |k|) e2πikτ1 ,

(2.10)

15While we focus on the SU(N) case in the main text, we expect these relations to hold for N = 4 SYM
with general gauge groups. See appendix B for related discussions.
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where the divisor sum σp(k) is defined by σp(k) = ∑
d>0,d|k d

p, and Ks− 1
2
is a Bessel

function of second kind. Notably, the constant term in τ1 (the zero Fourier mode) has
only two power-behaved (i.e. perturbative) terms in 1/τ2. The non-zero Fourier modes
are interpreted as the contributions of D-instantons, since in the weak coupling regime:
τ2 � 1, the Bessel functions have expansions of the form 2(|k|τ2) 1

2 Ks− 1
2
(2π|k|τ2) =

e−2π|k|τ2
(
1 +O(τ−1

2 )
)
. From (2.10), we see that for τ2 � 1 the kth and (−k)th modes

(k > 0) contribute a term proportional to
(
e2πikτ + e−2πikτ̄

)
, which is the sum of a charge-k

D-instanton and a charge-(−k) anti-D-instanton contributions. While the expression (2.9)
was derived in [35] by computing the coefficients of e2πinτ in a power series in 1/τ2, in ap-
pendix D.2 we will provide an alternative derivation in which it is not necessary to expand
these coefficients in 1/τ2.

In the next section we will determine the first few terms of the large-N expansion of the
second quantity in (1.4), ∂4

m logZ
∣∣
m=0,b=1. As we will see, this quantity has an expansion

in integer powers of N− 1
2 of the general form

∂4
m logZ

∣∣
m=0,b=1 = 6N2 +

∞∑
p=0

apN
−p+ 1

2G(p, τ, τ̄) +
∞∑
q=1

bqN
−qH(q, τ, τ̄) , (2.11)

where aq and bq are rational numbers multiplying powers of π. The functions G(p, τ, τ̄)
and H(q, τ, τ̄) are modular functions (i.e. functions that are invariant under the SL(2,Z)
transformations (1.2)). Whereas the large-N expansion of the correlation function (2.9) was
an expansion in half-integer powers of 1/N , the expansion (2.11) contains both even and
odd powers of N− 1

2 , as was demonstrated in the analysis of the terms that are perturbative
in τ−1

2 in [24].
According to the AdS/CFT correspondence, when (τ, τ̄) is fixed, the expansion in

powers of N− 1
2 corresponds to an expansion in powers of α′/L2 and α′D2, where L is

the curvature radius of anti de-Sitter space, and D denotes, schematically, a space-time
derivative. The large-N expansion (2.11) is therefore interpreted as a small curvature and
low momentum expansion in the bulk superstring theory. The leading term in (2.11) is
proportional to N2 and corresponds to the contribution of classical IIB supergravity, which
is of order (α′)−4 in our conventions.

Half-integer powers of 1/N . As we will see, the coefficients of the half-integer powers
of N — the functions G(p, τ, τ̄) — bear a strong similarity to the analogous coefficients
in (2.9). They are rational sums of non-holomorphic Eisenstein series E(s, τ, τ̄) with half-
integer indices 3

2 ≤ s ≤ p + 3
2 . As in (2.9), the first term with a half-integer power of

N that appears in the large-N expansion is proportional to N 1
2 E( 3

2 , τ, τ̄). Setting s = 3
2

in (2.10) we see that this has perturbative contributions proportional to N 1
2 τ

3
2

2 ∼ N2λ−
3
2

and N
1
2 τ
− 1

2
2 ∼ N0λ−

1
2 , where λ = 4πτ−1

2 N is the ’t Hooft coupling. This is the order
corresponding to the (α′)−1R4 interaction in the flat-space type IIB superstring effective
action. The next term with a half-integer power of N is proportional to N− 1

2 E( 5
2 , τ, τ̄) and

corresponds to an α′D4R4 interaction in the flat-space type IIB superstring effective action.

– 8 –



J
H
E
P
0
4
(
2
0
2
1
)
2
1
2

Integer powers of 1/N . The coefficients of the terms in (2.11) that have integer powers
of 1/N — the functions H(q, τ, τ̄) — are modular functions that are linear combinations of
the generalized Eisenstein series E(r, s1, s2, τ, τ̄) obeying the inhomogeneous Laplace eigen-
value equations (1.7). These equations generalize the equation satisfied by the coefficient
of the D6R4 interaction in the flat-space type IIB superstring S-matrix, which has r = 3
and s1 = s2 = 3/2 [44, 45]. As can be seen from the equation (1.7), the argument r is an
integer that labels the eigenvalue r(r + 1), while s1, s2 are indices of the Eisenstein series
in the source term subject to the condition s1 + s2 ≤ q+ 2 and s1, s2 ≥ 3

2 .16 As previously
mentioned, the solution to Laplace equation (1.7) is ambiguous. Here we fix the ambiguity
by requiring E(r, s1, s2, τ, τ̄) ∼ τ s1+s2

2 in the limit τ2 →∞. In the case that corresponds to
the D6R4 interaction discussed above, this condition is required by consistency of the string
perturbation expansion [86]. More generally, we demand H(q, τ, τ̄) ∼ τ q+2

2 as τ2 → ∞, as
expected for the genus zero string amplitude corresponding to the D4q+2R4 interaction
(after transformation to the Einstein frame).

General equations of the form (1.7) were considered in [47] where the method for
extracting the perturbative terms (power-behaved in τ2) in the zero Fourier mode (in τ1)
of the functions E(r, s1, s2, τ, τ̄) was presented. These terms are summarized as:

E(r,s1,s2, τ, τ̄)|power = a1τ
s1+s2
2 +a2τ

1+s1−s2
2 +a3τ

1+s2−s1
2 +a4τ

2−s1−s2
2 +βrτ−r2 , (2.12)

where the coefficients ar are easy to determine since the corresponding powers of τ2 arise
from the zero Fourier modes of the source, E(s1, τ, τ̄)E(s2, τ, τ̄). Equating the power-
behaved terms on the left-hand and right-hand sides of (1.7) determines the values of ar.
The term proportional to τ−r2 does not arise in the source term, and furthermore it satisfies
the homogeneous equation since it is in the kernel of (∆τ − r(r + 1)), so its contribution
is zero on both the left-hand and right-hand sides of (1.7).17 The value of its coefficient
βr may be determined by the procedure in [44, 47], which involves multiplying (1.7) by
E(r + 1, τ, τ̄) and integrating over a cut-off fundamental domain of SL(2,Z). The integral
over the left-hand side reduces to a boundary term evaluated at the cutoff, while the
integral over the product of three Eisenstein series on the right-hand side can be evaluated
by the Rankin-Selberg method. In appendix C we review the details of this procedure and
present explicit results for the perturbative terms appearing in (2.12).

The functions E(r, s1, s2, τ, τ̄) have a rich structure of D-instanton and anti-D-instanton
contributions. In particular, this structure includes D-instanton/anti-D-instanton pairs,
unlike for the ordinary Eisenstein series E(s, τ, τ̄). Indeed, the zero mode consists of the sum
of the power-behaved terms in (2.12) together with an infinite series of D-instanton/anti
D-instanton pairs with zero net instanton charge. This non-perturbative structure will also
be studied in appendix C. The cases that will be considered in this paper are the following:

16The function E(3, 3
2 ,

3
2 , τ, τ̄) was denoted E 3

2 ,
3
2
(τ, τ̄) in [44] and by E0(τ, τ̄) in more recent literature —

see, for instance, [46].
17Note that there is another homogeneous solution to (1.7) given by τr+1

2 . For the cases we consider here
r ≥ s1 + s2 (see (2.13)) and thus such term is forbidden by the boundary condition that E(r, s1, s2, τ, τ̄) ∼
τs1+s2
2 as τ2 →∞.
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• The 1/N contribution, which is the order where the flat-space interaction (α′)2D6R4

appears. This is a 1/8-BPS interaction of dimension 14 with coefficient the generalized
Eisenstein series E(3, 3

2 ,
3
2 , τ, τ̄) that was determined in detail in [86]. Although we will

not perform a complete analysis here, we will find strong evidence that the fourth
mass derivative ∂4

m logZ
∣∣
m=0,b=1 as computed from supersymmetric localization is also

proportional to this generalized Eisenstein series.

• The 1/N2 contribution, which is the order where the flat-space interaction is (α′)4D10R4.
In this case we will see the function H(2, τ, τ̄) contains a rational sum of two new modu-
lar functions, E(4, 3

2 ,
5
2 , τ, τ̄) and E(6, 3

2 ,
5
2 , τ, τ̄). The power-behaved terms correspond in

the flat-space limit to perturbative string theory contributions ranging from genus zero
to genus five. Although details of the perturbative sector of these functions are well-
understood, we will not discuss the complete expressions for the instanton contributions
in the Fourier expansion. Many details of these perturbative terms as well as the k-
instanton/anti-instanton pairs have been determined and are presented in appendix C.
This data (and that from other instanton sectors) will be compared with terms arising
in the analysis of the localization formula for the SYM free energy, and provides com-
pelling evidence that the 1/N2 coefficient is proportional to a particular rational linear
combination of the two modular invariants mentioned above.

• The 1/N3 contribution, which is the order where the flat-space interaction is (α′)6D14R4.
In this case we will see that the function H(3, τ, τ̄) contains a rational sum of ten
modular functions, These consist of the nine functions E(r, 3

2 ,
3
2 , τ, τ̄), E(r, 5

2 ,
5
2 , τ, τ̄) and

E(r, 3
2 ,

7
2 , τ, τ̄), where r = 5, 7, 9, together with the function E(3, 3

2 ,
3
2 , τ, τ̄). The sum of

these ten terms contains power-behaved (perturbative) contributions ranging from tree-
level to genus-seven. Once again, these perturbative contributions of these functions are
well understood but we have not completely analyzed the D-instanton contributions.
However, we have obtained sufficient information of particular single D-instanton con-
tributions, as well as the contributions from instanton/anti D-instanton pairs to compare
with the corresponding terms that are obtained from supersymmetric localization. This
again provides compelling evidence that the 1/N3 coefficient is proportional to a particu-
lar rational linear combination of the ten modular-invariant functions mentioned above.

Explicit formula. To be concrete, the explicit formula that we find with qualitative
features described above is

∂4
m logZ

∣∣
m=0,b=1 = 6N2+ 6

√
N

π
3
2
E( 3

2 , τ, τ̄)+C0−
9

2
√
Nπ

5
2
E( 5

2 , τ, τ̄)− 27
23π3N

E(3, 3
2 ,

3
2 , τ, τ̄)

+ 1
N

3
2

[
117

28π
3
2
E( 3

2 , τ, τ̄)− 3375
210π

7
2
E( 7

2 , τ, τ̄)
]
+ 1
N2

[
C1+ 14175

704π4E(6, 5
2 ,

3
2 , τ, τ̄)− 1215

88π4E(4, 5
2 ,

3
2 , τ, τ̄)

]
+ 1
N

5
2

[
675

210π
5
2
E( 5

2 , τ, τ̄)− 33075
212π

9
2
E( 9

2 , τ, τ̄)
]
+ 1
N3

[
α3E(3, 3

2 ,
3
2 , τ, τ̄)

+
∑

r=5,7,9
[αrE(r, 3

2 ,
3
2 , τ, τ̄)+βrE(r, 5

2 ,
5
2 , τ, τ̄)+γrE(r, 7

2 ,
3
2 , τ, τ̄)]

]
+O(N−

7
2 ) , (2.13)
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order
perturbative (n1, n2) instanton terms ∼ e2πi(n1τ−n2τ̄)

terms n1 = 1, n2 = 0 n1 = 2, n2 = 0 n1 = 1, n2 = −1 1 ≤ |n1,2| ≤ 3

N2 1 (all) − − − −

N1/2 g−3
YM , gYM (all) 1, g2

YM , g4
YM 1 − −

N0 not computed − − − −

N−1/2 g−5
YM , g3

YM (all) 1, g2
YM , g4

YM 1 − −

N−1 g−6
YM g−1

YM , gYM , g3
YM g−1

YM , 1, gYM , g3
YM finite gYM (all) g4

YM , g6
YM

N−3/2 not computed 1, g2
YM , g4

YM 1 − −

N−2 g−8
YM g−3

YM , g−1
YM , gYM g−3

YM , g−1
YM , 1, gYM finite gYM (all) g4

YM , g6
YM

N−5/2 not computed 1, g2
YM 1 − −

N−3 g−10
YM g−5

YM , g−3
YM , g−1

YM g−5
YM , g−3

YM , g−1
YM , 1 finite gYM (all) g4

YM , g6
YM

Table 1. A schematic summary of the evidence we have collected for (2.13). An entry
ga

YM
e2πi(n1τ−n2τ̄) in this table means we have computed the coefficient of a term proportional to

ga
YM
e2πi(n1τ−n2τ̄) in the expansion of (2.13). (The perturbative terms correspond to n1 = n2 = 0.)

A dash means such terms are absent in the expansion. The cases where we have computed all
non-zero terms are marked with “all”.

where C0, C1 are numerical constants that we will not determine here, while αr, βr, γr are

α3 = 1161
1144π3 , α5 = − 135

52π3 , α7 = 17364375
1244672π3 , α9 = − 7203735

452608π3 ,

β5 = −30375
832π5 , β7 = 6251175

56576π5 , β9 = −2679075
34816π5 ,

γ5 = −42525
832π5 , γ7 = 28704375

226304π5 , γ9 = − 9823275
139264π5 .

(2.14)

We emphasize that we do not have a complete proof of (2.13). Instead, in the next section,
we will provide abundant evidence for this expression by considering various limits of
the terms in the 1/N expansion. In particular, we will study perturbative contributions
in the zero-instanton sector, as well as perturbative expansions around certain (n1, n2)
(anti)instanton-pair backgrounds for |n1|, |n2| ≤ 3. We include a summary of the terms we
have computed in table 1.

3 Derivatives of deformed S4 partition function

In this section, we will give evidence for the relations (2.8) and the large N expansion (2.13)
by explicit evaluation of the various derivatives of (2.3), which take the form of expectation
values in the familiar Hermitian Gaussian matrix model that describes the m = 0, b = 1
partition function

Z
∣∣
m=0,b=1 =

∫
dN−1a e

− 8π2
g2
YM

∑
i
a2
i
∏
i<j

a2
ij . (3.1)
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We will compute these expectation values using topological recursion [87, 88]. Since the
application of this method to the N = 4 partition function was already explained in detail
in [24, 36], we will relegate the explicit calculations to appendix D and only present the
results below.

3.1 Perturbative sector

We begin by considering the perturbative part Zpert of (2.3) obtained by setting Zinst = 1.
Taking derivatives in m, b and using (2.4), we find

∂τ∂τ̄∂
2
m logZ

∣∣pert
m=0,b=1 = ∂τ∂τ̄∂

2
b logZ

∣∣pert
m=0,b=1 = −∂τ∂τ̄

∫ ∞
0

dω
2ωI(ω)
sinh2 ω

,

∂2
b∂

2
m logZ

∣∣pert
m=0,b=1 = 4− 12ζ(3) +

∫ ∞
0

dω
2ω2I(ω)
sinh4 ω

(sinh(2ω)− 2ω)

+
∫ ∞

0
dω

∫ ∞
0

dw
4wωJ (ω,w)

sinh2w sinh2 ω
,

∂4
m logZ

∣∣pert
m=0,b=1 = −12ζ(3) +

∫ ∞
0

dω
8ω3I(ω)
sinh2 ω

+
∫ ∞

0
dω

∫ ∞
0

dw
12wωJ (ω,w)
sinh2w sinh2 ω

,

[∂4
b − 15∂2

b ] logZ
∣∣pert
m=0,b=1 = 24− 50ζ(3) +

∫ ∞
0

dω
4ω2I(ω)
sinh4 ω

(3 sinh(2ω)− 5ω − ω cosh(2ω))

+
∫ ∞

0
dω

∫ ∞
0

dw
12wωJ (ω,w)
sinh2w sinh2 ω

, (3.2)

where, as in [24], we define the two- and four-body expectation values

I(ω) ≡
∑
i,j

〈e2iωaij 〉 , J (ω,w) =
∑
i,j,k,l

[
〈e2iωaije2iwakl〉 − 〈e2iωaij 〉〈e2iwakl〉

]
, (3.3)

which are taken with respect to the (b,m) = (1, 0) partition function (3.1). The terms that
do not involve I and J come from the factor Υ′b(0)

Υb(im+Q
2 )

in (2.3) that does not depend on
the integration variables ai. The J terms in (3.2) take the same form for each expression,
up to a factor of 3, so the nontrivial difference between the expressions in (3.2) comes from
the I terms, which are also easier to evaluate.

From these expressions we see that the first and second relations in (2.8) are identically
satisfied even before computing the expectation values, while the third relation follows from
integration by parts after taking the expectation value. To justify the latter statement,
note that from (3.2) we can write the perturbative contributions to the r.h.s. of the third
relation in (2.8) as

4 +
∫ ∞

0

dω

sinh2 ω

[
− 12ω3

sinh2 ω
− 8ω3 + 12ω2 cothω + 8ω

g4
YM

∂2
g−2
YM

]
I(ω)

= 4− 4ω3 coshω
sinh3 ω

I(ω)
∣∣∣∣
ω=0

+
∫ ∞

0

dω

sinh2 ω

[
−2∂ωω3∂ω + 8ω

g4
YM

∂2
g−2
YM

]
I(ω)

= 4(1−N2) .

(3.4)

Here, the first equality comes from performing integration by parts twice, where only one
boundary term is non-vanishing, and the τ, τ̄ derivatives in (2.8) can be written as gYM
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derivatives because the perturbative terms do not depend on θ. The second equality comes
from evaluating this boundary term, which is what yields the N2, while the integrand in
the second line vanishes from the explicit expression for I(ω) in (3.3) and (3.1).

Now that we have established the identities (2.8) at the perturbative level, let us
examine the perturbative contributions to ∂4

m logZ
∣∣pert
m=0,b=1, which include both a two- and

four-body term (proportional to I and J , respectively). We can evaluate the two-body
term in a large N and large λ expansion as in [36], which we then translate to large N and
finite gYM by simply setting λ = Ng2

YM . It is harder to determine the large λ expansion
of the four-body term, since as explained in [24], the dependence on the Fourier variables
(w,ω) does not factorize and thus the analytic method in appendix D of [33] cannot be
easily applied. Instead, these terms were evaluated numerically to high precision in [24],
and from a numerical fit it was possible to extract the first few terms in the 1/λ expansion.
In appendix D.1, we furthermore show that all terms of the form N2λ−integer can in fact be
computed analytically, since the Fourier variables factorize for these terms. After combining
these results and converting λ = g2

YMN , we get

∂4
m logZ

∣∣pert
m=0,b=1 = 6N2+

√
N

[
96ζ(3)
g3

YM

+2gYM

]
+f0(gYM)− 1√

N

[
288ζ(5)
g5

YM

+
g3

YM

60

]

− 1
N

[
144ζ(3)2

g6
YM

+O(g−4
YM)

]
+
f 3

2
(gYM)

N
3
2

+ 1
N2

[
−1080ζ(3)ζ(5)

g8
YM

+O(g−6
YM)

]

+
f 5

2
(gYM)

N
5
2

+ 1
N3

[
−6885ζ(5)2

g10
YM

− 42525ζ(3)ζ(7)
4g10

YM

+O(g−8
YM)

]
+O(N−

7
2 ) ,

(3.5)

where the fi(gYM) denote functions that we have not yet been able to compute due to
the aforementioned technical difficulties, while the leading small gYM term at any N−integer

order can be computed analytically. The terms shown in (3.5) match with the expec-
tation (2.13), after expanding the Eisenstein series using (2.10) and extracting the per-
turbative parts of the other modular functions shown in (2.12). Note that we have not
computed enough perturbative terms to unambiguously fix the modular functions in (2.13),
so we need to look at the instanton sector, which we will discuss next.

3.2 Instanton sector

We now consider the other parts of logZ in (2.3) that involve Zinst. In particular, we define
the non-perturbative contributions to logZ by logZNP ≡ log(Z/Zpert). Taking derivatives
in (m, b) we find

∂2
b∂

2
m logZ

∣∣NP
m=0,b=1 =

[
Z + 〈∂2

b∂
2
m(Zinst + Z̄inst)〉

]
m=0,b=1 ,

∂4
m logZ

∣∣NP
m=0,b=1 =

[
3Z + 〈∂4

m(Zinst + Z̄inst)〉
]
m=0,b=1 ,

(∂4
b − 15∂2

b ) logZ
∣∣NP
m=0,b=1 =

[
3Z + 〈(∂4

b − 15∂2
b )(Zinst + Z̄inst)〉

]
m=0,b=1 ,

(3.6)
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where

Z ≡ 2〈∂2
mZinst∂

2
mZ̄inst〉 − 2〈∂2

mZinst〉〈∂2
mZ̄inst〉 − 〈∂2

mZinst〉2 − 〈∂2
mZ̄inst〉2

−
∫ ∞

0

4ω dω
sinh2 ω

∑
i,j

[
〈e2ωaij (∂2

mZinst + ∂2
mZ̄inst)〉 − 〈e2ωaij 〉〈(∂2

mZinst + ∂2
mZ̄inst)〉

] (3.7)

contains expectation values of n > 2-body terms. As was the case with the J contribution
in (3.2), Z appears in each expression with a coefficient proportional to the coefficient
of the J term in (3.2). In deriving (3.7), we have used the fact that ∂2

bZinst
∣∣
m=0,b=1 =

∂2
mZinst

∣∣
m=0,b=1 (which we will explain momentarily from the structure of Zinst in (3.10))

to write Z purely in terms of derivatives with respect to m. The second line of (3.7) comes
from a mixed term involving derivatives of both Zinst and the Υ factors in (2.3).

The explicit Nekrasov partition function Zinst(m, τ, b, aij) was computed in [80, 81]. It
can be written in terms of a sum over k-instanton sectors Z(k)

inst(m, b, aij) as

Zinst(m, τ, b, aij) =
∞∑
k=0

e2πikτZ
(k)
inst(m, b, aij) , (3.8)

which is normalized so that Z(0)
inst(m, b, aij) = 1.18 Notably, Zinst(0, 1, aij) = 1 [25] so

the instantons do not contribute to the sphere partition function at the conformal point.
Inserting this expansion into (3.6), we see that the two-body terms are sums over single
instantons only, while Z involves pairs of instantons in the first line and single instantons
in the second line. The explicit form of Z(k)

inst(m, b, aij) can be found in appendix B of [35]
and satisfies19

Z
(k)
inst(m, b, a) =

[
m2 + 1

4(b− 1/b)2
]
G(k)(m, b, a) , (3.10)

whereG(k)(m, b, a) is analytic in (m, b) ∈ R2 around an open neighborhood of (m, b) = (0, 1)
for generic ai ∈ R. Furthermore, G(k)(m, b, a) is a symmetric function under b → 1/b and
under m→ −m separately. From these properties, we deduce

(∂2
m−∂2

b ) Z(k)
inst(m,b,a)

∣∣∣
m=0,b=1

= 0 ,

(−6∂2
b∂

2
m+∂4

m+∂4
b−15∂2

b ) Z(k)
inst(m,b,a)

∣∣∣
m=0,b=1

=−24∂b G(k)(m,b,a)
∣∣∣
m=0,b=1

= 0 ,
(3.11)

18We emphasize here that Zinst is the U(N) instanton partition function, which differs from the SU(N)
answer by the U(1) instanton contribution ZU(1)

inst [11, 12, 81, 89],

Z
U(1)
inst =

[
∞∏
i=1

(1− qi)

]N(Q2
4 −m

2
)
−1

. (3.9)

Since ZU(1)
inst can be completely absorbed by the counter-term ambiguities in (2.5), this difference does not

affect the physical observables we compute.
19The instanton partition function Z(k)

inst receives contributions from each N -vector of Young diagrams ~Y
whose total size is k, in the form of a rational expression in aij , m and squashing parameters ε1 = b, ε2 = 1

b

that is determined by the shapes of the Young diagrams in ~Y . The factor (m2 + 1
4 (b − 1/b)2) in (3.10)

comes from a universal part of this rational expression for each ~Y that is due to the outer-corner entries of
the non-empty Young diagrams. See appendix B of [35] for details.
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and consequently the first two relations in (2.8) hold identically before taking expectation
values. Combined with the derivation of the perturbative terms in the previous subsection,
this completes the proof of these first two relations for SU(N) SYM at finite N and gauge
coupling τ .20 For the third relation in (2.8), as well as for computing ∂4

m logZ
∣∣pert
m=0,b=1, we

require the explicit expressions for G(k)(m, b, a). These are in general very complicated,
so in the next few subsections we will consider just the lowest few values of k. We will
compute the expectation values arising from these terms using both the small gYM expansion
introduced in [35], as well as a more powerful finite gYM method that uses the full power
of topological recursion.

3.2.1 One-instanton sector

We begin by considering the one-instanton sector of (3.6), which consists of terms pro-
portional to e2πiτ , and denote the overall coefficient by logZNP,(1) with the corresponding
derivatives in (b,m).21 For the two-body (i.e. non-Z) terms in (3.6), we can simply set
Zinst → Z

(1)
inst. For Z, we can replace Z → Z(1), with

Z(1) = −
∫ ∞

0

4ω dω
sinh2 ω

∑
ij

[
〈e2ωaij∂2

mZ
(1)
inst〉 − 〈e

2ωaij 〉〈∂2
mZ

(1)
inst〉

]
, (3.12)

since the other terms in (3.7) can only contribute to higher instanton sectors. We use the
explicit expression for Z(1)

inst(m, b, aij) in [80, 81]:

Z
(1)
inst(m, b, aij) = −

(
m2 + 1

4(b− 1/b)2
) N∑
l=1

∏
l 6=i

((ali − i b+1/b
2 )2 −m2)

ali(ali − i(b+ 1/b)) , (3.13)

which satisfies the general form in (3.10).
In order to check the third relation in (2.8), we consider the two-body term (3∂2

b∂
2
m −

∂4
m)Z

∣∣NP
m=0,b=1, for which contributions from Z cancel. We can evaluate this expectation

value in a large N expansion at finite gYM using topological recursion as shown in ap-
pendix D, and find

(3∂2
b∂

2
m − ∂4

m) logZ
∣∣NP,(1)
m=0,b=1 = e

8π2
gYM

−48
√
NK1

(
8π2

g2
YM

)
gYM

+
30K2

(
8π2

g2
YM

)
gYM

√
N

+
315K3

(
8π2

g2
YM

)
− 39K1

(
8π2

g2
YM

)
32gYMN

3
2

+
945K4

(
8π2

g2
YM

)
− 375K2

(
8π2

g2
YM

)
128gYMN

5
2

+O(N−
7
2 ) ,

(3.14)

which satisfies the third relation in (2.8) after comparing to τ2
2 ∂τ∂τ̄∂

2
m logZ

∣∣
m=0,b=1 in (2.9)

and extracting the 1-instanton term in the Eisenstein series (2.10).
20For SYM with general gauge groups, see appendix B for relevant discussions.
21Similarly, the one-anti-instanton sector consists of terms proportional to e−2πiτ̄ , and the calculation is

identical to the one in this section.
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We can then include Z by considering ∂4
mZ

∣∣NP
m=0,b=1, which includes both the two-

body term ∂4
mZ

(1)
inst
∣∣
m=0,b=1 and the n > 2-body term Z(1)∣∣

m=0,b=1. It is harder to evaluate
Z(1)∣∣

m=0,b=1 at finite gYM , so instead we will compute it in a small gYM expansion by expand-
ing ∂2

mZ
(1)
inst
∣∣
m=0,b=1 for small eigenvalue aij , computing the resulting n-body expectation

values using topological recursion, and then performing the ω integral using a large λ expan-
sion, as detailed in appendix D. Finally, we add the contribution of the small gYM expansion
of ∂4

mZ
(1)
inst, which we also compute at finite gYM in the appendix, to get the full result

∂4
m logZ

∣∣NP,(1)
m=0,b=1 =

√
N

[
24√
π

+
9g2

YM

8π5/2−
45g4

YM

1024π9/2 +O(g6
YM)

]

+ 1√
N

[
− 12√

π
−

45g2
YM

16π5/2−
315g4

YM

2048π9/2 +O(g6
YM)

]

+ 1
N

[
− 54ζ(3)
π5/2gYM

− 2565gYMζ(3)
32π9/2 +

3g3
YM(512π4−51345ζ(3))

4096π13/2 +O(g5
YM)

]

+ 1
N

3
2

[
− 27

16
√
π
−

1881g2
YM

1024π5/2−
53595g4

YM

131072π9/2 +O(g6
YM)

]

+ 1
N2

[
135ζ(5)

2π5/2g3
YM

+ 135(32π2ζ(3)−705ζ(5))
128π9/2gYM

+ 945gYM(6464π2ζ(3)−83985ζ(5))
16384π13/2 +O(g3

YM)
]

+ 1
N

5
2

[
− 45

64
√
π
−

8235g2
YM

4096π5/2 +O(g4
YM)

]

+ 1
N3

[
8505ζ(7)

64π5/2g5
YM

− 675(256π2ζ(5)−5229ζ(7))
4096π9/2g3

YM

− 27(886784π4ζ(3)−62630400π2ζ(5)+555626925ζ(7))
524288π13/2gYM

+O(gYM)
]

+O(N−
7
2 ) , (3.15)

which matches the 1-instanton sector of the expected combinations of modular invariants
in (2.13), which for the Eisenstein series is given in (2.10) and for the other modular
functions is given in appendix C.

3.2.2 Two-instanton sector

The two-instanton sector of (3.6) consists of terms proportional to e4πiτ whose coefficients
we denote by logZNP,(2) with the corresponding (b,m) derivatives. For the two-body terms,
we can simply set Zinst → Z

(2)
inst, while for Z in (3.7) we have

Z(2) = −〈∂2
mZ

(1)
inst〉

2 −
∫ ∞

0

4ω dω
sinh2 ω

∑
ij

[
〈e2ωaij∂2

mZ
(2)
inst〉 − 〈e

2ωaij 〉〈∂2
mZ

(2)
inst〉

]
, (3.16)

where the first term is new relative to the one-instanton case (3.12). We use the explicit
expression for Z(2)

inst(m, b, aij) in [80, 81]:

Z
(2)
inst(m, b, aij) = Zinst + Zinst + Z ,

inst , (3.17)
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where the three terms correspond to the three vectors of Young diagrams ~Y given by the
superscript (we have only listed the non-empty Young diagrams) and have the following
explicit forms

Zinst(m,b,aij) =Zinst(m,1/b,aij)

=

(
m2+ (b−1/b)2

4

)(
m2+ (3b−1/b)2

4

)
−2(b2−1)

N∑
i=1

∏
j 6=i

((
aji−i b+1/b

2

)2
−m2

)((
aji−i3b+1/b

2

)2
−m2

)
aji(aji−ib)(aji−i(b+1/b))(aji−i(2b+1/b)) ,

(3.18)

and

Z ,
inst (m,b,aij) = 1

2

(
m2+ (b−1/b)2

4

)2 N∑
i=1

∑
j 6=i

(
a2
ij+

(
im+ b−1/b

2

)2
)(

a2
ij+

(
im− b−1/b

2

)2
)

(a2
ij+b2)(a2

ij+1/b2)

×
∏
k 6=i,j

((
aki−i b+1/b

2

)2
−m2

)((
akj−i b+1/b

2

)2
−m2

)
aki(aki−i(b+1/b))akj(akj−i(b+1/b)) . (3.19)

which again satisfies the general form in (3.10).
Since the two-instanton expression is much more complicated than the one-instanton

expression, we will only perform perturbative in gYM calculations. As shown in appendix D,
we find

(3∂2
b∂

2
m − ∂4

m) logZ
∣∣NP,(2)
m=0,b=1 =

[
− 15

√
2N
π

+ 255
8
√

2πN
+ 19695

1024
√

2πN 3
2

+ 217365
8192
√

2πN 5
2

+O(N−
7
2 )
]

+O(g2
YM) ,

(3.20)

which satisfies the two-instanton sector of the second relation in (2.8), and

∂4
m logZ

∣∣NP,(2)
m=0,b=1 =

√
N

[
30
√

2
π

+O(g2
YM)

]
+ 1√

N

[
− 51√

2π
+O(g2

YM)
]

+ 1
N

[
− 135ζ(3)

2
√

2π5/2gYM

− 18
π
− 12825gYMζ(3)

256
√

2π9/2
+kg2

YM +
15g3

YM

(
2048π4−51345ζ(3)

)
65536

√
2π13/2

+O(g4
YM)

]

+ 1
N

3
2

[
− 12285

512
√

2π
+O(g2

YM)
]

+ 1
N2

[
675ζ(5)

8
√

2π5/2g3
YM

+
135
(
544π2ζ(3)−3525ζ(5)

)
1024

√
2π9/2gYM

− 63
2π+

945gYM

(
109888π2ζ(3)−419925ζ(5)

)
262144

√
2π13/2

+O(g3
YM)

]

+ 1
N

5
2

[
− 65655

2048
√

2π
+O(g2

YM)
]

+ 1
N3

[
42525ζ(7)

256
√

2π5/2g5
YM

−
675
(
4352π2ζ(5)−26145ζ(7)

)
32768

(√
2π9/2

)
g3

YM

−
135
(
1611776π4ζ(3)−212943360π2ζ(5)+555626925ζ(7)

)
8388608

(√
2π13/2

)
gYM

− 279
4π +O(gYM)

]
+O(N−

7
2 ) , (3.21)
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which matches the two-instanton sector of the expected modular function (2.13). Here, k
denotes the term at order g2

YM/N that we have not yet computed.22 Note that the N−1,
N−2, and N−3 contributions at zeroth order in gYM are new types of terms that did not
appear in the one-instanton expression (3.15). The only class of terms that we have not
checked so far are the instanton/anti-instanton pairs, which we will consider in the next
subsection.

3.2.3 Instanton/anti-instanton sector

The mixed p instanton and q anti-instanton sector of (3.6) consists of terms proportional
to e2πi(pτ−qτ̄) with coefficients denoted by the corresponding derivatives of logZNP,(p,−q),
and only receives contributions from the first two terms in Z in eq. (3.7):

Z(p,−q) = 2〈∂2
mZ

(p)
inst∂

2
mZ̄

(q)
inst〉 − 2〈∂2

mZ
(p)
inst〉〈∂

2
mZ̄

(q)
inst〉 . (3.22)

These terms therefore take the same form for all the (m, b) derivatives we consider, so
they trivially satisfy the relations in (2.8), but they can be used to nontrivially check
the formula for ∂4

m logZ
∣∣
m=0,b=1 in (2.13). Conveniently, we can use the expressions for

∂2
mZ

(p)
inst
∣∣
m=0,b=1 that were already computed for any p in [35]. For the (1,−1) sector, we

compute the resulting expectation values in appendix D in a large N expansion at finite
gYM . The answer takes the form of a complicated integral that we write explicitly in
appendix D. We can evaluate this integral for any value of gYM , and find that it matches
the relevant term in (2.13). We have also computed contributions from the (p,−q) sectors
for p, q ≤ 3 in a small gYM expansion as shown in appendix D. For instance, the (2,−2)
term is

∂4
m logZ

∣∣NP,(2,−2)
m=0,b=1 = 1

N

[
675g4

YM

2048π5 −
3375g6

YM

131072π7 + 111375g8
YM

16777216π9 +O(g10
YM)

]
− 1
N2

[
11475g4

YM

16384π5 + 11475g6
YM

1048576π7 + 7952175g8
YM

134217728π9 +O(g10
YM)

]
+ 1
N3

[
585225g4

YM

2097152π5 −
8304525g6

YM

134217728π7 + 6173214525g8
YM

17179869184π9 +O(g10
YM)

]
+O(N−4) ,

(3.23)

while the other terms take a similar form and are given in appendix D. All these terms
agree perfectly with (2.13), which completes the check of that formula.

4 Four-point function in N = 4 SYM

We will now apply the localization results of the previous section to constrain the four-
point function 〈SSSS〉 of the stress tensor superconformal primary, which can also be
constrained from its relation to the 10d IIB flat space graviton S-matrix. The superprimary

22As explained in appendix D, the gnYM for even/odd n are computed from different terms in the local-
ization expression. In particular, the even n terms come from the two body terms 〈∂2

mZ
(1)
inst〉2

∣∣
m=0,b=1

and

〈∂4
mZ

(2)
inst〉

∣∣
m=0,b=1

, while the odd n terms come from Z(2), and it turns out the latter is easier to compute
to higher order in gYM .
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S transforms in the 20′ of the SO(6)R R-symmetry, and it can be represented as a traceless
symmetric tensor SIJ(~x) with I, J = 1, . . . , 6 as SO(6)R fundamental indices. In order to
avoid a proliferation of indices, it is customary to contract them with null polarization
vectors Y I satisfying Y · Y ≡∑6

I=1 Y
IY I = 0. Superconformal symmetry implies that the

four-point function of the operator S(~x, Y ) ≡ SIJ(~x)Y IY J takes the form [90, 91]

〈S(~x1, Y1) · · ·S(~x4, Y4)〉 = 1
~x4

12~x
4
34

[
~Sfree + T (U, V )~Θ

]
· ~B , (4.1)

where ~xij ≡ ~xi − ~xj , and

~Sfree ≡
(
1 U2 U2

V 2
1
c
U2

V
1
c
U
V

1
cU
)
,

~Θ ≡
(
V UV U U(U − V − 1) 1− U − V V (V − U − 1)

)
,

B ≡
(
Y 2

12Y
2

34 Y
2

13Y
2

24 Y
2

14Y
2

23 Y13Y14Y23Y24 Y12Y14Y23Y34 Y12Y13Y24Y34
)
.

(4.2)

Here, U ≡ ~x2
12~x

2
34

~x2
13~x

2
24

and V ≡ ~x2
14~x

2
23

~x2
13~x

2
24

are the usual conformal invariant cross-ratios, and
Yij ≡ Yi · Yj are SO(6)R invariants. Importantly, the only non-trivial information in the
correlator (4.1) is encoded in a single function of the conformal cross-ratios, T (U, V ).

We would like to study 〈SSSS〉 in the large c expansion at finite τ , which is related to
the small momentum expansion of the IIB S-matrix at finite complexified string coupling
τs = χs + i/gs. In this limit, it is convenient to use the Mellin transform [92, 93]M of T ,
which is defined as [58]:

T (U, V ) =
∫ i∞

−i∞

ds dt

(4πi)2U
s
2V

u
2−2Γ

[
2− s

2

]2
Γ
[
2− t

2

]2
Γ
[
2− u

2

]2
M(s, t) , (4.3)

where u ≡ 4−s− t. Crossing symmetryM(s, t) =M(t, s) =M(s, u), the conformal Ward
identity, as well as the analytic properties of the Mellin amplitude (for a detailed description
see [33]), restrictM(s, t) to have the following 1/c expansion at fixed Yang-Mills coupling:

M(s, t) = 8
(s− 2)(t− 2)(u− 2)

1
c

+ α

c7/4 + M1-loop(s, t)
c2

+ β2(s2 + t2 + u2) + β1
c9/4 + γ3stu+ γ2(s2 + t2 + u2) + γ1

c5/2 +O(c−11/4) ,
(4.4)

where the coefficients α, βi, γi, etc. are potentially non-trivial functions of (τ, τ̄). The first
term corresponds to tree-level supergravity, while M1-loop is the regularized supergravity
one-loop amplitude that can be found in [36] and will not be discussed here. We will
instead focus mostly on the 1/c7/4, 1/c9/4, and 1/c5/2 terms, which correspond to the R4,
D4R4, and D6R4 interaction vertices in type IIB string theory, respectively. At each order
in 1/c, one can impose constraints on the coefficients α, βi, γi, etc. by either comparing
with the (super)graviton four-point scattering amplitude in type IIB string theory in the
flat space limit or using the quantities (2.9) and (2.13) (or other similar quantities) derived
from supersymmetric localization. Let us first discuss the constraints from the flat space
scattering amplitude, and then those from supersymmetric localization.
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4.1 Constraints from the flat space limit

The IIB four-point scattering amplitude of 10d gravitons and superpartners are restricted
by supersymmetry to be proportional to a single function f(s, t)

A(s, t) = ASG tree(s, t)f(s, t) , (4.5)

where ASG tree is the tree-level four-point supergravity amplitude,23 s and t are the Man-
delstam invariants. We will also define u ≡ −s− t. In turn, this function has an expansion
at small momentum (more correctly, the expansion is for small values of the dimensionless
product between momentum and the string length `s) of the form

f(s, t) ≡ 1 + fR4(s, t)`6s + f1-loop(s, t)`8s + fD4R4(s, t)`10
s + fD6R4(s, t)`12

s + · · · , (4.6)

where the coefficient function that appears at each order in the expansion may be a non-
trivial function of the complexified string coupling τs. The functions fR4 , fD4R4 , and fD6R4

can be written in terms of the modular functions introduced in section 2 as [41–44, 86]

fR4 = stu
64 g

3
2
s E( 3

2 , τs, τ̄s) ,

fD4R4 = stu(s2 + t2 + u2)
211 g

5
2
s E( 5

2 , τs, τ̄s) ,

fD6R4 = 3(stu)2

212 g3
sE(3, 3

2 ,
3
2 , τs, τ̄s) ,

(4.7)

where the non-holomorphic Eisenstein series was defined in (2.10) and the other modular
function was defined as the SL(2,Z)-invariant solution of the inhomogeneous equation (1.7).

The relation between the function f(s, t) in (4.5) and the Mellin amplitude (4.4) is
given by the flat space limit formula [33]

f(s, t) = stu
211π2g2

s`
8
s

lim
L/`s→∞

L14
∫ κ+i∞

κ−i∞

dα

2πie
αα−6M

(
L2

2αs, L
2

2αt
)
, (4.8)

where κ > 0.24 This relation, as well as the AdS/CFT dictionary

τs = τ ,
L4

`4s
= λ = g2

YM
√

4c+ 1 (4.9)

allow us to fix the leading s, t terms in (4.4), such as

α = 15E( 3
2 , τ, τ̄)

4
√

2π3
, β2 = 315E( 5

2 , τ, τ̄)
128
√

2π5
, γ3 = 945E(3, 3

2 ,
3
2 , τ, τ̄)

64π3 . (4.10)

23This is given by δ16(Q)
stu in the superamplitude notation where Q denotes the 16-component super-

momentum variable. See, for instance, [94, 95]. In particular, the component corresponding to the four-
graviton scattering is given by R4

stu , where R denotes the linearized Riemann curvature tensor.
24When evaluating this integral, it is useful to note that

∫ κ+i∞
κ−i∞

dα
2πie

αα−n = 1
Γ(n) .
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4.2 Constraints from supersymmetric localization

As explained in [24, 33], the localization quantities τ2
2 ∂τ∂τ̄∂

2
m logZ

∣∣
m=0,b=1 and

∂4
m logZ

∣∣
m=0,b=1 impose constraints on 〈SSSS〉 integrated over S4. In the large c ex-

pansion, these constraints take the form

∂τ∂τ̄∂
2
m logZ

∂τ∂τ̄ logZ

∣∣∣∣∣
m=0,b=1

= 2− α

5c3/4 +C1-loop
c
− 7β1+16β2

35c5/4 − 7γ1+16γ2+32γ3
35c3/2 +· · · ,

c−1∂4
m logZ

∣∣
m=0,b=1 = 24+ 16α

5c3/4 +
C ′1-loop
c

+ 112β1+272β2
35c5/4 + 112γ1+272γ2+512γ3

35c3/2 +· · · ,
(4.11)

where C1-loop, C
′
1-loop are constants that depends on the precise form of the M1-loop am-

plitude that we will not study here, and ∂τ∂τ̄ logZ
∣∣∣
m=0,b=1

was given in (2.6). The right-
hand sides of (4.11) are obtained by integrating the Mellin amplitude (4.4) with certain
integration measures that produce the integrated correlators which are accessible by lo-
calization. For ∂τ∂τ̄∂2

m logZ, the integration measure was first obtained in [33], and for
∂4
m logZ

∣∣
m=0,b=1 the measure was derived in [24]. Explicitly, the two integration mea-

sures are given in equations (2.15) and (2.16), respectively, of [24]. As for the left-hand
sides of (4.11), we use the explicit localization results in (2.9) and (2.13). After convert-
ing the expressions in (2.9) and (2.13) into the 1/c expansion using c = (N2 − 1)/4, the
constraints (4.11) fix the coefficients to be

α = 15E( 3
2 , τ, τ̄)

4
√

2π3
, −β1

3 = β2 = 315E( 5
2 , τ, τ̄)

128
√

2π5
,

8γ3 + 7γ1
4 = −4γ2 = 945E(3, 3

2 ,
3
2 , τ, τ̄)

64π3 .

(4.12)

Note that the values of α and β2 match those computed from the flat space limit in (4.10),
which is a non-perturbative in τ check of AdS/CFT to this order in 1/c. We can then
combine the flat space limit and localization constraints to fix all the coefficients shown
in (4.4) and obtain

M(s, t) = 8
(s− 2)(t− 2)(u− 2)

1
c

+ 15E( 3
2 , τ, τ̄)

4
√

2π3c7/4
+ M1-loop(s, t)

c2

+ 315E( 5
2 , τ, τ̄)

128
√

2π5c9/4

[
(s2 + t2 + u2)− 3

]
+ 945E(3, 3

2 ,
3
2 , τ, τ̄)

64π3c5/2

[
stu− 1

4(s2 + t2 + u2)− 4
]

+O(c−11/4) ,

(4.13)

which is one of our main results. Note that we could not yet make use of the localization
quantities involving derivatives of squashed parameter b, since the integrated constraints
for those have not yet been derived.

Note that the this Mellin amplitude takes the same form as the strong coupling ex-
pression in [24], except that the coefficients of each term are promoted to their natural
SL(2,Z) completion as conjectured in [33], for example ζ(3)→ g3

YM/(16π3)E( 3
2 , τ, τ̄). The
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CFT data can be extracted from this Mellin amplitude as done in [24, 33], and again takes
the same form with the appropriate replacements. In particular, the Konishi operator does
not receive corrections in the large N limit in either the strong or very strong coupling
expansions, since the only single trace operator that appear in the correlator we consider
in this limit are those in the stress tensor multiplet.

5 Conclusion

Let us start with a summary of our results, and afterwards discuss several future directions.
In this paper, we have studied integrated correlators of four operators from the stress tensor
multiplet of the SU(N) N = 4 SYM theory, as defined by the various fourth derivatives
of the N = 2∗ partition function Z(b,m) on a squashed four-sphere, evaluated at the
conformal point (b,m) = (1, 0). In order to exhibit the SL(2,Z) modular invariance of
the integrated correlators and to interpret these correlators in terms of the string theory
derivative expansion around AdS5×S5, we considered the 1/N expansion of these quantities
at fixed (τ, τ̄). From the supersymmetric localization work of [25, 26], it is known that
Z(b,m) can be expressed as an (N − 1)-dimensional integral, with the integrand being a
product of classical, one-loop, and instanton contributions, so our main task was to expand
this quantity in 1/N at fixed (τ, τ̄). However, this expansion is quite difficult to perform
in general, and thus, at the technical level, the bulk of our paper consisted in expanding
various contributions to (the derivatives of) Z(b,m) in 1/N and providing evidence that
each term in the 1/N expansion can be written as sums of non-holomorphic Eisenstein
series and generalizations thereof.

Our first result was that among five possible (nontrivial) combinations of deriva-
tives of Z with respect to (m, b, τ, τ̄), only two are independent and can be taken to be
τ2

2 ∂τ∂τ̄∂
2
m logZ

∣∣
m=0,b=1 and ∂4

m logZ
∣∣
m=0,b=1. The former was studied in [35] where strong

evidence was presented that, beyond the leading term that scales as N2, this quantity
has an expansion only in half-integer powers of 1/N whose coefficients are linear combina-
tions of non-holomorphic Eisenstein series. (In appendix D.2, we presented an alternative
method that improved on the one in [35].). In this paper, we focussed on the other inte-
grated correlator, ∂4

m logZ
∣∣
m=0,b=1, for which the 1/N expansion contains both half-integral

and integral powers of 1/N . Based on our computations, we conjectured that the coeffi-
cients of the half-integer powers of 1/N are again linear combinations of non-holomorphic
Eisenstein series, while the coefficients of integer powers of 1/N are generalized Eisenstein
series, which obey inhomogeneous Laplace eigenvalue equations of the form (1.7). In par-
ticular, the modular invariant coefficient at order 1/N is proportional to E(3, 3

2 ,
3
2 , τ, τ̄),

the well-known coefficient of D6R4 in the low-energy expansion of the flat-space type IIB
superstring amplitude. The terms at order 1/N2 and 1/N3 have coefficients that are lin-
ear combinations of generalized Eisenstein series with rational coefficients. See table 1
where we summarized our evidence for our conjectures for the specific modular functions
appearing in the 1/N expansion.

Lastly, in section 4 we discussed the relation between the integrated correlators we
computed and the type IIB superstring low-energy effective action on AdS5 × S5 which
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encodes scattering amplitudes of bulk (super)gravitons. As shown in [33], the separated
point correlation functions of the same operators can be determined by general consistency
conditions up to one, two, and three undetermined coefficients at orders N 1

2 , N− 1
2 and

N−1, respectively. At these orders, the correlators are determined from contact R4 (at
order N 1

2 ), 1
L4R

4 and D4R4 (at order N− 1
2 ), and 1

L6R
4, 1

L2D
4R4, and D6R4 (at order

1/N) interaction vertices, and in Mellin space they asymptote to the flat space scattering
amplitudes corresponding, respectively, to the R4, D4R4, and D6R4 contact interactions
in type IIB string theory. This information from the flat space limit combined with the
integrated correlators ∂τ∂τ̄∂2

m logZ
∣∣
m=0,b=1 or ∂4

m logZ
∣∣
m=0,b=1 allows us to uniquely de-

termine the separated point correlators at orders N 1
2 , N− 1

2 , and N−1. As we discussed, it
is plausible that one of the relations (2.8) does not follow from superconformal symmetry
and that it thus imposes an additional non-trivial constraint on the separated-point corre-
lation function. If this is the case, then one would be able to determine the separated-point
correlator at orders up to order 1/N , and from it derive the flat space scattering amplitude
corresponding to the R4, D4R4, and D6R4 contact interactions. These are precisely the
terms that are also determined by supersymmetry in flat space.

The structure of the integrated correlators beyond order 1/N is worth highlighting.
At these orders, the integrated correlators that can be computed using supersymmetric
localization do not provide enough constraints to determine the separated-point correla-
tors, so the Eisenstein and generalized Eisenstein series that we find do not completely
characterize superstring scattering in AdS or in flat space. Nevertheless, they do repre-
sent supersymmetry-protected interactions in AdS5 × S5. It is interesting to analyze their
perturbative structure by examining the powers of gYM that appear in the zero-instanton
expansion of the Eisenstein series in eqs. (2.9) and (2.13). For terms of order N (1−2n)/2 for
n = 0, 1, 2, . . . , which correspond to D4nR4 vertices in the bulk, the Eisenstein series have
perturbative terms that can arise from up to genus-(n+1) string worldsheets. For terms of
order N−n for n = 1, 2, 3, . . . , which correspond to D2(2n+1)R4 vertices in the bulk, we find
contributions of up to genus-(2n+1). Interestingly, these features match previous observa-
tions about the type IIB S-matrix on flat space in [99, 100]. Indeed, in [100] it was argued
that if the duality between M-theory and string theory is naively assumed to hold exactly
for all terms in the effective action, then one would conclude that the D2kR4 interaction
vertices in type IIB string theory receive contributions from up to genus k worldsheets, in
agreement with the observation we made above about the integrated four-point functions.
It is believed, however, that the relations implied by the M-theory/string theory duality
hold only for supersymmetry-protected interactions and are violated otherwise.25 Thus,
one expects that for the non-supersymmetric D2kR4 interactions with k > 3, both in flat
space as well as their corresponding AdS Mellin amplitudes, there should be no restriction

25We emphasize that this instance of M-theory/string theory duality (see [100] for details) assumes that
the 11d supergravity description continues to be valid from large radius in the 11th dimension to small
radius (to make contact with type IIA string theory) or from a large two-torus to small two-torus (to make
contact with type IIB string theory). While this turns out to be true for BPS interactions protected by
supersymmetry, in general non-perturbative M-theory effects (e.g. from M2 and M5 branes) that become
large in these continuations cannot be ignored.
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on the genus of the string worldsheets that contribute. However, the integrated correlators
we study here are much simpler quantities than the full interaction vertex or the full Mellin
amplitude, and, as mentioned above, these integrated correlators are supersymmetric. It
is thus not entirely surprising that the arguments based on the M-theory/string theory
duality seem to apply to them and restrict the genus of the worldsheet contributions in a
manner consistent with our explicit computations in N = 4 SYM theory. Whether this
observation is a coincidence or whether it can be made more precise are questions that we
leave for future work.

Another future direction is the study of modular functions that appear in higher-
point correlators.26 Whereas the four-point correlators studied in this paper conserve the
bonus U(1)Y symmetry of [8, 9], n-point correlators may violate U(1)Y by a maximum
of 2(n − 4) units. Maximal U(1)Y -violating n-point correlators of operators in the stress
tensor multiplet are holographically dual to type IIB superstring n-particle amplitudes that
violate the U(1) R-symmetry maximally. The coefficients of terms in the large-N expansion
of these correlators transform as SL(2,Z) modular forms with modular weights related to
their U(1) charges. In [102] these correlators are determined up to order 1/N by a recursion
relation analogous to the soft dilaton relations of flat-space superstring amplitudes. These
relate the higher-point correlators to the four-point correlators determined in this paper and
in [35], and make contact with the results in [46] concerning flat-space type IIB maximal
U(1)-violating superstring amplitudes.

It would be interesting to construct n-point correlators that violate the bonus U(1)Y
symmetry directly from the localization procedure by generalizing the analysis of this paper
to cases where one takes more than four derivatives of the N = 2∗ partition function. In
this manner we would hope to determine expressions for the modular form coefficients to
any order in the large-N expansion of the integrated n-point correlators.

An important loose end of our work is the proof of the last relation in (2.8) as well as
determining whether or not any of these relations are consequences of supersymmetry (see
appendix B for evidence for these relations for general gauge groups). The Ward identities
relating the four-point functions of various operators in the stress tensor multiplet were
solved in [34].27 The derivatives in the relations (2.8) involving squashing are directly
related to correlators of operators with spin in the stress tensor multiplet (namely the stress
tensor, the R-symmetry current, as well as a rank-two anti-symmetric tensor operator),
and one would have to use the Ward identity solution in [34] to relate such correlators to
those of the stress tensor multiplet superconformal primary. It would be very valuable to
perform this analysis, because it could have applications beyond 1/N perturbation theory,
for instance in numerical bootstrap studies.

Lastly, let us point out that the large N expansion in this paper is asymptotic, as can
be seen already from the all orders in 1/N expressions for ∂τ∂τ̄∂2

mZ
∣∣
m=0,b=1 in [36], and so

is expected to have exponentially small in N corrections. In the bulk, we speculate that
26The five-point function of the stress tensor multiplet superconformal primary was considered in [101]

in the supergravity approximation.
27The first relation of (2.8) can be derived from the simpler superconformal Ward identities that relate

two-point functions of the stress tensor multiplet. We comment on this near the end of appendix B.
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these exponentially-suppressed corrections can be interpreted as boundary-anchored strings
and branes in AdS5×S5. It would be interesting to understand these contributions as well
as their dependence on (τ, τ̄). More generally, one might hope that our 1/N expansion
supplemented by these exponential corrections can be resummed into a finite-N modular
function. For the perturbative terms in gYM, the finite-N integrated correlators were
computed using the method of orthogonal polynomials for both ∂τ∂τ̄∂2

mZ
∣∣
m=0,b=1 [36] and

∂4
mZ

∣∣
m=0,b=1 [24], but such an analysis would be more challenging for the instanton terms.

We nevertheless hope to come back to these issues in the near future.
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A Scheme dependence and supersymmetric counter-terms

The supersymmetric free energy logZ(b,m) of the N = 2∗ SYM theory is subject to finite
regularization ambiguities as in (2.5). These ambiguitites can be understood from N = 2
supersymmetric counter-terms of the form [103, 104]∫

d4xd4θ EF , (A.1)

as an integral over the N = 2 chiral superspace, and similarly for its complex-conjugate
anti-chiral version. Here E is the Berezinian (superdeterminant) of the chiral superspace
vielbein and F is a (composite) background chiral superfield of Weyl weight 2 and chiral
weight −2. Here, the relevant background supergravity fields consist of the Weyl (chiral)
superfield Wαβ and the vector (chiral) superfield Φ both having Weyl weight 1 and chiral
weight−1, as well as a chiral superfield A of vanishing Weyl and chiral weights. They couple
to squashing, mass, and marginal deformations of the theory, respectively. In particular,
the bottom component of Φ parameterizes the N = 2 mass parameter m, and that of A
parametrizes the marginal coupling τ .

As shown in [103], with the chiral superfields Wαβ ,Φ, and A, there are three classes
of composite fields F of chiral weight −2 and Weyl weight 2,

F = f1(A)Φ2, f2(A)T(log Φ̄′), f3(A)WαβW
αβ , (A.2)

corresponding to three counter-terms in (A.1). Here Φ′ is an auxiliary chiral superfield that
can be identified with the compensating vector multiplet in N = 2 supergravity [104], and
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T ∝ D̄4 is an antisymmetric combination of the four anti-chiral superspace covariant deriva-
tives [103]. Importantly the corresponding counter-term does not depend on the value of Φ′
when A take constant values [103] which is the case for the deformations considered here.

When evaluated on the supersymmetric mass deformed background [104], the first
term in (A.2) gives f2(τ)m2 which (along with its complex conjugate) explains the m-
dependent ambiguity in (2.5). The m-independent ambiguities in (2.5) are related to the
conformal anomaly [105] and explained by (combinations of) the last two terms in (A.2) (to
show this explicitly requires evaluating the counter-term on the supersymmetric squashing
background [26] which we do not pursue here).

B Comments on relations between fourth derivatives of logZ(b,m) for
general gauge groups

Here we provide some further evidence for the three relations (2.8) between various fourth-
derivatives of the SYM free energy with respect to the mass and squashing deformations as
well as the complexified gauge coupling (τ, τ̄) for N = 4 SYM with general gauge groups.
We will also argue for the first relation in (2.8) based on superconformal Ward identities.

The N = 2∗ partition function of SYM with a general gauge group G on a squashed
sphere is given by28

Z(b,m) = 1
|W |

∫
[dra] |Zinst(m, τ, b, a)|2 e−2πτ2(a,a) Υ′b(0)r

Υb(im+ Q
2 )r

∏
α∈∆

Υb(iα(a))
Υb(iα(a) + im+ Q

2 )
(B.2)

where r denotes the rank of G, W is the Weyl group, ∆ is the set of roots and (·, ·) defines
the standard Killing form on the Lie algebra g. The instanton contributions at the two
poles of S4 are captured by the factor Zinst(m, τ, b, a) = 1 +∑

k≥1 q
kZ

(k)
inst(m, b, a) and its

conjugate respectively, whose explicit forms are available for G = SU(N) and are used
extensively in the following sections. For more general classical Lie groups of BCD types,
Z

(k)
inst(m, b, a) admits a contour integral expression at each instanton number k thanks to

the ADHM construction of the instanton moduli space and an equivariant localization
procedure thereof [80, 81, 106–108]. The instanton contribution to Z for exceptional Lie
groups is still an open question, though by the AGT correspondence they are related to
torus one-point blocks of the corresponding W-algebras (with twist for the non-simply laced
cases) [11, 109].

We note the following simple properties of Z

Z(b,m) = Z(b,−m) = Z(1/b,m) . (B.3)
28We emphasize again that the factors of Υ′b(0) that have been missing the previous works (e.g. [26])

carry nontrivial b dependence,

∂2
b Υ′b(0)

∣∣
b=1

= −2(1 + γ), ∂4
b Υ′b(0)

∣∣
b=1

= 12ζ(3)− 30γ − 38 , (B.1)

where γ is the Euler’s constant, and are thus crucial to produce the correct CFT free energy in the presence
of squashing deformations.
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The first equality is due to m being the mass parameter for an SU(2) flavor symmetry of
the SYM theory, which flips sign under an SU(2) Weyl reflection. The second equality is a
consequence of the fact that b and 1/b parametrizes the identical supersymmetric squashed
sphere background up to a relabelling of coordinates [26]. For cases where the complete
integral form of Z(b,m) is known, it is easy to check that these equalities hold separately for
the perturbative and instanton pieces in the integrand of (B.2).29 Consequently the single
derivatives of Z (and separately for the perturbative and instanton contributions in (B.2)
before integration) with respect to b or m vanishes at the symmetric values b = 1,m = 0.30

This implies that

∂2
m logZ(b,m)|m=0,b=1 = ∂2

mZ(b,m)
Z(b,m)

∣∣∣∣∣
m=0,b=1

,

∂2
b logZ(b,m)|m=0,b=1 = ∂2

bZ(b,m)
Z(b,m)

∣∣∣∣∣
m=0,b=1

,

(−6∂2
b∂

2
m+∂4

m+∂4
b ) log Z(b,m)|m=0,b=1

= (−6∂2
b∂

2
m+∂4

m+∂4
b )Z(b,m)

Z(b,m)

∣∣∣∣∣
m=0,b=1

−3
(

(∂2
b−∂2

m)Z(b,m)
Z(b,m)

)2
∣∣∣∣∣∣
m=0,b=1

,

(B.5)

and we can perform the derivatives inside the matrix integral in (B.2) to study relations
of the form (2.8).

Let us define the one-loop contribution in (B.2) from a pair of root vector α and its
Weyl reflection −α as

H(b,m, z) ≡ Υb(iz)Υb(−iz)
Υb(iz + im+ b+1/b

2 )Υb(−iz + im+ b+1/b
2 )

, (B.6)

with z = α(a) ∈ R. Then by using the integral expression of the Upsilon function (2.4),
one finds that H(b,m, z) satisfies31

(∂2
m − ∂2

b ) logH(b,m, z)|m=0,b=1 = 0 ,
(−6∂2

b∂
2
m + ∂4

m + ∂4
b − 15∂2

b ) logH(b,m, z)|m=0,b=1 = 0 .
(B.7)

Note that the Upsilon function Υb(iz) has a simple zero at z = 0. Consequently, the
relations (B.7) continue to hold with H(b,m, z) replaced by

Υ′b(0)
Υb(im+ b+1/b

2 )
. (B.8)

29To verify this for the perturbative contributions, the following identities of the Upsilon function is
useful,

Υb(x) = Υ1/b(x) = Υb(b+ 1/b− x) . (B.4)

30Physically the vanishing of the single derivatives at b = 1,m = 0 corresponds to the vanishing of
one-point functions in the CFT.

31Note that H(b,m, z) is invariant under b→ 1/b or m→ −m thanks to (B.4). Thus the equalities below
hold also with logH(b,m, z) replaced by H(b,m, z).
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Putting them together, we conclude
(∂2
m − ∂2

b ) logZpert|m=0,b=1 = 0 ,

(−6∂2
b∂

2
m + ∂4

m + ∂4
b − 15∂2

b ) logZpert|m=0,b=1 = 0 ,
(B.9)

and thus we verify the first two relations in (2.8) for the perturbative contributions in (B.2)
(before

∫
[dra] integral).32 In the main text, we have further proved the first two relations

of (2.8) non-perturbatively for G = SU(N) at finite N by using the explicit form of the
instanton partition function which can be found in appendix B of [35].

Concerning the last relation of (2.8), we have verified it perturbatively for G = SU(N)
at finite N using integration by parts as in (3.4). The derivation extends trivially to general
gauge group G after replacing I(w) by

IG(w) ≡ r +
∑
α∈∆
〈e2iwα(a)〉 . (B.10)

Furthermore, we have provided evidence for this relation of (2.8) in the main text at the
non-perturbative level for G = SU(N).

Let us now comment on (2.8) in relation to N = 4 superconformal Ward identities.
As explained in the Introduction and in the Conclusion sections, the four point functions
of operators in the N = 4 stress tensor multiplet are related by the superconformal Ward
identities, which upon integration over the positions, could lead to relations between in-
tegrated correlators that appear in (2.8). Here we will provide an argument for the first
relation of (2.8) as a consequence of the superconformal Ward identity and leave the rest
to future investigation.

Despite its look, the first relation in (2.8) can be understood as a consequence of the
supersymmetric Ward identity that relates two-point functions of operators in the stress-
tensor multiplet. Indeed, such two point functions are completed fixed up to a common
normalization factor (which may depend on (τ, τ̄)). Since both m and b parameterize su-
persymmetric background configurations that couple to the N = 4 stress-tensor multiplet,
second derivatives of Z with respect to (m, b) naturally produces these two-point func-
tions, up to potential harmonic ambiguities (2.5) in (τ, τ̄) that can be removed by taking
∂τ∂τ̄ derivatives. Since the mass and squashing couplings are introduced in a theory-
independent way in the localization setup [26], we conclude that ∂τ∂τ̄∂2

m logZ
∣∣
m=0,b=1 and

∂τ∂τ̄∂
2
b logZ

∣∣
m=0,b=1 must be proportional up to a theory independent constant. A quick

calculation in the abelian SYM theory which has partition function33

ZU(1) =
∫
da

Υ′b(0)
Υb(im+ b+1/b

2 )
e−2πτ2a2

∞∏
i=1
|1− qi|2(Q2/4−m2−1)

= Υ′b(0)
√

2τ2Υb(im+ b+1/b
2 )

∞∏
i=1
|1− qi|2(Q2/4−m2−1) ,

(B.11)

confirms that this proportionality constant is one and thus the desired relation follows.
32Said differently, in a weak coupling expansion, Zpert captures the perturbative contributions to the full

SYM partition function Z. Thus we have verified the first two relations in (2.8) up to instanton effects.
33Here we have included the abelian instanton contributions for completeness [89], though they do not

affect the physical observables that come from fourth derivatives of the SYM free energy.
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C Solutions of inhomogeneous Laplace equations

In this appendix we will describe some properties of the generalised Eisenstein series that
satisfy equations of the form (1.7) that arise in the coefficients H(q, τ, τ̄) of even terms in
the 1/N expansion (2.11) up to order 1/N3. The function E(3, 3

2 ,
3
2 , τ, τ̄) (the coefficient of

the D6R4 interaction in flat-space type IIB superstring theory) was completely determined
in [86], Certain properties of more general functions satisfying (1.7) were presented in [47]
but these were mainly restricted to the perturbative terms, whereas we are here also inter-
ested in detailed properties of the D-instanton terms for the specific functions appearing
in the 1/N expansion.

C.1 E(3, 3
2 ,

3
2 , τ, τ̄ )

We will first review the structure of this modular invariant based on the solution of the
Laplace equation [44]34

(∆τ − 12) E(3, 3
2 ,

3
2 , τ, τ̄) = −E( 3

2 , τ, τ̄)E( 3
2 , τ, τ̄) . (C.1)

Following [86], this equation may be solved in terms of its Fourier modes defined by

E(3, 3
2 ,

3
2 , τ, τ̄) =

∑
k

Fk(τ2)e2πikτ1 . (C.2)

It is important to understand the boundary conditions imposed on the Fourier modes that
are necessary in order for the complete function to be SL(2,Z) invariant. According to a
theorem proved in [86]:

SL(2,Z) invariance of a function that grows as τa2 as τ2 → ∞ implies that its
Fourier modes are bounded by τ1−a

2 in the τ2 → 0 limit.

Since E(r, s1, s2, τ, τ̄) =
τ2→∞

O(τ s1+s2
2 ) the boundary conditions require Fn(τ2) =

τ2→0
O(τ1−s1−s2

2 ).
Writing the source term on the right-hand side of (C.1) as

− E( 3
2 , τ, τ̄)E( 3

2 , τ, τ̄) =
∑
k1,k2

Sk1k2(τ2)e2πi(k1+k2)τ1 =
∑
k

e2πikτ1
∑
k1

Sk1,k−k1(τ2) (C.3)

the kth mode satisfies the equation

(τ2
2 ∂

2
τ2 − 12− 4π2k2τ2

2 )Fk(τ2) = Sk(τ2) , n ∈ Z . (C.4)

The general solution to the above differential equation can be found in [86], where
it is expressed as the sum of a particular solution and a solution of the homogeneous
equation. Fk(τ2) = FPk (τ2) + FHk (τ2). The coefficient of the homogeneous solution is
uniquely determined by imposing the τ2 → 0 boundary condition described above.

34The overall normalisation of the source term on the right-hand side of this equation has been arbitrarily
set equal to −1. Since E(3, 3

2 ,
3
2 , τ, τ̄) is the coefficient of the D6R4 interaction in the low energy expansion of

the flat-space type IIB superstring action its normalisation is simple to fix from the string theory scattering
amplitude.
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The particular solution that was determined in [86], was written in the form FPk (τ2) =∑
k1

∑
k2=k−k1 f

P
k1,k2

(τ2) where

(τ2
2 ∂

2
τ2 − 12− 4π2(k1 + k2)2τ2

2 ) fPk1,k2(τ2) = Sk1,k2(τ2) . (C.5)

It is useful to consider the solutions in several sectors: (a) k1 = −k2 (so k = 0); (b)
k1 6= 0, k2 = 0 or k1 = 0, k2 6= 0;; (c) k1 6= 0, k2 6= 0.with k = k1 + k2 6= 0.

(a) k1 = −k2. These terms contribute to the k = 0 mode. The term with k1 = k2 = 0
is a sum of powers of τ2 that is given by

f0,0(τ2) = 2ζ(3)2τ3
2

3 + 4ζ(2)ζ(3)τ2
3 + 4ζ(4)

τ2
+ βτ−3

2 . (C.6)

The first three terms in this expression originate from fP0,0(τ2) and are easily obtained by
equating the coefficients of the powers of τ3

2 , τ2 and (τ2)−1 on both sides of (C.5). The
term βτ−3

2 is a solution of the homogenous equation, and its coefficient β was determined
in [44] by multiplying both sides of (C.5) by E(4, τ, τ̄) and integrating over a fundamental
domain of SL(2,Z). A detailed analysis can be found in [44], which leads to β = 4ζ(6)/27
so that

FH0 (τ2) = 4ζ(6)
27 τ−3

2 . (C.7)

In addition to the (0, 0) term, the k = 0 mode receives contributions from a sum
over an infinite number of terms with k1 = −k2 6= 0, which represent D-instanton/anti
D-instanton pairs. These terms are bilinear in K-Bessel functions and are given by

fPk1,−k1(τ2) = 32π2

315|k1|3
σ2(|k1|)σ2(|k1|)

1∑
i,j=0

qi,j3 (π|k1|τ2)Ki(2π|k1|τ2)Kj(2π|k1|τ2) , (C.8)

where the coefficients qi,j3 are given by

q0,0
3 (z) = z

(
−512z4 + 48z2 − 15

)
,

q0,1
3 (z) = q1,0

3 (z) = −128z4 − 12z2 − 15 ,

q1,1
3 (z) = 512z5 + 16z3 + 33z − 15

z
.

(C.9)

Making use of the weak coupling (τ2 →∞) expansion of the K-Bessel functions,

Ks− 1
2
(2π|k|τ2) =

τ2→∞
e−2π|k|τ2

2(|k|τ2) 1
2

(
1 + s(s− 1)

4|k|πτ2
+O(τ−2

2 )
)
, (C.10)

we see that the expression (C.8) is suppressed by a factor proportional to e−4π|k1|τ2 , which
is characteristic of an instanton/anti-instanton pair.

The complete zero mode is given by FP0 (τ2) = fP0,0(τ2) + ∑
k1 6=0 f

P
k1,−k1

(τ2). In order
to check the small-τ2 boundary condition we note that in the small-τ2 limit

∑
k1 6=0

fPk1,−k1(τ2) =
∑
k1 6=0
−8σ2(|k1|)2

21π2k6
1
τ−3

2 +O(τ−2
2 ) = −4ζ(6)

27 τ−3
2 +O(τ−2

2 ) , (C.11)
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where we have used the Ramanujan identity

∞∑
n=1

σp(n)σp′(n)
nr

= ζ(r) ζ(r − p) ζ(r − p′) ζ(−p− p′ + r)
ζ(−p− p′ + 2r) . (C.12)

Using (C.6), (C.7) and (C.11) we see that F0(τ2) = FP0 (τ2) + FH0 (τ2) =
τ2→0

O(τ−2
2 ), which

is the required boundary condition.
The solution of the homogeneous equation for k 6= 0 has the form FHk (τ2) =

αk
√
τ2K 7

2
(2π|k|τ2). This depends only on the sum of the source mode numbers, k1+k2, and

αk is determined by imposing the boundary condition at τ2 = 0. It turns out that αk = 0
for k 6= 0 (although this is a property of the solution that was not noticed in [86]). Since
FHk (τ2) = 0 for k 6= 0 the solution for mode k is identified with the particular solution,
Fk(τ2) = FPk (τ2), so we can drop the superscript P in the following.

(b) k1 = k 6= 0, k2 = 0 and k2 = k 6= 0, k1 = 0. These modes are solutions of (C.5)
given by

f̂k,0(τ2) = f̂0,k(τ2) = 8σ2(|k|)
9π |k|3 ×

(
q0
k,0(π|k|τ2)K0(2π|k|τ2) + q1

k,0(π|k|τ2)K1(2π|k|τ2)
)
,

(C.13)

where the coefficients are given by

q0
k,0(z) = 1

z

(
90ζ(3)− k2π4 + 9z2ζ(3)

)
, q1

k,0(z) = 1
z2

(
90ζ(3)− k2π4 + 54z2ζ(3)

)
.

(C.14)

Using the weak coupling expression (C.10) we see that fk,0(τ2) has the form of a charge-
k D-instanton contribution with a characteristic e−2π|k|τ2 suppression factor together with
an unlimited number of perturbative corrections (powers of τ−1

2 ). In order to find the
complete expression for the kth mode we need to sum an infinite number of terms of the
form Fk(τ2) = ∑

k1 fk−k1,k1(τ2).

(c) k1 6= 0, k2 6= 0 with k1 + k2 6= 0. In these cases the solution of (C.5) was found
in [86] to have the form

f̂k1,k2(τ2) = 32π σ2(|k1|)σ2(|k2|)
3 |k1k2| |k1 + k2|5

∑
i,j=0,1

qi,jk1,k2
(π|k1 + k2|τ2)Ki(2π|k1|τ2)Kj(2π|k2|τ2) ,

(C.15)
where qi,jk1,k2

(z) are specific polynomials with powers of z ranging from z to z−2 which we
will not display here. There are two distinct cases to consider:

(i) k1 k2 > 0. The solution contains D-instantons of charge k = k1 + k2 > 0, or anti
D-instantons when k < 0. These are characterized by an exponentially suppressed behavior
of the form e−2π|k|τ2 in the τ2 →∞ limit.
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(ii) k1 k2 < 0. This is again a contribution that has total D-instanton charge equal to
k, but the solution describes a D-instanton of charge k1 together with an anti D-instanton
of charge k − k1 (when we assume that k1 > 0). The large-τ2 behavior is characterized by
an exponential suppression factor of e−2π(|k1+|k2|)τ2 . Since |k1| + |k2| > |k| these terms do
not contribute to the leading exponential behavior in the weak-coupling limit.

Given the complete solution it is straightforward to compare with our analysis of
the 1/N terms in the large-N expansion of the localized integrated correlator that are
determined in section 3 and appendix D. For example, among these terms there are certain
perturbative contributions to the leading exponential dependence in the k = 1 D-instanton
term, which is the sum of the (1, 0) and (0, 1) components (the k = 1 components (2,−1),
(3,−2), . . . are exponentially suppressed relative to the leading term). In particular, the
first few terms in the perturbative expansion around the k = 1 D-instanton contribution
matches terms in the expansion of F1(τ2) = f1,0(τ2) + f0,1(τ2), which is given by

e2πτ2F1(τ2) = 8ζ(3)√τ2 + 95ζ(3)
2π√τ2

+
(

5705ζ(3)
64π2 − 8π2

9

)
1
τ

3/2
2

+
(75285ζ(3)

1024π3 − 5π
6

) 1
τ

5/2
2

+ 35
(
95931ζ(3)− 1024π4)

196608π4
1
τ

7/2
2

+ 35
(
1024π4 − 106821ζ(3)

)
1048576π5

1
τ

9/2
2

+ · · · ,

(C.16)
where τ−1

2 = g2
YM/4π. Similarly, the leading exponential contribution to the k = 2 mode

gets contributions from the sum of the (1, 1), (2, 0), and (0, 2) components. The perturba-
tive expansion around the leading exponential dependence of the k = 2 contribution should
therefore match the expansion of F2(τ2) = f2,0(τ2) + f0,2(τ2) + f1,1(τ2), which has the form

e4πτ2F2(τ2) = 10ζ(3)√τ2√
2

+ 16π2

3 + 475ζ(3)
16
√

2π√τ2
+ 6π
τ2

+
(

28525ζ(3)
1024

√
2π2−

10π2

9
√

2

)
1
τ

3/2
2

+ 27
8τ2

2
+
( 376425ζ(3)

32768
√

2π3−
25π

48
√

2

) 1
τ

5/2
2

+ 55
64πτ3

2
+· · · .

(C.17)

An intriguing aspect of this expansion is that it contains a sum of odd powers of
√

1/τ2 ∼
gYM that come from the expansion of f2,0(τ2) + f0,2(τ2) and even powers of 1/√τ2 that
come from the expansion of f1,1(τ2).

A note on the rôle of the τ2 = 0 boundary condition. An expression such as (C.17)
is uniquely determined by a large-τ2 expansions of the exact solution. The uniqueness is
associated with the fact that the solution is valid for all τ2 and builds in the τ2 = 0
boundary condition. It is important to stress that simply solving (C.5) for the (k1, k2)
component (with k1 + k2 = k) by means of a perturbation expansion around the large-τ2
limit does not determine the expansion coefficients uniquely since such an expansion does
not address the boundary condition at τ2 = 0. This is reflected in the arbitrary coefficients
of the solutions of the homogeneous equations for the (k1, k − k1) sectors, fHk1,k2

(τ2). It is
enlightening to illustrate this by considering the perturbative solution around the k = 2
D-instanton that is defined by the solution of (C.5) with k1 + k2 = 2. We have seen that
e4πτ2(f2,0(τ2) + f0,2(τ2)) has an expansion in half-integer powers of τ−1

2 . However, the
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perturbative expansion of e4πτ2 fHk1,k2
(τ2) (where fHk1,k2

(τ2) satisfies (C.5) with the source
term set to zero), is in integer powers of τ−1

2 . Therefore, there is no ambiguity in the
perturbative solution in the (2, 0) + (0, 2) sector. However, the perturbative expansion of
e4πτ2 f1,1(τ2) (the (1, 1) sector) is in integer powers of τ−1

2 , and so f1,1(τ2) mixes with the
expansion of the solution of the homogeneous equation, fH1,1(τ2). More explicitly, we can
extract the k = 2 instanton power behavior by setting k1 = k2 = 1 in (C.5) and writing

f1,1(τ2) = e−4πτ2 C(τ2) . (C.18)

The function C(τ2) satisfies a differential equation that is easily solved to any given order
in a perturbation expansion in τ−1

2 , but the solution has one arbitrary constant that cannot
be determined without additional information. Since (C.17) is an expansion of the exact
solution, it builds in the τ2 = 0 boundary condition, so there is no ambiguity involved in
comparing (C.17) with the results of the localization calculation in the main text.

Other terms of order 1/N were also determined from the localized correlator in sec-
tion 3 and appendix D. In particular, the analysis of in appendix D determines the exact
expression for the (1,−1) component of the k = 0 mode rather than simply its perturbative
expansion. In addition section 3 and appendix D contain an analysis of the expansion of the
components (2,−2), (3,−3), (1,−2), (1,−3) and (2,−3) of the localized correlator to the
first few orders in powers of gYM ∼ 1/√τ2. We have verified that these expansions match
the components fk,−k(τ2) with k ≤ 3, f1,−2(τ2), f1,−3(τ2) and f2,−3(τ2) of the solution
of (C.5).

C.2 E(4, 3
2 ,

5
2 , τ, τ̄ ) and E(6, 3

2 ,
5
2 , τ, τ̄ )

The modular functions E(4, 3
2 ,

5
2 , τ, τ̄) and E(6, 3

2 ,
5
2 , τ, τ̄) satisfy the inhomogeneous Laplace

equations,

(∆τ − r(r + 1)) E(r, 3
2 ,

5
2 , τ, τ̄) = −E( 3

2 , τ, τ̄)E( 5
2 , τ, τ̄) , r = 4, 6 . (C.19)

From here on we will write the Fourier expansion of E(r, s1, s2, τ, τ̄) using the notation

E(r, s1, s2, τ, τ̄) =
∑
k

Fr,s1,s2k (τ2)e2πikτ1 =
∑
k1

∑
k2

f r,s1,s2k1,k2
(τ2)e2πi(k1+k2)τ1 , (C.20)

where we have introduced the superscripts r, s1, s2 to indicate the eigenvalue and the source
term.35

We have not determined the complete solution in these cases, but we have determined
many features that can be correlated with the results of the 1/N2 contribution to the
large-N expansion of the localized integrated correlator. Some of these properties of the
solutions are summarised as follows.

(i) k = 0, i.e. k1 = −k2. We have determined the complete zero-instanton sector,
which again includes terms that are power-behaved in τ2, and (k1,−k1) D-instanton/anti
D-instanton terms.

35In this notation the modes fk(τ) in the previous subsection would be denoted f3, 3
2 ,

3
2

k (τ2).
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The power-behaved terms (k1 = k2 = 0) with eigenvalues r = 4, 6 are given by

f
4, 32 ,

5
2

0,0 (τ2) = ζ(3)ζ(5)τ4
2

2 + 4ζ(2)ζ(5)τ2
2

9 + 4ζ(4)ζ(3)
15 + 4ζ(6)

3τ2
2

+ 44ζ(8)
405τ4

2
,

f
6, 32 ,

5
2

0,0 (τ2) = 2ζ(3)ζ(5)τ4
2

15 + ζ(2)ζ(5)τ2
2

5 + 8ζ(4)ζ(3)
63 + 14ζ(6)

27τ2
2

+ 88ζ(10)
23625τ6

2
.

(C.21)

The (k1,−k1) terms are zero-mode D-instanton/anti D-instanton contributions, that have
the form

f
r, 32 ,

5
2

k1,−k1
(τ2) = 32π2

315k4
1
σ2(k1)σ4(k1)

3∑
i,j=2

qi,jr (πk1τ2)Ki(2πk1τ2)Kj(2πk1τ2) , (C.22)

where the coefficients qi,jr are symmetric, qi,jr = qj,ir . We find that the expressions for qi,j4 (z)
for r = 4 are given by

q2,2
4 (z) = 16384z6

135 − 3584z4

27 + 168z2 − 105 ,

q2,3
4 (z) = 4096z5

27 − 896z3

9 + 42z ,

q3,3
4 (z) = −16384z6

135 + 512z4

9 − 56z2

3 ,

(C.23)

whereas for the case r = 6, they are given by

q2,2
6 (z) = 524288z8

12285 − 16384z6

351 + 768z4

13 − 440z2

13 − 28 ,

q2,3
6 (z) = 131072z7

2457 − 4096z5

117 + 192z3

13 + 110z
13 ,

q3,3
6 (z) = −524288z8

12285 + 16384z6

819 − 256z4

39 − 40z2

13 −
21
13 .

(C.24)

Once again it is important that the τ2 → 0 boundary condition is satisfied.

(ii) k 6= 0. We have determined perturbative expansions around the leading exponential
behavior in various instanton sectors that are needed in order to compare with the results
obtained from the 1/N2 contribution to the localized integrated correlator discussed in
section 3. We will discuss the explicit perturbative expansions around the leading expo-
nential behavior of the charge k = 1 and k = 2 D-instantons to the first few orders in
powers of 1/τ2. For the one-instanton contributions, i.e. the (1, 0) + (0, 1) components, the
expansions of F r, 32 ,

5
2

1 (τ2) = f
r, 32 ,

5
2

1,0 (τ2) + f
r, 32 ,

5
2

0,1 (τ2) with r = 4, 6 have the form

e2πτ2F 4, 32 ,
5
2

1 (τ2) = 4
3ζ(5)τ3/2

2 +
(8πζ(3)

3 − 145ζ(5)
12π

)√
τ2+

(49ζ(3)
2 − 15645ζ(5)

128π2

) 1
√
τ2

+
(
4336416π2ζ(3)−21684915ζ(5)−16384π6)

55296π3
1
τ

3/2
2

+· · · ,

e2πτ2F 6, 32 ,
5
2

1 (τ2) = 4
3ζ(5)τ3/2

2 +
(8πζ(3)

3 − 107ζ(5)
4π

)√
τ2+

(323ζ(3)
6 − 72317ζ(5)

128π2

) 1
√
τ2

+
(
20455200π2ζ(3)−214782435ζ(5)−16384π6)

55296π3
1
τ

3/2
2

+· · · . (C.25)
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For the case of k = 2, the leading exponential contributions to Fr,
3
2 ,

5
2

2 (τ2) = f
r, 32 ,

5
2

2,0 (τ2) +

f
r, 32 ,

5
2

0,2 (τ2) + f
r, 32 ,

5
2

1,1 (τ2) have expansions of the form

e4πτ2F
4,

3
2 ,

5
2

2 (τ2) = 5ζ(5)τ3/2
2

3
√

2
+
√
τ2
(
544π2ζ(3)−725ζ(5)

)
96
√

2π
+ 32π3

15 +
7
(
7616π2ζ(3)−11175ζ(5)

)
2048

√
2π2√τ2

+ 4π2

τ2
−
(
−73719072π2ζ(3)+108424575ζ(5)+1114112π6)

1769472
√

2π3τ
3/2
2

+ 15π
4τ2

2
+· · · ,

e4πτ2F
6,

3
2 ,

5
2

2 (τ2) = 5ζ(5)τ3/2
2

3
√

2
+
√
τ2
(
544π2ζ(3)−1605ζ(5)

)
96
√

2π
− 32π3

315 +
(
351424π2ζ(3)−1084755ζ(5)

)
6144

√
2π2√τ2

− 28π2

15τ2
−
(
544π2 (2048π4−639225ζ(3)

)
+1073912175ζ(5)

)
1769472

√
2π3τ

3/2
2

− 65π
12τ2

2
+· · · ,

(C.26)

which have been obtained by expanding the exact solutions for these modes, which incor-
porates the τ2 = 0 boundary condition (although in this case we have not displayed these
solutions explicitly). As we saw in the case of the perturbative expansion of the k = 2 con-
tribution to the 1/N coefficient in (C.17) this equation has half-integer powers of τ−1

2 that
arise from the expansion of the (2, 0)+(0, 2) sector and integer powers from the (1, 1) sector.

We finally note that we have also determined perturbative expansions of other contri-
butions such as (1,−2), (1,−3), (2,−3). The computations of the perturbative expansions
of these sectors are relatively straightforward. They can be obtained by simply equating
both sides of the differential equations without any subtlety. We have checked that the
results are all in agreement with localization results.

C.3 E(r, 3
2 ,

3
2 , τ, τ̄ ), E(r, 5

2 ,
5
2 , τ, τ̄ ), E(r, 3

2 ,
7
2 , τ, τ̄ ) with r = 5, 7, 9

These functions enter into the description of the 1/N3 term in the large-N expansion
of the localized N = 4 SYM correlation function. Here we will again list the coeffi-
cients of the zero Fourier mode (k = 0), that include terms that are power behaved in
τ2 as well as the sequence of (k1,−k1) (D-instanton/anti D-instanton) contributions. We
have also evaluated many terms in the perturbative expansion in powers of

√
1/τ2 around

D-instanton contributions with k 6= 0, that include the instanton sectors of (k1, k2) =
(2, 0), (1, 1), (1,−2), (1,−3), (2,−3). We will not present them explicitly here. These 1/N3

contributions take similar forms to the 1/N2 contributions in (C.25) and (C.26). We find
that all of coefficients match perfectly with the localization computation.

C.3.1 E(r, 3
2 ,

3
2 , τ, τ̄ )

We described this function with r = 3 in detail in section C.1 in order to compare with
the coefficient of the 1/N term in the large-N expansion of the localized correlator. In the
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r = 5, 7, 9 cases the perturbative terms (the terms power behaved in τ2) are given by

f
5, 32 ,

3
2

0,0 (τ2) = τ3
2 ζ(3)2

6 + 8ζ(2)ζ(3)τ2
15 + 10ζ(4)

7τ2
+ 104ζ(8)

31095τ5
2
,

f
7, 32 ,

3
2

0,0 (τ2) = 2τ3
2 ζ(3)2

25 + 2ζ(2)ζ(3)τ2
7 + 20ζ(4)

27τ2
+ 77792ζ(10)

199387125τ7
2
,

f
9, 32 ,

3
2

0,0 (τ2) = τ3
2 ζ(3)2

21 + 8ζ(2)ζ(3)τ2
45 + 5ζ(4)

11τ2
+ 70720ζ(12)

693031059τ9
2
.

(C.27)

The non-perturbative contribution with k = 0 comes from the sum of the (k1,−k1) D-
instanton/anti D-instanton contributions of the form

f
r, 32 ,

3
2

k1,−k1
(τ2) = 32π2

315k3
1
σ2(k1)σ2(k1)

3∑
i,j=2

qi,jr (πk1τ2)Ki(2πk1τ2)Kj(2πk1τ2) . (C.28)

The coefficients are given by the following polynomials:

• r = 5
q2,2

5 (z) = −32768z7

165π + 7168z5

33π − 3024z3

11π + 147z
π

+ 105
πz

,

q2,3
5 (z) = −8192z6

33π + 1792z4

11π − 756z2

11π −
105
2π ,

q3,3
5 (z) = 32768z7

165π − 1024z5

11π + 336z3

11π + 273z
11π .

(C.29)

• r = 7

q2,2
7 (z) = −1048576z9

23625π + 32768z7

675π − 1536z5

25π + 176z3

5π + 97z
5π + 252

5πz ,

q2,3
7 (z) = −262144z8

4725π + 8192z6

225π −
384z4

25π −
44z2

5π −
129
5π ,

q3,3
7 (z) = 1048576z9

23625π − 32768z7

1575π + 512z5

75π + 16z3

5π + 57z
5π −

9
5πz .

(C.30)

• r = 9

q2,2
9 (z) =−134217728z11

20738025π + 4194304z9

592515π −
65536z7

7315π + 2048z5

399π + 208z3

57π + 109z
19π + 560

19πz ,

q2,3
9 (z) =−33554432z10

4147605π + 1048576z8

197505π −
16384z6

7315π −
512z4

399π −
52z2

19π −
30

19πz2−
605
38π ,

q3,3
9 (z) = 134217728z11

20738025π −
4194304z9

1382535π + 65536z7

65835π + 2048z5

4389π + 16z3

19π −
90

19πz3 + 125z
19π −

60
19πz .

(C.31)

C.3.2 E(r, 5
2 ,

5
2 , τ, τ̄ )

The k = 0 terms with r = 5, 7, 9 that are power-behaved in τ2 are given by

f
5, 52 ,

5
2

0,0 (τ2) = 2τ5
2 ζ(5)2

5 + 16ζ(4)ζ(5)τ2
45 + 112ζ(8)

243τ3
2

+ 1664ζ(10)
18657τ5

2
,

f
7, 52 ,

5
2

0,0 (τ2) = τ5
2 ζ(5)2

9 + 4ζ(4)ζ(5)τ2
21 + 56ζ(8)

297τ3
2

+ 77792ζ(12)
17090325τ7

2
,

f
9, 52 ,

5
2

0,0 (τ2) = 2τ5
2 ζ(5)2

35 + 16ζ(4)ζ(5)τ2
135 + 112ζ(8)

1053τ3
2

+ 5657600ζ(14)
6237279531τ9

2
.

(C.32)
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The non-perturbative k = 0 terms are given by the sum of (k1,−k1) D-instanton/anti
D-instanton contributions that takes the following form

f
r, 52 ,

5
2

k1,−k1
(τ2) = 32π2

315k5
1
σ4(k1)σ4(k1)

3∑
i,j=2

qi,jr (πk1τ2)Ki(2πk1τ2)Kj(2πk1τ2) . (C.33)

The coefficients in this equation are given by, the following polynomials.

• r = 5
q2,2

5 (z) = −131072πz7

4455 + 28672πz5

891 − 448πz3

11 + 28πz ,

q2,3
5 (z) = −32768πz6

891 + 7168πz4

297 − 112πz2

11 ,

q3,3
5 (z) = 131072πz7

4455 − 4096πz5

297 + 448πz3

99 − 28πz
11 .

(C.34)

• r = 7

q2,2
7 (z) = −1048576z9

23625π + 32768z7

675π − 1536z5

25π + 176z3

5π + 97z
5π + 252

5πz ,

q2,3
7 (z) = −262144z8

4725π + 8192z6

225π −
384z4

25π −
44z2

5π −
129
5π ,

q3,3
7 (z) = 1048576z9

23625π − 32768z7

1575π + 512z5

75π + 16z3

5π + 57z
5π −

9
5πz .

(C.35)

• r = 9

q2,2
9 (z) =π

(
−536870912z11

346621275 + 16777216z9

9903465 −
262144z7

122265 + 8192z5

6669 + 448z3

513 + 644z
171 −

80
171z

)
,

q2,3
9 (z) =π

(
−134217728z10

69324255 + 4194304z8

3301155 −
65536z6

122265 −
2048z4

6669 −
112z2

171 −
80

57z2−
140
171

)
,

q3,3
9 (z) =π

(
536870912z11

346621275 −
16777216z9

23108085 + 262144z7

1100385 + 8192z5

73359 + 448z3

2223 −
80

19z3−
140z
171 −

160
57z

)
(C.36)

C.3.3 E(r, 3
2 ,

7
2 , τ, τ̄ )

The k = 0 terms with r = 5, 7, 9 that are power-behaved in τ2 are given by

f
5, 32 ,

7
2

0,0 (τ2) = 2ζ(3)ζ(7)τ5
2

5 + ζ(2)ζ(7)τ3
2

3 + 16ζ(6)ζ(3)
105τ2

+ 64ζ(8)
81τ3

2
+ 1456ζ(10)

17275τ5
2
,

f
7, 32 ,

7
2

0,0 (τ2) = ζ(3)ζ(7)τ5
2

9 + 4ζ(2)ζ(7)τ3
2

25 + 32ζ(6)ζ(3)
405τ2

+ 32ζ(8)
99τ3

2
+ 113152ζ(12)

30762585τ7
2
,

f
9, 32 ,

7
2

0,0 (τ2) = 2ζ(3)ζ(7)τ5
2

35 + 2ζ(2)ζ(7)τ3
2

21 + 8ζ(6)ζ(3)
165τ2

+ 64ζ(8)
351τ3

2
+ 16539776ζ(14)

24256087065τ9
2
.

(C.37)

The non-perturbative contribution with k = 0 comes from the sum of the (k1,−k1) D-
instanton/anti D-instanton contributions of the form

f
r, 32 ,

7
2

k1,−k1
(τ2) = 32π2

315k5
1
σ2(k1)σ6(k1)

3∑
i,j=2

qi,j(πk1τ2)Ki(2πk1τ2)Kj(2πk1τ2) . (C.38)

The coefficients are given by the following polynomials.
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• r = 5
q2,2

5 (z) = −131072πz7

10395 + 4096πz5

297 − 192πz3

11 + 36πz
5 ,

q2,3
5 (z) = −32768πz6

2079 + 1024πz4

99 − 48πz2

11 − 6π ,

q3,3
5 (z) = 131072πz7

10395 − 4096πz5

693 + 64πz3

33 + 204πz
55 .

(C.39)

• r = 7

q2,2
7 (z) = −4194304πz9

1002375 + 917504πz7

200475 − 14336πz5

2475 + 448πz3

135 + 116πz
135 ,

q2,3
7 (z) = −1048576πz8

200475 + 229376πz6

66825 − 3584πz4

2475 − 112πz2

135 − 164π
45 ,

q3,3
7 (z) = 4194304πz9

1002375 − 131072πz7

66825 + 14336πz5

22275 + 448πz3

1485 + 92πz
45 − 8π

5z .

(C.40)

• r = 9

q2,2
9 (z) =π

(
−536870912z11

706080375 + 16777216z9

20173725 −
786432z7

747175 + 8192z5

13585 + 448z3

1045 + 476z
3135−

20
57z

)
,

q2,3
9 (z) =π

(
−134217728z10

141216075 + 4194304z8

6724575 −
196608z6

747175 −
2048z4

13585 −
336z2

1045 −
20

19z2−
1582
627

)
q3,3

9 (z) =π

(
536870912z11

706080375 −
16777216z9

47072025 + 262144πz7

2241525 + 8192z5

149435 + 1344z3

13585 −
60

19z3 + 812πz
627 −

40
19z

)
(C.41)

D Topological recursion

In this appendix we will show the details of the localization calculations whose results were
discussed in the main text. All of these calculations involve computing expectation values
with respect to the m = 0, b = 1 free gaussian matrix model in (3.1). In fact, as explained
in [36], if an expectation value only depends on the difference of eigenvalues aij , as all the
ones we consider do, then we can equivalently take the expectation value with respect to
the U(N) N = 4 SYM matrix model

Z
∣∣
m=0,b=1 =

∫
dNa e

− 8π2
g2
YM

∑
i
a2
i
∏
i<j

a2
ij , (D.1)

where we now integrate over N eigenvalues with no constraint, unlike the SU(N) matrix
model in (3.1). In the following we will for simplicity take all expectation values with respect
to (D.1). We will then compute these expectation values using topological recursion, which
we will briefly review following [36].

Let us begin by defining the n-point operator

Rn(y1, . . . , yn) ≡
∑
i1

1
y1 − ai1

· · ·
∑
in

1
yn − ain

. (D.2)
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The expectation value of this operator with respect to (D.1) can be shown to obey recursion
relations in n and 1/N , which are called topological recursion. It is customary to write
down these recursion relations in terms of the connected correlators

Wn(y1, . . . , yn) ≡ Nn−2〈Rn(y1, . . . , yn)〉conn = Nn−2
〈∑

i1

1
y1 − ai1

· · ·
∑
in

1
yn − ain

〉
conn.

,

(D.3)
which in a slight abuse of notation we will refer to as resolvents. These resolvents can then
be expanded in 1/N2 as

Wn(y1, . . . , yn) ≡
∞∑
m=0

1
N2mW

n
m(y1, . . . , yn) , (D.4)

and each genus-m term Wn
m can be computed for finite λ using a recursion formula in

n,m [87, 88] starting with the base case W 1
0 , as described e.g. in [36]. We use resolvents

up to n + m ≤ 5, which were given in Mathematica files attached to [24, 36], except one
should set

√
y2
i − λ/(4π2) → yi

√
1− λ/(4π2y2

i ) in all expressions given there, so that the
resolvents have the correct properties as y → ∞. In the following subsections, we will
relate the expectation values we are interested in to these resolvents, which allows us to
compute their 1/N expansion.

D.1 Details of perturbative calculation

The goal of this subsection is to compute (3.5) starting from the expectation values in (3.2).
We start by reviewing the calculation of [24, 36], where the former computed the two-body
operator I(ω), and the latter computed the four-body operator J (ω,w).

Define the inverse Laplace transform of a function f by

f(b1, . . . , bn) ≡ 1
(2πi)n

[
n∏
i=1

∫ γi+i∞

γi−i∞
dyie

biyi

]
f(y1, . . . , yn) , (D.5)

with γi chosen so that the contour lies to the right of all singularities in the integrand. We
then write the expectation values in (3.3) as

I(ω) = N2Ŵ 1(2iω) Ŵ 1(−2iω) + Ŵ 2(2iω,−2iω) ,
J (ω,w) = N2J 0(ω,w) + J 1(ω,w) +N−2J 2(ω,w) ,

(D.6)
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where we define

J 0(ω,w) ≡ Ŵ 1(2iω) Ŵ 1(2iw) Ŵ 2(−2iω,−2iw)
+ Ŵ 1(2iω) Ŵ 1(−2iw) Ŵ 2(−2iω, 2iw)
+ Ŵ 1(−2iω) Ŵ 1(2iw) Ŵ 2(2iω,−2iw)
+ Ŵ 1(−2iω) Ŵ 1(−2iw) Ŵ 2(2iω, 2iw) ,

(D.7)

J 1(ω,w) ≡ Ŵ 2(2iω, 2iw) Ŵ 2(−2iω,−2iw)
+ Ŵ 2(2iω,−2iw) Ŵ 2(−2iω, 2iw)
+ Ŵ 1(2iω) Ŵ 3(−2iω,−2iw, 2iw)
+ Ŵ 1(−2iω) Ŵ 3(2iω,−2iw, 2iw)
+ Ŵ 1(2iw) Ŵ 3(−2iω,−2iw, 2iω)
+ Ŵ 1(−2iw) Ŵ 3(2iω,−2iω, 2iw) ,

(D.8)

J 2(ω,w) ≡ Ŵ 4(2iω,−2iω, 2iw,−2iw) . (D.9)

We then take the inverse Laplace transform in (D.7) of the explicit resolvents to get the
1/N2 expansion at finite λ for I(ω) and J (ω,w) in terms of integrals over the Fourier
variables w,ω shown in (3.2). For instance, at leading order in 1/N2 we need only consider
the genus-zero resolvents in J 0(ω,w) and I0(ω), which give

J 0(ω,w)
∣∣
N2 =

8πJ1(
√
λω
π )J1(w

√
λ

π )√
λ(w2−ω2)

[
ωJ0

(√
λω
π

)
J1
(
w
√
λ

π

)
−wJ1

(√
λω
π

)
J0
(
w
√
λ

π

)]
,

I0(ω)
∣∣
N2 =

4π2J1(
√
λω
π )2

ω2λ
.

(D.10)

We can then plug these expressions into (3.2) to get the leading order inN2 result at finite λ:

∂4
m logZpert|m=0,b=1 =N2

[∫ ∞
0

dω
32ωπ2J1(

√
λω
π )2

w2λsinh2ω

+
∫ ∞

0
dω

∫ ∞
0

dw
96wωπJ1(

√
λω
π )J1(w

√
λ

π )
sinh2w sinh2ω

√
λ(w2−ω2)

[
ωJ0

(√
λω
π

)
J1
(
w
√
λ

π

)
−wJ1

(√
λω
π

)
J0
(
w
√
λ

π

)]]
+O(N0) , (D.11)

and the higher order in 1/N2 terms take a similar form of integrals of two Bessel functions
for the 2-body terms, and four Bessel functions for the 4-body terms. We need to take the
large λ expansion of these results, which will correspond to the large N expansion after we
set λ = g2

YMN . As described in appendix D of [33], the first step is to express products of
Bessel functions in their Mellin-Barnes form

Jµ(x)Jν(x) = 1
2πi

∫ c+∞i

c−∞i
ds

Γ(−s)Γ(2s+ µ+ ν + 1)
(

1
2x
)µ+ν+2s

Γ(s+ µ+ 1)Γ(s+ ν + 1)Γ(s+ µ+ ν + 1) . (D.12)

– 40 –



J
H
E
P
0
4
(
2
0
2
1
)
2
1
2

For the two-body terms, we can them perform the resulting integrals over ω in (3.2) using
the identity ∫ ∞

0
dω

ωa

sinh2 ω
= 1

2a−1 Γ(a+ 1)ζ(a) . (D.13)

After doing these ω integrals, we can then do the s integral in (D.12) by closing the contour
to the left, which gives an expansion in 1/λ.

For the 4-body term in (D.11), we can now apply (D.12) twice to get∫
dsdt

3 (2π)−2(s+t−1)w2s+3Γ(−s)ω2t+3Γ(−t)λs+t+1

Γ(s+ 1)Γ(s+ 2)2Γ(s+ 3)Γ(t+ 1)Γ(t+ 2)2Γ(t+ 3)(w2 − ω2) sinh2w sinh2 ω

× (Γ(s+ 1)Γ(2s+ 3)Γ(t+ 3)Γ(2t+ 2)− Γ(s+ 3)Γ(2s+ 2)Γ(t+ 1)Γ(2t+ 3)) ,
(D.14)

where note that the w,ω dependence does not factorize due to the w2−ω2 in the denomina-
tor. While in general it is difficult to compute the s, t integrals by closing the contour to the
left, since there are likely poles that can only be seen after doing the w,ω integrals, for the
poles at s, t = −3

2 ,−
5
2 , . . . we find that the residues at each order in λ factorize in w,ω. The

w,ω integrals can then be computed with (D.13) analytically continued to negative even
integers (recall that this quantity is only divergent for a = 1,−1,−3,−5, . . . ). These poles
correspond to the N0λ−integer terms discussed in the main text, which is why we can com-
pute all of them analytically. Unfortunately, this factorization after taking poles does not
apply to all the expected large λ terms, such as the N0λ−

integer
2 terms that we know to exist

from the numerical results of [24], nor does it apply to any terms at higher orders in 1/N2.

D.2 τ 2
2∂τ∂τ̄∂

2
m logZ

∣∣
m=0,b=1 at large N and finite gYM

Before we discuss the instanton sector contribution to the relations in (2.8) and
∂4
m logZ

∣∣
m=0,b=1 in (2.13), we first introduce a new large N and finite gYM method

that we will use for these calculations, by demonstrating it in the simpler case of
τ2

2 ∂τ∂τ̄∂
2
m logZ

∣∣
m=0,b=1 in (2.9). This result was previously computed in [35] to the first

couple orders in 1/N at finite gYM , and at subsequent orders in 1/N in a small gYM expan-
sion. Here, we complete this derivation by computing all orders in 1/N at finite gYM .

D.2.1 One-instanton sector

We start by considering the one-instanton contribution to τ2
2 ∂τ∂τ̄∂

2
m logZ

∣∣
m=0,b=1, and for

simplicity we will consider just ∂2
m logZ

∣∣
m=0,b=1, since the τ derivatives can be trivially

applied to the result.
For this calculation, it is useful to express Z(1)

inst(m, b, aij) in (3.13) as a contour integral

Z
(1)
inst(m,b,aij) = (b+1/b)

m2+ 1
4(b−1/b)2

m2+ 1
4(b+1/b)2

∫
dz

2π

exp

 N∑
j=1

log (z−aj)2−m2

(z−aj)2+ 1
4(b+1/b)2

−1

 ,
(D.15)

where the integration contour is counter-clockwise around the poles at z = aj + i, and the
subtraction of 1 from the integrand does not contribute to the final result, but makes the
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integrand decay as 1/z2 at |z| → ∞, so that the contour can be taken to be the real line.
We can then take the m derivatives to get

∂2
mZ

(1)
inst(m, b, aij)

∣∣
m=0,b=1 = 4

∫
dz

2π
[
eQ(z) − 1

]
, (D.16)

where we define

Q(z) ≡ −
∑
j

log
[
1 + 1

(z − aj)2

]
=
∞∑
k=0

(−1)n
(n+ 1)(2n+ 1)!

∂2n+1R(z)
∂z2n+1 (D.17)

in terms of the resolvent operator R given in (D.2). We now take the expectation value,
and use the cumulant expansion

〈eA〉 = e
∑∞

m=1
〈Am〉conn

m! (D.18)

to get

〈∂2
mZ

(1)
inst(m, b, aij)〉

∣∣
m=0,b=1 = 4

∫
dz

2π

exp

 ∞∑
j=1

〈Q(z)j〉conn
j!

− 1

 . (D.19)

This can then be written in terms of the connected resolvents Wn defined in (D.3) as

〈∂2
mZ

(1)
inst(m, b, aij)〉

∣∣
m=0,b=1 = 4

∫
dz

2π

[
−1 + exp

[
N

(
∂z −

∂3
z

12 + ∂5
z

360 + · · ·
)
W 1(z)

+ 1
2

(
∂z1 −

∂3
z1

12 +
∂5
z1

360 + · · ·
)(

∂z2 −
∂3
z2

12 +
∂5
z2

360 + · · ·
)
W 2(z1, z2)

∣∣
zi=z

+ · · ·
]]
,

(D.20)

where each Wn can then be expanded to any order in large N using topological recursion
in terms of the Wn

m defined in (D.4). We will have to evaluate Wn
m at values of z of order√

λ, where at fixed gYM, we have

N2−n∂kzW
n
m(z1, . . . , zn) ∝ N2− 3n+k

2 −2m . (D.21)

From this scaling, we see that only the first term in the exponent of (D.20) gives a contri-
bution of order N0 (namely the term N∂zW

1
0 ), while the rest are all suppressed in 1/N ,

so one can further expand the exponential of these terms. We can thus write (D.19) as

〈∂2
mZ

(1)
inst(m, b, aij)〉

∣∣
m=0,b=1 = 4

∫ ∞
−∞

dz

2π

[
−1 + eN∂zW

1
0 (z)

(
1− N

12∂
3
zW

1
0 (z)

+ N2 (∂3
zW

1
0 (z)

)2
288 + ∂z1∂z2W

2
0 (z1, z2)
2

∣∣∣∣
zi=z

+ N

360∂
5
zW

1
0 (z) + 1

N
∂zW

1
1 (z) + · · ·

)]
,

(D.22)
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Writing z = x
√
λ/(2π), and using the explicit expressions for theWn

m we can write (D.22) as

〈∂2
mZ

(1)
inst(m, b, aij)〉

∣∣
m=0,b=1

= 2gYM

√
N

π2

∫
dx

−1 + θ(x− 1)e
8π2
g2
YM

(
1− x√

x2−1

) 1 + 8π4x

(x2 − 1) 5
2 g4

YMN

+ 1
N2

 32π2x2

g8
YM(x2 − 1)5 + π4(8x2 + 1)

g4
YM(x2 − 1)4 −

5π2x

4g2
YM(x2 − 1) 7

2
− 16π6x(4x2 + 3)

3g6
YM(x2 − 1) 9

2

+ · · ·

 .
(D.23)

These integrals can then be performed as described in [35] to get

〈∂2
mZ

(1)
inst(m,b,aij)〉

∣∣
m=0,b=1 = e

8π2
g2
YM

−√N 16K1(8π2/g2
YM)

gYM
+

2K2(8π2/g2
YM)

√
NgYM

+ 1
32gYMN

3
2

[
−13K1(8π2/g2

YM)+9K3(8π2/g2
YM)

]
+ 1

128gYMN
5
2

[
−25K2(8π2/g2

YM)+15K4(8π2/g2
YM)

]

+ 1
gYMN

7
2

1533K1

(
8π2

g2
YM

)
16384 −

5355K3

(
8π2

g2
YM

)
32768 +

2625K5

(
8π2

g2
YM

)
32768

+O(N−
9
2 )

 .

(D.24)

We can then take the τ derivatives and compare to the one-instanton term in (2.9).

D.2.2 Higher instanton sector

We can similarly compute the k > 1 instanton terms. As described in [35], these instantons
are described by rectangular Young diagrams of height p and length q, which will correspond
to the partition of unity in the divisor sum that defines the Eisenstein series. Following [35],
we thus define

〈∂2
mZ

(k)
inst(m, b, aij)〉

∣∣
m=0,b=1 ≡

∑
p,q

Ip×q , (D.25)

for integers p, q such that k = pq. This Ip×q was given in [35] as

Ip×q =
∮
dz

2π
∏
ka

N∏
j=1

(z−aj+kai)2

(z−aj+kai)2+1×
[

4
1+δpq

( 1
p2 + 1

q2

)

+
N∑
j=1

if(p,q)
(z−aj+(p+q−1)i)(z−aj+(q−1)i)(z−aj+(p−1)i)


=
∮
dz

2π
∏
ka

N∏
j=1

(z−aj+kai)2

(z−aj+kai)2+1×
[

4
1+δpq

( 1
p2 + 1

q2

)

+
N∑
j=1

(
− 2i(p+q)(p−q)2

p2q2(z−aj+i(p+q−1))−
2i(p+q)(p−q)

p2q(z−aj+i(q−1)) + 2i(p+q)(p−q)
pq2(z−aj+i(p−1))

) .
(D.26)
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We can write this in terms of resolvents as

Ip×q =
∮
dz

2πe
∑

ka
Q(z+kai)×

[
4

1+δpq

( 1
p2 + 1

q2

)

+2i(p2−q2)
( 1
pq2R(z+i(p−1))− (p−q)

p2q2 R(z+i(p+q−1))− 1
p2q

R(z+i(q−1))
)]

.

(D.27)

We can then put all resolvents in the exponential by

Ip×q =
(

4
1+δpq

( 1
p2 + 1

q2

))
S+ 2i(p2−q2)

pq2 Q(i(p−1))− 2i(p2−q2)(p−q)
p2q2 Q(i(p+q−1))

− 2i(p2−q2)
p2q

Q(i(q−1)) ,

Q(x)≡
∫
dz

2π∂se
sR(z−x)+

∑
ka
Q(z+kai)∣∣

s=0 , S ≡
∫
dz

2πe
∑

ka
Q(z+kai) . (D.28)

Finally, we can compute the expectation value using the cumulant expansion (D.18) to get

〈Ip×q〉=
(

4
1+δpq

( 1
p2 + 1

q2

))
〈S〉+ 2i(p2−q2)

pq2 〈Q(i(p−1))〉− 2i(p2−q2)(p−q)
p2q2 〈Q(i(p+q−1))〉

− 2i(p2−q2)
p2q

〈Q(i(q−1))〉 ,

〈Q(x)〉=
∫
dz

2π∂se
∑∞

n=1
1
n! 〈(sR(z−x)+

∑
ka
Q(z+kai))n〉conn ∣∣

s=0 ,

〈S〉=
∫
dz

2πe
∑∞

n=1
1
n! 〈(

∑
ka
Q(z+kai))n〉conn

. (D.29)

We can then expand at large N and perform the integrals similarly to the one-instanton
case to get

〈Ip×q〉=
e

8pqπ2

g2
YM

1+δp,q

−√N 16K1( 8pqπ2

g2
YM

)

gYM

(
p

q
+ q

p

)
+

2K2( 8pqπ2

g2
YM

)

gYM

√
N

(
p2

q2 + q2

p2

)

+ 1
32gYMN

3
2

[
−13K1

(
8pqπ2

g2
YM

)(
p

q
+ q

p

)
+9K3

(
8pqπ2

g2
YM

)(
p3

q3 + q3

p3

)]
+ 1

128gYMN
5
2

[
−25K2

(
8pqπ2

g2
YM

)(
p2

q2 + q2

p2

)
+15K4

(
8pqπ2

g2
YM

)(
p4

q4 + q4

p4

)]

+ 1
gYMN

7
2

1533K1

(
8pqπ2

g2
YM

)
16384

(
p

q
+ q

p

)
−

5355K3

(
8pqπ2

g2
YM

)
32768

(
p3

q3 + q3

p3

)
+

2625K5

(
8pqπ2

g2
YM

)
32768

(
p5

q5 + q5

p5

)
+O(N−

9
2 )

 . (D.30)

We can then take the τ derivatives, take the p, q sum in (D.25), and compare to the relevant
instanton term in (2.9), which is the complete finite gYM derivation of this result to any
order in 1/N .
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D.3 Details of instanton calculation

We now continue with the calculation of the expectation values that show up in the rela-
tions (2.8) and ∂4

m logZ
∣∣
m=0,b=1 in (2.13), and address the instanton terms. For some of

these calculations, we will use the large N and small gYM method introduced in [35], while
for others we will use the new large N and finite gYM method that we demonstrated in the
previous section. We follow the main text and discuss the one-instanton sector, then the
two-instanton sector, and finally the mixed instanton/anti-instanton sector.

D.3.1 One-instanton sector
We start by detailing the large N and finite gYM calculation of (3.14). Consider the contour
integral representation of Z(1)

inst(m, b, aij) given in (D.15). We can then take derivatives in
m, b to get

∂4
mZ

(1)
inst
∣∣
m=0,b=1 =24

π

∫
dz
[
eQ(z)(∂zR(z)−1)−1

]
,

∂2
m∂

2
bZ

(1)
inst
∣∣
m=0,b=1 = 2

π

∫
dz

eQ(z)

2∂zR(z)−3+2
∞∑
j=0

(−1)j ∂
2j+1
z R(z)
(2j+1)!

−1

 , (D.31)

where R is the resolvent operator given in (D.2), and Q was defined in (D.17). We then
take the expectation value and use the cumulant expansion (D.18) to get

〈∂4
mZ

(1)
inst〉

∣∣
m=0,b=1 = 24

π

∫
dz
[
∂se
∑∞

n=1
1
n! 〈(s∂zR(z)+Q(z))n〉conn

∣∣
s=0 − e

∑∞
n=1

1
n! 〈(Q(z))n〉conn − 1

]
,

〈∂2
m∂

2
bZ

(1)
inst
∣∣
m=0,b=1〉 = 2

π

∫
dz

[
2∂se

∑∞
n=1

1
n! 〈(s

∑∞
j=1

∂
j
zR(z)(1+δj,1)

j! +Q(z))n〉conn ∣∣
s=0 − 3e

∑∞
n=1

1
n! 〈(Q(z))n〉conn − 1

]
,

(D.32)
where we introduced the derivatives of s to put all terms in (D.31) into the exponential.
From (D.17), we see that this expression is written in terms of connected correlators of R,
i.e. resolvents with the known 1/N2 expansion described in previous sections. We can then
expand (D.32) at large N and perform the integrals, just as in section D.2, to get

〈∂4
mZ

(1)
inst〉

∣∣
m=0,b=1 = e

8π2
g2
YM

√N 768π2
(
K0

(
8π2

g2
YM

)
−2K1

(
8π2

g2
YM

)
+K2

(
8π2

g2
YM

))
g3

YM

+ 1√
N

24
g3

YM

−4
(
g2

YM−2π2
)
K0

(
8π2

g2
YM

)
−

(
g4

YM−2π2g2
YM +8π4)K1

(
8π2

g2
YM

)
π2



+
3
(

4π2 (−75g4
YM +72π2g2

YM +64π4)K0

(
8π2

g2
YM

)
−
(
75g6

YM−72π2g4
YM +640π4g2

YM +256π6)K1

(
8π2

g2
YM

))
64π4N

3
2 g3

YM

+
15
(

2π2 (−63g4
YM +36π2g2

YM +32π4)K1

(
8π2

g2
YM

)
−
(
63g6

YM−36π2g4
YM +136π4g2

YM +64π6)K2

(
8π2

g2
YM

))
128π4N

5
2 g3

YM

+O(N−
7
2 )

 , (D.33)
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and

〈∂2
m∂

2
bZ

(1)
inst
∣∣
m=0,b=1〉= e

8π2
g2
YM

√N 512π2K0

(
8π2

g2
YM

)
+16

(
3g2

YM−32π2)K1

(
8π2

g2
YM

)
g3

YM

+ 1√
N

4
(
32π2−11g2

YM

)
K0

(
8π2

g2
YM

)
+

(
−11g4

YM
+32π2g2

YM
−128π4

)
K1

(
8π2

g2
YM

)
π2

2g3
YM

+
4π2 (−195g4

YM +288π2g2
YM +256π4)K0

(
8π2

g2
YM

)
−
(
195g6

YM−288π2g4
YM +1824π4g2

YM +1024π6)K1

(
8π2

g2
YM

)
256π4N3/2g3

YM

+
5
(

2π2 (−315g4
YM +288π2g2

YM +256π4)K1

(
8π2

g2
YM

)
−
(
315g6

YM−288π2g4
YM +784π4g2

YM +512π6)K2

(
8π2

g2
YM

))
1024π4g3

YMN
5/2

+O(N−
5
2 )

 , (D.34)

which we combine to get (3.14).
Next, we compute ∂4

mZ
∣∣NP
m=0,b=1, which consists of the two-body term 〈∂4

mZ
(1)
inst〉

∣∣
m=0,b=1

computed above as well as the higher-body term Z(1) in (3.12). For Z(1), it is difficult to
perform the large N and finite gYM calculation due to the e2ωaij terms and the Fourier
integral over ω. Instead, we will perform a large N and small gYM expansion by expanding
∂Z

(1)
inst
∣∣
m=0,b=1 at small eigenvalue, which corresponds to small g2

YM , to get an infinite series
of n-body terms. We will then compute their expectation value with e2ωaij in a large N
expansion at finite λ using topological recursion, and then do the large λ expansion as we
did with the perturbative terms of section D.1. After setting λ = g2

YMN , these steps give
a consistent large N and small gYM expansion.

We start by expanding ∂2
mZ

(1)
inst
∣∣
m=0,b=1 in (3.13) at small eigenvalue to get

∂2
mZ

(1)
inst
∣∣
m=0,b=1 = f0(N)+f1(N)C2+

(
f

(1)
2 (N)C2

2 +f (2)
2 (N)C4

)
+
(
f

(1)
3 (N)C3

2 +f (2)
3 (N)C2C4+f (3)

3 (N)C6+f (4)
3 (N)D2,2,2

)
+
(
f

(1)
4 (N)C2C6+f (2)

4 (N)C2D2,2,2+f (3)
4 (N)C2

4 +f (4)
4 (N)C2

2C4+f (5)
4 C4

2 +f (6)
4 D4,2,2+f (7)

4 D4,4,0
)

+. . . ,
(D.35)

where we defined the invariants

Cp =
∑
j,k

(aj − ak)p , Dp,q,r =
∑
j,k,l

(aj − ak)p(ak − al)q(al − aj)r , (D.36)
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and the coefficients are

f0 =−4Γ(N+ 1
2 )

√
πΓ(N) , f1 =− 3Γ(N− 1

2 )
2
√
πΓ(N+2) , f

(1)
2 =− 315Γ(N− 3

2 )
64
√
πΓ(N+4) ,

f
(2)
2 =−15(3−N+4N2)Γ(N− 3

2 )
16
√
πΓ(N+4) , f

(1)
3 =− 45045Γ(N− 5

2 )
256
√
πΓ(N+6) ,

f
(2)
3 = 3465(4N2−3N+15)Γ(N− 5

2 )
128
√
πΓ(N+6) , f

(3)
3 =−105(4N4−10N3+53N2−11N+18)Γ(N− 5

2 )
32
√
πΓ(N+6) ,

f
(4)
3 = 105(8N3−36N2+189N−15)Γ(N− 5

2 )
32
√
πΓ(N+6) ,

f
(1)
4 =

45045
(
N
(
N
(
4N2−22N+181

)
−123

)
+252

)
Γ
(
N− 7

2

)
256
√
πΓ(N+8) ,

f
(2)
4 =−

45045
(
N
(
8N2−60N+465

)
−105

)
Γ
(
N− 7

2

)
256
√
πΓ(N+8) ,

f
(3)
4 =

45045(N(N(8N(2N+1)−149)+192)+105)Γ
(
N− 7

2

)
2048

√
πΓ(N+8) ,

f
(4)
4 =−

2297295(N(4N−5)+35)Γ
(
N− 7

2

)
2048

√
πΓ(N+8) , f

(5)
4 =

43648605Γ
(
N− 7

2

)
8192

√
πΓ(N+8) ,

f
(6)
4 =−

315(N(N(N(N(2N(4N+53)−1105)+2100)−5049)−2766)+7650)Γ
(
N− 7

2

)
64
√
πNΓ(N+8) ,

f
(7)
4 =−

945(N(N(N(8N(N(4N−35)+322)−4063)+11462)−2077)+2550)Γ
(
N− 7

2

)
256
√
πNΓ(N+8) . (D.37)

Each n-body operator in (D.35) will give an (n+2)-body operator in (3.12) when combined
with e2ωaij , whose expectation value can be computed using topological recursion as in
section D.1 by applying the inverse Laplace transform to a resolvent. For instance, the
leading term from topological recursion is

〈∂2
mZ

(1)
inst〉

∣∣
m=0,b=1 =−N2

 18Γ
(
N− 1

2

)
4
√
πΓ(N+2)

∫ ∞
0

dω
1

sinh2ω

J1

(
ω
√
λ

π

)
2

ω
−
√
λJ0

(
ω
√
λ

π

)
J1

(
ω
√
λ

π

)
π

+. . . ,

(D.38)
which we can then expand at large λ using (D.12) and (D.13) and convert λ = g2

YMN to get

〈∂2
mZ

(1)
inst〉

∣∣
m=0,b=1 = −

9g2
YM

4π 5
2

√
N + . . . . (D.39)

We can systematically include more terms in large N and small gYM by including more terms
in the eigenvalue expansion (D.35), the topological recursion expansion of the (n+2)-body
operators, and the large λ expansion of the result from topological recursion. After com-
bining these terms with the small gYM expansion of the two-body term 〈∂2

mZ
(1)
inst〉

∣∣
m=0,b=1

in (D.33), we get the result (3.15).

D.3.2 Two-instanton sector

The calculation in the two-instanton sector is similar to the one-instanton sector, except all
the expressions are much more complicated, so we only do calculations in the large N and
small gYM expansions. For the two-body terms ∂4

mZ
(2)
inst
∣∣
m=0,b=1 and ∂2

m∂
2
bZ

(2)
inst
∣∣
m=0,b=1, we

expand to leading order in small eigenvalue to get N -dependent coefficients that satisfy
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complicated recursion relations, similar those found at k > 1 instantons in the small eigen-
value expansion of ∂2

mZ
(2)
inst
∣∣
m=0,b=1 in [35]. We can then expand these recursion relations at

large N and perform the trivial expectation value (since their is no eigenvalue dependence
to leading order) to get

〈∂4
mZ

(2)
inst〉

∣∣
m=0,b=1 =

48N
π

+30
√

2
π

√
N− 12

π
−

219
√

1
N

4
√

2π
− 33

2πN −
11685

(
1
N

)3/2

512
√

2π

− 249
8πN2−

150285
(

1
N

)5/2

8192
√

2π
− 8943

128πN3 +O(N−
7
2 )

+O(g2
YM) ,

〈∂2
m∂

2
bZ

(2)
inst〉

∣∣
m=0,b=1 =

16N
π

+5
√

2
π

√
N− 4

π
−

61
√

1
N

8
√

2π
− 11

2πN −
1225

(
1
N

)3/2

1024
√

2π

− 83
8πN2 +

2795
(

1
N

)5/2

1024
√

2π
− 2981

128πN3 +O(N−
7
2 )

+O(g2
YM) ,

(D.40)

which satisfies the second relation in (2.8) for the two-instanton sector. For the higher
body term Z(2), we note that the first term in (3.16) can be computed to leading order in
g2

YM by simply squaring the leading order expression in (D.35) to get

−〈∂2
mZ

(1)
inst〉

2 = −
16Γ(N + 1

2)2

πΓ(N)2 +O(g2
YM)

=
[
−16N

π
+ 4
π
− 1

2πN −
1

8πN2 + 5
128πN3 +O(N−4)

]
+O(g2

YM) .
(D.41)

Note that the N1 terms cancel between (D.40) and (D.41) (after including the factor of 3
in (3.6)), so the combined expansion begins at order

√
N as expected. For the other terms

in Z(2) in (3.16), the calculation is very similar to the one-instanton case in the previous
section except the N -dependent coefficients small eigenvalue expansion of ∂2

mZ
(2)
inst
∣∣
m=0,b=1

are expressed by complicated recursion relations given in [35]. We can combine the results
of this calculation with (D.40) and (D.41) to get (3.21)

D.3.3 Instanton/anti-instanton sector

Finally, we consider the mixed instanton/anti-instanton sector. For ∂4
m logZ

∣∣NP,(1,−1)
m=0,b=1 we

perform this calculation at large N and finite gYM . We combine (3.22) with (D.16) to get

∂4
m logZ

∣∣NP,(1,−1)
m=0,b=1 = 24

π2

∫
dz1dz2

(
〈eQ(z1)+Q(z2)〉−〈eQ(z1)〉〈eQ(z2)〉

)
24
π2

∫
dz1dz2

(
e
∑

n=1
1
n! 〈[Q(z1)+Q(z2)]n〉conn−e

∑
n=1

1
n! 〈Q(z1)n+Q(z2)n〉conn

)
,

(D.42)

where in the second equality we did the usual cumulant expansion in (D.18). We then collect
large N terms as in the similar one-instanton calculation in section D.2, and transform to
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zi = xi
√
λ/(2π), to get the leading large N term

6g2
YM

π4N
e

16π2
g2
YM

∫
dx1dx2θ(|x1| − 1)θ(|x2| − 1)e

− 8π2
g2
YM

|x1|√
x2
1−1 e

− 8π2
g2
YM

|x2|√
x2
2−1∂x1∂x2W

2
0 (x1, x2) ,

(D.43)
where we have

W 2
0 (x1, x2) = −

2π2
(
x1x2

(√
1− 1

x2
1

√
1− 1

x2
2
− 1

)
+ 1

)
g2

YM

√
1− 1

x2
1
x1
√

1− 1
x2

2
x2(x1 − x2)2

. (D.44)

While we do not know how to compute this integral analytically, it can be checked numer-
ically for many values of gYM that (D.43) matches

6e
16π2
g2
YM

35g10
YMN

8
(
15g8

YM + 192π4g4
YM + 32768π8

)
g2

YMK0

(
8π2

g2
YM

)
K1

(
8π2

g2
YM

)
π2

+16
(
15g8

YM − 768π4g4
YM + 131072π8

)
K0

(
8π2

g2
YM

)
2

−

(
−15g12

YM + 528π4g8
YM + 4096π8g4

YM + 2097152π12
)
K1

(
8π2

g2
YM

)
2

π4

 ,

(D.45)

which is the expected (1,−1) sector term in (2.13). The sub-leading terms in 1/N take a
similar form and can be similarly compared numerically to the terms listed in (2.13) using
the properties of the E functions given in appendix C. We have verified this up to O(N−3).

For the other mixed instanton terms ∂4
m logZ

∣∣NP,(p,−q)
m=0,b=1 with p, q ≤ 3, we performed the

calculation in a large N and small gYM expansion. For this calculation, we simply plug
in the small eigenvalue expansion of ∂2

mZ
(k)
inst into (3.22), where the k = 1 value was given

in (D.35) and k = 2, 3 values are given in [35]. We can then easily perform the expectation
values of the resulting polynomial in eigenvalue operators using Wick contractions in the
gaussian matrix model, which yields ∂4

m logZ
∣∣NP,(2,−2)
m=0,b=1 as given in (3.23), as well as the

other cases

∂4
m logZ

∣∣NP,(3,−3)
m=0,b=1 = 1

N

[
25g4

YM

144π5 −
125g6

YM

13824π7 +O(g8
YM)

]
− 1
N2

[
−1025g4

YM

1728π5 −
1025g6

YM

165888π7 +O(g8
YM)

]
+ 1
N3

[
4625g4

YM

41472π5 −
154225g6

YM

3981312π7 +O(g8
YM)

]
+O(N−4) ,
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∂4
m logZ

∣∣NP,(1,−2)
m=0,b=1 = 1

N

[
135g4

YM

256
√

2π5
− 2025g6

YM

32768
(√

2π7
)+ 192375g8

YM

8388608
√

2π9
+O(g10

YM)
]

− 1
N2

[
− 3645g4

YM

4096
(√

2π5
)− 5265g6

YM

524288
(√

2π7
)− 20522565g8

YM

134217728
(√

2π9
)+O(g10

YM)
]

+ 1
N3

[
233145g4

YM

524288
√

2π5
− 6413175g6

YM

67108864
(√

2π7
)+ 13478466825g8

YM

17179869184
√

2π9
+O(g10

YM)
]

+O(N−4) ,
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∂4
m logZ

∣∣NP,(1,−3)
m=0,b=1 = 1

N

[
5
√

3g4
YM

32π5 −
25g6

YM

512
(√

3π7
)+O(g8

YM)
]

− 1
N2

[
− 35g4

YM

32
(√

3π5
)+ 55g6

YM

6144
√

3π7
+O(g8

YM)
]

+ 1
N3

[
5
√

3g4
YM

128π5 −
25g6

YM

384
(√

3π7
)+O(g8

YM)
]

+O(N−4) ,
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∂4
m logZ

∣∣NP,(2,−3)
m=0,b=1 = 1

N

[
25
√

3
2g

4
YM

128π5 − 625g6
YM

16384
(√

6π7
)+O(g8

YM)
]

− 1
N2

[
− 3325g4

YM

2048
(√

6π5
)− 11975g6

YM

786432
(√

6π7
)+O(g8

YM)
]

+ 1
N3

[
82325g4

YM

262144
√

6π5
− 11510125g6

YM

100663296
(√

6π7
)+O(g8

YM)
]

+O(N−4) .
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