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Abstract

Cross-validation is a popular non-parametric method for evaluating the accuracy

of a predictive rule. The usefulness of cross-validation depends on the task we want

to employ it for. In this note, I discuss a simple non-parametric setting, and find

that cross-validation is asymptotically uninformative about the expected test error of

any given predictive rule, but allows for asymptotically consistent model selection.

The reason for this phenomenon is that the leading-order error term of cross-validation

doesn’t depend on the model being evaluated, and so cancels out when we compare two

models. This note was prepared as a comment on a paper by Rosset and Tibshirani,

forthcoming in the Journal of the American Statistical Association.

How best to estimate the accuracy of a predictive rule has been a longstanding question
in statistics. Approaches to this task range from simple methods like Mallow’s Cp to al-
gorithmic techniques like cross-validation; see Arlot and Celisse [2010], Efron [1983, 2004],
Hastie, Tibshirani, and Friedman [2009], Mallows [1973], and references therein. Rosset
and Tibshirani [2019] contribute to this discussion by considering how some classical results
on the “optimism” of the apparent error of a predictive rule, i.e., the amount by which
the training set error of a fitted statistical predictor is expected to underestimate its test
set error, change when we consider a random- versus fixed-X sampling design. This is a
welcome addition to the literature as, in modern statistical settings, we often need to work
with large observational datasets that were incidentally collected as a by-product of some
other task, and in these cases random-X modeling is more appropriate than the classical
fixed-X approach.

There are two reasons a statistician may want to estimate the accuracy of a predictive
model. One is to simply understand the quality of its predictions: For example, a company
may need to choose whether to purchase a new forecasting tool, and want to evaluate
its accuracy in order to better understand the value of the tool for its business. Another
motivation is model selection: Cross-validation and related methods are often used to choose
between competing predictive rules, or to set the complexity parameter with methods like
the lasso [Chetverikov, Liao, and Chernozhukov, 2016, Hastie, Tibshirani, and Friedman,
2009]. For the first task, we in fact need to accurately estimate the accuracy of the predictive
rule itself, and the results of Rosset and Tibshirani [2019] are focused on this task. For the
second, however, we only need to compare the accuracy of two competing rules; and this
statistical task ends up having fairly different properties than risk estimation.

I am grateful for several helpful conversations with Brad Efron. This work was supported by National

Science Foundation grant DMS-1916163 and a Facebook Faculty Award.
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Formal results Cross-validation is used to evaluate an algorithm A that takes a set of n
training samples and turns them into an rule µ̂(·) that predicts Yi from Xi, i.e.,

A : ∪∞
n=1 {X × R}n → {X → R} , A ({(Xi, Yi)}ni=1) = µ̂(·). (2)

Some papers use common notation to denote both the algorithm A and the fitted predictor
µ̂(·); here, however, it’s helpful to disambiguate notation so that we can be specific about our
assumptions. Throughout, we consider cross-validation as a tool for evaluating the algorithm
A, rather than the actual predictive rule µ̂(·) that was obtained using the training data.

Given this notation, K-fold cross-validation operates as follows. Start with a set of n
training samples, and divide them into K evenly sized and non-overlapping folds S1, ..., SK .
Then, for each k = 1, ..., K, run the algorithm A on data in all but the k-th fold to obtain
µ̂(−k)(·). The estimate of the error of A when trained on n samples is then

ĈVn,K (A) =
1

n

K∑

k=1

∑

i∈Sk

(
Yi − µ̂(−k)(Xi)

)2
. (3)

Throughout, we assume that the method A yields a predictor µ̂(·) whose root-mean squared
excess test error scales as n−γ conditionally on the training data. This type of behavior can
be verified, e.g., for kernel smoothing or local linear regression when µ(·) satisfies reasonable
regularity conditions.

Assumption 1. We have access to a stream independent and identically distributed samples
(Xi, Yi) ∈ X ×R with E

[
Y 4
]
≤ ∞ and Var

[
Yi

∣∣Xi

]
≤ Ω. We also have an algorithm A for

learning predictors µ̂(·) with the following property. There are constants 0 < C− ≤ C+ < ∞
and 0.25 < γ < 0.5 such that, when trained on n samples {(Xi, Yi)}ni=1, the excess risk of
µ̂(·) scales as

lim
n→∞

P

[
nγ

E

[
(µ̂(X)− µ(X))

2 ∣∣ {(Xi, Yi)}ni=1

] 1

2 ≤ C−

]
= 0,

lim
n→∞

P

[
nγ

E

[
(µ̂(X)− µ(X))

2 ∣∣ {(Xi, Yi)}ni=1

] 1

2 ≤ C+

]
= 1,

(4)

where X denotes a test sample drawn independently from the training distribution.

To study the behavior of cross-validation under this assumption, it is helpful to expand-
out the square, as is done in Rosset and Tibshirani [2019], Yang [2007], etc.:

ĈVn,K (A) = ĈV
∗

n,K + 2Zn,K (A) + ∆2
n,K (A) , where

ĈV
∗

n,K =
1

n

n∑

i=1

(Yi − µ(Xi))
2
, ∆2

n,K (A) =
1

n

K∑

k=1

∑

i∈Sk

(
µ(Xi)− µ̂(−k)(Xi)

)2
,

Zn,K (A) =
1

n

K∑

k=1

∑

i∈Sk

(Yi − µ(Xi))
(
µ(Xi)− µ̂(−k)(Xi)

)
.

In other words, ĈV
∗

n,K is the training set error of the optimal predictor µ̂(·), ∆2
n,K(A) is an

oracle estimate of the excess error of the fitted rule, and Zn,K(A) is a cross-term.
Given this decomposition, we note that

√
n
(
ĈV

∗

n,K − Err∗
)
⇒ N

(
0, Var

[
(Y − µ(X))

2
])

, Err∗ = E

[
(Y − µ(X))

2
]
. (5)
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Meanwhile, by our cross-fold construction, we can verify that E
[
Yi − µ(Xi)

∣∣Xi, µ̂
(−k)(Xi)

]
=

0 for all i ∈ Sk, and furthermore that Yi − µ(Xi) and Yj − µ(Xj) are pairwise uncorrelated
for i, j ∈ Sk conditionally on µ̂(−k)(Xi). The upshot is that, by Assumption 1, for all
k = 1, ..., K

E

[∑

i∈Sk

(Yi − µ(Xi))
(
µ(Xi)− µ̂(−k)(Xi)

) ∣∣ µ̂(−k)(·)
]
= 0 and

P


 n

2γ
k

|SK |E



(∑

i∈Sk

(Yi − µ(Xi))
(
µ(Xi)− µ̂(−k)(Xi)

))2 ∣∣ µ̂(−k)(·)


 ≤ C2

+ Ω


 = 1,

where nk = n− |Sk| denotes the amount of training data available to learn µ̂(−k). Thus, by
Markov’s inequality,

Zn,K (A) = Op

(
1

n0.5+γ

)
. (6)

Finally, given the scaling in Assumption 1, the oracle mean-squared excess risk ∆2
n,K(A)

scales as n−2γ in probability.
A first immediate consequence of this decomposition is that, to first order, the cross-

validated error estimate of A depends only on the test-set error of the optimal predictor
µ(·), and ĈVn,K (A) is asymptotically equivalent to ĈV

∗

n,K . Thus, an analyst wanting to
estimate the expected test set error of µ̂(·), i.e., E[(Y − µ̂(X))2

∣∣ {(Xi, Yi)}ni=1], under mean
squared error would prefer to use a point estimate Err∗ = E[(Y − µ(X))2] (which does not
depend on µ̂) than to use cross-validation.

Proposition 1. Under Assumption 1, the first-order behavior of ĈVn,K (A) does not depend
on the method A being evaluated:

√
n
(
ĈVn,K (A)− Err∗

)
⇒ N

(
0, Var

[
(Y − µ(X))

2
])

. (7)

The picture becomes more encouraging, however, when we seek to use cross validation
to compare two different predictive rules. The dominant source of noise ĈV

∗

n,K underlying
the result in Proposition 1 does not depend on A, and so cancels out when we compare two
rules. Meanwhile, the cross-term Zn,K (A) decays faster than the oracle excess error term
∆2

n,K (A), meaning that cross-validation allows for asymptotically perfect model selection.

Proposition 2. Suppose we have two methods A and A′ satisfying 1 with constants

(γ, C−, C+) and (γ′, C ′
−, C

′
+) respectively. Suppose moreover that γ > γ′, or that γ = γ′

and C+ < C ′
−. Then,

ĈVn,K (A′)− ĈVn,K (A)

∆2
n,K (A′)−∆2

n,K (A)
→p 1, (8)

and limn→∞ P

[
ĈVn,K (A′) > ĈVn,K (A)

]
= 1.

Together, Propositions 1 and 2 mean that, given two methods for generating predictive
rules that satisfy Assumption 1, the prima facie risk estimates provided by cross-validation
are asymptotically independent of the methods being evaluated, but model selection via
cross-validation can accurately pick the better of the two methods. Returning to our nu-
merical example presented above, one could argue that Proposition 1 predicts the indis-
tinguishability of the two histograms as observed in the right panel of Figure 1, whereas
Proposition 2 helps explain the success of model selection witnessed in Figure 2.
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Estimating the error rate of a prediction rule is an important statistical task, and Ros-
set and Tibshirani [2019] contribute valuable new results to this endeavor in the case of
random-X asymptotics. In studying the properties of cross-validation, though, results are
qualitatively different when we focus on model evaluation versus model comparison. This
is not only a formal curiosity, but also affects how we interpret cross-validation in practical
examples; see, e.g., the discussion in Section 2.1 of Nie and Wager [2017]. Related facts are
also reflected in statistical practice through, e.g., the recommendation to use McNemar’s
test to compare the accuracy of two classification rules, or in using a consensus test-train
split for evaluating methods in shared engineering tasks. It would be interesting to see
whether the results of Rosset and Tibshirani [2019] on optimism allow for natural extension
to the case of model comparison.

References

Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selection.
Statistics Surveys, 4:40–79, 2010.

Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals

of Statistics, 47(2):1148–1178, 2019.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 785–794. ACM, 2016.

Denis Chetverikov, Zhipeng Liao, and Victor Chernozhukov. On cross-validated lasso. arXiv
preprint arXiv:1605.02214, 2016.

Bradley Efron. Estimating the error rate of a prediction rule: improvement on cross-
validation. Journal of the American Statistical Association, 78(382):316–331, 1983.

Bradley Efron. The estimation of prediction error: covariance penalties and cross-validation.
Journal of the American Statistical Association, 99(467):619–632, 2004.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer Science & Business Media, 2009.

Colin L Mallows. Some comments on Cp. Technometrics, 15(4):661–675, 1973.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects.
arXiv preprint arXiv:1712.04912, 2017.

Saharon Rosset and Ryan J Tibshirani. From fixed-X to random-X regression: Bias-variance
decompositions, covariance penalties, and prediction error estimation. Journal of the

American Statistical Association, forthcoming, 2019.

Yuhong Yang. Consistency of cross validation for comparing regression procedures. The

Annals of Statistics, 35(6):2450–2473, 2007.

6


