
VLSI Hardware Architecture of Stochastic
Low-rank Tensor Decomposition

Lingyi Huanga, Chunhua Denga, Shahana Ibrahimb, Xiao Fub, and Bo Yuana

aDepartment of Electrical and Computer Engineering, Rutgers University
bSchool of Electrical Engineering and Computer Science, Oregon State University

Abstract—Canonical polyadic decomposition (CPD) is one
of the most popular tensor decomposition approaches used
in various practical applications. Recently, AdaCPD, a doubly
randomization-based reduced-complexity CPD, is proposed with
exhibiting high decomposition performance. However, facing
the similar challenges of all the other dense tensor-oriented
decomposition methods, AdaCPD is still computation-intensive
and thus poses severe challenges for practical deployment on
resource-constrained platforms and real-time applications. In
this paper, we propose an efficient hardware architecture for
AdaCPD accelerator. With customized hardware design and
memory optimization at the architecture level, the proposed
AdaCPD hardware accelerator enables significant performance
improvement than conventional software implementation. Eval-
uation results show that this customized hardware design only
occupies 1.6 mm2 area and consumes 300 mW power with CMOS
28nm technology, thereby bringing 6762 times and 1483 times
reduction over the software implementation on Intel Core i9-
9900K CPU in terms of area and energy efficiency, respectively.

Index Terms—VLSI, hardware architecture, Large-scale tensor
decomposition

I. INTRODUCTION

Tensor decomposition, as a powerful mathematical tool that
targets to explore the inherent low-rank characteristics of data,
is a key technique for large-scale data processing. Among
various existing tensor decomposition approaches, canonical
polyadic decomposition (CPD) [1] is a very popular solution
that has been widely used in many applications, such as image
processing [2] and topic modeling [3]. Recently, a Block-
Randomized CPD algorithm with adaptive step size, namely
AdaCPD, has been proposed in [4]. By combining randomized
block coordination descent and stochastic proximal gradient,
AdaCPD enjoys simultaneous reduction in both computational
cost and memory footprint.

Although AdaCPD already exhibits reduced complexity and
high accuracy as compared to the conventional decomposition
methods, from the perspective of practical implementation,
AdaCPD is still very computation-intensive; and hence it
is very challenging to deploy this technique in the time-
constrained power-constrained platforms, especially for those
real-time embedded applications.

To address this challenge, in this work we develop a cus-
tomized hardware architecture to accelerate the execution of
AdaCPD algorithm in an energy-efficient way. To be specific,
in order to alleviate the performance bottleneck caused by the

𝑋

(𝐼1 × 𝐼2 × 𝐼3)

𝐴 1 (: ,1)

(𝐼1)

𝐴 2 (: ,1)

(𝐼2)

(𝐼3)

𝐴 3 (: ,1)

… 𝐴 1 (: ,𝐹)

(𝐼1)

𝐴 2 (: ,𝐹)

(𝐼2)

(𝐼3)

𝐴 3 (: ,𝐹)

(𝐼1 × 𝐹)

𝐴 2

(𝐼2 × 𝐹)

𝐴 3

(𝐼3 × 𝐹)

𝐴 1 = + + =

𝐹

Fig. 1. Canonical Polyadic Decomposition (CPD).

memory bandwidth, we propose a novel tensor storage scheme
to transform random DRAM accesses to regular sequential
accesses. Case study shows that our proposed hardware design
achieves thousands times improvement on area and energy
efficiency over the CPU-based software solution.

The rest of the paper is organized as follows. Section II
gives a brief introduction of tensor decomposition, CPD and
AdaCPD algorithm. The proposed hardware architecture and
the overall dataflow are presented in Section III. Section
IV describes the proposed tensor storage scheme. The
experimental results are reported in Section V, and Section
VI draws the conclusions.

II. ALGORITHM BACKGROUND

A. Tensors and Notations

Tensors are multidimensional arrays, and each dimension
has its own coordinate system. More formally, an N-th order
tensor is an element of the tensor product of N vector space
[1]. Under this setting, vectors are essentially first-order
tensors, which are denoted by boldface lower-case letters,
(e.g. x); matrices are essentially second-order tensor, which
are denoted by boldface capital letters, (e.g. X). For the
high-dimensional tensor whose order is greater or equal to 3,
we use boldface capital letters with underline to denote, (e.g.
X).

B. Canonical Polyadic Decomposition (CPD)

CPD is one of the most popularly used tensor decomposition
methods. In general, CPD aims to represent an order-N tensor

step size
!(")

"(",%&'()*) "(",+"&%))
#(",+"&%))

Reading
Address

Sampled Matrictized
Tensor $(",,(-&.*)

Stochastic Gradient %

#(",%&'()*)
+

. "
−

MAC
Array

CORDIC
Operation

Module

Latent Factor SRAM
{% 1 , ⋯ , % " , ⋯ , %($)}

Gradient
SRAM

&(",,(-&.*)

KRP
SRAM

#(",+"&%))MT
SRAM

Sampled Tensor Matricization

Tensor
DRAM

Sampled KRP
&(",,(-&.*)

Multiplier
Array

Sampled Khatri-Rao Product

Reading Address

Address
Generator

Prefetch
Unit

Mode/Fiber Index Generation

Mode/Fiber Index
SRAM

LFSR
(Random Number

Generator)

$(",,(-&.*)

Latent Factor Update

Fig. 2. The overall architecture of AdaCPD hardware accelerator.

X, which has a size of I1 × I2 × × IN , as the sum of
rank-one components:

X =

F∑
f=1

A(1)(:, f) ◦A(2)(:, f) ◦ ... ◦A(N)(:, f), (1)

where ”◦” denotes the outer product, A(n) is an In × F
matrix as mode-n latent factor, and F is the minimal integer
that satisfies Eq. (1). Fig. 1 shows an example of the CP-
format order-3 tensor X represented with three matrices (order-
2 tensors) {A(1), A(2), A(3)}.

C. Tensor Matricization

The tensor matricization operation, or matrix unfolding of
a tensor, is very important for designing tensor factorization
algorithms [4]. Essentially, the tensor matricization reorders
the elements of the original tensor into a matrix. In this paper,
we are mainly interested in the mode-n tensor matricization
operation as:

X(i1, ..., iN) = X(n)(j, in), (2)

where X(i1, ..., iN) is the original N-th order tensor, X(n) is
a Jn × In matrix defined as the matricized tensor, where j =
1+

∑N
k=1,k ̸=n(ik−1)Jk, and Jk =

∏k−1
m=1,m ̸=n Im [1]. Then,

Eq. 1 can be reformulated as:

X(n) = H(n)A
⊤. (3)

Notice that here H(n), as a Jn × F matrix, is defined as:

H(n) = A(1)⊙A(n−1)⊙A(n+ 1)⊙...⊙A(N) = ⊙N
i=1,i̸=nA(i),

(4)
where ⊙ denotes Khatri-Rao product.

D. AdaCPD Algorithm
AdaCPD is a Block-Randomized CPD algorithm with adap-

tive step size. In general, the key idea of AdaCPD is to update
the latent factors A(n) using a doubly stochastic procedure
instead of working with the entire dataset. To be specific, at
the beginning of the r-th iteration, AdaCPD randomly samples
a mode index n, where 1 ≤ n ≤ N , and a set of mode-n fibers
indices Fn. Then the gradient G(r) ∈ R(I1+...+IN)×F can be
estimated as:

G(r) = [G
(r)
(1))

T , ..., (G
(r)
(N))

T]T , (5)

where:

G
(r)
(n) =

1

|Fn|
(A

(r)
(n)H

T
(n)(Fn, :)H(n)(Fn, :)

−XT
(n)(Fn, :)H(n)(Fn, :)).

(6)

where X(n)(Fn, :) is defined as the sampled matricized ten-
sor X(n,sample), and H(n)(Fn, :) is defined as the sampled
Khartri-Rao Product H(n,sample).

To determine the step size η
(r)
(n) of the current iteration,

Adagrad strategy [5] is used as:

η
(r)
(n) ←

η

(
∑r

t=1[G
(r)
(n)]

2)1/2
. (7)

Then, the corresponding latent factor A(n) can be updated as:

A
(r+1)
(n) ← Proxhn(A

(r)
(n) − η

(r)
(n) ⊙G

(r)
(n)), (8)

where
A

(r+1)
(n′) ← A

(r)
(n′), n

′ ̸= n. (9)

…... …...

DRAM Address Tensor Component

000…...0001 X (1,1,……,1)

000…...0010

…... …...

…... X (I1,I2,……,IN)

X (2,1,……,1)

…...

…...

…... …...

…... X (I1,…In…,IN)

X (1,…1…,1)

X (1,…2…,1)

…... …...

…...

…...

…... …...

111…...1111

X (1,……,1,1)

X (1,……,1,2)

X (I1,……,IN-1,IN)

1st Copy of
Tensor X for
Sequential in

1st Dimension

n-th Copy of
Tensor X for
Sequential in

n-th Dimension

N-th Copy of
Tensor X for
Sequential in

N-th Dimension

…...

X (I1,…In…,IN)

X (1,…1…,1)

X (1,…2…,1)

......

X (1,…In…,1)

......

X (I1,…1…,IN)

X (I1,…2…,IN)

Fig. 3. Proposed tensor storage scheme in DRAM.

III. HARDWARE ARCHITECTURE DESIGN

In this section we describes the customized hardware ar-
chitecture that can accelerate the execution of AdaCPD in
an energy-efficient way. To be specific, in order to perform
efficient mapping from algorithm to hardware, we first gener-
alizes the computing steps of AdaCPD algorithm to four main
operations:

• Mode/Fiber Index Generation
• Sampled Tensor Matricization
• Sampled Khartri-Rao Product
• Latent Factor Update

Execution Order. Fig. 2 shows the overall hardware archi-
tecture of our proposed AdaCPD hardware, which maps the
corresponding four main operations and performs the entire
execution based on the following scheme: The Mode/Fiber In-
dex Generation is executed first. After that, the two operations,
the Sampled Tensor Matricization and the Sampled Khartri-
Rao Product, are simultaneously performed. Then, the Latent
Factor Update is operated, and the results are sent back to
latent factor SRAM for the use of the next iteration.

Overall Dataflow. At the beginning of each iteration, a
linear-feedback shift register (LSFR) generates sets of random
numbers as the mode index n and the fiber indices Fn,
and then it sends them into the Mode/Fiber Index SRAM.
Specifically, for the N -th order tensor, we need one mode
index and N fiber indices for each iteration. Here the mode
index n is a single integer, which is randomly sampled from
1 to N , and each fiber index Fn is a vector with the length
of Jn, in which each entry is bounded by In.

Once all the desired indices are obtained, the address
generator and the prefetch unit will produce the corresponding
reading addresses that will be used for the sampled Khatri-
Rao product operation and the sampled tensor matricization
operation. To be specific, with the generated reading address
from the prefetch unit, the sampled matricized tensor (MT),
X(n,sample), will be loaded row by row from the off-chip
meomory, the Tensor DRAM, and then they are stored to the
corresponding on-chip memory, the MT SRAM. Meanwhile,
another on-chip memory, the Latent Factor SRAM, will be
accessed to obtain the sampled rows of the latent factors,
which will be later sent to the multiplier array to perform
element-wise multiplication. The calculated sampled Khatri-
Rao product (KRP), H(n,sample), is stored at the KRP SRAM.
Finally, the latent factor sampled by the mode index will be
updated, and such specific Latent Factor Update operation can
be performed with a three-step process:

• Step 1: X(n,sample) and H(n,sample), together with the
to-be updated latent factor A(n,input), will be sent to
the multiply-accumulate (MAC) array to calculate the
stochastic gradient g for the current iteration.

• Step 2: Benefited from the historically accumulated
square of stochastic gradients stored at the Gradient
SRAM, the step size of the current iteration η(n) is then
calculated by an individual CORDIC operation module.

• Step 3: Finally, the updated latent factor A(n,update) is
written back to the Latent Factor SRAM.

IV. PROPOSED TENSOR STORAGE SCHEME

Challenge on DRAM Access. Considering in practice
tensor decomposition is usually used to process very large-

scale tensor data, which typically contains millions of el-
ements, we assume our proposed hardware architecture is
equipped with the off-chip DRAM to store the large-size
input data X. Consequently, from the perspective of hardware
implementation, a unique challenge for the proposed AdaCPD
accelerator is the random addressing for the memory access
during tensor matricization phase. To be specific, during the
tensor matricization procedure, a large amount of DRAM
access with random reading address are required. However,
as indicated in [6], the random access is relatively slower than
the sequential access in DRAM, thereby causing significant
performance degradation to the overall AdaCPD hardware.

Proposed Solution. To overcome this challenge, we pro-
pose a new tensor storage scheme in DRAM. As shown in
Fig. 3, in DRAM we store N copies of the N -way tensor X
to make the components are located sequentially in different
dimensions (from 1 to N). Recall that as described in Eq. (2),
the mode-n tensor matricization operation is essentially the
process of reordering the N -th order tensor X(i1, ..., iN) into
a Jn×In matrix (the matricized tensor). Here we can obverse
that the n-th row of the matricized tensor X(n) is actually
sequentially sampled from the tensor X in the dimension n.
Therefore, being consistent with this inherent procedure, our
proposed tensor storage scheme can make the large number
of DRAM accesses in tensor matricization phase become
sequential. Based on our experiment, the resulting memory
bandwidth can be increased by up to 30 times.

V. EVALUATION

To demonstrate the effectiveness of the proposed architec-
ture, we develop an design example for AdaCPD hardware
accelerator. Here the user case is for decomposing a low-
rank tensor with N = 3 and I1 = I2 = I3 = 100. |Fn| is
chosen as 18 and the integer F = 10. For the configuration
of the hardware implementation, 128 16-bit multipliers are
allocated with 16 KB on-chip SRAM. The overall hardware
architecture is implemented using Verilog HDL, and the RTL
model is then synthesized using Synopsys Design Compiler
with 28nm CMOS technology. The synthesis reports show our
design example consumes 1.6 mm2 area and 300 mW power
under 800 MHz clock frequency.

Fig. 4 compares the performance between our customized
hardware implementation and CPU-based software implemen-
tation. Here the evaluated CPU platform is Intel Core i9-
9900K with 3.6 GHz clock frequency. It is seen that the
specialized hardware accelerator can achieve 6762 times and
1483 times improvement over CPU-based software implemen-
tation with respect to area efficiency and energy efficiency,
respectively.

VI. CONCLUSION

In this paper we propose and design a specialized hardware
architecture for AdaCPD algorithm for tensor decomposition.
A DRAM tensor storage scheme is proposed to alleviate the
huge cost caused by the large number of DRAM accesses
during the tensor matricization operation. Compared with

Area Efficiency Energy Efficiency10-1

100

101

102

103

104

N
or

m
al

iz
ed

 A
re

a/
En

er
gy

 E
ffi

ci
en

cy

The Proposed Hardware Architecture
CPU

Fig. 4. The comparison with CPU-based implementation.

CPU-based software implementation, the customized hardware
architecture provides significant improvement. Future work
will be conducted towards applying the proposed hardware
architecture to several emerging applications, such as tensor
decomposition-based deep neural network compression [7] [8]
[9] [10] as well as extending it to a more general tensor
decomposition engine [7] [8] [9] [11].

VII. ACKNOWLEDGEMENT

This work is partially funded by National Science Foun-
dation Award CNS-1932370, ECCS-1808159 and ECCS-
2024058.

REFERENCES

[1] Tamara G Kolda and Brett W Bader. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

[2] Charilaos I Kanatsoulis, Xiao Fu, Nicholas D Sidiropoulos, and Wing-
Kin Ma. Hyperspectral super-resolution: A coupled tensor factorization
approach. IEEE Transactions on Signal Processing, 66(24):6503–6517,
2018.

[3] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and
Matus Telgarsky. Tensor decompositions for learning latent variable
models. Journal of machine learning research, 15:2773–2832, 2014.

[4] Xiao Fu, Shahana Ibrahim, Hoi-To Wai, Cheng Gao, and Kejun Huang.
Block-randomized stochastic proximal gradient for low-rank tensor
factorization. IEEE Transactions on Signal Processing, 68:2170–2185,
2020.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
machine learning research, 12(7), 2011.

[6] Arm Holdings. Amba axi and ace protocol specification, 2021.
[7] Miao Yin, Siyu Liao, Xiao-Yang Liu, Xiaodong Wang, and Bo Yuan.

Towards extremely compact rnns for video recognition with fully de-
composed hierarchical tucker structure. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12085–
12094, 2021.

[8] Miao Yin, Yang Sui, Siyu Liao, and Bo Yuan. Towards efficient
tensor decomposition-based dnn model compression with optimization
framework. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10674–10683, 2021.

[9] Miao Yin, Huy Phan, Xiao Zang, Siyu Liao, and Bo Yuan. Batude:
Budget-aware neural network compression based on tucker decomposi-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence,
2022.

[10] Chunhua Deng, Fangxuan Sun, Xuehai Qian, Jun Lin, Zhongfeng Wang,
and Bo Yuan. Tie: Energy-efficient tensor train-based inference engine
for deep neural network. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 264–278, 2019.

[11] Chunhua Deng, Miao Yin, Xiao-Yang Liu, Xiaodong Wang, and
Bo Yuan. High-performance hardware architecture for tensor singular
value decomposition: Invited paper. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–6, 2019.

